/***************************************************************************** Copyright (c) 2005, 2017, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2014, 2023, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file row/row0merge.cc New index creation routines using a merge sort Created 12/4/2005 Jan Lindstrom Completed by Sunny Bains and Marko Makela *******************************************************/ #include #include #include #include #include "row0merge.h" #include "row0ext.h" #include "row0log.h" #include "row0ins.h" #include "row0row.h" #include "row0sel.h" #include "log0crypt.h" #include "dict0crea.h" #include "trx0purge.h" #include "lock0lock.h" #include "pars0pars.h" #include "ut0sort.h" #include "row0ftsort.h" #include "row0import.h" #include "row0vers.h" #include "handler0alter.h" #include "btr0bulk.h" #ifdef BTR_CUR_ADAPT # include "btr0sea.h" #endif /* BTR_CUR_ADAPT */ #include "ut0stage.h" #include "fil0crypt.h" #include "srv0mon.h" /* Ignore posix_fadvise() on those platforms where it does not exist */ #if defined _WIN32 # define posix_fadvise(fd, offset, len, advice) /* nothing */ #endif /* _WIN32 */ /* Whether to disable file system cache */ char srv_disable_sort_file_cache; /** Class that caches spatial index row tuples made from a single cluster index page scan, and then insert into corresponding index tree */ class spatial_index_info { public: /** constructor @param index spatial index to be created */ spatial_index_info(dict_index_t *index) : index(index) { ut_ad(index->is_spatial()); } /** Caches an index row into index tuple vector @param[in] row table row @param[in] ext externally stored column prefixes, or NULL */ void add(const dtuple_t *row, const row_ext_t *ext, mem_heap_t *heap) { dtuple_t *dtuple= row_build_index_entry(row, ext, index, heap); ut_ad(dtuple); ut_ad(dtuple->n_fields == index->n_fields); if (ext) { /* Replace any references to ext, because ext will be allocated from row_heap. */ for (ulint i= 1; i < dtuple->n_fields; i++) { dfield_t &dfield= dtuple->fields[i]; if (dfield.data >= ext->buf && dfield.data <= &ext->buf[ext->n_ext * ext->max_len]) dfield_dup(&dfield, heap); } } m_dtuple_vec.push_back(dtuple); } /** Insert spatial index rows cached in vector into spatial index @param[in] trx_id transaction id @param[in] pcur cluster index scanning cursor @param[in,out] mtr_started whether scan_mtr is active @param[in,out] heap temporary memory heap @param[in,out] scan_mtr mini-transaction for pcur @return DB_SUCCESS if successful, else error number */ dberr_t insert(trx_id_t trx_id, btr_pcur_t* pcur, bool& mtr_started, mem_heap_t* heap, mtr_t* scan_mtr) { big_rec_t* big_rec; rec_t* rec; btr_cur_t ins_cur; mtr_t mtr; rtr_info_t rtr_info; rec_offs* ins_offsets = NULL; dberr_t error = DB_SUCCESS; dtuple_t* dtuple; const ulint flag = BTR_NO_UNDO_LOG_FLAG | BTR_NO_LOCKING_FLAG | BTR_KEEP_SYS_FLAG | BTR_CREATE_FLAG; ut_ad(mtr_started == scan_mtr->is_active()); DBUG_EXECUTE_IF("row_merge_instrument_log_check_flush", log_sys.set_check_for_checkpoint();); for (idx_tuple_vec::iterator it = m_dtuple_vec.begin(); it != m_dtuple_vec.end(); ++it) { dtuple = *it; ut_ad(dtuple); if (log_sys.check_for_checkpoint()) { if (mtr_started) { if (!btr_pcur_move_to_prev_on_page(pcur)) { error = DB_CORRUPTION; break; } btr_pcur_store_position(pcur, scan_mtr); scan_mtr->commit(); mtr_started = false; } log_free_check(); } mtr.start(); index->set_modified(mtr); ins_cur.page_cur.index = index; rtr_init_rtr_info(&rtr_info, false, &ins_cur, index, false); rtr_info_update_btr(&ins_cur, &rtr_info); error = rtr_insert_leaf(&ins_cur, dtuple, BTR_MODIFY_LEAF, &mtr); /* It need to update MBR in parent entry, so change search mode to BTR_MODIFY_TREE */ if (error == DB_SUCCESS && rtr_info.mbr_adj) { mtr.commit(); rtr_clean_rtr_info(&rtr_info, true); rtr_init_rtr_info(&rtr_info, false, &ins_cur, index, false); rtr_info_update_btr(&ins_cur, &rtr_info); mtr.start(); index->set_modified(mtr); error = rtr_insert_leaf(&ins_cur, dtuple, BTR_MODIFY_TREE, &mtr); } if (error == DB_SUCCESS) { error = btr_cur_optimistic_insert( flag, &ins_cur, &ins_offsets, &heap, dtuple, &rec, &big_rec, 0, NULL, &mtr); } ut_ad(!big_rec); if (error == DB_FAIL) { mtr.commit(); mtr.start(); index->set_modified(mtr); rtr_clean_rtr_info(&rtr_info, true); rtr_init_rtr_info(&rtr_info, false, &ins_cur, index, false); rtr_info_update_btr(&ins_cur, &rtr_info); error = rtr_insert_leaf(&ins_cur, dtuple, BTR_MODIFY_TREE, &mtr); if (error == DB_SUCCESS) { error = btr_cur_pessimistic_insert( flag, &ins_cur, &ins_offsets, &heap, dtuple, &rec, &big_rec, 0, NULL, &mtr); } } ut_ad(!big_rec); DBUG_EXECUTE_IF( "row_merge_ins_spatial_fail", error = DB_FAIL; ); if (error == DB_SUCCESS) { if (rtr_info.mbr_adj) { error = rtr_ins_enlarge_mbr( &ins_cur, &mtr); } if (error == DB_SUCCESS) { page_update_max_trx_id( btr_cur_get_block(&ins_cur), btr_cur_get_page_zip(&ins_cur), trx_id, &mtr); } } mtr.commit(); rtr_clean_rtr_info(&rtr_info, true); } m_dtuple_vec.clear(); return(error); } private: /** Cache index rows made from a cluster index scan. Usually for rows on single cluster index page */ typedef std::vector > idx_tuple_vec; /** vector used to cache index rows made from cluster index scan */ idx_tuple_vec m_dtuple_vec; public: /** the index being built */ dict_index_t*const index; }; /* Maximum pending doc memory limit in bytes for a fts tokenization thread */ #define FTS_PENDING_DOC_MEMORY_LIMIT 1000000 /** Insert sorted data tuples to the index. @param[in] index index to be inserted @param[in] old_table old table @param[in] fd file descriptor @param[in,out] block file buffer @param[in] row_buf row_buf the sorted data tuples, or NULL if fd, block will be used instead @param[in,out] btr_bulk btr bulk instance @param[in] table_total_rows total rows of old table @param[in] pct_progress total progress percent untill now @param[in] pct_cost current progress percent @param[in] crypt_block buffer for encryption or NULL @param[in] space space id @param[in,out] stage performance schema accounting object, used by ALTER TABLE. If not NULL stage->begin_phase_insert() will be called initially and then stage->inc() will be called for each record that is processed. @param[in] blob_file To read big column field data from the given blob file. It is applicable only for bulk insert operation @return DB_SUCCESS or error number */ static MY_ATTRIBUTE((warn_unused_result)) dberr_t row_merge_insert_index_tuples( dict_index_t* index, const dict_table_t* old_table, const pfs_os_file_t& fd, row_merge_block_t* block, const row_merge_buf_t* row_buf, BtrBulk* btr_bulk, const ib_uint64_t table_total_rows, double pct_progress, double pct_cost, row_merge_block_t* crypt_block, ulint space, ut_stage_alter_t* stage= nullptr, merge_file_t* blob_file= nullptr); /** Encode an index record. @return size of the record */ static MY_ATTRIBUTE((nonnull)) ulint row_merge_buf_encode( /*=================*/ byte** b, /*!< in/out: pointer to current end of output buffer */ const dict_index_t* index, /*!< in: index */ const mtuple_t* entry, /*!< in: index fields of the record to encode */ ulint n_fields) /*!< in: number of fields in the entry */ { ulint size; ulint extra_size; size = rec_get_converted_size_temp( index, entry->fields, n_fields, &extra_size); ut_ad(size >= extra_size); /* Encode extra_size + 1 */ if (extra_size + 1 < 0x80) { *(*b)++ = (byte) (extra_size + 1); } else { ut_ad((extra_size + 1) < 0x8000); *(*b)++ = (byte) (0x80 | ((extra_size + 1) >> 8)); *(*b)++ = (byte) (extra_size + 1); } rec_convert_dtuple_to_temp(*b + extra_size, index, entry->fields, n_fields); *b += size; return size; } static MY_ATTRIBUTE((malloc, nonnull)) row_merge_buf_t* row_merge_buf_create_low( row_merge_buf_t *buf, mem_heap_t *heap, dict_index_t *index) { ulint max_tuples = srv_sort_buf_size / std::max(1, dict_index_get_min_size(index)); ut_ad(max_tuples > 0); ut_ad(max_tuples <= srv_sort_buf_size); buf->heap = heap; buf->index = index; buf->max_tuples = max_tuples; buf->tuples = static_cast( ut_malloc_nokey(2 * max_tuples * sizeof *buf->tuples)); buf->tmp_tuples = buf->tuples + max_tuples; return(buf); } /******************************************************//** Allocate a sort buffer. @return own: sort buffer */ row_merge_buf_t* row_merge_buf_create( /*=================*/ dict_index_t* index) /*!< in: secondary index */ { row_merge_buf_t* buf; ulint buf_size; mem_heap_t* heap; buf_size = (sizeof *buf); heap = mem_heap_create(buf_size); buf = static_cast( mem_heap_zalloc(heap, buf_size)); row_merge_buf_create_low(buf, heap, index); return(buf); } /******************************************************//** Empty a sort buffer. @return sort buffer */ row_merge_buf_t* row_merge_buf_empty( /*================*/ row_merge_buf_t* buf) /*!< in,own: sort buffer */ { ulint buf_size = sizeof *buf; ulint max_tuples = buf->max_tuples; mem_heap_t* heap = buf->heap; dict_index_t* index = buf->index; mtuple_t* tuples = buf->tuples; mem_heap_empty(heap); buf = static_cast(mem_heap_zalloc(heap, buf_size)); buf->heap = heap; buf->index = index; buf->max_tuples = max_tuples; buf->tuples = tuples; buf->tmp_tuples = buf->tuples + max_tuples; return(buf); } /******************************************************//** Deallocate a sort buffer. */ void row_merge_buf_free( /*===============*/ row_merge_buf_t* buf) /*!< in,own: sort buffer to be freed */ { ut_free(buf->tuples); mem_heap_free(buf->heap); } /** Convert the field data from compact to redundant format. @param[in] row_field field to copy from @param[out] field field to copy to @param[in] len length of the field data @param[in] zip_size compressed BLOB page size, zero for uncompressed BLOBs @param[in,out] heap memory heap where to allocate data when converting to ROW_FORMAT=REDUNDANT, or NULL when not to invoke row_merge_buf_redundant_convert(). */ static void row_merge_buf_redundant_convert( const dfield_t* row_field, dfield_t* field, ulint len, ulint zip_size, mem_heap_t* heap) { ut_ad(field->type.mbminlen == 1); ut_ad(field->type.mbmaxlen > 1); byte* buf = (byte*) mem_heap_alloc(heap, len); ulint field_len = row_field->len; ut_ad(field_len <= len); if (row_field->ext) { const byte* field_data = static_cast( dfield_get_data(row_field)); ulint ext_len; ut_a(field_len >= BTR_EXTERN_FIELD_REF_SIZE); ut_a(memcmp(field_data + field_len - BTR_EXTERN_FIELD_REF_SIZE, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE)); byte* data = btr_copy_externally_stored_field( &ext_len, field_data, zip_size, field_len, heap); ut_ad(ext_len < len); memcpy(buf, data, ext_len); field_len = ext_len; } else { memcpy(buf, row_field->data, field_len); } memset(buf + field_len, 0x20, len - field_len); dfield_set_data(field, buf, len); } /** Insert the tuple into bulk buffer insert operation @param buf merge buffer for the index operation @param table bulk insert operation for the table @param row tuple to be inserted @return number of rows inserted */ static ulint row_merge_bulk_buf_add(row_merge_buf_t* buf, const dict_table_t &table, const dtuple_t &row) { if (buf->n_tuples >= buf->max_tuples) return 0; const dict_index_t *index= buf->index; ulint n_fields= dict_index_get_n_fields(index); mtuple_t *entry= &buf->tuples[buf->n_tuples]; ulint data_size= 0; ulint extra_size= UT_BITS_IN_BYTES(unsigned(index->n_nullable)); dfield_t *field= entry->fields= static_cast( mem_heap_alloc(buf->heap, n_fields * sizeof *entry->fields)); const dict_field_t *ifield= dict_index_get_nth_field(index, 0); for (ulint i = 0; i < n_fields; i++, field++, ifield++) { dfield_copy(field, &row.fields[i]); ulint len= dfield_get_len(field); const dict_col_t* const col= ifield->col; if (dfield_is_null(field)) continue; ulint fixed_len= ifield->fixed_len; /* CHAR in ROW_FORMAT=REDUNDANT is always fixed-length, but in the temporary file it is variable-length for variable-length character sets. */ if (fixed_len && !index->table->not_redundant() && col->mbminlen != col->mbmaxlen) fixed_len= 0; if (fixed_len); else if (len < 128 || (!DATA_BIG_COL(col))) extra_size++; else extra_size += 2; data_size += len; } /* Add to the total size of the record in row_merge_block_t the encoded length of extra_size and the extra bytes (extra_size). See row_merge_buf_write() for the variable-length encoding of extra_size. */ data_size += (extra_size + 1) + ((extra_size + 1) >= 0x80); /* Reserve bytes for the end marker of row_merge_block_t. */ if (buf->total_size + data_size >= srv_sort_buf_size) return 0; buf->total_size += data_size; buf->n_tuples++; field= entry->fields; do dfield_dup(field++, buf->heap); while (--n_fields); return 1; } /** Insert a data tuple into a sort buffer. @param[in,out] buf sort buffer @param[in] fts_index fts index to be created @param[in] old_table original table @param[in] new_table new table @param[in,out] psort_info parallel sort info @param[in,out] row table row @param[in] ext cache of externally stored column prefixes, or NULL @param[in,out] doc_id Doc ID if we are creating FTS index @param[in,out] conv_heap memory heap where to allocate data when converting to ROW_FORMAT=REDUNDANT, or NULL when not to invoke row_merge_buf_redundant_convert() @param[in,out] err set if error occurs @param[in,out] v_heap heap memory to process data for virtual column @param[in,out] my_table mysql table object @param[in] trx transaction object @param[in] col_collate columns whose collations changed, or nullptr @return number of rows added, 0 if out of space */ static ulint row_merge_buf_add( row_merge_buf_t* buf, dict_index_t* fts_index, const dict_table_t* old_table, const dict_table_t* new_table, fts_psort_t* psort_info, dtuple_t* row, const row_ext_t* ext, doc_id_t* doc_id, mem_heap_t* conv_heap, dberr_t* err, mem_heap_t** v_heap, TABLE* my_table, trx_t* trx, const col_collations* col_collate) { ulint i; const dict_index_t* index; mtuple_t* entry; dfield_t* field; const dict_field_t* ifield; ulint n_fields; ulint data_size; ulint extra_size; ulint bucket = 0; doc_id_t write_doc_id; ulint n_row_added = 0; VCOL_STORAGE vcol_storage; DBUG_ENTER("row_merge_buf_add"); if (buf->n_tuples >= buf->max_tuples) { error: n_row_added = 0; goto end; } DBUG_EXECUTE_IF( "ib_row_merge_buf_add_two", if (buf->n_tuples >= 2) DBUG_RETURN(0);); UNIV_PREFETCH_R(row->fields); /* If we are building FTS index, buf->index points to the 'fts_sort_idx', and real FTS index is stored in fts_index */ index = (buf->index->type & DICT_FTS) ? fts_index : buf->index; /* create spatial index should not come here */ ut_ad(!dict_index_is_spatial(index)); n_fields = dict_index_get_n_fields(index); entry = &buf->tuples[buf->n_tuples]; field = entry->fields = static_cast( mem_heap_alloc(buf->heap, n_fields * sizeof *entry->fields)); data_size = 0; extra_size = UT_BITS_IN_BYTES(unsigned(index->n_nullable)); ifield = dict_index_get_nth_field(index, 0); for (i = 0; i < n_fields; i++, field++, ifield++) { ulint len; ulint fixed_len; const dfield_t* row_field; const dict_col_t* const col = ifield->col; const dict_v_col_t* const v_col = col->is_virtual() ? reinterpret_cast(col) : NULL; /* Process the Doc ID column */ if (!v_col && *doc_id && col->ind == index->table->fts->doc_col) { fts_write_doc_id((byte*) &write_doc_id, *doc_id); /* Note: field->data now points to a value on the stack: &write_doc_id after dfield_set_data(). Because there is only one doc_id per row, it shouldn't matter. We allocate a new buffer before we leave the function later below. */ dfield_set_data( field, &write_doc_id, sizeof(write_doc_id)); field->type.mtype = ifield->col->mtype; field->type.prtype = ifield->col->prtype; field->type.mbminlen = 0; field->type.mbmaxlen = 0; field->type.len = ifield->col->len; } else { /* Use callback to get the virtual column value */ if (v_col) { dict_index_t* clust_index = dict_table_get_first_index(new_table); if (!vcol_storage.innobase_record && !innobase_allocate_row_for_vcol( trx->mysql_thd, clust_index, v_heap, &my_table, &vcol_storage)) { *err = DB_OUT_OF_MEMORY; goto error; } row_field = innobase_get_computed_value( row, v_col, clust_index, v_heap, NULL, ifield, trx->mysql_thd, my_table, vcol_storage.innobase_record, old_table, NULL); if (row_field == NULL) { *err = DB_COMPUTE_VALUE_FAILED; goto error; } dfield_copy(field, row_field); } else { row_field = dtuple_get_nth_field(row, col->ind); dfield_copy(field, row_field); /* Copy the column collation to the tuple field */ if (col_collate) { auto it = col_collate->find(col->ind); if (it != col_collate->end()) { field->type .assign(*it->second); } } } /* Tokenize and process data for FTS */ if (index->type & DICT_FTS) { fts_doc_item_t* doc_item; byte* value; void* ptr; const ulint max_trial_count = 10000; ulint trial_count = 0; /* fetch Doc ID if it already exists in the row, and not supplied by the caller. Even if the value column is NULL, we still need to get the Doc ID so to maintain the correct max Doc ID */ if (*doc_id == 0) { const dfield_t* doc_field; doc_field = dtuple_get_nth_field( row, index->table->fts->doc_col); *doc_id = (doc_id_t) mach_read_from_8( static_cast( dfield_get_data(doc_field))); if (*doc_id == 0) { ib::warn() << "FTS Doc ID is" " zero. Record" " skipped"; goto error; } } if (dfield_is_null(field)) { n_row_added = 1; continue; } ptr = ut_malloc_nokey(sizeof(*doc_item) + field->len); doc_item = static_cast(ptr); value = static_cast(ptr) + sizeof(*doc_item); memcpy(value, field->data, field->len); field->data = value; doc_item->field = field; doc_item->doc_id = *doc_id; bucket = static_cast( *doc_id % fts_sort_pll_degree); /* Add doc item to fts_doc_list */ mysql_mutex_lock(&psort_info[bucket].mutex); if (psort_info[bucket].error == DB_SUCCESS) { UT_LIST_ADD_LAST( psort_info[bucket].fts_doc_list, doc_item); psort_info[bucket].memory_used += sizeof(*doc_item) + field->len; } else { ut_free(doc_item); } mysql_mutex_unlock(&psort_info[bucket].mutex); /* Sleep when memory used exceeds limit*/ while (psort_info[bucket].memory_used > FTS_PENDING_DOC_MEMORY_LIMIT && trial_count++ < max_trial_count) { std::this_thread::sleep_for( std::chrono::milliseconds(1)); } n_row_added = 1; continue; } /* innobase_get_computed_value() sets the length of the virtual column field. */ if (v_col == NULL && field->len != UNIV_SQL_NULL && col->mtype == DATA_MYSQL && col->len != field->len) { if (conv_heap != NULL) { row_merge_buf_redundant_convert( row_field, field, col->len, old_table->space->zip_size(), conv_heap); } } } len = dfield_get_len(field); if (dfield_is_null(field)) { ut_ad(!(col->prtype & DATA_NOT_NULL)); continue; } else if (!ext) { } else if (dict_index_is_clust(index)) { /* Flag externally stored fields. */ const byte* buf = row_ext_lookup(ext, col->ind, &len); if (UNIV_LIKELY_NULL(buf)) { ut_a(buf != field_ref_zero); if (i < dict_index_get_n_unique(index)) { dfield_set_data(field, buf, len); } else { dfield_set_ext(field); len = dfield_get_len(field); } } } else if (!v_col) { /* Only non-virtual column are stored externally */ const byte* buf = row_ext_lookup(ext, col->ind, &len); if (UNIV_LIKELY_NULL(buf)) { ut_a(buf != field_ref_zero); dfield_set_data(field, buf, len); } } /* If a column prefix index, take only the prefix */ if (ifield->prefix_len) { len = dtype_get_at_most_n_mbchars( col->prtype, col->mbminlen, col->mbmaxlen, ifield->prefix_len, len, static_cast(dfield_get_data(field))); dfield_set_len(field, len); } ut_ad(len <= col->len || DATA_LARGE_MTYPE(col->mtype)); fixed_len = ifield->fixed_len; if (fixed_len && !dict_table_is_comp(index->table) && col->mbminlen != col->mbmaxlen) { /* CHAR in ROW_FORMAT=REDUNDANT is always fixed-length, but in the temporary file it is variable-length for variable-length character sets. */ fixed_len = 0; } if (fixed_len) { #ifdef UNIV_DEBUG /* len should be between size calcualted base on mbmaxlen and mbminlen */ ut_ad(len <= fixed_len); ut_ad(!col->mbmaxlen || len >= col->mbminlen * (fixed_len / col->mbmaxlen)); ut_ad(!dfield_is_ext(field)); #endif /* UNIV_DEBUG */ } else if (dfield_is_ext(field)) { extra_size += 2; } else if (len < 128 || (!DATA_BIG_COL(col))) { extra_size++; } else { /* For variable-length columns, we look up the maximum length from the column itself. If this is a prefix index column shorter than 256 bytes, this will waste one byte. */ extra_size += 2; } data_size += len; } /* If this is FTS index, we already populated the sort buffer, return here */ if (index->type & DICT_FTS) { goto end; } #ifdef UNIV_DEBUG { ulint size; ulint extra; size = rec_get_converted_size_temp( index, entry->fields, n_fields, &extra); ut_ad(data_size + extra_size == size); ut_ad(extra_size == extra); } #endif /* UNIV_DEBUG */ /* Add to the total size of the record in row_merge_block_t the encoded length of extra_size and the extra bytes (extra_size). See row_merge_buf_write() for the variable-length encoding of extra_size. */ data_size += (extra_size + 1) + ((extra_size + 1) >= 0x80); /* Record size can exceed page size while converting to redundant row format. But there is assert ut_ad(size < srv_page_size) in rec_offs_data_size(). It may hit the assert before attempting to insert the row. */ if (conv_heap != NULL && data_size > srv_page_size) { *err = DB_TOO_BIG_RECORD; } ut_ad(data_size < srv_sort_buf_size); /* Reserve bytes for the end marker of row_merge_block_t. */ if (buf->total_size + data_size >= srv_sort_buf_size) { goto error; } buf->total_size += data_size; buf->n_tuples++; n_row_added++; field = entry->fields; /* Copy the data fields. */ do { dfield_dup(field++, buf->heap); } while (--n_fields); if (conv_heap != NULL) { mem_heap_empty(conv_heap); } end: if (vcol_storage.innobase_record) innobase_free_row_for_vcol(&vcol_storage); DBUG_RETURN(n_row_added); } /*************************************************************//** Report a duplicate key. */ void row_merge_dup_report( /*=================*/ row_merge_dup_t* dup, /*!< in/out: for reporting duplicates */ const dfield_t* entry) /*!< in: duplicate index entry */ { if (!dup->n_dup++ && dup->table) { /* Only report the first duplicate record, but count all duplicate records. */ innobase_fields_to_mysql(dup->table, dup->index, entry); } } /*************************************************************//** Compare two tuples. @return positive, 0, negative if a is greater, equal, less, than b, respectively */ static MY_ATTRIBUTE((warn_unused_result)) int row_merge_tuple_cmp( /*================*/ const dict_index_t* index, /*< in: index tree */ ulint n_uniq, /*!< in: number of unique fields */ ulint n_field,/*!< in: number of fields */ const mtuple_t& a, /*!< in: first tuple to be compared */ const mtuple_t& b, /*!< in: second tuple to be compared */ row_merge_dup_t* dup) /*!< in/out: for reporting duplicates, NULL if non-unique index */ { int cmp; const dfield_t* af = a.fields; const dfield_t* bf = b.fields; ulint n = n_uniq; const dict_field_t* f = index->fields; ut_ad(n_uniq > 0); ut_ad(n_uniq <= n_field); /* Compare the fields of the tuples until a difference is found or we run out of fields to compare. If !cmp at the end, the tuples are equal. */ do { cmp = cmp_dfield_dfield(af++, bf++, (f++)->descending); } while (!cmp && --n); if (cmp) { return(cmp); } if (dup) { /* Report a duplicate value error if the tuples are logically equal. NULL columns are logically inequal, although they are equal in the sorting order. Find out if any of the fields are NULL. */ for (const dfield_t* df = a.fields; df != af; df++) { if (dfield_is_null(df)) { goto no_report; } } row_merge_dup_report(dup, a.fields); } no_report: /* The n_uniq fields were equal, but we compare all fields so that we will get the same (internal) order as in the B-tree. */ for (n = n_field - n_uniq + 1; --n; ) { cmp = cmp_dfield_dfield(af++, bf++, (f++)->descending); if (cmp) { return(cmp); } } /* This should never be reached, except in a secondary index when creating a secondary index and a PRIMARY KEY, and there is a duplicate in the PRIMARY KEY that has not been detected yet. Internally, an index must never contain duplicates. */ return(cmp); } /** Wrapper for row_merge_tuple_sort() to inject some more context to UT_SORT_FUNCTION_BODY(). @param tuples array of tuples that being sorted @param aux work area, same size as tuples[] @param low lower bound of the sorting area, inclusive @param high upper bound of the sorting area, inclusive */ #define row_merge_tuple_sort_ctx(tuples, aux, low, high) \ row_merge_tuple_sort(index,n_uniq,n_field,dup, tuples, aux, low, high) /** Wrapper for row_merge_tuple_cmp() to inject some more context to UT_SORT_FUNCTION_BODY(). @param a first tuple to be compared @param b second tuple to be compared @return positive, 0, negative, if a is greater, equal, less, than b, respectively */ #define row_merge_tuple_cmp_ctx(a,b) \ row_merge_tuple_cmp(index, n_uniq, n_field, a, b, dup) /**********************************************************************//** Merge sort the tuple buffer in main memory. */ static void row_merge_tuple_sort( /*=================*/ const dict_index_t* index, /*!< in: index tree */ ulint n_uniq, /*!< in: number of unique fields */ ulint n_field,/*!< in: number of fields */ row_merge_dup_t* dup, /*!< in/out: reporter of duplicates (NULL if non-unique index) */ mtuple_t* tuples, /*!< in/out: tuples */ mtuple_t* aux, /*!< in/out: work area */ ulint low, /*!< in: lower bound of the sorting area, inclusive */ ulint high) /*!< in: upper bound of the sorting area, exclusive */ { ut_ad(n_field > 0); ut_ad(n_uniq <= n_field); UT_SORT_FUNCTION_BODY(row_merge_tuple_sort_ctx, tuples, aux, low, high, row_merge_tuple_cmp_ctx); } /******************************************************//** Sort a buffer. */ void row_merge_buf_sort( /*===============*/ row_merge_buf_t* buf, /*!< in/out: sort buffer */ row_merge_dup_t* dup) /*!< in/out: reporter of duplicates (NULL if non-unique index) */ { ut_ad(!buf->index->is_spatial()); row_merge_tuple_sort(buf->index, buf->index->n_uniq, buf->index->n_fields, dup, buf->tuples, buf->tmp_tuples, 0, buf->n_tuples); } /** Write the blob field data to temporary file and fill the offset, length in the field data @param field tuple field @param blob_file file to store the blob data @param heap heap to store the blob offset and length @return DB_SUCCESS if successful */ static dberr_t row_merge_write_blob_to_tmp_file( dfield_t *field, merge_file_t *blob_file,mem_heap_t **heap) { if (blob_file->fd == OS_FILE_CLOSED) { blob_file->fd= row_merge_file_create_low(nullptr); if (blob_file->fd == OS_FILE_CLOSED) return DB_OUT_OF_MEMORY; } uint64_t val= blob_file->offset; uint32_t len= field->len; dberr_t err= os_file_write( IORequestWrite, "(bulk insert)", blob_file->fd, field->data, blob_file->offset, len); if (err != DB_SUCCESS) return err; byte *data= static_cast (mem_heap_alloc(*heap, BTR_EXTERN_FIELD_REF_SIZE)); /* Write zeroes for first 8 bytes */ memset(data, 0, 8); /* Write offset for next 8 bytes */ mach_write_to_8(data + 8, val); /* Write length of the blob in 4 bytes */ mach_write_to_4(data + 16, len); blob_file->offset+= field->len; blob_file->n_rec++; dfield_set_data(field, data, BTR_EXTERN_FIELD_REF_SIZE); dfield_set_ext(field); return err; } /** This function is invoked when tuple size is greater than innodb_sort_buffer_size. Basically it recreates the tuple by writing the blob field to the temporary file. @param entry index fields to be encode the blob @param blob_file file to store the blob data @param heap heap to store the blob offset and blob length @return tuple which fits into sort_buffer_size */ static dtuple_t* row_merge_buf_large_tuple(const dtuple_t &entry, merge_file_t *blob_file, mem_heap_t **heap) { if (!*heap) *heap= mem_heap_create(DTUPLE_EST_ALLOC(entry.n_fields)); dtuple_t *tuple= dtuple_copy(&entry, *heap); for (ulint i= 0; i < tuple->n_fields; i++) { dfield_t *field= &tuple->fields[i]; if (dfield_is_null(field) || field->len <= 2000) continue; dberr_t err= row_merge_write_blob_to_tmp_file(field, blob_file, heap); if (err != DB_SUCCESS) return nullptr; } return tuple; } /** Write the field data whose length is more than 2000 bytes into blob temporary file and write offset, length into the tuple field @param entry index fields to be encode the blob @param n_fields number of fields in the entry @param heap heap to store the blob offset and blob length @param blob_file file to store the blob data */ static dberr_t row_merge_buf_blob(const mtuple_t *entry, ulint n_fields, mem_heap_t **heap, merge_file_t *blob_file) { if (!*heap) *heap= mem_heap_create(100); for (ulint i= 0; i < n_fields; i++) { dfield_t *field= &entry->fields[i]; if (dfield_is_null(field) || field->len <= 2000) continue; dberr_t err= row_merge_write_blob_to_tmp_file(field, blob_file, heap); if (err != DB_SUCCESS) return err; } return DB_SUCCESS; } /** Write a buffer to a block. @param buf sorted buffer @param block buffer for writing to file @param blob_file blob file handle for doing bulk insert operation */ dberr_t row_merge_buf_write(const row_merge_buf_t *buf, #ifndef DBUG_OFF const merge_file_t *of, /*!< output file */ #endif row_merge_block_t *block, merge_file_t *blob_file) { const dict_index_t* index = buf->index; ulint n_fields= dict_index_get_n_fields(index); byte* b = &block[0]; mem_heap_t* blob_heap = nullptr; dberr_t err = DB_SUCCESS; DBUG_ENTER("row_merge_buf_write"); for (ulint i = 0; i < buf->n_tuples; i++) { const mtuple_t* entry = &buf->tuples[i]; if (blob_file) { ut_ad(buf->index->is_primary()); err = row_merge_buf_blob( entry, n_fields, &blob_heap, blob_file); if (err != DB_SUCCESS) { goto func_exit; } } ulint rec_size= row_merge_buf_encode( &b, index, entry, n_fields); if (blob_file && rec_size > srv_page_size) { err = DB_TOO_BIG_RECORD; goto func_exit; } ut_ad(b < &block[srv_sort_buf_size]); DBUG_LOG("ib_merge_sort", reinterpret_cast(b) << ',' << of->fd << ',' << of->offset << ' ' << i << ": " << rec_printer(entry->fields, n_fields).str()); } /* Write an "end-of-chunk" marker. */ ut_a(b < &block[srv_sort_buf_size]); ut_a(b == &block[0] + buf->total_size || blob_file); *b++ = 0; #ifdef HAVE_valgrind /* The rest of the block is uninitialized. Initialize it to avoid bogus warnings. */ memset(b, 0xff, &block[srv_sort_buf_size] - b); #endif /* HAVE_valgrind */ DBUG_LOG("ib_merge_sort", "write " << reinterpret_cast(b) << ',' << of->fd << ',' << of->offset << " EOF"); func_exit: if (blob_heap) { mem_heap_free(blob_heap); } DBUG_RETURN(err); } /******************************************************//** Create a memory heap and allocate space for row_merge_rec_offsets() and mrec_buf_t[3]. @return memory heap */ static mem_heap_t* row_merge_heap_create( /*==================*/ const dict_index_t* index, /*!< in: record descriptor */ mrec_buf_t** buf, /*!< out: 3 buffers */ rec_offs** offsets1, /*!< out: offsets */ rec_offs** offsets2) /*!< out: offsets */ { ulint i = 1 + REC_OFFS_HEADER_SIZE + dict_index_get_n_fields(index); mem_heap_t* heap = mem_heap_create(2 * i * sizeof **offsets1 + 3 * sizeof **buf); *buf = static_cast( mem_heap_alloc(heap, 3 * sizeof **buf)); *offsets1 = static_cast( mem_heap_alloc(heap, i * sizeof **offsets1)); *offsets2 = static_cast( mem_heap_alloc(heap, i * sizeof **offsets2)); rec_offs_set_n_alloc(*offsets1, i); rec_offs_set_n_alloc(*offsets2, i); rec_offs_set_n_fields(*offsets1, dict_index_get_n_fields(index)); rec_offs_set_n_fields(*offsets2, dict_index_get_n_fields(index)); return(heap); } /** Read a merge block from the file system. @return whether the request was completed successfully */ bool row_merge_read( /*===========*/ const pfs_os_file_t& fd, /*!< in: file descriptor */ ulint offset, /*!< in: offset where to read in number of row_merge_block_t elements */ row_merge_block_t* buf, /*!< out: data */ row_merge_block_t* crypt_buf, /*!< in: crypt buf or NULL */ ulint space) /*!< in: space id */ { os_offset_t ofs = ((os_offset_t) offset) * srv_sort_buf_size; DBUG_ENTER("row_merge_read"); DBUG_LOG("ib_merge_sort", "fd=" << fd << " ofs=" << ofs); DBUG_EXECUTE_IF("row_merge_read_failure", DBUG_RETURN(FALSE);); const dberr_t err = os_file_read( IORequestRead, fd, buf, ofs, srv_sort_buf_size, nullptr); /* If encryption is enabled decrypt buffer */ if (err == DB_SUCCESS && srv_encrypt_log) { if (!log_tmp_block_decrypt(buf, srv_sort_buf_size, crypt_buf, ofs)) { DBUG_RETURN(false); } srv_stats.n_merge_blocks_decrypted.inc(); memcpy(buf, crypt_buf, srv_sort_buf_size); } #ifdef POSIX_FADV_DONTNEED /* Each block is read exactly once. Free up the file cache. */ posix_fadvise(fd, ofs, srv_sort_buf_size, POSIX_FADV_DONTNEED); #endif /* POSIX_FADV_DONTNEED */ DBUG_RETURN(err == DB_SUCCESS); } /********************************************************************//** Write a merge block to the file system. @return whether the request was completed successfully @retval false on error @retval true on success */ bool row_merge_write( const pfs_os_file_t& fd, /*!< in: file descriptor */ ulint offset, /*!< in: offset where to write, in number of row_merge_block_t elements */ const void* buf, /*!< in: data */ void* crypt_buf, /*!< in: crypt buf or NULL */ ulint space) /*!< in: space id */ { size_t buf_len = srv_sort_buf_size; os_offset_t ofs = buf_len * (os_offset_t) offset; void* out_buf = (void *)buf; DBUG_ENTER("row_merge_write"); DBUG_LOG("ib_merge_sort", "fd=" << fd << " ofs=" << ofs); DBUG_EXECUTE_IF("row_merge_write_failure", DBUG_RETURN(FALSE);); /* For encrypted tables, encrypt data before writing */ if (srv_encrypt_log) { if (!log_tmp_block_encrypt(static_cast(buf), buf_len, static_cast(crypt_buf), ofs)) { DBUG_RETURN(false); } srv_stats.n_merge_blocks_encrypted.inc(); out_buf = crypt_buf; } const bool success = DB_SUCCESS == os_file_write( IORequestWrite, "(merge)", fd, out_buf, ofs, buf_len); #ifdef POSIX_FADV_DONTNEED /* The block will be needed on the next merge pass, but it can be evicted from the file cache meanwhile. */ posix_fadvise(fd, ofs, buf_len, POSIX_FADV_DONTNEED); #endif /* POSIX_FADV_DONTNEED */ DBUG_RETURN(success); } /********************************************************************//** Read a merge record. @return pointer to next record, or NULL on I/O error or end of list */ const byte* row_merge_read_rec( /*===============*/ row_merge_block_t* block, /*!< in/out: file buffer */ mrec_buf_t* buf, /*!< in/out: secondary buffer */ const byte* b, /*!< in: pointer to record */ const dict_index_t* index, /*!< in: index of the record */ const pfs_os_file_t& fd, /*!< in: file descriptor */ ulint* foffs, /*!< in/out: file offset */ const mrec_t** mrec, /*!< out: pointer to merge record, or NULL on end of list (non-NULL on I/O error) */ rec_offs* offsets,/*!< out: offsets of mrec */ row_merge_block_t* crypt_block, /*!< in: crypt buf or NULL */ ulint space) /*!< in: space id */ { ulint extra_size; ulint data_size; ulint avail_size; ut_ad(b >= &block[0]); ut_ad(b < &block[srv_sort_buf_size]); ut_ad(rec_offs_get_n_alloc(offsets) == 1 + REC_OFFS_HEADER_SIZE + dict_index_get_n_fields(index)); DBUG_ENTER("row_merge_read_rec"); extra_size = *b++; if (UNIV_UNLIKELY(!extra_size)) { /* End of list */ *mrec = NULL; DBUG_LOG("ib_merge_sort", "read " << reinterpret_cast(b) << ',' << reinterpret_cast(block) << ',' << fd << ',' << *foffs << " EOF"); DBUG_RETURN(NULL); } if (extra_size >= 0x80) { /* Read another byte of extra_size. */ if (UNIV_UNLIKELY(b >= &block[srv_sort_buf_size])) { if (!row_merge_read(fd, ++(*foffs), block, crypt_block, space)) { err_exit: /* Signal I/O error. */ *mrec = b; DBUG_RETURN(NULL); } /* Wrap around to the beginning of the buffer. */ b = &block[0]; } extra_size = (extra_size & 0x7f) << 8; extra_size |= *b++; } /* Normalize extra_size. Above, value 0 signals "end of list". */ extra_size--; /* Read the extra bytes. */ if (UNIV_UNLIKELY(b + extra_size >= &block[srv_sort_buf_size])) { /* The record spans two blocks. Copy the entire record to the auxiliary buffer and handle this as a special case. */ avail_size = ulint(&block[srv_sort_buf_size] - b); ut_ad(avail_size < sizeof *buf); memcpy(*buf, b, avail_size); if (!row_merge_read(fd, ++(*foffs), block, crypt_block, space)) { goto err_exit; } /* Wrap around to the beginning of the buffer. */ b = &block[0]; /* Copy the record. */ memcpy(*buf + avail_size, b, extra_size - avail_size); b += extra_size - avail_size; *mrec = *buf + extra_size; rec_init_offsets_temp(*mrec, index, offsets); data_size = rec_offs_data_size(offsets); /* These overflows should be impossible given that records are much smaller than either buffer, and the record starts near the beginning of each buffer. */ ut_a(extra_size + data_size < sizeof *buf); ut_a(b + data_size < &block[srv_sort_buf_size]); /* Copy the data bytes. */ memcpy(*buf + extra_size, b, data_size); b += data_size; goto func_exit; } *mrec = b + extra_size; rec_init_offsets_temp(*mrec, index, offsets); data_size = rec_offs_data_size(offsets); ut_ad(extra_size + data_size < sizeof *buf); b += extra_size + data_size; if (UNIV_LIKELY(b < &block[srv_sort_buf_size])) { /* The record fits entirely in the block. This is the normal case. */ goto func_exit; } /* The record spans two blocks. Copy it to buf. */ b -= extra_size + data_size; avail_size = ulint(&block[srv_sort_buf_size] - b); memcpy(*buf, b, avail_size); *mrec = *buf + extra_size; rec_init_offsets_temp(*mrec, index, offsets); if (!row_merge_read(fd, ++(*foffs), block, crypt_block, space)) { goto err_exit; } /* Wrap around to the beginning of the buffer. */ b = &block[0]; /* Copy the rest of the record. */ memcpy(*buf + avail_size, b, extra_size + data_size - avail_size); b += extra_size + data_size - avail_size; func_exit: DBUG_LOG("ib_merge_sort", reinterpret_cast(b) << ',' << reinterpret_cast(block) << ",fd=" << fd << ',' << *foffs << ": " << rec_printer(*mrec, 0, offsets).str()); DBUG_RETURN(b); } /********************************************************************//** Write a merge record. */ static void row_merge_write_rec_low( /*====================*/ byte* b, /*!< out: buffer */ ulint e, /*!< in: encoded extra_size */ #ifndef DBUG_OFF ulint size, /*!< in: total size to write */ const pfs_os_file_t& fd, /*!< in: file descriptor */ ulint foffs, /*!< in: file offset */ #endif /* !DBUG_OFF */ const mrec_t* mrec, /*!< in: record to write */ const rec_offs* offsets)/*!< in: offsets of mrec */ #ifdef DBUG_OFF # define row_merge_write_rec_low(b, e, size, fd, foffs, mrec, offsets) \ row_merge_write_rec_low(b, e, mrec, offsets) #endif /* DBUG_OFF */ { DBUG_ENTER("row_merge_write_rec_low"); #ifndef DBUG_OFF const byte* const end = b + size; #endif /* DBUG_OFF */ DBUG_ASSERT(e == rec_offs_extra_size(offsets) + 1); DBUG_LOG("ib_merge_sort", reinterpret_cast(b) << ",fd=" << fd << ',' << foffs << ": " << rec_printer(mrec, 0, offsets).str()); if (e < 0x80) { *b++ = (byte) e; } else { *b++ = (byte) (0x80 | (e >> 8)); *b++ = (byte) e; } memcpy(b, mrec - rec_offs_extra_size(offsets), rec_offs_size(offsets)); DBUG_SLOW_ASSERT(b + rec_offs_size(offsets) == end); DBUG_VOID_RETURN; } /********************************************************************//** Write a merge record. @return pointer to end of block, or NULL on error */ static byte* row_merge_write_rec( /*================*/ row_merge_block_t* block, /*!< in/out: file buffer */ mrec_buf_t* buf, /*!< in/out: secondary buffer */ byte* b, /*!< in: pointer to end of block */ const pfs_os_file_t& fd, /*!< in: file descriptor */ ulint* foffs, /*!< in/out: file offset */ const mrec_t* mrec, /*!< in: record to write */ const rec_offs* offsets,/*!< in: offsets of mrec */ row_merge_block_t* crypt_block, /*!< in: crypt buf or NULL */ ulint space) /*!< in: space id */ { ulint extra_size; ulint size; ulint avail_size; ut_ad(block); ut_ad(buf); ut_ad(b >= &block[0]); ut_ad(b < &block[srv_sort_buf_size]); ut_ad(mrec); ut_ad(foffs); ut_ad(mrec < &block[0] || mrec > &block[srv_sort_buf_size]); ut_ad(mrec < buf[0] || mrec > buf[1]); /* Normalize extra_size. Value 0 signals "end of list". */ extra_size = rec_offs_extra_size(offsets) + 1; size = extra_size + (extra_size >= 0x80) + rec_offs_data_size(offsets); if (UNIV_UNLIKELY(b + size >= &block[srv_sort_buf_size])) { /* The record spans two blocks. Copy it to the temporary buffer first. */ avail_size = ulint(&block[srv_sort_buf_size] - b); row_merge_write_rec_low(buf[0], extra_size, size, fd, *foffs, mrec, offsets); /* Copy the head of the temporary buffer, write the completed block, and copy the tail of the record to the head of the new block. */ memcpy(b, buf[0], avail_size); if (!row_merge_write(fd, (*foffs)++, block, crypt_block, space)) { return(NULL); } MEM_UNDEFINED(&block[0], srv_sort_buf_size); /* Copy the rest. */ b = &block[0]; memcpy(b, buf[0] + avail_size, size - avail_size); b += size - avail_size; } else { row_merge_write_rec_low(b, extra_size, size, fd, *foffs, mrec, offsets); b += size; } return(b); } /********************************************************************//** Write an end-of-list marker. @return pointer to end of block, or NULL on error */ static byte* row_merge_write_eof( /*================*/ row_merge_block_t* block, /*!< in/out: file buffer */ byte* b, /*!< in: pointer to end of block */ const pfs_os_file_t& fd, /*!< in: file descriptor */ ulint* foffs, /*!< in/out: file offset */ row_merge_block_t* crypt_block, /*!< in: crypt buf or NULL */ ulint space) /*!< in: space id */ { ut_ad(block); ut_ad(b >= &block[0]); ut_ad(b < &block[srv_sort_buf_size]); ut_ad(foffs); DBUG_ENTER("row_merge_write_eof"); DBUG_LOG("ib_merge_sort", reinterpret_cast(b) << ',' << reinterpret_cast(block) << ",fd=" << fd << ',' << *foffs); *b++ = 0; MEM_CHECK_DEFINED(&block[0], b - &block[0]); MEM_CHECK_ADDRESSABLE(&block[0], srv_sort_buf_size); /* The rest of the block is uninitialized. Silence warnings. */ MEM_MAKE_DEFINED(b, &block[srv_sort_buf_size] - b); if (!row_merge_write(fd, (*foffs)++, block, crypt_block, space)) { DBUG_RETURN(NULL); } MEM_UNDEFINED(&block[0], srv_sort_buf_size); DBUG_RETURN(&block[0]); } /** Create a temporary file if it has not been created already. @param[in,out] tmpfd temporary file handle @param[in] path location for creating temporary file @return true on success, false on error */ static MY_ATTRIBUTE((warn_unused_result)) bool row_merge_tmpfile_if_needed( pfs_os_file_t* tmpfd, const char* path) { if (*tmpfd == OS_FILE_CLOSED) { *tmpfd = row_merge_file_create_low(path); if (*tmpfd != OS_FILE_CLOSED) { MONITOR_ATOMIC_INC(MONITOR_ALTER_TABLE_SORT_FILES); } } return(*tmpfd != OS_FILE_CLOSED); } /** Create a temporary file for merge sort if it was not created already. @param[in,out] file merge file structure @param[in] nrec number of records in the file @param[in] path location for creating temporary file @return true on success, false on error */ static MY_ATTRIBUTE((warn_unused_result)) bool row_merge_file_create_if_needed( merge_file_t* file, pfs_os_file_t* tmpfd, ulint nrec, const char* path) { ut_ad(file->fd == OS_FILE_CLOSED || *tmpfd != OS_FILE_CLOSED); if (file->fd == OS_FILE_CLOSED && row_merge_file_create(file, path)!= OS_FILE_CLOSED) { MONITOR_ATOMIC_INC(MONITOR_ALTER_TABLE_SORT_FILES); if (!row_merge_tmpfile_if_needed(tmpfd, path) ) { return(false); } file->n_rec = nrec; } ut_ad(file->fd == OS_FILE_CLOSED || *tmpfd != OS_FILE_CLOSED); return(file->fd != OS_FILE_CLOSED); } /** Copy the merge data tuple from another merge data tuple. @param[in] mtuple source merge data tuple @param[in,out] prev_mtuple destination merge data tuple @param[in] n_unique number of unique fields exist in the mtuple @param[in,out] heap memory heap where last_mtuple allocated */ static void row_mtuple_create( const mtuple_t* mtuple, mtuple_t* prev_mtuple, ulint n_unique, mem_heap_t* heap) { memcpy(prev_mtuple->fields, mtuple->fields, n_unique * sizeof *mtuple->fields); dfield_t* field = prev_mtuple->fields; for (ulint i = 0; i < n_unique; i++) { dfield_dup(field++, heap); } } /** Compare two merge data tuples. @param[in] prev_mtuple merge data tuple @param[in] current_mtuple merge data tuple @param[in,out] dup reporter of duplicates @retval positive, 0, negative if current_mtuple is greater, equal, less, than last_mtuple. */ static int row_mtuple_cmp( const mtuple_t* prev_mtuple, const mtuple_t* current_mtuple, row_merge_dup_t* dup) { ut_ad(dup->index->is_primary()); const ulint n_uniq= dup->index->n_uniq; return row_merge_tuple_cmp(dup->index, n_uniq, n_uniq, *current_mtuple, *prev_mtuple, dup); } /** Insert cached spatial index rows. @param[in] trx_id transaction id @param[in] sp_tuples cached spatial rows @param[in] num_spatial number of spatial indexes @param[in,out] heap temporary memory heap @param[in,out] pcur cluster index cursor @param[in,out] started whether mtr is active @param[in,out] mtr mini-transaction @return DB_SUCCESS or error number */ static dberr_t row_merge_spatial_rows( trx_id_t trx_id, spatial_index_info** sp_tuples, ulint num_spatial, mem_heap_t* heap, btr_pcur_t* pcur, bool& started, mtr_t* mtr) { if (!sp_tuples) return DB_SUCCESS; for (ulint j= 0; j < num_spatial; j++) if (dberr_t err= sp_tuples[j]->insert(trx_id, pcur, started, heap, mtr)) return err; mem_heap_empty(heap); return DB_SUCCESS; } /** Check if the geometry field is valid. @param[in] row the row @param[in] index spatial index @return true if it's valid, false if it's invalid. */ static bool row_geo_field_is_valid( const dtuple_t* row, dict_index_t* index) { const dict_field_t* ind_field = dict_index_get_nth_field(index, 0); const dict_col_t* col = ind_field->col; ulint col_no = dict_col_get_no(col); const dfield_t* dfield = dtuple_get_nth_field(row, col_no); if (dfield_is_null(dfield) || dfield_get_len(dfield) < GEO_DATA_HEADER_SIZE) { return(false); } return(true); } /** Reads clustered index of the table and create temporary files containing the index entries for the indexes to be built. @param[in] trx transaction @param[in,out] table MySQL table object, for reporting erroneous records @param[in] old_table table where rows are read from @param[in] new_table table where indexes are created; identical to old_table unless creating a PRIMARY KEY @param[in] online true if creating indexes online @param[in] index indexes to be created @param[in] fts_sort_idx full-text index to be created, or NULL @param[in] psort_info parallel sort info for fts_sort_idx creation, or NULL @param[in] files temporary files @param[in] key_numbers MySQL key numbers to create @param[in] n_index number of indexes to create @param[in] defaults default values of added, changed columns, or NULL @param[in] add_v newly added virtual columns along with indexes @param[in] col_map mapping of old column numbers to new ones, or NULL if old_table == new_table @param[in] add_autoinc number of added AUTO_INCREMENT columns, or ULINT_UNDEFINED if none is added @param[in,out] sequence autoinc sequence @param[in,out] block file buffer @param[in] skip_pk_sort whether the new PRIMARY KEY will follow existing order @param[in,out] tmpfd temporary file handle @param[in,out] stage performance schema accounting object, used by ALTER TABLE. stage->n_pk_recs_inc() will be called for each record read and stage->inc() will be called for each page read. @param[in] pct_cost percent of task weight out of total alter job @param[in,out] crypt_block crypted file buffer @param[in] eval_table mysql table used to evaluate virtual column value, see innobase_get_computed_value(). @param[in] allow_not_null allow null to not-null conversion @param[in] col_collate columns whose collations changed, or nullptr @return DB_SUCCESS or error */ static MY_ATTRIBUTE((warn_unused_result)) dberr_t row_merge_read_clustered_index( trx_t* trx, struct TABLE* table, const dict_table_t* old_table, dict_table_t* new_table, bool online, dict_index_t** index, dict_index_t* fts_sort_idx, fts_psort_t* psort_info, merge_file_t* files, const ulint* key_numbers, ulint n_index, const dtuple_t* defaults, const dict_add_v_col_t* add_v, const ulint* col_map, ulint add_autoinc, ib_sequence_t& sequence, row_merge_block_t* block, bool skip_pk_sort, pfs_os_file_t* tmpfd, ut_stage_alter_t* stage, double pct_cost, row_merge_block_t* crypt_block, struct TABLE* eval_table, bool allow_not_null, const col_collations* col_collate) { dict_index_t* clust_index; /* Clustered index */ mem_heap_t* row_heap = NULL;/* Heap memory to create clustered index tuples */ row_merge_buf_t** merge_buf; /* Temporary list for records*/ mem_heap_t* v_heap = NULL; /* Heap memory to process large data for virtual column */ btr_pcur_t pcur; /* Cursor on the clustered index */ mtr_t mtr; /* Mini transaction */ bool mtr_started = false; dberr_t err = DB_SUCCESS;/* Return code */ ulint n_nonnull = 0; /* number of columns changed to NOT NULL */ ulint* nonnull = NULL; /* NOT NULL columns */ dict_index_t* fts_index = NULL;/* FTS index */ doc_id_t doc_id = 0; doc_id_t max_doc_id = 0; ibool add_doc_id = FALSE; pthread_cond_t* fts_parallel_sort_cond = nullptr; spatial_index_info** sp_tuples = nullptr; ulint num_spatial = 0; BtrBulk* clust_btr_bulk = NULL; bool clust_temp_file = false; mem_heap_t* mtuple_heap = NULL; mtuple_t prev_mtuple; mem_heap_t* conv_heap = NULL; double curr_progress = 0.0; ib_uint64_t read_rows = 0; ib_uint64_t table_total_rows = 0; char new_sys_trx_start[8]; char new_sys_trx_end[8]; byte any_autoinc_data[8] = {0}; bool vers_update_trt = false; DBUG_ENTER("row_merge_read_clustered_index"); ut_ad((old_table == new_table) == !col_map); ut_ad(old_table->fts || !new_table->fts || !new_table->versioned()); ut_ad(!defaults || col_map); ut_ad(trx_state_eq(trx, TRX_STATE_ACTIVE)); ut_ad(trx->id); table_total_rows = dict_table_get_n_rows(old_table); if(table_total_rows == 0) { /* We don't know total row count */ table_total_rows = 1; } trx->op_info = "reading clustered index"; #ifdef FTS_INTERNAL_DIAG_PRINT DEBUG_FTS_SORT_PRINT("FTS_SORT: Start Create Index\n"); #endif /* Create and initialize memory for record buffers */ merge_buf = static_cast( ut_malloc_nokey(n_index * sizeof *merge_buf)); row_merge_dup_t clust_dup = {index[0], table, col_map, 0}; dfield_t* prev_fields = nullptr; const ulint n_uniq = dict_index_get_n_unique(index[0]); ut_ad(trx->mysql_thd != NULL); const char* path = thd_innodb_tmpdir(trx->mysql_thd); ut_ad(!skip_pk_sort || dict_index_is_clust(index[0])); /* There is no previous tuple yet. */ prev_mtuple.fields = NULL; for (ulint i = 0; i < n_index; i++) { if (index[i]->type & DICT_FTS) { /* We are building a FT index, make sure we have the temporary 'fts_sort_idx' */ ut_a(fts_sort_idx); fts_index = index[i]; merge_buf[i] = row_merge_buf_create(fts_sort_idx); add_doc_id = DICT_TF2_FLAG_IS_SET( new_table, DICT_TF2_FTS_ADD_DOC_ID); /* If Doc ID does not exist in the table itself, fetch the first FTS Doc ID */ if (add_doc_id) { fts_get_next_doc_id( (dict_table_t*) new_table, &doc_id); ut_ad(doc_id > 0); } row_fts_start_psort(psort_info); fts_parallel_sort_cond = &psort_info[0].psort_common->sort_cond; } else { if (dict_index_is_spatial(index[i])) { num_spatial++; } merge_buf[i] = row_merge_buf_create(index[i]); } } if (num_spatial > 0) { ulint count = 0; sp_tuples = static_cast( ut_malloc_nokey(num_spatial * sizeof(*sp_tuples))); for (ulint i = 0; i < n_index; i++) { if (dict_index_is_spatial(index[i])) { sp_tuples[count] = UT_NEW_NOKEY( spatial_index_info(index[i])); count++; } } ut_ad(count == num_spatial); } mtr.start(); mtr_started = true; /* Find the clustered index and create a persistent cursor based on that. */ clust_index = dict_table_get_first_index(old_table); const ulint old_trx_id_col = ulint(old_table->n_cols) - (DATA_N_SYS_COLS - DATA_TRX_ID); ut_ad(old_table->cols[old_trx_id_col].mtype == DATA_SYS); ut_ad(old_table->cols[old_trx_id_col].prtype == (DATA_TRX_ID | DATA_NOT_NULL)); ut_ad(old_table->cols[old_trx_id_col + 1].mtype == DATA_SYS); ut_ad(old_table->cols[old_trx_id_col + 1].prtype == (DATA_ROLL_PTR | DATA_NOT_NULL)); const ulint new_trx_id_col = col_map ? col_map[old_trx_id_col] : old_trx_id_col; uint64_t n_rows = 0; err = pcur.open_leaf(true, clust_index, BTR_SEARCH_LEAF, &mtr); if (err != DB_SUCCESS) { err_exit: trx->error_key_num = 0; goto func_exit; } else { rec_t* rec = page_rec_get_next(btr_pcur_get_rec(&pcur)); if (!rec) { corrupted_metadata: err = DB_CORRUPTION; goto err_exit; } if (rec_get_info_bits(rec, page_rec_is_comp(rec)) & REC_INFO_MIN_REC_FLAG) { if (!clust_index->is_instant()) { goto corrupted_metadata; } if (page_rec_is_comp(rec) && rec_get_status(rec) != REC_STATUS_INSTANT) { goto corrupted_metadata; } /* Skip the metadata pseudo-record. */ btr_pcur_get_page_cur(&pcur)->rec = rec; } else if (clust_index->is_instant()) { goto corrupted_metadata; } } /* Check if the table is supposed to be empty for our read view. If we read bulk_trx_id as an older transaction ID, it is not incorrect to check here whether that transaction should be visible to us. If bulk_trx_id is not visible to us, the table must have been empty at an earlier point of time, also in our read view. An INSERT would only update bulk_trx_id in row_ins_clust_index_entry_low() if the table really was empty (everything had been purged), when holding a leaf page latch in the clustered index (actually, the root page is the only leaf page in that case). We are holding a clustered index leaf page latch here. That will obviously prevent any concurrent INSERT from updating bulk_trx_id while we read it. */ if (!online) { } else if (trx_id_t bulk_trx_id = old_table->bulk_trx_id) { ut_ad(trx->read_view.is_open()); ut_ad(bulk_trx_id != trx->id); if (!trx->read_view.changes_visible(bulk_trx_id)) { goto func_exit; } } if (old_table != new_table) { /* The table is being rebuilt. Identify the columns that were flagged NOT NULL in the new table, so that we can quickly check that the records in the old table do not violate the added NOT NULL constraints. */ nonnull = static_cast( ut_malloc_nokey(dict_table_get_n_cols(new_table) * sizeof *nonnull)); for (ulint i = 0; i < dict_table_get_n_cols(old_table); i++) { if (dict_table_get_nth_col(old_table, i)->prtype & DATA_NOT_NULL) { continue; } const ulint j = col_map[i]; if (j == ULINT_UNDEFINED) { /* The column was dropped. */ continue; } if (dict_table_get_nth_col(new_table, j)->prtype & DATA_NOT_NULL) { nonnull[n_nonnull++] = j; } } if (!n_nonnull) { ut_free(nonnull); nonnull = NULL; } } row_heap = mem_heap_create(sizeof(mrec_buf_t)); if (dict_table_is_comp(old_table) && !dict_table_is_comp(new_table)) { conv_heap = mem_heap_create(sizeof(mrec_buf_t)); } if (skip_pk_sort) { prev_fields = static_cast( ut_malloc_nokey(n_uniq * sizeof *prev_fields)); mtuple_heap = mem_heap_create(sizeof(mrec_buf_t)); } mach_write_to_8(new_sys_trx_start, trx->id); mach_write_to_8(new_sys_trx_end, TRX_ID_MAX); /* Scan the clustered index. */ for (;;) { /* Do not continue if table pages are still encrypted */ if (!old_table->is_readable() || !new_table->is_readable()) { err = DB_DECRYPTION_FAILED; goto err_exit; } const rec_t* rec; trx_id_t rec_trx_id; rec_offs* offsets; dtuple_t* row; row_ext_t* ext; page_cur_t* cur = btr_pcur_get_page_cur(&pcur); stage->n_pk_recs_inc(); if (!page_cur_move_to_next(cur)) { corrupted_rec: err = DB_CORRUPTION; goto err_exit; } if (page_cur_is_after_last(cur)) { stage->inc(); if (UNIV_UNLIKELY(trx_is_interrupted(trx))) { err = DB_INTERRUPTED; goto err_exit; } if (online && old_table != new_table) { err = row_log_table_get_error(clust_index); if (err != DB_SUCCESS) { goto err_exit; } } /* Insert the cached spatial index rows. */ err = row_merge_spatial_rows( trx->id, sp_tuples, num_spatial, row_heap, &pcur, mtr_started, &mtr); if (err != DB_SUCCESS) { goto func_exit; } mem_heap_empty(row_heap); if (!mtr_started) { goto scan_next; } if (clust_index->lock.is_waiting()) { /* There are waiters on the clustered index tree lock, likely the purge thread. Store and restore the cursor position, and yield so that scanning a large table will not starve other threads. */ /* Store the cursor position on the last user record on the page. */ if (!btr_pcur_move_to_prev_on_page(&pcur)) { goto corrupted_index; } /* Leaf pages must never be empty, unless this is the only page in the index tree. */ if (!btr_pcur_is_on_user_rec(&pcur) && btr_pcur_get_block(&pcur)->page.id() .page_no() != clust_index->page) { goto corrupted_index; } btr_pcur_store_position(&pcur, &mtr); mtr.commit(); mtr_started = false; /* Give the waiters a chance to proceed. */ std::this_thread::yield(); scan_next: ut_ad(!mtr_started); ut_ad(!mtr.is_active()); mtr.start(); mtr_started = true; /* Restore position on the record, or its predecessor if the record was purged meanwhile. */ if (pcur.restore_position(BTR_SEARCH_LEAF, &mtr) == btr_pcur_t::CORRUPTED) { corrupted_index: err = DB_CORRUPTION; goto func_exit; } /* Move to the successor of the original record. */ if (!btr_pcur_move_to_next_user_rec( &pcur, &mtr)) { end_of_index: row = NULL; mtr.commit(); mtr_started = false; mem_heap_free(row_heap); row_heap = NULL; ut_free(nonnull); nonnull = NULL; goto write_buffers; } } else { uint32_t next_page_no = btr_page_get_next( page_cur_get_page(cur)); if (next_page_no == FIL_NULL) { goto end_of_index; } buf_block_t* block = buf_page_get_gen( page_id_t(old_table->space->id, next_page_no), old_table->space->zip_size(), RW_S_LATCH, nullptr, BUF_GET, &mtr, &err, false); if (!block) { goto err_exit; } buf_page_make_young_if_needed(&block->page); page_cur_set_before_first(block, cur); if (!page_cur_move_to_next(cur) || page_cur_is_after_last(cur)) { goto corrupted_rec; } const auto s = mtr.get_savepoint(); mtr.rollback_to_savepoint(s - 2, s - 1); } } else { mem_heap_empty(row_heap); } rec = page_cur_get_rec(cur); if (online) { offsets = rec_get_offsets(rec, clust_index, NULL, clust_index->n_core_fields, ULINT_UNDEFINED, &row_heap); rec_trx_id = row_get_rec_trx_id(rec, clust_index, offsets); /* Perform a REPEATABLE READ. When rebuilding the table online, row_log_table_apply() must not see a newer state of the table when applying the log. This is mainly to prevent false duplicate key errors, because the log will identify records by the PRIMARY KEY, and also to prevent unsafe BLOB access. When creating a secondary index online, this table scan must not see records that have only been inserted to the clustered index, but have not been written to the online_log of index[]. If we performed READ UNCOMMITTED, it could happen that the ADD INDEX reaches ONLINE_INDEX_COMPLETE state between the time the DML thread has updated the clustered index but has not yet accessed secondary index. */ ut_ad(trx->read_view.is_open()); ut_ad(rec_trx_id != trx->id); if (!trx->read_view.changes_visible(rec_trx_id)) { if (rec_trx_id >= trx->read_view.low_limit_id() && rec_trx_id >= trx_sys.get_max_trx_id()) { goto corrupted_rec; } rec_t* old_vers; row_vers_build_for_consistent_read( rec, &mtr, clust_index, &offsets, &trx->read_view, &row_heap, row_heap, &old_vers, NULL); if (!old_vers) { continue; } /* The old version must necessarily be in the "prehistory", because the exclusive lock in ha_innobase::prepare_inplace_alter_table() forced the completion of any transactions that accessed this table. */ ut_ad(row_get_rec_trx_id(old_vers, clust_index, offsets) < trx->id); rec = old_vers; rec_trx_id = 0; } if (rec_get_deleted_flag( rec, dict_table_is_comp(old_table))) { /* In delete-marked records, DB_TRX_ID must always refer to an existing undo log record. Above, we did reset rec_trx_id = 0 for rec = old_vers.*/ ut_ad(rec == page_cur_get_rec(cur) ? rec_trx_id : !rec_trx_id); /* This record was deleted in the latest committed version, or it was deleted and then reinserted-by-update before purge kicked in. Skip it. */ continue; } ut_ad(!rec_offs_any_null_extern(rec, offsets)); } else if (rec_get_deleted_flag( rec, dict_table_is_comp(old_table))) { /* In delete-marked records, DB_TRX_ID must always refer to an existing undo log record. */ ut_d(rec_trx_id = rec_get_trx_id(rec, clust_index)); ut_ad(rec_trx_id); /* This must be a purgeable delete-marked record, and the transaction that delete-marked the record must have been committed before this !online ALTER TABLE transaction. */ ut_ad(rec_trx_id < trx->id); /* Skip delete-marked records. Skipping delete-marked records will make the created indexes unuseable for transactions whose read views were created before the index creation completed, but an attempt to preserve the history would make it tricky to detect duplicate keys. */ continue; } else { offsets = rec_get_offsets(rec, clust_index, NULL, clust_index->n_core_fields, ULINT_UNDEFINED, &row_heap); /* This is a locking ALTER TABLE. If we are not rebuilding the table, the DB_TRX_ID does not matter, as it is not being written to any secondary indexes; see if (old_table == new_table) below. If we are rebuilding the table, the DB_TRX_ID,DB_ROLL_PTR should be reset, because there will be no history available. */ ut_ad(rec_get_trx_id(rec, clust_index) < trx->id); rec_trx_id = 0; } /* When !online, we are holding a lock on old_table, preventing any inserts that could have written a record 'stub' before writing out off-page columns. */ ut_ad(!rec_offs_any_null_extern(rec, offsets)); /* Build a row based on the clustered index. */ row = row_build_w_add_vcol(ROW_COPY_POINTERS, clust_index, rec, offsets, new_table, defaults, add_v, col_map, &ext, row_heap); ut_ad(row); for (ulint i = 0; i < n_nonnull; i++) { dfield_t* field = &row->fields[nonnull[i]]; ut_ad(dfield_get_type(field)->prtype & DATA_NOT_NULL); if (dfield_is_null(field)) { Field* null_field = table->field[nonnull[i]]; null_field->set_warning( Sql_condition::WARN_LEVEL_WARN, WARN_DATA_TRUNCATED, 1, ulong(n_rows + 1)); if (!allow_not_null) { err = DB_INVALID_NULL; goto err_exit; } const dfield_t& default_field = defaults->fields[nonnull[i]]; *field = default_field; } } /* Get the next Doc ID */ if (add_doc_id) { doc_id++; } else { doc_id = 0; } ut_ad(row->fields[new_trx_id_col].type.mtype == DATA_SYS); ut_ad(row->fields[new_trx_id_col].type.prtype == (DATA_TRX_ID | DATA_NOT_NULL)); ut_ad(row->fields[new_trx_id_col].len == DATA_TRX_ID_LEN); ut_ad(row->fields[new_trx_id_col + 1].type.mtype == DATA_SYS); ut_ad(row->fields[new_trx_id_col + 1].type.prtype == (DATA_ROLL_PTR | DATA_NOT_NULL)); ut_ad(row->fields[new_trx_id_col + 1].len == DATA_ROLL_PTR_LEN); if (old_table == new_table) { /* Do not bother touching DB_TRX_ID,DB_ROLL_PTR because they are not going to be written into secondary indexes. */ } else if (rec_trx_id < trx->id) { /* Reset the DB_TRX_ID,DB_ROLL_PTR of old rows for which history is not going to be available after the rebuild operation. This essentially mimics row_purge_reset_trx_id(). */ row->fields[new_trx_id_col].data = const_cast(reset_trx_id); row->fields[new_trx_id_col + 1].data = const_cast(reset_trx_id + DATA_TRX_ID_LEN); } if (add_autoinc != ULINT_UNDEFINED) { ut_ad(add_autoinc < dict_table_get_n_user_cols(new_table)); dfield_t* dfield = dtuple_get_nth_field(row, add_autoinc); if (new_table->versioned()) { if (dtuple_get_nth_field(row, new_table->vers_end) ->vers_history_row()) { if (dfield_get_type(dfield)->prtype & DATA_NOT_NULL) { err = DB_UNSUPPORTED; my_error(ER_UNSUPPORTED_EXTENSION, MYF(0), old_table->name.m_name); goto func_exit; } dfield_set_null(dfield); } else { // set not null ulint len = dfield_get_type(dfield)->len; dfield_set_data(dfield, any_autoinc_data, len); } } if (dfield_is_null(dfield)) { goto write_buffers; } const dtype_t* dtype = dfield_get_type(dfield); byte* b = static_cast(dfield_get_data(dfield)); if (sequence.eof()) { ib_errf(trx->mysql_thd, IB_LOG_LEVEL_ERROR, ER_AUTOINC_READ_FAILED, "[NULL]"); err = DB_ERROR; goto err_exit; } ulonglong value = sequence++; switch (dtype_get_mtype(dtype)) { case DATA_INT: { ibool usign; ulint len = dfield_get_len(dfield); usign = dtype_get_prtype(dtype) & DATA_UNSIGNED; mach_write_ulonglong(b, value, len, usign); break; } case DATA_FLOAT: mach_float_write( b, static_cast(value)); break; case DATA_DOUBLE: mach_double_write( b, static_cast(value)); break; default: ut_ad(0); } } if (old_table->versioned()) { if (!new_table->versioned() && clust_index->vers_history_row(rec, offsets)) { continue; } } else if (new_table->versioned()) { dfield_t* start = dtuple_get_nth_field(row, new_table->vers_start); dfield_t* end = dtuple_get_nth_field(row, new_table->vers_end); dfield_set_data(start, new_sys_trx_start, 8); dfield_set_data(end, new_sys_trx_end, 8); vers_update_trt = true; } write_buffers: /* Build all entries for all the indexes to be created in a single scan of the clustered index. */ n_rows++; ulint s_idx_cnt = 0; bool skip_sort = skip_pk_sort && dict_index_is_clust(merge_buf[0]->index); for (ulint k = 0, i = 0; i < n_index; i++, skip_sort = false) { row_merge_buf_t* buf = merge_buf[i]; ulint rows_added = 0; if (dict_index_is_spatial(buf->index)) { if (!row) { continue; } ut_ad(sp_tuples[s_idx_cnt]->index == buf->index); /* If the geometry field is invalid, report error. */ if (!row_geo_field_is_valid(row, buf->index)) { err = DB_CANT_CREATE_GEOMETRY_OBJECT; break; } sp_tuples[s_idx_cnt]->add(row, ext, buf->heap); s_idx_cnt++; continue; } ut_ad(!row || !dict_index_is_clust(buf->index) || trx_id_check(row->fields[new_trx_id_col].data, trx->id)); merge_file_t* file = &files[k++]; if (UNIV_LIKELY (row && (rows_added = row_merge_buf_add( buf, fts_index, old_table, new_table, psort_info, row, ext, &doc_id, conv_heap, &err, &v_heap, eval_table, trx, col_collate)))) { /* If we are creating FTS index, a single row can generate more records for tokenized word */ file->n_rec += rows_added; if (err != DB_SUCCESS) { ut_ad(err == DB_TOO_BIG_RECORD); break; } if (doc_id > max_doc_id) { max_doc_id = doc_id; } if (buf->index->type & DICT_FTS) { /* Check if error occurs in child thread */ for (ulint j = 0; j < fts_sort_pll_degree; j++) { if (psort_info[j].error != DB_SUCCESS) { err = psort_info[j].error; trx->error_key_num = i; break; } } if (err != DB_SUCCESS) { break; } } if (skip_sort) { ut_ad(buf->n_tuples > 0); const mtuple_t* curr = &buf->tuples[buf->n_tuples - 1]; ut_ad(i == 0); ut_ad(dict_index_is_clust(merge_buf[0]->index)); /* Detect duplicates by comparing the current record with previous record. When temp file is not used, records should be in sorted order. */ if (prev_mtuple.fields != NULL && (row_mtuple_cmp( &prev_mtuple, curr, &clust_dup) == 0)) { err = DB_DUPLICATE_KEY; trx->error_key_num = key_numbers[0]; goto func_exit; } prev_mtuple.fields = curr->fields; } continue; } if (err == DB_COMPUTE_VALUE_FAILED) { trx->error_key_num = i; goto func_exit; } if (buf->index->type & DICT_FTS) { if (!row || !doc_id) { continue; } } /* The buffer must be sufficiently large to hold at least one record. It may only be empty when we reach the end of the clustered index. row_merge_buf_add() must not have been called in this loop. */ ut_ad(buf->n_tuples || row == NULL); /* We have enough data tuples to form a block. Sort them and write to disk if temp file is used or insert into index if temp file is not used. */ ut_ad(old_table == new_table ? !dict_index_is_clust(buf->index) : (i == 0) == dict_index_is_clust(buf->index)); /* We have enough data tuples to form a block. Sort them (if !skip_sort) and write to disk. */ if (buf->n_tuples) { if (skip_sort) { /* Temporary File is not used. so insert sorted block to the index */ if (row != NULL) { /* We have to do insert the cached spatial index rows, since after the mtr_commit, the cluster index page could be updated, then the data in cached rows become invalid. */ err = row_merge_spatial_rows( trx->id, sp_tuples, num_spatial, row_heap, &pcur, mtr_started, &mtr); if (err != DB_SUCCESS) { goto func_exit; } /* We are not at the end of the scan yet. We must mtr.commit() in order to be able to call log_free_check() in row_merge_insert_index_tuples(). Due to mtr.commit(), the current row will be invalid, and we must reread it on the next loop iteration. */ if (mtr_started) { if (!btr_pcur_move_to_prev_on_page(&pcur)) { err = DB_CORRUPTION; goto func_exit; } btr_pcur_store_position( &pcur, &mtr); mtr.commit(); mtr_started = false; } } mem_heap_empty(mtuple_heap); prev_mtuple.fields = prev_fields; row_mtuple_create( &buf->tuples[buf->n_tuples - 1], &prev_mtuple, n_uniq, mtuple_heap); if (clust_btr_bulk == NULL) { clust_btr_bulk = UT_NEW_NOKEY( BtrBulk(index[i], trx)); } else { clust_btr_bulk->latch(); } err = row_merge_insert_index_tuples( index[i], old_table, OS_FILE_CLOSED, NULL, buf, clust_btr_bulk, table_total_rows, curr_progress, pct_cost, crypt_block, new_table->space_id); if (row == NULL) { err = clust_btr_bulk->finish( err); UT_DELETE(clust_btr_bulk); clust_btr_bulk = NULL; } else { /* Release latches for possible log_free_chck in spatial index build. */ clust_btr_bulk->release(); } if (err != DB_SUCCESS) { break; } if (row != NULL) { /* Restore the cursor on the previous clustered index record, and empty the buffer. The next iteration of the outer loop will advance the cursor and read the next record (the one which we had to ignore due to the buffer overflow). */ mtr.start(); mtr_started = true; if (pcur.restore_position( BTR_SEARCH_LEAF, &mtr) == btr_pcur_t::CORRUPTED) { goto corrupted_index; } buf = row_merge_buf_empty(buf); merge_buf[i] = buf; /* Restart the outer loop on the record. We did not insert it into any index yet. */ ut_ad(i == 0); break; } } else if (dict_index_is_unique(buf->index)) { row_merge_dup_t dup = { buf->index, table, col_map, 0}; row_merge_buf_sort(buf, &dup); if (dup.n_dup) { err = DB_DUPLICATE_KEY; trx->error_key_num = key_numbers[i]; break; } } else { row_merge_buf_sort(buf, NULL); } } else if (online && new_table == old_table) { /* Note the newest transaction that modified this index when the scan was completed. We prevent older readers from accessing this index, to ensure read consistency. */ ut_a(row == NULL); dict_index_t* index = buf->index; index->lock.x_lock(SRW_LOCK_CALL); ut_a(dict_index_get_online_status(index) == ONLINE_INDEX_CREATION); trx_id_t max_trx_id = row_log_get_max_trx( index); if (max_trx_id > index->trx_id) { index->trx_id = max_trx_id; } index->lock.x_unlock(); } /* Secondary index and clustered index which is not in sorted order can use the temporary file. Fulltext index should not use the temporary file. */ if (!skip_sort && !(buf->index->type & DICT_FTS)) { /* In case we can have all rows in sort buffer, we can insert directly into the index without temporary file if clustered index does not uses temporary file. */ if (row == NULL && file->fd == OS_FILE_CLOSED && !clust_temp_file) { DBUG_EXECUTE_IF( "row_merge_write_failure", err = DB_TEMP_FILE_WRITE_FAIL; trx->error_key_num = i; goto all_done;); DBUG_EXECUTE_IF( "row_merge_tmpfile_fail", err = DB_OUT_OF_MEMORY; trx->error_key_num = i; goto all_done;); BtrBulk btr_bulk(index[i], trx); err = row_merge_insert_index_tuples( index[i], old_table, OS_FILE_CLOSED, NULL, buf, &btr_bulk, table_total_rows, curr_progress, pct_cost, crypt_block, new_table->space_id); err = btr_bulk.finish(err); DBUG_EXECUTE_IF( "row_merge_insert_big_row", err = DB_TOO_BIG_RECORD;); if (err != DB_SUCCESS) { break; } } else { if (!row_merge_file_create_if_needed( file, tmpfd, buf->n_tuples, path)) { err = DB_OUT_OF_MEMORY; trx->error_key_num = i; break; } /* Ensure that duplicates in the clustered index will be detected before inserting secondary index records. */ if (dict_index_is_clust(buf->index)) { clust_temp_file = true; } ut_ad(file->n_rec > 0); row_merge_buf_write(buf, #ifndef DBUG_OFF file, #endif block); if (!row_merge_write( file->fd, file->offset++, block, crypt_block, new_table->space_id)) { err = DB_TEMP_FILE_WRITE_FAIL; trx->error_key_num = i; break; } MEM_UNDEFINED( &block[0], srv_sort_buf_size); } } merge_buf[i] = row_merge_buf_empty(buf); buf = merge_buf[i]; if (UNIV_LIKELY(row != NULL)) { /* Try writing the record again, now that the buffer has been written out and emptied. */ if (UNIV_UNLIKELY (!(rows_added = row_merge_buf_add( buf, fts_index, old_table, new_table, psort_info, row, ext, &doc_id, conv_heap, &err, &v_heap, eval_table, trx, col_collate)))) { /* An empty buffer should have enough room for at least one record. */ ut_ad(err == DB_COMPUTE_VALUE_FAILED || err == DB_OUT_OF_MEMORY || err == DB_TOO_BIG_RECORD); } else if (err == DB_SUCCESS) { file->n_rec += rows_added; continue; } trx->error_key_num = i; break; } } if (row == NULL) { if (old_table != new_table) { new_table->stat_n_rows = n_rows; } goto all_done; } if (err != DB_SUCCESS) { goto func_exit; } if (v_heap) { mem_heap_empty(v_heap); } /* Increment innodb_onlineddl_pct_progress status variable */ read_rows++; if(read_rows % 1000 == 0) { /* Update progress for each 1000 rows */ curr_progress = (read_rows >= table_total_rows) ? pct_cost : pct_cost * static_cast(read_rows) / static_cast(table_total_rows); /* presenting 10.12% as 1012 integer */ onlineddl_pct_progress = (ulint) (curr_progress * 100); } } func_exit: ut_ad(mtr_started == mtr.is_active()); if (mtr_started) { mtr.commit(); } if (row_heap) { mem_heap_free(row_heap); } ut_free(nonnull); all_done: if (clust_btr_bulk != NULL) { ut_ad(err != DB_SUCCESS); clust_btr_bulk->latch(); err = clust_btr_bulk->finish( err); UT_DELETE(clust_btr_bulk); } if (prev_fields) { ut_free(prev_fields); mem_heap_free(mtuple_heap); } if (v_heap) { mem_heap_free(v_heap); } if (conv_heap != NULL) { mem_heap_free(conv_heap); } #ifdef FTS_INTERNAL_DIAG_PRINT DEBUG_FTS_SORT_PRINT("FTS_SORT: Complete Scan Table\n"); #endif if (UNIV_LIKELY_NULL(fts_parallel_sort_cond)) { wait_again: /* Check if error occurs in child thread */ for (ulint j = 0; j < fts_sort_pll_degree; j++) { if (psort_info[j].error != DB_SUCCESS) { err = psort_info[j].error; trx->error_key_num = j; break; } } /* Tell all children that parent has done scanning */ for (ulint i = 0; i < fts_sort_pll_degree; i++) { if (err == DB_SUCCESS) { psort_info[i].state = FTS_PARENT_COMPLETE; } else { psort_info[i].state = FTS_PARENT_EXITING; } } /* Now wait all children to report back to be completed */ timespec abstime; set_timespec(abstime, 1); mysql_mutex_lock(&psort_info[0].mutex); my_cond_timedwait(fts_parallel_sort_cond, &psort_info[0].mutex.m_mutex, &abstime); mysql_mutex_unlock(&psort_info[0].mutex); for (ulint i = 0; i < fts_sort_pll_degree; i++) { if (!psort_info[i].child_status) { goto wait_again; } } for (ulint j = 0; j < fts_sort_pll_degree; j++) { psort_info[j].task->wait(); delete psort_info[j].task; } } #ifdef FTS_INTERNAL_DIAG_PRINT DEBUG_FTS_SORT_PRINT("FTS_SORT: Complete Tokenization\n"); #endif for (ulint i = 0; i < n_index; i++) { row_merge_buf_free(merge_buf[i]); } row_fts_free_pll_merge_buf(psort_info); ut_free(merge_buf); ut_free(pcur.old_rec_buf); if (sp_tuples != NULL) { for (ulint i = 0; i < num_spatial; i++) { UT_DELETE(sp_tuples[i]); } ut_free(sp_tuples); } /* Update the next Doc ID we used. Table should be locked, so no concurrent DML */ if (max_doc_id && err == DB_SUCCESS) { /* Sync fts cache for other fts indexes to keep all fts indexes consistent in sync_doc_id. */ err = fts_sync_table(const_cast(new_table)); if (err == DB_SUCCESS) { new_table->fts->cache->synced_doc_id = max_doc_id; /* Update the max value as next FTS_DOC_ID */ if (max_doc_id >= new_table->fts->cache->next_doc_id) { new_table->fts->cache->next_doc_id = max_doc_id + 1; } new_table->fts->cache->first_doc_id = new_table->fts->cache->next_doc_id; err= fts_update_sync_doc_id( new_table, new_table->fts->cache->synced_doc_id, NULL); } } if (vers_update_trt) { trx->mod_tables.emplace(new_table, 0) .first->second.set_versioned(0); } trx->op_info = ""; DBUG_RETURN(err); } /** Write a record via buffer 2 and read the next record to buffer N. @param N number of the buffer (0 or 1) @param INDEX record descriptor @param AT_END statement to execute at end of input */ #define ROW_MERGE_WRITE_GET_NEXT_LOW(N, INDEX, AT_END) \ do { \ b2 = row_merge_write_rec(&block[2 * srv_sort_buf_size], \ &buf[2], b2, \ of->fd, &of->offset, \ mrec##N, offsets##N, \ crypt_block ? &crypt_block[2 * srv_sort_buf_size] : NULL , \ space); \ if (UNIV_UNLIKELY(!b2 || ++of->n_rec > file->n_rec)) { \ goto corrupt; \ } \ b##N = row_merge_read_rec(&block[N * srv_sort_buf_size],\ &buf[N], b##N, INDEX, \ file->fd, foffs##N, \ &mrec##N, offsets##N, \ crypt_block ? &crypt_block[N * srv_sort_buf_size] : NULL, \ space); \ \ if (UNIV_UNLIKELY(!b##N)) { \ if (mrec##N) { \ goto corrupt; \ } \ AT_END; \ } \ } while (0) #ifdef HAVE_PSI_STAGE_INTERFACE #define ROW_MERGE_WRITE_GET_NEXT(N, INDEX, AT_END) \ do { \ if (stage != NULL) { \ stage->inc(); \ } \ ROW_MERGE_WRITE_GET_NEXT_LOW(N, INDEX, AT_END); \ } while (0) #else /* HAVE_PSI_STAGE_INTERFACE */ #define ROW_MERGE_WRITE_GET_NEXT(N, INDEX, AT_END) \ ROW_MERGE_WRITE_GET_NEXT_LOW(N, INDEX, AT_END) #endif /* HAVE_PSI_STAGE_INTERFACE */ /** Merge two blocks of records on disk and write a bigger block. @param[in] dup descriptor of index being created @param[in] file file containing index entries @param[in,out] block 3 buffers @param[in,out] foffs0 offset of first source list in the file @param[in,out] foffs1 offset of second source list in the file @param[in,out] of output file @param[in,out] stage performance schema accounting object, used by ALTER TABLE. If not NULL stage->inc() will be called for each record processed. @param[in,out] crypt_block encryption buffer @param[in] space tablespace ID for encryption @return DB_SUCCESS or error code */ static MY_ATTRIBUTE((warn_unused_result)) dberr_t row_merge_blocks( const row_merge_dup_t* dup, const merge_file_t* file, row_merge_block_t* block, ulint* foffs0, ulint* foffs1, merge_file_t* of, ut_stage_alter_t* stage MY_ATTRIBUTE((unused)), row_merge_block_t* crypt_block, ulint space) { mem_heap_t* heap; /*!< memory heap for offsets0, offsets1 */ mrec_buf_t* buf; /*!< buffer for handling split mrec in block[] */ const byte* b0; /*!< pointer to block[0] */ const byte* b1; /*!< pointer to block[srv_sort_buf_size] */ byte* b2; /*!< pointer to block[2 * srv_sort_buf_size] */ const mrec_t* mrec0; /*!< merge rec, points to block[0] or buf[0] */ const mrec_t* mrec1; /*!< merge rec, points to block[srv_sort_buf_size] or buf[1] */ rec_offs* offsets0;/* offsets of mrec0 */ rec_offs* offsets1;/* offsets of mrec1 */ DBUG_ENTER("row_merge_blocks"); DBUG_LOG("ib_merge_sort", "fd=" << file->fd << ',' << *foffs0 << '+' << *foffs1 << " to fd=" << of->fd << ',' << of->offset); heap = row_merge_heap_create(dup->index, &buf, &offsets0, &offsets1); /* Write a record and read the next record. Split the output file in two halves, which can be merged on the following pass. */ if (!row_merge_read(file->fd, *foffs0, &block[0], crypt_block ? &crypt_block[0] : NULL, space) || !row_merge_read(file->fd, *foffs1, &block[srv_sort_buf_size], crypt_block ? &crypt_block[srv_sort_buf_size] : NULL, space)) { corrupt: mem_heap_free(heap); DBUG_RETURN(DB_CORRUPTION); } b0 = &block[0]; b1 = &block[srv_sort_buf_size]; b2 = &block[2 * srv_sort_buf_size]; b0 = row_merge_read_rec( &block[0], &buf[0], b0, dup->index, file->fd, foffs0, &mrec0, offsets0, crypt_block ? &crypt_block[0] : NULL, space); b1 = row_merge_read_rec( &block[srv_sort_buf_size], &buf[srv_sort_buf_size], b1, dup->index, file->fd, foffs1, &mrec1, offsets1, crypt_block ? &crypt_block[srv_sort_buf_size] : NULL, space); if (UNIV_UNLIKELY(!b0 && mrec0) || UNIV_UNLIKELY(!b1 && mrec1)) { goto corrupt; } while (mrec0 && mrec1) { int cmp = cmp_rec_rec_simple( mrec0, mrec1, offsets0, offsets1, dup->index, dup->table); if (cmp < 0) { ROW_MERGE_WRITE_GET_NEXT(0, dup->index, goto merged); } else if (cmp) { ROW_MERGE_WRITE_GET_NEXT(1, dup->index, goto merged); } else { mem_heap_free(heap); DBUG_RETURN(DB_DUPLICATE_KEY); } } merged: if (mrec0) { /* append all mrec0 to output */ for (;;) { ROW_MERGE_WRITE_GET_NEXT(0, dup->index, goto done0); } } done0: if (mrec1) { /* append all mrec1 to output */ for (;;) { ROW_MERGE_WRITE_GET_NEXT(1, dup->index, goto done1); } } done1: mem_heap_free(heap); b2 = row_merge_write_eof( &block[2 * srv_sort_buf_size], b2, of->fd, &of->offset, crypt_block ? &crypt_block[2 * srv_sort_buf_size] : NULL, space); DBUG_RETURN(b2 ? DB_SUCCESS : DB_CORRUPTION); } /** Copy a block of index entries. @param[in] index index being created @param[in] file input file @param[in,out] block 3 buffers @param[in,out] foffs0 input file offset @param[in,out] of output file @param[in,out] stage performance schema accounting object, used by ALTER TABLE. If not NULL stage->inc() will be called for each record processed. @param[in,out] crypt_block encryption buffer @param[in] space tablespace ID for encryption @return TRUE on success, FALSE on failure */ static MY_ATTRIBUTE((warn_unused_result)) ibool row_merge_blocks_copy( const dict_index_t* index, const merge_file_t* file, row_merge_block_t* block, ulint* foffs0, merge_file_t* of, ut_stage_alter_t* stage MY_ATTRIBUTE((unused)), row_merge_block_t* crypt_block, ulint space) { mem_heap_t* heap; /*!< memory heap for offsets0, offsets1 */ mrec_buf_t* buf; /*!< buffer for handling split mrec in block[] */ const byte* b0; /*!< pointer to block[0] */ byte* b2; /*!< pointer to block[2 * srv_sort_buf_size] */ const mrec_t* mrec0; /*!< merge rec, points to block[0] */ rec_offs* offsets0;/* offsets of mrec0 */ rec_offs* offsets1;/* dummy offsets */ DBUG_ENTER("row_merge_blocks_copy"); DBUG_LOG("ib_merge_sort", "fd=" << file->fd << ',' << foffs0 << " to fd=" << of->fd << ',' << of->offset); heap = row_merge_heap_create(index, &buf, &offsets0, &offsets1); /* Write a record and read the next record. Split the output file in two halves, which can be merged on the following pass. */ if (!row_merge_read(file->fd, *foffs0, &block[0], crypt_block ? &crypt_block[0] : NULL, space)) { corrupt: mem_heap_free(heap); DBUG_RETURN(FALSE); } b0 = &block[0]; b2 = &block[2 * srv_sort_buf_size]; b0 = row_merge_read_rec(&block[0], &buf[0], b0, index, file->fd, foffs0, &mrec0, offsets0, crypt_block ? &crypt_block[0] : NULL, space); if (UNIV_UNLIKELY(!b0 && mrec0)) { goto corrupt; } if (mrec0) { /* append all mrec0 to output */ for (;;) { ROW_MERGE_WRITE_GET_NEXT(0, index, goto done0); } } done0: /* The file offset points to the beginning of the last page that has been read. Update it to point to the next block. */ (*foffs0)++; mem_heap_free(heap); DBUG_RETURN(row_merge_write_eof( &block[2 * srv_sort_buf_size], b2, of->fd, &of->offset, crypt_block ? &crypt_block[2 * srv_sort_buf_size] : NULL, space) != NULL); } /** Merge disk files. @param[in] trx transaction @param[in] dup descriptor of index being created @param[in,out] file file containing index entries @param[in,out] block 3 buffers @param[in,out] tmpfd temporary file handle @param[in,out] num_run Number of runs that remain to be merged @param[in,out] run_offset Array that contains the first offset number for each merge run @param[in,out] stage performance schema accounting object, used by @param[in,out] crypt_block encryption buffer @param[in] space tablespace ID for encryption ALTER TABLE. If not NULL stage->inc() will be called for each record processed. @return DB_SUCCESS or error code */ static dberr_t row_merge( trx_t* trx, const row_merge_dup_t* dup, merge_file_t* file, row_merge_block_t* block, pfs_os_file_t* tmpfd, ulint* num_run, ulint* run_offset, ut_stage_alter_t* stage, row_merge_block_t* crypt_block, ulint space) { ulint foffs0; /*!< first input offset */ ulint foffs1; /*!< second input offset */ dberr_t error; /*!< error code */ merge_file_t of; /*!< output file */ const ulint ihalf = run_offset[*num_run / 2]; /*!< half the input file */ ulint n_run = 0; /*!< num of runs generated from this merge */ MEM_CHECK_ADDRESSABLE(&block[0], 3 * srv_sort_buf_size); if (crypt_block) { MEM_CHECK_ADDRESSABLE(&crypt_block[0], 3 * srv_sort_buf_size); } ut_ad(ihalf < file->offset); of.fd = *tmpfd; of.offset = 0; of.n_rec = 0; #ifdef POSIX_FADV_SEQUENTIAL /* The input file will be read sequentially, starting from the beginning and the middle. In Linux, the POSIX_FADV_SEQUENTIAL affects the entire file. Each block will be read exactly once. */ posix_fadvise(file->fd, 0, 0, POSIX_FADV_SEQUENTIAL | POSIX_FADV_NOREUSE); #endif /* POSIX_FADV_SEQUENTIAL */ /* Merge blocks to the output file. */ foffs0 = 0; foffs1 = ihalf; MEM_UNDEFINED(run_offset, *num_run * sizeof *run_offset); for (; foffs0 < ihalf && foffs1 < file->offset; foffs0++, foffs1++) { if (trx_is_interrupted(trx)) { return(DB_INTERRUPTED); } /* Remember the offset number for this run */ run_offset[n_run++] = of.offset; error = row_merge_blocks(dup, file, block, &foffs0, &foffs1, &of, stage, crypt_block, space); if (error != DB_SUCCESS) { return(error); } } /* Copy the last blocks, if there are any. */ while (foffs0 < ihalf) { if (UNIV_UNLIKELY(trx_is_interrupted(trx))) { return(DB_INTERRUPTED); } /* Remember the offset number for this run */ run_offset[n_run++] = of.offset; if (!row_merge_blocks_copy(dup->index, file, block, &foffs0, &of, stage, crypt_block, space)) { return(DB_CORRUPTION); } } ut_ad(foffs0 == ihalf); while (foffs1 < file->offset) { if (trx_is_interrupted(trx)) { return(DB_INTERRUPTED); } /* Remember the offset number for this run */ run_offset[n_run++] = of.offset; if (!row_merge_blocks_copy(dup->index, file, block, &foffs1, &of, stage, crypt_block, space)) { return(DB_CORRUPTION); } } ut_ad(foffs1 == file->offset); if (UNIV_UNLIKELY(of.n_rec != file->n_rec)) { return(DB_CORRUPTION); } ut_ad(n_run <= *num_run); *num_run = n_run; /* Each run can contain one or more offsets. As merge goes on, the number of runs (to merge) will reduce until we have one single run. So the number of runs will always be smaller than the number of offsets in file */ ut_ad((*num_run) <= file->offset); /* The number of offsets in output file is always equal or smaller than input file */ ut_ad(of.offset <= file->offset); /* Swap file descriptors for the next pass. */ *tmpfd = file->fd; *file = of; MEM_UNDEFINED(&block[0], 3 * srv_sort_buf_size); return(DB_SUCCESS); } /** Merge disk files. @param[in] trx transaction @param[in] dup descriptor of index being created @param[in,out] file file containing index entries @param[in,out] block 3 buffers @param[in,out] tmpfd temporary file handle @param[in,out] stage performance schema accounting object, used by ALTER TABLE. If not NULL, stage->begin_phase_sort() will be called initially and then stage->inc() will be called for each record processed. @return DB_SUCCESS or error code */ dberr_t row_merge_sort( trx_t* trx, const row_merge_dup_t* dup, merge_file_t* file, row_merge_block_t* block, pfs_os_file_t* tmpfd, const bool update_progress, /*!< in: update progress status variable or not */ const double pct_progress, /*!< in: total progress percent until now */ const double pct_cost, /*!< in: current progress percent */ row_merge_block_t* crypt_block, /*!< in: crypt buf or NULL */ ulint space, /*!< in: space id */ ut_stage_alter_t* stage) { const ulint half = file->offset / 2; ulint num_runs; ulint* run_offset; dberr_t error = DB_SUCCESS; ulint merge_count = 0; ulint total_merge_sort_count; double curr_progress = 0; DBUG_ENTER("row_merge_sort"); /* Record the number of merge runs we need to perform */ num_runs = file->offset; if (stage != NULL) { stage->begin_phase_sort(log2(double(num_runs))); } /* If num_runs are less than 1, nothing to merge */ if (num_runs <= 1) { DBUG_RETURN(error); } total_merge_sort_count = ulint(ceil(log2(double(num_runs)))); /* "run_offset" records each run's first offset number */ run_offset = (ulint*) ut_malloc_nokey(file->offset * sizeof(ulint)); /* This tells row_merge() where to start for the first round of merge. */ run_offset[half] = half; /* The file should always contain at least one byte (the end of file marker). Thus, it must be at least one block. */ ut_ad(file->offset > 0); if (global_system_variables.log_warnings > 2) { sql_print_information("InnoDB: Online DDL : merge-sorting" " has estimated " ULINTPF " runs", num_runs); } /* Merge the runs until we have one big run */ do { error = row_merge(trx, dup, file, block, tmpfd, &num_runs, run_offset, stage, crypt_block, space); if(update_progress) { merge_count++; curr_progress = (merge_count >= total_merge_sort_count) ? pct_cost : pct_cost * static_cast(merge_count) / static_cast(total_merge_sort_count); /* presenting 10.12% as 1012 integer */; onlineddl_pct_progress = (ulint) ((pct_progress + curr_progress) * 100); } if (error != DB_SUCCESS) { break; } MEM_CHECK_DEFINED(run_offset, num_runs * sizeof *run_offset); } while (num_runs > 1); ut_free(run_offset); DBUG_RETURN(error); } /** Copy the blob from the given blob file and store it in field data for the tuple @param tuple tuple to be inserted @param heap heap to allocate the memory for the blob storage @param blob_file file to handle blob data */ static dberr_t row_merge_copy_blob_from_file(dtuple_t *tuple, mem_heap_t *heap, merge_file_t *blob_file) { for (ulint i = 0; i < dtuple_get_n_fields(tuple); i++) { dfield_t *field= dtuple_get_nth_field(tuple, i); const byte *field_data= static_cast(dfield_get_data(field)); ulint field_len= dfield_get_len(field); if (!dfield_is_ext(field)) continue; ut_a(field_len >= BTR_EXTERN_FIELD_REF_SIZE); ut_ad(!dfield_is_null(field)); ut_ad(mach_read_from_8(field_data) == 0); uint64_t offset= mach_read_from_8(field_data + 8); uint32_t len= mach_read_from_4(field_data + 16); byte *data= (byte*) mem_heap_alloc(heap, len); if (dberr_t err= os_file_read(IORequestRead, blob_file->fd, data, offset, len, nullptr)) return err; dfield_set_data(field, data, len); } return DB_SUCCESS; } /** Copy externally stored columns to the data tuple. @param[in] mrec record containing BLOB pointers, or NULL to use tuple instead @param[in] offsets offsets of mrec @param[in] zip_size compressed page size in bytes, or 0 @param[in,out] tuple data tuple @param[in,out] heap memory heap */ static void row_merge_copy_blobs( const mrec_t* mrec, const rec_offs* offsets, ulint zip_size, dtuple_t* tuple, mem_heap_t* heap) { ut_ad(mrec == NULL || rec_offs_any_extern(offsets)); for (ulint i = 0; i < dtuple_get_n_fields(tuple); i++) { ulint len; const void* data; dfield_t* field = dtuple_get_nth_field(tuple, i); ulint field_len; const byte* field_data; if (!dfield_is_ext(field)) { continue; } ut_ad(!dfield_is_null(field)); /* During the creation of a PRIMARY KEY, the table is X-locked, and we skip copying records that have been marked for deletion. Therefore, externally stored columns cannot possibly be freed between the time the BLOB pointers are read (row_merge_read_clustered_index()) and dereferenced (below). */ if (mrec == NULL) { field_data = static_cast(dfield_get_data(field)); field_len = dfield_get_len(field); ut_a(field_len >= BTR_EXTERN_FIELD_REF_SIZE); ut_a(memcmp(field_data + field_len - BTR_EXTERN_FIELD_REF_SIZE, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE)); data = btr_copy_externally_stored_field( &len, field_data, zip_size, field_len, heap); } else { data = btr_rec_copy_externally_stored_field( mrec, offsets, zip_size, i, &len, heap); } /* Because we have locked the table, any records written by incomplete transactions must have been rolled back already. There must not be any incomplete BLOB columns. */ ut_a(data); dfield_set_data(field, data, len); } } /** Convert a merge record to a typed data tuple. Note that externally stored fields are not copied to heap. @param[in,out] index index on the table @param[in] mtuple merge record @param[in] heap memory heap from which memory needed is allocated @return index entry built. */ static void row_merge_mtuple_to_dtuple( dict_index_t* index, dtuple_t* dtuple, const mtuple_t* mtuple) { ut_ad(!dict_index_is_ibuf(index)); memcpy(dtuple->fields, mtuple->fields, dtuple->n_fields * sizeof *mtuple->fields); } static MY_ATTRIBUTE((warn_unused_result)) dberr_t row_merge_insert_index_tuples( dict_index_t* index, const dict_table_t* old_table, const pfs_os_file_t& fd, row_merge_block_t* block, const row_merge_buf_t* row_buf, BtrBulk* btr_bulk, const ib_uint64_t table_total_rows, double pct_progress, double pct_cost, row_merge_block_t* crypt_block, ulint space, ut_stage_alter_t* stage, merge_file_t* blob_file) { const byte* b; mem_heap_t* heap; mem_heap_t* tuple_heap; dberr_t error = DB_SUCCESS; ulint foffs = 0; rec_offs* offsets; mrec_buf_t* buf; ulint n_rows = 0; dtuple_t* dtuple; ib_uint64_t inserted_rows = 0; double curr_progress = 0; dict_index_t* old_index = NULL; const mrec_t* mrec = NULL; mtr_t mtr; DBUG_ENTER("row_merge_insert_index_tuples"); ut_ad(!srv_read_only_mode); ut_ad(!(index->type & DICT_FTS)); ut_ad(!dict_index_is_spatial(index)); if (stage != NULL) { stage->begin_phase_insert(); } tuple_heap = mem_heap_create(1000); { ulint i = 1 + REC_OFFS_HEADER_SIZE + dict_index_get_n_fields(index); heap = mem_heap_create(sizeof *buf + i * sizeof *offsets); offsets = static_cast( mem_heap_alloc(heap, i * sizeof *offsets)); rec_offs_set_n_alloc(offsets, i); rec_offs_set_n_fields(offsets, dict_index_get_n_fields(index)); } if (row_buf != NULL) { ut_ad(fd == OS_FILE_CLOSED); ut_ad(block == NULL); DBUG_EXECUTE_IF("row_merge_read_failure", error = DB_CORRUPTION; goto err_exit;); buf = NULL; b = NULL; dtuple = dtuple_create( heap, dict_index_get_n_fields(index)); dtuple_set_n_fields_cmp( dtuple, dict_index_get_n_unique_in_tree(index)); } else { b = block; dtuple = NULL; if (!row_merge_read(fd, foffs, block, crypt_block, space)) { error = DB_CORRUPTION; goto err_exit; } else { buf = static_cast( mem_heap_alloc(heap, sizeof *buf)); } } for (;;) { if (stage != NULL) { stage->inc(); } if (row_buf != NULL) { if (n_rows >= row_buf->n_tuples) { break; } /* Convert merge tuple record from row buffer to data tuple record */ row_merge_mtuple_to_dtuple( index, dtuple, &row_buf->tuples[n_rows]); n_rows++; /* BLOB pointers must be copied from dtuple */ mrec = NULL; } else { b = row_merge_read_rec(block, buf, b, index, fd, &foffs, &mrec, offsets, crypt_block, space); if (UNIV_UNLIKELY(!b)) { /* End of list, or I/O error */ if (mrec) { error = DB_CORRUPTION; } break; } dtuple = row_rec_to_index_entry_low( mrec, index, offsets, tuple_heap); } old_index = dict_table_get_first_index(old_table); if (dict_index_is_clust(index) && dict_index_is_online_ddl(old_index)) { error = row_log_table_get_error(old_index); if (error != DB_SUCCESS) { break; } } ut_ad(!dtuple_get_n_ext(dtuple) || index->is_primary()); if (!dtuple_get_n_ext(dtuple)) { } else if (blob_file) { error = row_merge_copy_blob_from_file( dtuple, tuple_heap, blob_file); if (error != DB_SUCCESS) { break; } } else { /* Off-page columns can be fetched safely when concurrent modifications to the table are disabled. (Purge can process delete-marked records, but row_merge_read_clustered_index() would have skipped them.) When concurrent modifications are enabled, row_merge_read_clustered_index() will only see rows from transactions that were committed before the ALTER TABLE started (REPEATABLE READ). Any modifications after the row_merge_read_clustered_index() scan will go through row_log_table_apply(). */ row_merge_copy_blobs( mrec, offsets, old_table->space->zip_size(), dtuple, tuple_heap); } ut_ad(dtuple_validate(dtuple)); error = btr_bulk->insert(dtuple); if (error != DB_SUCCESS) { goto err_exit; } mem_heap_empty(tuple_heap); /* Increment innodb_onlineddl_pct_progress status variable */ inserted_rows++; if(inserted_rows % 1000 == 0) { /* Update progress for each 1000 rows */ curr_progress = (inserted_rows >= table_total_rows || table_total_rows <= 0) ? pct_cost : pct_cost * static_cast(inserted_rows) / static_cast(table_total_rows); /* presenting 10.12% as 1012 integer */; onlineddl_pct_progress = (ulint) ((pct_progress + curr_progress) * 100); } } err_exit: mem_heap_free(tuple_heap); mem_heap_free(heap); DBUG_RETURN(error); } /*********************************************************************//** Drop an index that was created before an error occurred. The data dictionary must have been locked exclusively by the caller, because the transaction will not be committed. */ static void row_merge_drop_index_dict( /*======================*/ trx_t* trx, /*!< in/out: dictionary transaction */ index_id_t index_id)/*!< in: index identifier */ { static const char sql[] = "PROCEDURE DROP_INDEX_PROC () IS\n" "BEGIN\n" "DELETE FROM SYS_FIELDS WHERE INDEX_ID=:indexid;\n" "DELETE FROM SYS_INDEXES WHERE ID=:indexid;\n" "END;\n"; dberr_t error; pars_info_t* info; ut_ad(!srv_read_only_mode); ut_ad(trx->dict_operation_lock_mode); ut_ad(trx->dict_operation); ut_ad(dict_sys.locked()); info = pars_info_create(); pars_info_add_ull_literal(info, "indexid", index_id); trx->op_info = "dropping index from dictionary"; error = que_eval_sql(info, sql, trx); if (error != DB_SUCCESS) { /* Even though we ensure that DDL transactions are WAIT and DEADLOCK free, we could encounter other errors e.g., DB_TOO_MANY_CONCURRENT_TRXS. */ trx->error_state = DB_SUCCESS; ib::error() << "row_merge_drop_index_dict failed with error " << error; } trx->op_info = ""; } /*********************************************************************//** Drop indexes that were created before an error occurred. The data dictionary must have been locked exclusively by the caller, because the transaction will not be committed. */ static void row_merge_drop_indexes_dict( /*========================*/ trx_t* trx, /*!< in/out: dictionary transaction */ table_id_t table_id)/*!< in: table identifier */ { static const char sql[] = "PROCEDURE DROP_INDEXES_PROC () IS\n" "ixid CHAR;\n" "found INT;\n" "DECLARE CURSOR index_cur IS\n" " SELECT ID FROM SYS_INDEXES\n" " WHERE TABLE_ID=:tableid AND\n" " SUBSTR(NAME,0,1)='" TEMP_INDEX_PREFIX_STR "'\n" "FOR UPDATE;\n" "BEGIN\n" "found := 1;\n" "OPEN index_cur;\n" "WHILE found = 1 LOOP\n" " FETCH index_cur INTO ixid;\n" " IF (SQL % NOTFOUND) THEN\n" " found := 0;\n" " ELSE\n" " DELETE FROM SYS_FIELDS WHERE INDEX_ID=ixid;\n" " DELETE FROM SYS_INDEXES WHERE CURRENT OF index_cur;\n" " END IF;\n" "END LOOP;\n" "CLOSE index_cur;\n" "END;\n"; dberr_t error; pars_info_t* info; ut_ad(!srv_read_only_mode); ut_ad(trx->dict_operation_lock_mode); ut_ad(trx->dict_operation); ut_ad(dict_sys.locked()); /* It is possible that table->n_ref_count > 1 when locked=TRUE. In this case, all code that should have an open handle to the table be waiting for the next statement to execute, or waiting for a meta-data lock. A concurrent purge will be prevented by dict_sys.latch. */ info = pars_info_create(); pars_info_add_ull_literal(info, "tableid", table_id); trx->op_info = "dropping indexes"; error = que_eval_sql(info, sql, trx); switch (error) { case DB_SUCCESS: break; default: /* Even though we ensure that DDL transactions are WAIT and DEADLOCK free, we could encounter other errors e.g., DB_TOO_MANY_CONCURRENT_TRXS. */ ib::error() << "row_merge_drop_indexes_dict failed with error " << error; /* fall through */ case DB_TOO_MANY_CONCURRENT_TRXS: trx->error_state = DB_SUCCESS; } trx->op_info = ""; } /** Drop common internal tables if all fulltext indexes are dropped @param trx transaction @param table user table */ static void row_merge_drop_fulltext_indexes(trx_t *trx, dict_table_t *table) { if (DICT_TF2_FLAG_IS_SET(table, DICT_TF2_FTS_HAS_DOC_ID) || !table->fts || !ib_vector_is_empty(table->fts->indexes)) return; for (const dict_index_t *index= dict_table_get_first_index(table); index; index= dict_table_get_next_index(index)) if (index->type & DICT_FTS) return; fts_optimize_remove_table(table); fts_drop_tables(trx, *table); table->fts->~fts_t(); table->fts= nullptr; DICT_TF2_FLAG_UNSET(table, DICT_TF2_FTS); } /** Drop indexes that were created before an error occurred. The data dictionary must have been locked exclusively by the caller, because the transaction will not be committed. @param trx dictionary transaction @param table table containing the indexes @param locked True if table is locked, false - may need to do lazy drop @param alter_trx Alter table transaction */ void row_merge_drop_indexes( trx_t* trx, dict_table_t* table, bool locked, const trx_t* alter_trx) { dict_index_t* index; dict_index_t* next_index; ut_ad(!srv_read_only_mode); ut_ad(trx->dict_operation_lock_mode); ut_ad(trx->dict_operation); ut_ad(dict_sys.locked()); index = dict_table_get_first_index(table); ut_ad(dict_index_is_clust(index)); ut_ad(dict_index_get_online_status(index) == ONLINE_INDEX_COMPLETE); /* the caller should have an open handle to the table */ ut_ad(table->get_ref_count() >= 1); /* It is possible that table->n_ref_count > 1 when locked=TRUE. In this case, all code that should have an open handle to the table be waiting for the next statement to execute, or waiting for a meta-data lock. A concurrent purge will be prevented by MDL. */ if (!locked && (table->get_ref_count() > 1 || table->has_lock_other_than(alter_trx))) { while ((index = dict_table_get_next_index(index)) != NULL) { ut_ad(!dict_index_is_clust(index)); switch (dict_index_get_online_status(index)) { case ONLINE_INDEX_ABORTED_DROPPED: continue; case ONLINE_INDEX_COMPLETE: if (index->is_committed()) { /* Do nothing to already published indexes. */ } else if (index->type & DICT_FTS) { /* Drop a completed FULLTEXT index, due to a timeout during MDL upgrade for commit_inplace_alter_table(). Because only concurrent reads are allowed (and they are not seeing this index yet) we are safe to drop the index. */ dict_index_t* prev = UT_LIST_GET_PREV( indexes, index); /* At least there should be the clustered index before this one. */ ut_ad(prev); ut_a(table->fts); fts_drop_index(table, index, trx); row_merge_drop_index_dict( trx, index->id); /* We can remove a DICT_FTS index from the cache, because we do not allow ADD FULLTEXT INDEX with LOCK=NONE. If we allowed that, we should exclude FTS entries from prebuilt->ins_node->entry_list in ins_node_create_entry_list(). */ #ifdef BTR_CUR_HASH_ADAPT ut_ad(!index->search_info->ref_count); #endif /* BTR_CUR_HASH_ADAPT */ dict_index_remove_from_cache( table, index); index = prev; } else { index->lock.x_lock(SRW_LOCK_CALL); dict_index_set_online_status( index, ONLINE_INDEX_ABORTED); index->type |= DICT_CORRUPT; table->drop_aborted = TRUE; goto drop_aborted; } continue; case ONLINE_INDEX_CREATION: index->lock.x_lock(SRW_LOCK_CALL); ut_ad(!index->is_committed()); row_log_abort_sec(index); drop_aborted: index->lock.x_unlock(); DEBUG_SYNC_C("merge_drop_index_after_abort"); /* covered by dict_sys.latch */ MONITOR_INC(MONITOR_BACKGROUND_DROP_INDEX); /* fall through */ case ONLINE_INDEX_ABORTED: /* Drop the index tree from the data dictionary and free it from the tablespace, but keep the object in the data dictionary cache. */ row_merge_drop_index_dict(trx, index->id); index->lock.x_lock(SRW_LOCK_CALL); dict_index_set_online_status( index, ONLINE_INDEX_ABORTED_DROPPED); index->lock.x_unlock(); table->drop_aborted = TRUE; continue; } ut_error; } row_merge_drop_fulltext_indexes(trx, table); return; } row_merge_drop_indexes_dict(trx, table->id); /* Invalidate all row_prebuilt_t::ins_graph that are referring to this table. That is, force row_get_prebuilt_insert_row() to rebuild prebuilt->ins_node->entry_list). */ if (table->def_trx_id < trx->id) { table->def_trx_id = trx->id; } else { ut_ad(table->def_trx_id == trx->id || table->name.part()); } next_index = dict_table_get_next_index(index); while ((index = next_index) != NULL) { /* read the next pointer before freeing the index */ next_index = dict_table_get_next_index(index); ut_ad(!dict_index_is_clust(index)); if (!index->is_committed()) { /* If it is FTS index, drop from table->fts and also drop its auxiliary tables */ if (index->type & DICT_FTS) { ut_a(table->fts); fts_drop_index(table, index, trx); } switch (dict_index_get_online_status(index)) { case ONLINE_INDEX_CREATION: /* This state should only be possible when prepare_inplace_alter_table() fails after invoking row_merge_create_index(). In inplace_alter_table(), row_merge_build_indexes() should never leave the index in this state. It would invoke row_log_abort_sec() on failure. */ case ONLINE_INDEX_COMPLETE: /* In these cases, we are able to drop the index straight. The DROP INDEX was never deferred. */ break; case ONLINE_INDEX_ABORTED: case ONLINE_INDEX_ABORTED_DROPPED: /* covered by dict_sys.latch */ MONITOR_DEC(MONITOR_BACKGROUND_DROP_INDEX); } dict_index_remove_from_cache(table, index); } } row_merge_drop_fulltext_indexes(trx, table); table->drop_aborted = FALSE; ut_d(dict_table_check_for_dup_indexes(table, CHECK_ALL_COMPLETE)); } /** Drop fulltext indexes */ static ibool row_merge_drop_fts(void *node, void *trx) { auto s= static_cast(node); const dfield_t *table_id= que_node_get_val(s->select_list); ut_ad(table_id->type.mtype == DATA_BINARY); node= que_node_get_next(s->select_list); ut_ad(!que_node_get_next(node)); const dfield_t *index_id= que_node_get_val(node); ut_ad(index_id->type.mtype == DATA_BINARY); static const char sql[]= "PROCEDURE DROP_TABLES_PROC () IS\n" "tid CHAR;\n" "iid CHAR;\n" "DECLARE CURSOR cur_tab IS\n" "SELECT ID FROM SYS_TABLES\n" "WHERE INSTR(NAME,:name)+45=LENGTH(NAME)" " AND INSTR('123456',SUBSTR(NAME,LENGTH(NAME)-1,1))>0" " FOR UPDATE;\n" "DECLARE CURSOR cur_idx IS\n" "SELECT ID FROM SYS_INDEXES\n" "WHERE TABLE_ID = tid FOR UPDATE;\n" "BEGIN\n" "OPEN cur_tab;\n" "WHILE 1 = 1 LOOP\n" " FETCH cur_tab INTO tid;\n" " IF (SQL % NOTFOUND) THEN EXIT; END IF;\n" " OPEN cur_idx;\n" " WHILE 1 = 1 LOOP\n" " FETCH cur_idx INTO iid;\n" " IF (SQL % NOTFOUND) THEN EXIT; END IF;\n" " DELETE FROM SYS_FIELDS WHERE INDEX_ID=iid;\n" " DELETE FROM SYS_INDEXES WHERE CURRENT OF cur_idx;\n" " END LOOP;\n" " CLOSE cur_idx;\n" " DELETE FROM SYS_COLUMNS WHERE TABLE_ID=tid;\n" " DELETE FROM SYS_TABLES WHERE CURRENT OF cur_tab;\n" "END LOOP;\n" "CLOSE cur_tab;\n" "END;\n"; if (table_id->len == 8 && index_id->len == 8) { char buf[sizeof "/FTS_0000000000000000_0000000000000000_INDEX_"]; snprintf(buf, sizeof buf, "/FTS_%016llx_%016llx_INDEX_", static_cast (mach_read_from_8(static_cast(table_id->data))), static_cast (mach_read_from_8(static_cast(index_id->data)))); auto pinfo= pars_info_create(); pars_info_add_str_literal(pinfo, "name", buf); que_eval_sql(pinfo, sql, static_cast(trx)); } return true; } /** During recovery, drop recovered index stubs that were created in prepare_inplace_alter_table_dict(). */ void row_merge_drop_temp_indexes() { static_assert(DICT_FTS == 32, "compatibility"); static const char sql[] = "PROCEDURE DROP_TEMP_INDEXES_PROC () IS\n" "ixid CHAR;\n" "found INT;\n" "DECLARE FUNCTION drop_fts;\n" "DECLARE CURSOR fts_cur IS\n" " SELECT TABLE_ID,ID FROM SYS_INDEXES\n" " WHERE TYPE=32" " AND SUBSTR(NAME,0,1)='" TEMP_INDEX_PREFIX_STR "'\n" " FOR UPDATE;\n" "DECLARE CURSOR index_cur IS\n" " SELECT ID FROM SYS_INDEXES\n" " WHERE SUBSTR(NAME,0,1)='" TEMP_INDEX_PREFIX_STR "'\n" "FOR UPDATE;\n" "BEGIN\n" "found := 1;\n" "OPEN fts_cur;\n" "WHILE found = 1 LOOP\n" " FETCH fts_cur INTO drop_fts();\n" " IF (SQL % NOTFOUND) THEN\n" " found := 0;\n" " END IF;\n" "END LOOP;\n" "CLOSE fts_cur;\n" "OPEN index_cur;\n" "WHILE found = 1 LOOP\n" " FETCH index_cur INTO ixid;\n" " IF (SQL % NOTFOUND) THEN\n" " found := 0;\n" " ELSE\n" " DELETE FROM SYS_FIELDS WHERE INDEX_ID=ixid;\n" " DELETE FROM SYS_INDEXES WHERE CURRENT OF index_cur;\n" " END IF;\n" "END LOOP;\n" "CLOSE index_cur;\n" "END;\n"; /* Load the table definitions that contain partially defined indexes, so that the data dictionary information can be checked when accessing the tablename.ibd files. */ trx_t* trx = trx_create(); trx_start_for_ddl(trx); trx->op_info = "dropping partially created indexes"; dberr_t error = lock_sys_tables(trx); row_mysql_lock_data_dictionary(trx); /* Ensure that this transaction will be rolled back and locks will be released, if the server gets killed before the commit gets written to the redo log. */ trx->dict_operation = true; trx->op_info = "dropping indexes"; pars_info_t* pinfo = pars_info_create(); pars_info_bind_function(pinfo, "drop_fts", row_merge_drop_fts, trx); if (error == DB_SUCCESS) { error = que_eval_sql(pinfo, sql, trx); } if (error) { /* Even though we ensure that DDL transactions are WAIT and DEADLOCK free, we could encounter other errors e.g., DB_TOO_MANY_CONCURRENT_TRXS. */ trx->error_state = DB_SUCCESS; ib::error() << "row_merge_drop_temp_indexes(): " << error; } trx_commit_for_mysql(trx); row_mysql_unlock_data_dictionary(trx); trx->free(); } /** Create temporary merge files in the given paramater path, and if UNIV_PFS_IO defined, register the file descriptor with Performance Schema. @param[in] path location for creating temporary merge files, or NULL @return File descriptor */ static pfs_os_file_t row_merge_file_create_mode(const char *path, int mode) { if (!path) { path = mysql_tmpdir; } #ifdef UNIV_PFS_IO /* This temp file open does not go through normal file APIs, add instrumentation to register with performance schema */ struct PSI_file_locker* locker; PSI_file_locker_state state; static const char label[] = "/Innodb Merge Temp File"; char* name = static_cast( ut_malloc_nokey(strlen(path) + sizeof label)); strcpy(name, path); strcat(name, label); register_pfs_file_open_begin( &state, locker, innodb_temp_file_key, PSI_FILE_CREATE, path ? name : label, __FILE__, __LINE__); #endif DBUG_ASSERT(strlen(path) + 2 <= FN_REFLEN); char filename[FN_REFLEN]; File f = create_temp_file(filename, path, "ib", O_BINARY | O_SEQUENTIAL, MYF(MY_WME | MY_TEMPORARY)); pfs_os_file_t fd = IF_WIN((os_file_t)my_get_osfhandle(f), f); #ifdef UNIV_PFS_IO register_pfs_file_open_end(locker, fd, (fd == OS_FILE_CLOSED)?NULL:&fd); ut_free(name); #endif if (fd == OS_FILE_CLOSED) { ib::error() << "Cannot create temporary merge file"; } return(fd); } /** Create a temporary file at the specified path. @param path location for creating temporary merge files, or nullptr @return File descriptor */ pfs_os_file_t row_merge_file_create_low(const char *path) { return row_merge_file_create_mode(path, O_BINARY | O_SEQUENTIAL); } /** Create a merge file in the given location. @param[out] merge_file merge file structure @param[in] path location for creating temporary file, or NULL @return file descriptor, or OS_FILE_CLOSED on error */ pfs_os_file_t row_merge_file_create( merge_file_t* merge_file, const char* path) { merge_file->offset = 0; merge_file->n_rec = 0; merge_file->fd = row_merge_file_create_mode(path, #if !defined _WIN32 && defined O_DIRECT srv_disable_sort_file_cache ? O_DIRECT | O_BINARY | O_SEQUENTIAL : #endif O_BINARY | O_SEQUENTIAL); return(merge_file->fd); } /*********************************************************************//** Destroy a merge file. And de-register the file from Performance Schema if UNIV_PFS_IO is defined. */ void row_merge_file_destroy_low( /*=======================*/ const pfs_os_file_t& fd) /*!< in: merge file descriptor */ { if (fd != OS_FILE_CLOSED) { int res = mysql_file_close(IF_WIN(my_win_handle2File((os_file_t)fd), fd), MYF(MY_WME)); ut_a(res != -1); } } /*********************************************************************//** Destroy a merge file. */ void row_merge_file_destroy( /*===================*/ merge_file_t* merge_file) /*!< in/out: merge file structure */ { ut_ad(!srv_read_only_mode); if (merge_file->fd != OS_FILE_CLOSED) { row_merge_file_destroy_low(merge_file->fd); merge_file->fd = OS_FILE_CLOSED; } } /*********************************************************************//** Rename an index in the dictionary that was created. The data dictionary must have been locked exclusively by the caller, because the transaction will not be committed. @return DB_SUCCESS if all OK */ dberr_t row_merge_rename_index_to_add( /*==========================*/ trx_t* trx, /*!< in/out: transaction */ table_id_t table_id, /*!< in: table identifier */ index_id_t index_id) /*!< in: index identifier */ { dberr_t err = DB_SUCCESS; pars_info_t* info = pars_info_create(); /* We use the private SQL parser of Innobase to generate the query graphs needed in renaming indexes. */ static const char rename_index[] = "PROCEDURE RENAME_INDEX_PROC () IS\n" "BEGIN\n" "UPDATE SYS_INDEXES SET NAME=SUBSTR(NAME,1,LENGTH(NAME)-1)\n" "WHERE TABLE_ID = :tableid AND ID = :indexid;\n" "END;\n"; ut_ad(trx->dict_operation_lock_mode); ut_ad(trx->dict_operation); trx->op_info = "renaming index to add"; pars_info_add_ull_literal(info, "tableid", table_id); pars_info_add_ull_literal(info, "indexid", index_id); err = que_eval_sql(info, rename_index, trx); if (err != DB_SUCCESS) { /* Even though we ensure that DDL transactions are WAIT and DEADLOCK free, we could encounter other errors e.g., DB_TOO_MANY_CONCURRENT_TRXS. */ trx->error_state = DB_SUCCESS; ib::error() << "row_merge_rename_index_to_add failed with" " error " << err; } trx->op_info = ""; return(err); } /** Create the index and load in to the dictionary. @param[in,out] table the index is on this table @param[in] index_def the index definition @param[in] add_v new virtual columns added along with add index call @return index, or NULL on error */ dict_index_t* row_merge_create_index( dict_table_t* table, const index_def_t* index_def, const dict_add_v_col_t* add_v) { dict_index_t* index; ulint n_fields = index_def->n_fields; ulint i; ulint n_add_vcol = 0; DBUG_ENTER("row_merge_create_index"); ut_ad(!srv_read_only_mode); /* Create the index prototype, using the passed in def, this is not a persistent operation. We pass 0 as the space id, and determine at a lower level the space id where to store the table. */ index = dict_mem_index_create(table, index_def->name, index_def->ind_type, n_fields); index->set_committed(index_def->rebuild); for (i = 0; i < n_fields; i++) { const char* name; index_field_t* ifield = &index_def->fields[i]; if (ifield->is_v_col) { if (ifield->col_no >= table->n_v_def) { ut_ad(ifield->col_no < table->n_v_def + add_v->n_v_col); ut_ad(ifield->col_no >= table->n_v_def); name = add_v->v_col_name[ ifield->col_no - table->n_v_def]; n_add_vcol++; } else { name = dict_table_get_v_col_name( table, ifield->col_no); } } else { name = dict_table_get_col_name(table, ifield->col_no); } dict_mem_index_add_field(index, name, ifield->prefix_len, ifield->descending); } if (n_add_vcol) { index->assign_new_v_col(n_add_vcol); } DBUG_RETURN(index); } /*********************************************************************//** Check if a transaction can use an index. */ bool row_merge_is_index_usable( /*======================*/ const trx_t* trx, /*!< in: transaction */ const dict_index_t* index) /*!< in: index to check */ { if (!index->is_primary() && dict_index_is_online_ddl(index)) { /* Indexes that are being created are not useable. */ return(false); } return(!index->is_corrupted() && (index->table->is_temporary() || index->table->no_rollback() || index->trx_id == 0 || !trx->read_view.is_open() || trx->read_view.changes_visible(index->trx_id))); } /** Build indexes on a table by reading a clustered index, creating a temporary file containing index entries, merge sorting these index entries and inserting sorted index entries to indexes. @param[in] trx transaction @param[in] old_table table where rows are read from @param[in] new_table table where indexes are created; identical to old_table unless creating a PRIMARY KEY @param[in] online true if creating indexes online @param[in] indexes indexes to be created @param[in] key_numbers MySQL key numbers @param[in] n_indexes size of indexes[] @param[in,out] table MySQL table, for reporting erroneous key value if applicable @param[in] defaults default values of added, changed columns, or NULL @param[in] col_map mapping of old column numbers to new ones, or NULL if old_table == new_table @param[in] add_autoinc number of added AUTO_INCREMENT columns, or ULINT_UNDEFINED if none is added @param[in,out] sequence autoinc sequence @param[in] skip_pk_sort whether the new PRIMARY KEY will follow existing order @param[in,out] stage performance schema accounting object, used by ALTER TABLE. stage->begin_phase_read_pk() will be called at the beginning of this function and it will be passed to other functions for further accounting. @param[in] add_v new virtual columns added along with indexes @param[in] eval_table mysql table used to evaluate virtual column value, see innobase_get_computed_value(). @param[in] allow_not_null allow the conversion from null to not-null @param[in] col_collate columns whose collations changed, or nullptr @return DB_SUCCESS or error code */ dberr_t row_merge_build_indexes( trx_t* trx, dict_table_t* old_table, dict_table_t* new_table, bool online, dict_index_t** indexes, const ulint* key_numbers, ulint n_indexes, struct TABLE* table, const dtuple_t* defaults, const ulint* col_map, ulint add_autoinc, ib_sequence_t& sequence, bool skip_pk_sort, ut_stage_alter_t* stage, const dict_add_v_col_t* add_v, struct TABLE* eval_table, bool allow_not_null, const col_collations* col_collate) { merge_file_t* merge_files; row_merge_block_t* block; ut_new_pfx_t block_pfx; size_t block_size; ut_new_pfx_t crypt_pfx; row_merge_block_t* crypt_block = NULL; ulint i; ulint j; dberr_t error; pfs_os_file_t tmpfd = OS_FILE_CLOSED; dict_index_t* fts_sort_idx = NULL; fts_psort_t* psort_info = NULL; fts_psort_t* merge_info = NULL; bool fts_psort_initiated = false; double total_static_cost = 0; double total_dynamic_cost = 0; ulint total_index_blocks = 0; double pct_cost=0; double pct_progress=0; DBUG_ENTER("row_merge_build_indexes"); ut_ad(!srv_read_only_mode); ut_ad((old_table == new_table) == !col_map); ut_ad(!defaults || col_map); stage->begin_phase_read_pk(skip_pk_sort && new_table != old_table ? n_indexes - 1 : n_indexes); /* Allocate memory for merge file data structure and initialize fields */ ut_allocator alloc(mem_key_row_merge_sort); /* This will allocate "3 * srv_sort_buf_size" elements of type row_merge_block_t. The latter is defined as byte. */ block_size = 3 * srv_sort_buf_size; block = alloc.allocate_large(block_size, &block_pfx); if (block == NULL) { DBUG_RETURN(DB_OUT_OF_MEMORY); } crypt_pfx.m_size = 0; /* silence bogus -Wmaybe-uninitialized */ TRASH_ALLOC(&crypt_pfx, sizeof crypt_pfx); if (srv_encrypt_log) { crypt_block = static_cast( alloc.allocate_large(block_size, &crypt_pfx)); if (crypt_block == NULL) { DBUG_RETURN(DB_OUT_OF_MEMORY); } } trx_start_if_not_started_xa(trx, true); ulint n_merge_files = 0; for (ulint i = 0; i < n_indexes; i++) { if (!dict_index_is_spatial(indexes[i])) { n_merge_files++; } } merge_files = static_cast( ut_malloc_nokey(n_merge_files * sizeof *merge_files)); /* Initialize all the merge file descriptors, so that we don't call row_merge_file_destroy() on uninitialized merge file descriptor */ for (i = 0; i < n_merge_files; i++) { merge_files[i].fd = OS_FILE_CLOSED; merge_files[i].offset = 0; merge_files[i].n_rec = 0; } total_static_cost = COST_BUILD_INDEX_STATIC * static_cast(n_indexes) + COST_READ_CLUSTERED_INDEX; total_dynamic_cost = COST_BUILD_INDEX_DYNAMIC * static_cast(n_indexes); for (i = 0; i < n_indexes; i++) { if (indexes[i]->type & DICT_FTS) { ibool opt_doc_id_size = FALSE; /* To build FTS index, we would need to extract doc's word, Doc ID, and word's position, so we need to build a "fts sort index" indexing on above three 'fields' */ fts_sort_idx = row_merge_create_fts_sort_index( indexes[i], old_table, &opt_doc_id_size); row_merge_dup_t* dup = static_cast( ut_malloc_nokey(sizeof *dup)); dup->index = fts_sort_idx; dup->table = table; dup->col_map = col_map; dup->n_dup = 0; /* This can fail e.g. if temporal files can't be created */ if (!row_fts_psort_info_init( trx, dup, new_table, opt_doc_id_size, old_table->space->zip_size(), &psort_info, &merge_info)) { error = DB_CORRUPTION; goto func_exit; } /* We need to ensure that we free the resources allocated */ fts_psort_initiated = true; } } if (global_system_variables.log_warnings > 2) { sql_print_information("InnoDB: Online DDL : Start reading" " clustered index of the table" " and create temporary files"); } pct_cost = COST_READ_CLUSTERED_INDEX * 100 / (total_static_cost + total_dynamic_cost); /* Do not continue if we can't encrypt table pages */ if (!old_table->is_readable() || !new_table->is_readable()) { error = DB_DECRYPTION_FAILED; ib_push_warning(trx->mysql_thd, DB_DECRYPTION_FAILED, "Table %s is encrypted but encryption service or" " used key_id is not available. " " Can't continue reading table.", !old_table->is_readable() ? old_table->name.m_name : new_table->name.m_name); goto func_exit; } /* Read clustered index of the table and create files for secondary index entries for merge sort */ error = row_merge_read_clustered_index( trx, table, old_table, new_table, online, indexes, fts_sort_idx, psort_info, merge_files, key_numbers, n_indexes, defaults, add_v, col_map, add_autoinc, sequence, block, skip_pk_sort, &tmpfd, stage, pct_cost, crypt_block, eval_table, allow_not_null, col_collate); stage->end_phase_read_pk(); pct_progress += pct_cost; if (global_system_variables.log_warnings > 2) { sql_print_information("InnoDB: Online DDL : End of reading " "clustered index of the table" " and create temporary files"); } for (i = 0; i < n_merge_files; i++) { total_index_blocks += merge_files[i].offset; } if (error != DB_SUCCESS) { goto func_exit; } DEBUG_SYNC_C("row_merge_after_scan"); /* Now we have files containing index entries ready for sorting and inserting. */ for (ulint k = 0, i = 0; i < n_indexes; i++) { dict_index_t* sort_idx = indexes[i]; if (dict_index_is_spatial(sort_idx)) { continue; } if (indexes[i]->type & DICT_FTS) { sort_idx = fts_sort_idx; if (FTS_PLL_MERGE) { row_fts_start_parallel_merge(merge_info); for (j = 0; j < FTS_NUM_AUX_INDEX; j++) { merge_info[j].task->wait(); delete merge_info[j].task; } } else { /* This cannot report duplicates; an assertion would fail in that case. */ error = row_fts_merge_insert( sort_idx, new_table, psort_info, 0); } #ifdef FTS_INTERNAL_DIAG_PRINT DEBUG_FTS_SORT_PRINT("FTS_SORT: Complete Insert\n"); #endif } else if (merge_files[k].fd != OS_FILE_CLOSED) { char buf[NAME_LEN + 1]; row_merge_dup_t dup = { sort_idx, table, col_map, 0}; pct_cost = (COST_BUILD_INDEX_STATIC + (total_dynamic_cost * static_cast(merge_files[k].offset) / static_cast(total_index_blocks))) / (total_static_cost + total_dynamic_cost) * PCT_COST_MERGESORT_INDEX * 100; char* bufend = innobase_convert_name( buf, sizeof buf, indexes[i]->name, strlen(indexes[i]->name), trx->mysql_thd); buf[bufend - buf]='\0'; if (global_system_variables.log_warnings > 2) { sql_print_information("InnoDB: Online DDL :" " Start merge-sorting" " index %s" " (" ULINTPF " / " ULINTPF ")," " estimated cost :" " %2.4f", buf, i + 1, n_indexes, pct_cost); } error = row_merge_sort( trx, &dup, &merge_files[k], block, &tmpfd, true, pct_progress, pct_cost, crypt_block, new_table->space_id, stage); pct_progress += pct_cost; if (global_system_variables.log_warnings > 2) { sql_print_information("InnoDB: Online DDL :" " End of " " merge-sorting index %s" " (" ULINTPF " / " ULINTPF ")", buf, i + 1, n_indexes); } if (error == DB_SUCCESS) { BtrBulk btr_bulk(sort_idx, trx); pct_cost = (COST_BUILD_INDEX_STATIC + (total_dynamic_cost * static_cast( merge_files[k].offset) / static_cast( total_index_blocks))) / (total_static_cost + total_dynamic_cost) * PCT_COST_INSERT_INDEX * 100; if (global_system_variables.log_warnings > 2) { sql_print_information( "InnoDB: Online DDL : Start " "building index %s" " (" ULINTPF " / " ULINTPF "), estimated " "cost : %2.4f", buf, i + 1, n_indexes, pct_cost); } error = row_merge_insert_index_tuples( sort_idx, old_table, merge_files[k].fd, block, NULL, &btr_bulk, merge_files[k].n_rec, pct_progress, pct_cost, crypt_block, new_table->space_id, stage); error = btr_bulk.finish(error); pct_progress += pct_cost; if (global_system_variables.log_warnings > 2) { sql_print_information( "InnoDB: Online DDL : " "End of building index %s" " (" ULINTPF " / " ULINTPF ")", buf, i + 1, n_indexes); } } } /* Close the temporary file to free up space. */ row_merge_file_destroy(&merge_files[k++]); if (indexes[i]->type & DICT_FTS) { row_fts_psort_info_destroy(psort_info, merge_info); fts_psort_initiated = false; } else if (old_table != new_table) { ut_ad(!sort_idx->online_log); ut_ad(sort_idx->online_status == ONLINE_INDEX_COMPLETE); } if (old_table != new_table || (indexes[i]->type & (DICT_FTS | DICT_SPATIAL)) || error != DB_SUCCESS || !online) { /* Do not apply any online log. */ } else { if (global_system_variables.log_warnings > 2) { sql_print_information( "InnoDB: Online DDL : Applying" " log to index"); } DEBUG_SYNC_C("row_log_apply_before"); error = row_log_apply(trx, sort_idx, table, stage); DEBUG_SYNC_C("row_log_apply_after"); } if (error != DB_SUCCESS) { trx->error_key_num = key_numbers[i]; goto func_exit; } if (indexes[i]->type & DICT_FTS && UNIV_UNLIKELY(fts_enable_diag_print)) { ib::info() << "Finished building full-text index " << indexes[i]->name; } } func_exit: DBUG_EXECUTE_IF( "ib_build_indexes_too_many_concurrent_trxs", error = DB_TOO_MANY_CONCURRENT_TRXS; trx->error_state = error;); if (fts_psort_initiated) { /* Clean up FTS psort related resource */ row_fts_psort_info_destroy(psort_info, merge_info); fts_psort_initiated = false; } row_merge_file_destroy_low(tmpfd); for (i = 0; i < n_merge_files; i++) { row_merge_file_destroy(&merge_files[i]); } if (fts_sort_idx) { dict_mem_index_free(fts_sort_idx); } ut_free(merge_files); alloc.deallocate_large(block, &block_pfx); if (crypt_block) { alloc.deallocate_large(crypt_block, &crypt_pfx); } DICT_TF2_FLAG_UNSET(new_table, DICT_TF2_FTS_ADD_DOC_ID); if (online && old_table == new_table && error != DB_SUCCESS) { /* On error, flag all online secondary index creation as aborted. */ for (i = 0; i < n_indexes; i++) { ut_ad(!(indexes[i]->type & DICT_FTS)); ut_ad(!indexes[i]->is_committed()); ut_ad(!dict_index_is_clust(indexes[i])); /* Completed indexes should be dropped as well, and indexes whose creation was aborted should be dropped from the persistent storage. However, at this point we can only set some flags in the not-yet-published indexes. These indexes will be dropped later in row_merge_drop_indexes(), called by rollback_inplace_alter_table(). */ switch (dict_index_get_online_status(indexes[i])) { case ONLINE_INDEX_COMPLETE: break; case ONLINE_INDEX_CREATION: indexes[i]->lock.x_lock(SRW_LOCK_CALL); row_log_abort_sec(indexes[i]); indexes[i]->type |= DICT_CORRUPT; indexes[i]->lock.x_unlock(); new_table->drop_aborted = TRUE; /* fall through */ case ONLINE_INDEX_ABORTED_DROPPED: case ONLINE_INDEX_ABORTED: MONITOR_ATOMIC_INC( MONITOR_BACKGROUND_DROP_INDEX); } } dict_index_t *clust_index= new_table->indexes.start; clust_index->lock.x_lock(SRW_LOCK_CALL); ut_ad(!clust_index->online_log || clust_index->online_log_is_dummy()); clust_index->online_log= nullptr; clust_index->lock.x_unlock(); } DBUG_RETURN(error); } dberr_t row_merge_bulk_t::alloc_block() { if (m_block) return DB_SUCCESS; m_block= m_alloc.allocate_large_dontdump( 3 * srv_sort_buf_size, &m_block_pfx); if (m_block == nullptr) return DB_OUT_OF_MEMORY; m_crypt_pfx.m_size= 0; TRASH_ALLOC(&m_crypt_pfx, sizeof m_crypt_pfx); if (srv_encrypt_log) { m_crypt_block= static_cast( m_alloc.allocate_large(3 * srv_sort_buf_size, &m_crypt_pfx)); if (!m_crypt_block) return DB_OUT_OF_MEMORY; } return DB_SUCCESS; } row_merge_bulk_t::row_merge_bulk_t(dict_table_t *table) { ulint n_index= 0; for (dict_index_t *index= UT_LIST_GET_FIRST(table->indexes); index; index= UT_LIST_GET_NEXT(indexes, index)) { if (!index->is_btree()) continue; n_index++; } m_merge_buf= static_cast( ut_zalloc_nokey(n_index * sizeof *m_merge_buf)); ulint i= 0; for (dict_index_t *index= UT_LIST_GET_FIRST(table->indexes); index; index= UT_LIST_GET_NEXT(indexes, index)) { if (!index->is_btree()) continue; mem_heap_t *heap= mem_heap_create(100); row_merge_buf_create_low(&m_merge_buf[i], heap, index); i++; } m_tmpfd= OS_FILE_CLOSED; m_blob_file.fd= OS_FILE_CLOSED; m_blob_file.offset= 0; m_blob_file.n_rec= 0; } row_merge_bulk_t::~row_merge_bulk_t() { ulint i= 0; dict_table_t *table= m_merge_buf[0].index->table; for (dict_index_t *index= UT_LIST_GET_FIRST(table->indexes); index; index= UT_LIST_GET_NEXT(indexes, index)) { if (!index->is_btree()) continue; row_merge_buf_free(&m_merge_buf[i]); if (m_merge_files) row_merge_file_destroy(&m_merge_files[i]); i++; } row_merge_file_destroy_low(m_tmpfd); row_merge_file_destroy(&m_blob_file); ut_free(m_merge_buf); ut_free(m_merge_files); if (m_block) m_alloc.deallocate_large(m_block, &m_block_pfx); if (m_crypt_block) m_alloc.deallocate_large(m_crypt_block, &m_crypt_pfx); } void row_merge_bulk_t::init_tmp_file() { if (m_merge_files) return; ulint n_index= 0; dict_table_t *table= m_merge_buf[0].index->table; for (dict_index_t *index= UT_LIST_GET_FIRST(table->indexes); index; index= UT_LIST_GET_NEXT(indexes, index)) { if (!index->is_btree()) continue; n_index++; } m_merge_files= static_cast( ut_malloc_nokey(n_index * sizeof *m_merge_files)); for (ulint i= 0; i < n_index; i++) { m_merge_files[i].fd= OS_FILE_CLOSED; m_merge_files[i].offset= 0; m_merge_files[i].n_rec= 0; } } void row_merge_bulk_t::clean_bulk_buffer(ulint index_no) { mem_heap_empty(m_merge_buf[index_no].heap); m_merge_buf[index_no].total_size = m_merge_buf[index_no].n_tuples = 0; } bool row_merge_bulk_t::create_tmp_file(ulint index_no) { return row_merge_file_create_if_needed( &m_merge_files[index_no], &m_tmpfd, m_merge_buf[index_no].n_tuples, NULL); } dberr_t row_merge_bulk_t::write_to_tmp_file(ulint index_no) { if (!create_tmp_file(index_no)) return DB_OUT_OF_MEMORY; merge_file_t *file= &m_merge_files[index_no]; row_merge_buf_t *buf= &m_merge_buf[index_no]; alloc_block(); if (dberr_t err= row_merge_buf_write(buf, #ifndef DBUG_OFF file, #endif m_block, index_no == 0 ? &m_blob_file : nullptr)) return err; if (!row_merge_write(file->fd, file->offset++, m_block, m_crypt_block, buf->index->table->space->id)) return DB_TEMP_FILE_WRITE_FAIL; MEM_UNDEFINED(&m_block[0], srv_sort_buf_size); return DB_SUCCESS; } dberr_t row_merge_bulk_t::bulk_insert_buffered(const dtuple_t &row, const dict_index_t &ind, trx_t *trx) { dberr_t err= DB_SUCCESS; ulint i= 0; mem_heap_t *large_tuple_heap= nullptr; for (dict_index_t *index= UT_LIST_GET_FIRST(ind.table->indexes); index; index= UT_LIST_GET_NEXT(indexes, index)) { if (!index->is_btree()) continue; if (index != &ind) { i++; continue; } row_merge_buf_t *buf= &m_merge_buf[i]; add_to_buf: if (row_merge_bulk_buf_add(buf, *ind.table, row)) { i++; goto func_exit; } if (buf->n_tuples == 0) { /* Tuple data size is greater than srv_sort_buf_size */ dtuple_t *big_tuple= row_merge_buf_large_tuple( row, &m_blob_file, &large_tuple_heap); if (row_merge_bulk_buf_add(buf, *ind.table, *big_tuple)) { i++; goto func_exit; } } if (index->is_unique()) { row_merge_dup_t dup{index, nullptr, nullptr, 0}; row_merge_buf_sort(buf, &dup); if (dup.n_dup) { trx->error_info= index; err= DB_DUPLICATE_KEY; goto func_exit; } } else row_merge_buf_sort(buf, NULL); init_tmp_file(); merge_file_t *file= &m_merge_files[i]; file->n_rec+= buf->n_tuples; err= write_to_tmp_file(i); if (err != DB_SUCCESS) { trx->error_info= index; goto func_exit; } clean_bulk_buffer(i); buf= &m_merge_buf[i]; goto add_to_buf; } func_exit: if (large_tuple_heap) mem_heap_free(large_tuple_heap); return err; } dberr_t row_merge_bulk_t::write_to_index(ulint index_no, trx_t *trx) { dberr_t err= DB_SUCCESS; row_merge_buf_t buf= m_merge_buf[index_no]; merge_file_t *file= m_merge_files ? &m_merge_files[index_no] : nullptr; dict_index_t *index= buf.index; dict_table_t *table= index->table; BtrBulk btr_bulk(index, trx); row_merge_dup_t dup = {index, nullptr, nullptr, 0}; if (buf.n_tuples) { if (dict_index_is_unique(index)) { row_merge_buf_sort(&buf, &dup); if (dup.n_dup) { err= DB_DUPLICATE_KEY; goto func_exit; } } else row_merge_buf_sort(&buf, NULL); if (file && file->fd != OS_FILE_CLOSED) { file->n_rec+= buf.n_tuples; err= write_to_tmp_file(index_no); if (err!= DB_SUCCESS) goto func_exit; } else { /* Data got fit in merge buffer. */ err= row_merge_insert_index_tuples( index, table, OS_FILE_CLOSED, nullptr, &buf, &btr_bulk, 0, 0, 0, nullptr, table->space_id, nullptr, m_blob_file.fd == OS_FILE_CLOSED ? nullptr : &m_blob_file); goto func_exit; } } err= row_merge_sort(trx, &dup, file, m_block, &m_tmpfd, true, 0, 0, m_crypt_block, table->space_id, nullptr); if (err != DB_SUCCESS) goto func_exit; err= row_merge_insert_index_tuples( index, table, file->fd, m_block, nullptr, &btr_bulk, 0, 0, 0, m_crypt_block, table->space_id, nullptr, &m_blob_file); func_exit: if (err != DB_SUCCESS) trx->error_info= index; else if (index->is_primary() && table->persistent_autoinc) btr_write_autoinc(index, table->autoinc - 1); err= btr_bulk.finish(err); return err; } dberr_t row_merge_bulk_t::write_to_table(dict_table_t *table, trx_t *trx) { ulint i= 0; for (dict_index_t *index= UT_LIST_GET_FIRST(table->indexes); index; index= UT_LIST_GET_NEXT(indexes, index)) { if (!index->is_btree()) continue; dberr_t err= write_to_index(i, trx); if (err != DB_SUCCESS) return err; i++; } return DB_SUCCESS; } dberr_t trx_mod_table_time_t::write_bulk(dict_table_t *table, trx_t *trx) { if (!bulk_store) return DB_SUCCESS; dberr_t err= bulk_store->write_to_table(table, trx); delete bulk_store; bulk_store= nullptr; return err; } void trx_t::bulk_rollback_low() { undo_no_t low_limit= UINT64_MAX; for (auto& t : mod_tables) { if (t.second.is_bulk_insert()) { if (t.second.get_first() < low_limit) low_limit= t.second.get_first(); delete t.second.bulk_store; t.second.bulk_store= nullptr; t.second.end_bulk_insert(); } } trx_savept_t bulk_save{low_limit}; rollback(&bulk_save); } dberr_t trx_t::bulk_insert_apply_for_table(dict_table_t *table) { auto it= mod_tables.find(table); if (it != mod_tables.end()) { if (dberr_t err= it->second.write_bulk(table, this)) { bulk_rollback_low(); return err; } it->second.end_bulk_insert(); } return DB_SUCCESS; } dberr_t trx_t::bulk_insert_apply_low() { ut_ad(bulk_insert); for (auto& t : mod_tables) if (t.second.is_bulk_insert()) if (dberr_t err= t.second.write_bulk(t.first, this)) { bulk_rollback_low(); return err; } return DB_SUCCESS; }