/***************************************************************************** Copyright (c) 1994, 2016, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2019, 2020, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /***************************************************************//** @file ut/ut0rnd.cc Random numbers and hashing Created 5/11/1994 Heikki Tuuri ********************************************************************/ #include "ut0rnd.h" /** Seed value of ut_rnd_gen() */ std::atomic ut_rnd_current; /** These random numbers are used in ut_find_prime */ /*@{*/ #define UT_RANDOM_1 1.0412321 #define UT_RANDOM_2 1.1131347 #define UT_RANDOM_3 1.0132677 /*@}*/ /***********************************************************//** Looks for a prime number slightly greater than the given argument. The prime is chosen so that it is not near any power of 2. @return prime */ ulint ut_find_prime( /*==========*/ ulint n) /*!< in: positive number > 100 */ { ulint pow2; ulint i; n += 100; pow2 = 1; while (pow2 * 2 < n) { pow2 = 2 * pow2; } if ((double) n < 1.05 * (double) pow2) { n = (ulint) ((double) n * UT_RANDOM_1); } pow2 = 2 * pow2; if ((double) n > 0.95 * (double) pow2) { n = (ulint) ((double) n * UT_RANDOM_2); } if (n > pow2 - 20) { n += 30; } /* Now we have n far enough from powers of 2. To make n more random (especially, if it was not near a power of 2), we then multiply it by a random number. */ n = (ulint) ((double) n * UT_RANDOM_3); for (;; n++) { i = 2; while (i * i <= n) { if (n % i == 0) { goto next_n; } i++; } /* Found a prime */ break; next_n: ; } return(n); }