1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
|
/* Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
Copyright (c) 2019, 2020 IBM.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
#include "mysys_priv.h"
#include <mysys_err.h>
#ifdef __linux__
#include <dirent.h>
#endif
#if defined(__linux__) || defined(MAP_ALIGNED)
#include "my_bit.h"
#endif
#ifdef HAVE_LINUX_MMAN_H
#include <linux/mman.h>
#endif
#ifdef HAVE_SOLARIS_LARGE_PAGES
#if defined(__sun__) && defined(__GNUC__) && defined(__cplusplus) \
&& defined(_XOPEN_SOURCE)
/* memcntl exist within sys/mman.h, but under-defines what is need to use it */
extern int memcntl(caddr_t, size_t, int, caddr_t, int, int);
#endif /* __sun__ ... */
#endif /* HAVE_SOLARIS_LARGE_PAGES */
#if defined(_WIN32)
static size_t my_large_page_size;
#define HAVE_LARGE_PAGES
#elif defined(HAVE_MMAP)
#define HAVE_LARGE_PAGES
#endif
#ifdef HAVE_LARGE_PAGES
static my_bool my_use_large_pages= 0;
#else
#define my_use_large_pages 0
#endif
#if defined(HAVE_GETPAGESIZES) || defined(__linux__)
/* Descending sort */
static int size_t_cmp(const void *a, const void *b)
{
const size_t ia= *(const size_t *) a;
const size_t ib= *(const size_t *) b;
if (ib > ia)
{
return 1;
}
else if (ib < ia)
{
return -1;
}
return 0;
}
#endif /* defined(HAVE_GETPAGESIZES) || defined(__linux__) */
#if defined(__linux__) || defined(HAVE_GETPAGESIZES)
#define my_large_page_sizes_length 8
static size_t my_large_page_sizes[my_large_page_sizes_length];
#endif
/**
Linux-specific function to determine the sizes of large pages
*/
#ifdef __linux__
static inline my_bool my_is_2pow(size_t n) { return !((n) & ((n) - 1)); }
static void my_get_large_page_sizes(size_t sizes[my_large_page_sizes_length])
{
DIR *dirp;
struct dirent *r;
int i= 0;
DBUG_ENTER("my_get_large_page_sizes");
dirp= opendir("/sys/kernel/mm/hugepages");
if (dirp == NULL)
{
my_error(EE_DIR, MYF(ME_BELL), "/sys/kernel/mm/hugepages", errno);
}
else
{
while (i < my_large_page_sizes_length && (r= readdir(dirp)))
{
if (strncmp("hugepages-", r->d_name, 10) == 0)
{
sizes[i]= strtoull(r->d_name + 10, NULL, 10) * 1024ULL;
if (!my_is_2pow(sizes[i]))
{
my_printf_error(0,
"non-power of 2 large page size (%zu) found,"
" skipping", MYF(ME_NOTE | ME_ERROR_LOG_ONLY),
sizes[i]);
sizes[i]= 0;
continue;
}
++i;
}
}
if (closedir(dirp))
{
my_error(EE_BADCLOSE, MYF(ME_BELL), "/sys/kernel/mm/hugepages", errno);
}
qsort(sizes, i, sizeof(size_t), size_t_cmp);
}
DBUG_VOID_RETURN;
}
#elif defined(HAVE_GETPAGESIZES)
static void my_get_large_page_sizes(size_t sizes[my_large_page_sizes_length])
{
int nelem;
nelem= getpagesizes(NULL, 0);
assert(nelem <= my_large_page_sizes_length);
getpagesizes(sizes, my_large_page_sizes_length);
qsort(sizes, nelem, sizeof(size_t), size_t_cmp);
if (nelem < my_large_page_sizes_length)
{
sizes[nelem]= 0;
}
}
#elif defined(_WIN32)
#define my_large_page_sizes_length 0
#define my_get_large_page_sizes(A) do {} while(0)
#else
#define my_large_page_sizes_length 1
static size_t my_large_page_sizes[my_large_page_sizes_length];
static void my_get_large_page_sizes(size_t sizes[])
{
sizes[0]= my_getpagesize();
}
#endif
/**
Returns the next large page size smaller or equal to the passed in size.
The search starts at my_large_page_sizes[*start].
Assumes my_get_large_page_sizes(my_large_page_sizes) has been called before
use.
For first use, have *start=0. There is no need to increment *start.
@param[in] sz size to be searched for.
@param[in,out] start ptr to int representing offset in my_large_page_sizes to
start from.
*start is updated during search and can be used to search again if 0 isn't
returned.
@returns the next size found. *start will be incremented to the next potential
size.
@retval a large page size that is valid on this system or 0 if no large page
size possible.
*/
#if defined(HAVE_MMAP) && !defined(_WIN32)
static size_t my_next_large_page_size(size_t sz, int *start)
{
DBUG_ENTER("my_next_large_page_size");
while (*start < my_large_page_sizes_length && my_large_page_sizes[*start] > 0)
{
size_t cur= *start;
(*start)++;
if (my_large_page_sizes[cur] <= sz)
{
DBUG_RETURN(my_large_page_sizes[cur]);
}
}
DBUG_RETURN(0);
}
#endif /* defined(MMAP) || !defined(_WIN32) */
int my_init_large_pages(my_bool super_large_pages)
{
#ifdef _WIN32
if (!my_obtain_privilege(SE_LOCK_MEMORY_NAME))
{
my_printf_error(EE_PERM_LOCK_MEMORY,
"Lock Pages in memory access rights required for use with"
" large-pages, see https://mariadb.com/kb/en/library/"
"mariadb-memory-allocation/#huge-pages", MYF(MY_WME));
}
my_large_page_size= GetLargePageMinimum();
#endif
my_use_large_pages= 1;
my_get_large_page_sizes(my_large_page_sizes);
#ifndef HAVE_LARGE_PAGES
my_printf_error(EE_OUTOFMEMORY, "No large page support on this platform",
MYF(MY_WME));
#endif
#ifdef HAVE_SOLARIS_LARGE_PAGES
/*
tell the kernel that we want to use 4/256MB page for heap storage
and also for the stack. We use 4 MByte as default and if the
super-large-page is set we increase it to 256 MByte. 256 MByte
is for server installations with GBytes of RAM memory where
the MySQL Server will have page caches and other memory regions
measured in a number of GBytes.
We use as big pages as possible which isn't bigger than the above
desired page sizes.
*/
int nelem= 0;
size_t max_desired_page_size= (super_large_pages ? 256 : 4) * 1024 * 1024;
size_t max_page_size= my_next_large_page_size(max_desired_page_size, &nelem);
if (max_page_size > 0)
{
struct memcntl_mha mpss;
mpss.mha_cmd= MHA_MAPSIZE_BSSBRK;
mpss.mha_pagesize= max_page_size;
mpss.mha_flags= 0;
if (memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t) &mpss, 0, 0))
{
my_error(EE_MEMCNTL, MYF(ME_WARNING | ME_ERROR_LOG_ONLY), "MC_HAT_ADVISE",
"MHA_MAPSIZE_BSSBRK");
}
mpss.mha_cmd= MHA_MAPSIZE_STACK;
if (memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t) &mpss, 0, 0))
{
my_error(EE_MEMCNTL, MYF(ME_WARNING | ME_ERROR_LOG_ONLY), "MC_HAT_ADVISE",
"MHA_MAPSIZE_STACK");
}
}
#endif /* HAVE_SOLARIS_LARGE_PAGES */
return 0;
}
/**
Large page size helper.
This rounds down, if needed, the size parameter to the largest
multiple of an available large page size on the system.
*/
void my_large_page_truncate(size_t *size)
{
if (my_use_large_pages)
{
size_t large_page_size= 0;
#ifdef _WIN32
large_page_size= my_large_page_size;
#elif defined(HAVE_MMAP)
int page_i= 0;
large_page_size= my_next_large_page_size(*size, &page_i);
#endif
if (large_page_size > 0)
*size-= *size % large_page_size;
}
}
#if defined(HAVE_MMAP) && !defined(_WIN32)
/* Solaris for example has only MAP_ANON, FreeBSD has MAP_ANONYMOUS and
MAP_ANON but MAP_ANONYMOUS is marked "for compatibility" */
#if defined(MAP_ANONYMOUS)
#define OS_MAP_ANON MAP_ANONYMOUS
#elif defined(MAP_ANON)
#define OS_MAP_ANON MAP_ANON
#else
#error unsupported mmap - no MAP_ANON{YMOUS}
#endif
#endif /* HAVE_MMAP && !_WIN32 */
/**
General large pages allocator.
Tries to allocate memory from large pages pool and falls back to
my_malloc_lock() in case of failure.
Every implementation returns a zero filled buffer here.
*/
uchar *my_large_malloc(size_t *size, myf my_flags)
{
uchar *ptr= NULL;
#ifdef _WIN32
DWORD alloc_type= MEM_COMMIT | MEM_RESERVE;
size_t orig_size= *size;
DBUG_ENTER("my_large_malloc");
if (my_use_large_pages)
{
alloc_type|= MEM_LARGE_PAGES;
/* Align block size to my_large_page_size */
*size= MY_ALIGN(*size, (size_t) my_large_page_size);
}
ptr= VirtualAlloc(NULL, *size, alloc_type, PAGE_READWRITE);
if (!ptr)
{
if (my_flags & MY_WME)
{
if (my_use_large_pages)
{
my_printf_error(EE_OUTOFMEMORY,
"Couldn't allocate %zu bytes (MEM_LARGE_PAGES page "
"size %zu); Windows error %lu",
MYF(ME_WARNING | ME_ERROR_LOG_ONLY), *size,
my_large_page_size, GetLastError());
}
else
{
my_error(EE_OUTOFMEMORY, MYF(ME_BELL+ME_ERROR_LOG), *size);
}
}
if (my_use_large_pages)
{
*size= orig_size;
ptr= VirtualAlloc(NULL, *size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
if (!ptr && my_flags & MY_WME)
{
my_error(EE_OUTOFMEMORY, MYF(ME_BELL+ME_ERROR_LOG), *size);
}
}
}
#elif defined(HAVE_MMAP)
int mapflag;
int page_i= 0;
size_t large_page_size= 0;
size_t aligned_size= *size;
DBUG_ENTER("my_large_malloc");
while (1)
{
mapflag= MAP_PRIVATE | OS_MAP_ANON;
if (my_use_large_pages)
{
large_page_size= my_next_large_page_size(*size, &page_i);
/* this might be 0, in which case we do a standard mmap */
if (large_page_size)
{
#if defined(MAP_HUGETLB) /* linux 2.6.32 */
mapflag|= MAP_HUGETLB;
#if defined(MAP_HUGE_SHIFT) /* Linux-3.8+ */
mapflag|= my_bit_log2_size_t(large_page_size) << MAP_HUGE_SHIFT;
#else
# warning "No explicit large page (HUGETLB pages) support in Linux < 3.8"
#endif
#elif defined(MAP_ALIGNED)
mapflag|= MAP_ALIGNED(my_bit_log2_size_t(large_page_size));
#if defined(MAP_ALIGNED_SUPER)
mapflag|= MAP_ALIGNED_SUPER;
#endif
#endif
aligned_size= MY_ALIGN(*size, (size_t) large_page_size);
}
else
{
aligned_size= *size;
}
}
ptr= mmap(NULL, aligned_size, PROT_READ | PROT_WRITE, mapflag, -1, 0);
if (ptr == (void*) -1)
{
ptr= NULL;
if (my_flags & MY_WME)
{
if (large_page_size && errno == ENOMEM)
{
my_printf_error(EE_OUTOFMEMORY,
"Couldn't allocate %zu bytes (Large/HugeTLB memory "
"page size %zu); errno %u; continuing to smaller size",
MYF(ME_WARNING | ME_ERROR_LOG_ONLY),
aligned_size, large_page_size, errno);
}
else
{
my_error(EE_OUTOFMEMORY, MYF(ME_BELL+ME_ERROR_LOG), aligned_size);
}
}
/* try next smaller memory size */
if (large_page_size && errno == ENOMEM)
continue;
/* other errors are more serious */
break;
}
else /* success */
{
if (large_page_size)
{
/*
we do need to record the adjustment so that munmap gets called with
the right size. This is only the case for HUGETLB pages.
*/
*size= aligned_size;
}
break;
}
if (large_page_size == 0)
{
break; /* no more options to try */
}
}
#else
DBUG_RETURN(my_malloc_lock(*size, my_flags));
#endif /* defined(HAVE_MMAP) */
if (ptr != NULL)
{
MEM_MAKE_DEFINED(ptr, *size);
update_malloc_size(*size, 0);
}
DBUG_RETURN(ptr);
}
/**
General large pages deallocator.
Tries to deallocate memory as if it was from large pages pool and falls back
to my_free_lock() in case of failure
*/
void my_large_free(void *ptr, size_t size)
{
DBUG_ENTER("my_large_free");
/*
The following implementations can only fail if ptr was not allocated with
my_large_malloc(), i.e. my_malloc_lock() was used so we should free it
with my_free_lock()
For ASAN, we need to explicitly unpoison this memory region because the OS
may reuse that memory for some TLS or stack variable. It will remain
poisoned if it was explicitly poisioned before release. If this happens,
we'll have hard to debug false positives like in MDEV-21239.
For valgrind, we mark it as UNDEFINED rather than NOACCESS because of the
implict reuse possiblility.
*/
#if defined(HAVE_MMAP) && !defined(_WIN32)
if (munmap(ptr, size))
{
my_error(EE_BADMEMORYRELEASE, MYF(ME_ERROR_LOG_ONLY), ptr, size, errno);
}
#if !__has_feature(memory_sanitizer)
else
{
MEM_MAKE_ADDRESSABLE(ptr, size);
}
#endif
update_malloc_size(- (longlong) size, 0);
#elif defined(_WIN32)
/*
When RELEASE memory, the size parameter must be 0.
Do not use MEM_RELEASE with MEM_DECOMMIT.
*/
if (ptr)
{
if (!VirtualFree(ptr, 0, MEM_RELEASE))
{
my_error(EE_BADMEMORYRELEASE, MYF(ME_ERROR_LOG_ONLY), ptr, size,
GetLastError());
}
update_malloc_size(- (longlong) size, 0);
}
#if !__has_feature(memory_sanitizer)
else
{
MEM_MAKE_ADDRESSABLE(ptr, size);
}
#endif /* memory_sanitizer */
#else
my_free_lock(ptr);
#endif /* HAVE_MMMAP */
DBUG_VOID_RETURN;
}
|