1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
/*****************************************************************************
Copyright (c) 2020 MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/*
The group commit synchronization used in log_write_up_to()
works as follows
For simplicity, lets consider only write operation,synchronozation of
flush operation works the same.
Rules of the game
A thread enters log_write_up_to() with lsn of the current transaction
1. If last written lsn is greater than wait lsn (another thread already
wrote the log buffer),then there is no need to do anything.
2. If no other thread is currently writing, write the log buffer,
and update last written lsn.
3. Otherwise, wait, and go to step 1.
Synchronization can be done in different ways, e.g
a) Simple mutex locking the entire check and write operation
Disadvantage that threads that could continue after updating
last written lsn, still wait.
b) Spinlock, with periodic checks for last written lsn.
Fixes a) but burns CPU unnecessary.
c) Mutex / condition variable combo.
Condtion variable notifies (broadcast) all waiters, whenever
last written lsn is changed.
Has a disadvantage of many suprious wakeups, stress on OS scheduler,
and mutex contention.
d) Something else.
Make use of the waiter's lsn parameter, and only wakeup "right" waiting
threads.
We chose d). Even if implementation is more complicated than alternatves
due to the need to maintain list of waiters, it provides the best performance.
See group_commit_lock implementation for details.
Note that if write operation is very fast, a) or b) can be fine as alternative.
*/
#ifdef _WIN32
#include <windows.h>
#endif
#ifdef __linux__
#include <linux/futex.h>
#include <sys/syscall.h>
#endif
#include <atomic>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <my_cpu.h>
#include <log0types.h>
#include "log0sync.h"
#include <mysql/service_thd_wait.h>
#include <sql_class.h>
/**
Helper class , used in group commit lock.
Binary semaphore, or (same thing), an auto-reset event
Has state (signalled or not), and provides 2 operations.
wait() and wake()
The implementation uses efficient locking primitives on Linux and Windows.
Or, mutex/condition combo elsewhere.
*/
class binary_semaphore
{
public:
/**Wait until semaphore becomes signalled, and atomically reset the state
to non-signalled*/
void wait();
/** signals the semaphore */
void wake();
private:
#if defined(__linux__) || defined (_WIN32)
std::atomic<int> m_signalled;
static constexpr std::memory_order mem_order= std::memory_order_acq_rel;
public:
binary_semaphore() :m_signalled(0) {}
#else
std::mutex m_mtx{};
std::condition_variable m_cv{};
bool m_signalled = false;
#endif
};
#if defined (__linux__) || defined (_WIN32)
void binary_semaphore::wait()
{
for (;;)
{
if (m_signalled.exchange(0, mem_order) == 1)
{
break;
}
#ifdef _WIN32
int zero = 0;
WaitOnAddress(&m_signalled, &zero, sizeof(m_signalled), INFINITE);
#else
syscall(SYS_futex, &m_signalled, FUTEX_WAIT_PRIVATE, 0, NULL, NULL, 0);
#endif
}
}
void binary_semaphore::wake()
{
if (m_signalled.exchange(1, mem_order) == 0)
{
#ifdef _WIN32
WakeByAddressSingle(&m_signalled);
#else
syscall(SYS_futex, &m_signalled, FUTEX_WAKE_PRIVATE, 1, NULL, NULL, 0);
#endif
}
}
#else
void binary_semaphore::wait()
{
std::unique_lock<std::mutex> lk(m_mtx);
while (!m_signalled)
m_cv.wait(lk);
m_signalled = false;
}
void binary_semaphore::wake()
{
std::unique_lock<std::mutex> lk(m_mtx);
m_signalled = true;
m_cv.notify_one();
}
#endif
/* A thread helper structure, used in group commit lock below*/
struct group_commit_waiter_t
{
lsn_t m_value=0;
binary_semaphore m_sema{};
group_commit_waiter_t* m_next= nullptr;
bool m_group_commit_leader=false;
};
group_commit_lock::group_commit_lock() :
m_mtx(), m_value(0), m_pending_value(0), m_lock(false), m_waiters_list()
{
}
group_commit_lock::value_type group_commit_lock::value() const
{
return m_value.load(std::memory_order::memory_order_relaxed);
}
group_commit_lock::value_type group_commit_lock::pending() const
{
return m_pending_value.load(std::memory_order::memory_order_relaxed);
}
void group_commit_lock::set_pending(group_commit_lock::value_type num)
{
ut_a(num >= value());
m_pending_value.store(num, std::memory_order::memory_order_relaxed);
}
const unsigned int MAX_SPINS = 1; /** max spins in acquire */
thread_local group_commit_waiter_t thread_local_waiter;
static inline void do_completion_callback(const completion_callback* cb)
{
if (cb)
cb->m_callback(cb->m_param);
}
group_commit_lock::lock_return_code group_commit_lock::acquire(value_type num, const completion_callback *callback)
{
unsigned int spins = MAX_SPINS;
for(;;)
{
if (num <= value())
{
/* No need to wait.*/
do_completion_callback(callback);
return lock_return_code::EXPIRED;
}
if(spins-- == 0)
break;
if (num > pending())
{
/* Longer wait expected (longer than currently running operation),
don't spin.*/
break;
}
ut_delay(1);
}
thread_local_waiter.m_value = num;
thread_local_waiter.m_group_commit_leader= false;
std::unique_lock<std::mutex> lk(m_mtx, std::defer_lock);
while (num > value() || thread_local_waiter.m_group_commit_leader)
{
lk.lock();
/* Re-read current value after acquiring the lock*/
if (num <= value() &&
(!thread_local_waiter.m_group_commit_leader || m_lock))
{
lk.unlock();
do_completion_callback(callback);
return lock_return_code::EXPIRED;
}
if (!m_lock)
{
/* Take the lock, become group commit leader.*/
m_lock = true;
#ifndef DBUG_OFF
m_owner_id = std::this_thread::get_id();
#endif
if (callback)
m_pending_callbacks.push_back({num,*callback});
return lock_return_code::ACQUIRED;
}
if (callback && (m_waiters_list || num <= pending()))
{
/*
If num > pending(), we have a good candidate for the next group
commit lead, that will be taking over the lock after current owner
releases it. We put current thread into waiter's list so it sleeps
and can be signaled and marked as group commit lead during lock release.
For this to work well, pending() must deliver a good approximation for N
in the next call to group_commit_lock::release(N).
*/
m_pending_callbacks.push_back({num, *callback});
return lock_return_code::CALLBACK_QUEUED;
}
/* Add yourself to waiters list.*/
thread_local_waiter.m_group_commit_leader= false;
thread_local_waiter.m_next = m_waiters_list;
m_waiters_list = &thread_local_waiter;
lk.unlock();
/* Sleep until woken in release().*/
thd_wait_begin(0,THD_WAIT_GROUP_COMMIT);
thread_local_waiter.m_sema.wait();
thd_wait_end(0);
}
do_completion_callback(callback);
return lock_return_code::EXPIRED;
}
group_commit_lock::value_type group_commit_lock::release(value_type num)
{
completion_callback callbacks[1000];
size_t callback_count = 0;
value_type ret = 0;
std::unique_lock<std::mutex> lk(m_mtx);
m_lock = false;
/* Update current value. */
ut_a(num >= value());
m_value.store(num, std::memory_order_relaxed);
/*
Wake waiters for value <= current value.
Wake one more waiter, who will become the group commit lead.
*/
group_commit_waiter_t* cur, * prev, * next;
group_commit_waiter_t* wakeup_list = nullptr;
for (auto& c : m_pending_callbacks)
{
if (c.first <= num)
{
if (callback_count < array_elements(callbacks))
callbacks[callback_count++] = c.second;
else
c.second.m_callback(c.second.m_param);
}
}
for (prev= nullptr, cur= m_waiters_list; cur; cur= next)
{
next= cur->m_next;
if (cur->m_value <= num)
{
/* Move current waiter to wakeup_list*/
if (!prev)
{
/* Remove from the start of the list.*/
m_waiters_list = next;
}
else
{
/* Remove from the middle of the list.*/
prev->m_next= cur->m_next;
}
/* Append entry to the wakeup list.*/
cur->m_next = wakeup_list;
wakeup_list = cur;
}
else
{
prev= cur;
}
}
auto it= std::remove_if(
m_pending_callbacks.begin(), m_pending_callbacks.end(),
[num](const pending_cb &c) { return c.first <= num; });
m_pending_callbacks.erase(it, m_pending_callbacks.end());
if (m_pending_callbacks.size() || m_waiters_list)
{
/*
Ensure that after this thread released the lock,
there is a new group commit leader
We take this from waiters list or wakeup list. It
might look like a spurious wake, but in fact we just
ensure the waiter do not wait for eternity.
*/
if (m_waiters_list)
{
/* Move one waiter to wakeup list */
auto e= m_waiters_list;
m_waiters_list= m_waiters_list->m_next;
e->m_next= wakeup_list;
e->m_group_commit_leader= true;
wakeup_list = e;
}
else if (wakeup_list)
{
wakeup_list->m_group_commit_leader=true;
}
else
{
/* Tell the caller that some pending callbacks left, and he should
do something to prevent stalls. This should be a rare situation.*/
ret= m_pending_callbacks[0].first;
}
}
lk.unlock();
/*
Release designated next group commit lead first,
to minimize spurious wakeups.
*/
if (wakeup_list && wakeup_list->m_group_commit_leader)
{
next = wakeup_list->m_next;
wakeup_list->m_sema.wake();
wakeup_list= next;
}
for (size_t i = 0; i < callback_count; i++)
callbacks[i].m_callback(callbacks[i].m_param);
for (cur= wakeup_list; cur; cur= next)
{
next= cur->m_next;
cur->m_sema.wake();
}
return ret;
}
#ifndef DBUG_OFF
bool group_commit_lock::is_owner()
{
return m_lock && std::this_thread::get_id() == m_owner_id;
}
#endif
|