1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
|
/* Copyright(C) 2019, 20222, MariaDB Corporation.
This program is free software; you can redistribute itand /or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111 - 1301 USA*/
#pragma once
#include <my_global.h>
#include <my_pthread.h>
#include <vector>
#include <stack>
#include <assert.h>
#include <algorithm>
/* Suppress TSAN warnings, that we believe are not critical. */
#if defined(__has_feature)
#define TPOOL_HAS_FEATURE(...) __has_feature(__VA_ARGS__)
#else
#define TPOOL_HAS_FEATURE(...) 0
#endif
#if TPOOL_HAS_FEATURE(address_sanitizer)
#define TPOOL_SUPPRESS_TSAN __attribute__((no_sanitize("thread"),noinline))
#elif defined(__GNUC__) && defined (__SANITIZE_THREAD__)
#define TPOOL_SUPPRESS_TSAN __attribute__((no_sanitize_thread,noinline))
#else
#define TPOOL_SUPPRESS_TSAN
#endif
#ifdef HAVE_PSI_INTERFACE
typedef unsigned int mysql_pfs_key_t;
extern mysql_pfs_key_t tpool_cache_mutex_key;
#endif
namespace tpool
{
/**
Generic "pointer" cache of a fixed size
with fast put/get operations.
Compared to STL containers,e.g stack or queue
is faster/does not do allocations.
However, get() operation will wait if there is no free items.
We assume that put() will only put back the elements that
were retrieved previously with get().
*/
template<typename T> class cache
{
/** Protects updates of m_pos and m_cache members */
mysql_mutex_t m_mtx;
/**
Notify waiting threads about "cache full" or "cache not empty" conditions
@see get() and wait()
*/
pthread_cond_t m_cv;
/** Cached items vector.Does not change after construction */
std::vector<T> m_base;
/**
Pointers to cached items. Protected by m_mtx. Does not grow after
construction. Elements in position [0,m_pos-1] are "borrowed",
elements in position [m_pos,capacity()-1] are "free"
*/
std::vector<T*> m_cache;
/** Number of threads waiting for "cache full" condition (s. wait())
Protected by m_mtx */
int m_waiters;
/** Current cache size. Protected by m_mtx*/
size_t m_pos;
private:
inline size_t capacity()
{
return m_base.size();
}
/**
@return true if cache is full (no items are borrowed)
*/
bool is_full()
{
return m_pos == 0;
}
/**
@return true if cache is empty (all items are borrowed)
*/
bool is_empty()
{
return m_pos == capacity();
}
public:
/**
Constructor
@param size - maximum number of items in cache
*/
cache(size_t size) : m_base(size), m_cache(size),
m_waiters(), m_pos(0)
{
mysql_mutex_init(tpool_cache_mutex_key, &m_mtx, nullptr);
pthread_cond_init(&m_cv, nullptr);
for(size_t i= 0 ; i < size; i++)
m_cache[i]= &m_base[i];
}
~cache()
{
mysql_mutex_destroy(&m_mtx);
pthread_cond_destroy(&m_cv);
}
/**
Retrieve an item from cache. Waits for free item, if cache is
currently empty.
@return borrowed item
*/
T* get()
{
mysql_mutex_lock(&m_mtx);
while (is_empty())
my_cond_wait(&m_cv, &m_mtx.m_mutex);
assert(m_pos < capacity());
// return last element
T *t= m_cache[m_pos++];
mysql_mutex_unlock(&m_mtx);
return t;
}
mysql_mutex_t &mutex() { return m_mtx; }
/**
Put back an element to cache.
@param ele element to put back
*/
void put(T *ele)
{
mysql_mutex_lock(&m_mtx);
assert(!is_full());
const bool was_empty= is_empty();
// put element to the logical end of the array
m_cache[--m_pos] = ele;
if (was_empty || (is_full() && m_waiters))
pthread_cond_broadcast(&m_cv);
mysql_mutex_unlock(&m_mtx);
}
/** Check if pointer represents cached element */
bool contains(T* ele)
{
// No locking required, m_base does not change after construction.
return ele >= &m_base[0] && ele <= &m_base[capacity() - 1];
}
/** Wait until cache is full
@param m cache mutex (locked) */
void wait(mysql_mutex_t &m)
{
mysql_mutex_assert_owner(&m);
m_waiters++;
while (!is_full())
my_cond_wait(&m_cv, &m.m_mutex);
m_waiters--;
}
/* Wait until cache is full.*/
void wait()
{
mysql_mutex_lock(&m_mtx);
wait(m_mtx);
mysql_mutex_unlock(&m_mtx);
}
/**
@return approximate number of "borrowed" items.
A "dirty" read, not used in any critical functionality.
*/
TPOOL_SUPPRESS_TSAN size_t pos()
{
return m_pos;
}
void resize(size_t count)
{
mysql_mutex_assert_owner(&m_mtx);
assert(is_full());
m_base.resize(count);
m_cache.resize(count);
for (size_t i = 0; i < count; i++)
m_cache[i] = &m_base[i];
}
};
/**
Circular, fixed size queue
used for the task queue.
Compared to STL queue, this one is
faster, and does not do memory allocations
*/
template <typename T> class circular_queue
{
public:
circular_queue(size_t N = 16)
: m_capacity(N + 1), m_buffer(m_capacity), m_head(), m_tail()
{
}
bool empty() { return m_head == m_tail; }
bool full() { return (m_head + 1) % m_capacity == m_tail; }
void clear() { m_head = m_tail = 0; }
void resize(size_t new_size)
{
auto current_size = size();
if (new_size <= current_size)
return;
size_t new_capacity = new_size - 1;
std::vector<T> new_buffer(new_capacity);
/* Figure out faster way to copy*/
size_t i = 0;
while (!empty())
{
T& ele = front();
pop();
new_buffer[i++] = ele;
}
m_buffer = new_buffer;
m_capacity = new_capacity;
m_tail = 0;
m_head = current_size;
}
void push(T ele)
{
if (full())
{
assert(size() == m_capacity - 1);
resize(size() + 1024);
}
m_buffer[m_head] = ele;
m_head = (m_head + 1) % m_capacity;
}
void push_front(T ele)
{
if (full())
{
resize(size() + 1024);
}
if (m_tail == 0)
m_tail = m_capacity - 1;
else
m_tail--;
m_buffer[m_tail] = ele;
}
T& front()
{
assert(!empty());
return m_buffer[m_tail];
}
void pop()
{
assert(!empty());
m_tail = (m_tail + 1) % m_capacity;
}
size_t size()
{
if (m_head < m_tail)
{
return m_capacity - m_tail + m_head;
}
else
{
return m_head - m_tail;
}
}
/*Iterator over elements in queue.*/
class iterator
{
size_t m_pos;
circular_queue<T>* m_queue;
public:
explicit iterator(size_t pos , circular_queue<T>* q) : m_pos(pos), m_queue(q) {}
iterator& operator++()
{
m_pos= (m_pos + 1) % m_queue->m_capacity;
return *this;
}
iterator operator++(int)
{
iterator retval= *this;
++*this;
return retval;
}
bool operator==(iterator other) const { return m_pos == other.m_pos; }
bool operator!=(iterator other) const { return !(*this == other); }
T& operator*() const { return m_queue->m_buffer[m_pos]; }
};
iterator begin() { return iterator(m_tail, this); }
iterator end() { return iterator(m_head, this); }
private:
size_t m_capacity;
std::vector<T> m_buffer;
size_t m_head;
size_t m_tail;
};
/* Doubly linked list. Intrusive,
requires element to have m_next and m_prev pointers.
*/
template<typename T> class doubly_linked_list
{
public:
T* m_first;
T* m_last;
size_t m_count;
doubly_linked_list():m_first(),m_last(),m_count()
{}
void check()
{
assert(!m_first || !m_first->m_prev);
assert(!m_last || !m_last->m_next);
assert((!m_first && !m_last && m_count == 0)
|| (m_first != 0 && m_last != 0 && m_count > 0));
T* current = m_first;
for(size_t i=1; i< m_count;i++)
{
current = current->m_next;
}
assert(current == m_last);
current = m_last;
for (size_t i = 1; i < m_count; i++)
{
current = current->m_prev;
}
assert(current == m_first);
}
T* front()
{
return m_first;
}
size_t size()
{
return m_count;
}
void push_back(T* ele)
{
ele->m_prev = m_last;
if (m_last)
m_last->m_next = ele;
ele->m_next = 0;
m_last = ele;
if (!m_first)
m_first = m_last;
m_count++;
}
T* back()
{
return m_last;
}
bool empty()
{
return m_count == 0;
}
void pop_back()
{
m_last = m_last->m_prev;
if (m_last)
m_last->m_next = 0;
else
m_first = 0;
m_count--;
}
bool contains(T* ele)
{
if (!ele)
return false;
T* current = m_first;
while(current)
{
if(current == ele)
return true;
current = current->m_next;
}
return false;
}
void erase(T* ele)
{
assert(contains(ele));
if (ele == m_first)
{
m_first = ele->m_next;
if (m_first)
m_first->m_prev = 0;
else
m_last = 0;
}
else if (ele == m_last)
{
assert(ele->m_prev);
m_last = ele->m_prev;
m_last->m_next = 0;
}
else
{
assert(ele->m_next);
assert(ele->m_prev);
ele->m_next->m_prev = ele->m_prev;
ele->m_prev->m_next = ele->m_next;
}
m_count--;
}
};
}
|