summaryrefslogtreecommitdiffstats
path: root/video/csputils.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--video/csputils.c1020
1 files changed, 1020 insertions, 0 deletions
diff --git a/video/csputils.c b/video/csputils.c
new file mode 100644
index 0000000..59200c5
--- /dev/null
+++ b/video/csputils.c
@@ -0,0 +1,1020 @@
+/*
+ * Common code related to colorspaces and conversion
+ *
+ * Copyleft (C) 2009 Reimar Döffinger <Reimar.Doeffinger@gmx.de>
+ *
+ * mp_invert_cmat based on DarkPlaces engine (relicensed from GPL to LGPL)
+ *
+ * This file is part of mpv.
+ *
+ * mpv is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * mpv is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with mpv. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <stdint.h>
+#include <math.h>
+#include <assert.h>
+#include <libavutil/common.h>
+#include <libavcodec/avcodec.h>
+
+#include "mp_image.h"
+#include "csputils.h"
+#include "options/m_config.h"
+#include "options/m_option.h"
+
+const struct m_opt_choice_alternatives mp_csp_names[] = {
+ {"auto", MP_CSP_AUTO},
+ {"bt.601", MP_CSP_BT_601},
+ {"bt.709", MP_CSP_BT_709},
+ {"smpte-240m", MP_CSP_SMPTE_240M},
+ {"bt.2020-ncl", MP_CSP_BT_2020_NC},
+ {"bt.2020-cl", MP_CSP_BT_2020_C},
+ {"rgb", MP_CSP_RGB},
+ {"xyz", MP_CSP_XYZ},
+ {"ycgco", MP_CSP_YCGCO},
+ {0}
+};
+
+const struct m_opt_choice_alternatives mp_csp_levels_names[] = {
+ {"auto", MP_CSP_LEVELS_AUTO},
+ {"limited", MP_CSP_LEVELS_TV},
+ {"full", MP_CSP_LEVELS_PC},
+ {0}
+};
+
+const struct m_opt_choice_alternatives mp_csp_prim_names[] = {
+ {"auto", MP_CSP_PRIM_AUTO},
+ {"bt.601-525", MP_CSP_PRIM_BT_601_525},
+ {"bt.601-625", MP_CSP_PRIM_BT_601_625},
+ {"bt.709", MP_CSP_PRIM_BT_709},
+ {"bt.2020", MP_CSP_PRIM_BT_2020},
+ {"bt.470m", MP_CSP_PRIM_BT_470M},
+ {"apple", MP_CSP_PRIM_APPLE},
+ {"adobe", MP_CSP_PRIM_ADOBE},
+ {"prophoto", MP_CSP_PRIM_PRO_PHOTO},
+ {"cie1931", MP_CSP_PRIM_CIE_1931},
+ {"dci-p3", MP_CSP_PRIM_DCI_P3},
+ {"display-p3", MP_CSP_PRIM_DISPLAY_P3},
+ {"v-gamut", MP_CSP_PRIM_V_GAMUT},
+ {"s-gamut", MP_CSP_PRIM_S_GAMUT},
+ {"ebu3213", MP_CSP_PRIM_EBU_3213},
+ {"film-c", MP_CSP_PRIM_FILM_C},
+ {"aces-ap0", MP_CSP_PRIM_ACES_AP0},
+ {"aces-ap1", MP_CSP_PRIM_ACES_AP1},
+ {0}
+};
+
+const struct m_opt_choice_alternatives mp_csp_trc_names[] = {
+ {"auto", MP_CSP_TRC_AUTO},
+ {"bt.1886", MP_CSP_TRC_BT_1886},
+ {"srgb", MP_CSP_TRC_SRGB},
+ {"linear", MP_CSP_TRC_LINEAR},
+ {"gamma1.8", MP_CSP_TRC_GAMMA18},
+ {"gamma2.0", MP_CSP_TRC_GAMMA20},
+ {"gamma2.2", MP_CSP_TRC_GAMMA22},
+ {"gamma2.4", MP_CSP_TRC_GAMMA24},
+ {"gamma2.6", MP_CSP_TRC_GAMMA26},
+ {"gamma2.8", MP_CSP_TRC_GAMMA28},
+ {"prophoto", MP_CSP_TRC_PRO_PHOTO},
+ {"pq", MP_CSP_TRC_PQ},
+ {"hlg", MP_CSP_TRC_HLG},
+ {"v-log", MP_CSP_TRC_V_LOG},
+ {"s-log1", MP_CSP_TRC_S_LOG1},
+ {"s-log2", MP_CSP_TRC_S_LOG2},
+ {"st428", MP_CSP_TRC_ST428},
+ {0}
+};
+
+const struct m_opt_choice_alternatives mp_csp_light_names[] = {
+ {"auto", MP_CSP_LIGHT_AUTO},
+ {"display", MP_CSP_LIGHT_DISPLAY},
+ {"hlg", MP_CSP_LIGHT_SCENE_HLG},
+ {"709-1886", MP_CSP_LIGHT_SCENE_709_1886},
+ {"gamma1.2", MP_CSP_LIGHT_SCENE_1_2},
+ {0}
+};
+
+const struct m_opt_choice_alternatives mp_chroma_names[] = {
+ {"unknown", MP_CHROMA_AUTO},
+ {"uhd", MP_CHROMA_TOPLEFT},
+ {"mpeg2/4/h264",MP_CHROMA_LEFT},
+ {"mpeg1/jpeg", MP_CHROMA_CENTER},
+ {0}
+};
+
+const struct m_opt_choice_alternatives mp_alpha_names[] = {
+ {"auto", MP_ALPHA_AUTO},
+ {"straight", MP_ALPHA_STRAIGHT},
+ {"premul", MP_ALPHA_PREMUL},
+ {0}
+};
+
+void mp_colorspace_merge(struct mp_colorspace *orig, struct mp_colorspace *new)
+{
+ if (!orig->space)
+ orig->space = new->space;
+ if (!orig->levels)
+ orig->levels = new->levels;
+ if (!orig->primaries)
+ orig->primaries = new->primaries;
+ if (!orig->gamma)
+ orig->gamma = new->gamma;
+ if (!orig->light)
+ orig->light = new->light;
+ pl_hdr_metadata_merge(&orig->hdr, &new->hdr);
+}
+
+// The short name _must_ match with what vf_stereo3d accepts (if supported).
+// The long name in comments is closer to the Matroska spec (StereoMode element).
+// The numeric index matches the Matroska StereoMode value. If you add entries
+// that don't match Matroska, make sure demux_mkv.c rejects them properly.
+const struct m_opt_choice_alternatives mp_stereo3d_names[] = {
+ {"no", -1}, // disable/invalid
+ {"mono", 0},
+ {"sbs2l", 1}, // "side_by_side_left"
+ {"ab2r", 2}, // "top_bottom_right"
+ {"ab2l", 3}, // "top_bottom_left"
+ {"checkr", 4}, // "checkboard_right" (unsupported by vf_stereo3d)
+ {"checkl", 5}, // "checkboard_left" (unsupported by vf_stereo3d)
+ {"irr", 6}, // "row_interleaved_right"
+ {"irl", 7}, // "row_interleaved_left"
+ {"icr", 8}, // "column_interleaved_right" (unsupported by vf_stereo3d)
+ {"icl", 9}, // "column_interleaved_left" (unsupported by vf_stereo3d)
+ {"arcc", 10}, // "anaglyph_cyan_red" (Matroska: unclear which mode)
+ {"sbs2r", 11}, // "side_by_side_right"
+ {"agmc", 12}, // "anaglyph_green_magenta" (Matroska: unclear which mode)
+ {"al", 13}, // "alternating frames left first"
+ {"ar", 14}, // "alternating frames right first"
+ {0}
+};
+
+enum mp_csp avcol_spc_to_mp_csp(int avcolorspace)
+{
+ switch (avcolorspace) {
+ case AVCOL_SPC_BT709: return MP_CSP_BT_709;
+ case AVCOL_SPC_BT470BG: return MP_CSP_BT_601;
+ case AVCOL_SPC_BT2020_NCL: return MP_CSP_BT_2020_NC;
+ case AVCOL_SPC_BT2020_CL: return MP_CSP_BT_2020_C;
+ case AVCOL_SPC_SMPTE170M: return MP_CSP_BT_601;
+ case AVCOL_SPC_SMPTE240M: return MP_CSP_SMPTE_240M;
+ case AVCOL_SPC_RGB: return MP_CSP_RGB;
+ case AVCOL_SPC_YCOCG: return MP_CSP_YCGCO;
+ default: return MP_CSP_AUTO;
+ }
+}
+
+enum mp_csp_levels avcol_range_to_mp_csp_levels(int avrange)
+{
+ switch (avrange) {
+ case AVCOL_RANGE_MPEG: return MP_CSP_LEVELS_TV;
+ case AVCOL_RANGE_JPEG: return MP_CSP_LEVELS_PC;
+ default: return MP_CSP_LEVELS_AUTO;
+ }
+}
+
+enum mp_csp_prim avcol_pri_to_mp_csp_prim(int avpri)
+{
+ switch (avpri) {
+ case AVCOL_PRI_SMPTE240M: // Same as below
+ case AVCOL_PRI_SMPTE170M: return MP_CSP_PRIM_BT_601_525;
+ case AVCOL_PRI_BT470BG: return MP_CSP_PRIM_BT_601_625;
+ case AVCOL_PRI_BT709: return MP_CSP_PRIM_BT_709;
+ case AVCOL_PRI_BT2020: return MP_CSP_PRIM_BT_2020;
+ case AVCOL_PRI_BT470M: return MP_CSP_PRIM_BT_470M;
+ case AVCOL_PRI_SMPTE431: return MP_CSP_PRIM_DCI_P3;
+ case AVCOL_PRI_SMPTE432: return MP_CSP_PRIM_DISPLAY_P3;
+ default: return MP_CSP_PRIM_AUTO;
+ }
+}
+
+enum mp_csp_trc avcol_trc_to_mp_csp_trc(int avtrc)
+{
+ switch (avtrc) {
+ case AVCOL_TRC_BT709:
+ case AVCOL_TRC_SMPTE170M:
+ case AVCOL_TRC_SMPTE240M:
+ case AVCOL_TRC_BT1361_ECG:
+ case AVCOL_TRC_BT2020_10:
+ case AVCOL_TRC_BT2020_12: return MP_CSP_TRC_BT_1886;
+ case AVCOL_TRC_IEC61966_2_1: return MP_CSP_TRC_SRGB;
+ case AVCOL_TRC_LINEAR: return MP_CSP_TRC_LINEAR;
+ case AVCOL_TRC_GAMMA22: return MP_CSP_TRC_GAMMA22;
+ case AVCOL_TRC_GAMMA28: return MP_CSP_TRC_GAMMA28;
+ case AVCOL_TRC_SMPTEST2084: return MP_CSP_TRC_PQ;
+ case AVCOL_TRC_ARIB_STD_B67: return MP_CSP_TRC_HLG;
+ case AVCOL_TRC_SMPTE428: return MP_CSP_TRC_ST428;
+ default: return MP_CSP_TRC_AUTO;
+ }
+}
+
+int mp_csp_to_avcol_spc(enum mp_csp colorspace)
+{
+ switch (colorspace) {
+ case MP_CSP_BT_709: return AVCOL_SPC_BT709;
+ case MP_CSP_BT_601: return AVCOL_SPC_BT470BG;
+ case MP_CSP_BT_2020_NC: return AVCOL_SPC_BT2020_NCL;
+ case MP_CSP_BT_2020_C: return AVCOL_SPC_BT2020_CL;
+ case MP_CSP_SMPTE_240M: return AVCOL_SPC_SMPTE240M;
+ case MP_CSP_RGB: return AVCOL_SPC_RGB;
+ case MP_CSP_YCGCO: return AVCOL_SPC_YCOCG;
+ default: return AVCOL_SPC_UNSPECIFIED;
+ }
+}
+
+int mp_csp_levels_to_avcol_range(enum mp_csp_levels range)
+{
+ switch (range) {
+ case MP_CSP_LEVELS_TV: return AVCOL_RANGE_MPEG;
+ case MP_CSP_LEVELS_PC: return AVCOL_RANGE_JPEG;
+ default: return AVCOL_RANGE_UNSPECIFIED;
+ }
+}
+
+int mp_csp_prim_to_avcol_pri(enum mp_csp_prim prim)
+{
+ switch (prim) {
+ case MP_CSP_PRIM_BT_601_525: return AVCOL_PRI_SMPTE170M;
+ case MP_CSP_PRIM_BT_601_625: return AVCOL_PRI_BT470BG;
+ case MP_CSP_PRIM_BT_709: return AVCOL_PRI_BT709;
+ case MP_CSP_PRIM_BT_2020: return AVCOL_PRI_BT2020;
+ case MP_CSP_PRIM_BT_470M: return AVCOL_PRI_BT470M;
+ case MP_CSP_PRIM_DCI_P3: return AVCOL_PRI_SMPTE431;
+ case MP_CSP_PRIM_DISPLAY_P3: return AVCOL_PRI_SMPTE432;
+ default: return AVCOL_PRI_UNSPECIFIED;
+ }
+}
+
+int mp_csp_trc_to_avcol_trc(enum mp_csp_trc trc)
+{
+ switch (trc) {
+ // We just call it BT.1886 since we're decoding, but it's still BT.709
+ case MP_CSP_TRC_BT_1886: return AVCOL_TRC_BT709;
+ case MP_CSP_TRC_SRGB: return AVCOL_TRC_IEC61966_2_1;
+ case MP_CSP_TRC_LINEAR: return AVCOL_TRC_LINEAR;
+ case MP_CSP_TRC_GAMMA22: return AVCOL_TRC_GAMMA22;
+ case MP_CSP_TRC_GAMMA28: return AVCOL_TRC_GAMMA28;
+ case MP_CSP_TRC_PQ: return AVCOL_TRC_SMPTEST2084;
+ case MP_CSP_TRC_HLG: return AVCOL_TRC_ARIB_STD_B67;
+ case MP_CSP_TRC_ST428: return AVCOL_TRC_SMPTE428;
+ default: return AVCOL_TRC_UNSPECIFIED;
+ }
+}
+
+enum mp_csp mp_csp_guess_colorspace(int width, int height)
+{
+ return width >= 1280 || height > 576 ? MP_CSP_BT_709 : MP_CSP_BT_601;
+}
+
+enum mp_csp_prim mp_csp_guess_primaries(int width, int height)
+{
+ // HD content
+ if (width >= 1280 || height > 576)
+ return MP_CSP_PRIM_BT_709;
+
+ switch (height) {
+ case 576: // Typical PAL content, including anamorphic/squared
+ return MP_CSP_PRIM_BT_601_625;
+
+ case 480: // Typical NTSC content, including squared
+ case 486: // NTSC Pro or anamorphic NTSC
+ return MP_CSP_PRIM_BT_601_525;
+
+ default: // No good metric, just pick BT.709 to minimize damage
+ return MP_CSP_PRIM_BT_709;
+ }
+}
+
+enum mp_chroma_location avchroma_location_to_mp(int avloc)
+{
+ switch (avloc) {
+ case AVCHROMA_LOC_TOPLEFT: return MP_CHROMA_TOPLEFT;
+ case AVCHROMA_LOC_LEFT: return MP_CHROMA_LEFT;
+ case AVCHROMA_LOC_CENTER: return MP_CHROMA_CENTER;
+ default: return MP_CHROMA_AUTO;
+ }
+}
+
+int mp_chroma_location_to_av(enum mp_chroma_location mploc)
+{
+ switch (mploc) {
+ case MP_CHROMA_TOPLEFT: return AVCHROMA_LOC_TOPLEFT;
+ case MP_CHROMA_LEFT: return AVCHROMA_LOC_LEFT;
+ case MP_CHROMA_CENTER: return AVCHROMA_LOC_CENTER;
+ default: return AVCHROMA_LOC_UNSPECIFIED;
+ }
+}
+
+// Return location of chroma samples relative to luma samples. 0/0 means
+// centered. Other possible values are -1 (top/left) and +1 (right/bottom).
+void mp_get_chroma_location(enum mp_chroma_location loc, int *x, int *y)
+{
+ *x = 0;
+ *y = 0;
+ if (loc == MP_CHROMA_LEFT || loc == MP_CHROMA_TOPLEFT)
+ *x = -1;
+ if (loc == MP_CHROMA_TOPLEFT)
+ *y = -1;
+}
+
+void mp_invert_matrix3x3(float m[3][3])
+{
+ float m00 = m[0][0], m01 = m[0][1], m02 = m[0][2],
+ m10 = m[1][0], m11 = m[1][1], m12 = m[1][2],
+ m20 = m[2][0], m21 = m[2][1], m22 = m[2][2];
+
+ // calculate the adjoint
+ m[0][0] = (m11 * m22 - m21 * m12);
+ m[0][1] = -(m01 * m22 - m21 * m02);
+ m[0][2] = (m01 * m12 - m11 * m02);
+ m[1][0] = -(m10 * m22 - m20 * m12);
+ m[1][1] = (m00 * m22 - m20 * m02);
+ m[1][2] = -(m00 * m12 - m10 * m02);
+ m[2][0] = (m10 * m21 - m20 * m11);
+ m[2][1] = -(m00 * m21 - m20 * m01);
+ m[2][2] = (m00 * m11 - m10 * m01);
+
+ // calculate the determinant (as inverse == 1/det * adjoint,
+ // adjoint * m == identity * det, so this calculates the det)
+ float det = m00 * m[0][0] + m10 * m[0][1] + m20 * m[0][2];
+ det = 1.0f / det;
+
+ for (int i = 0; i < 3; i++) {
+ for (int j = 0; j < 3; j++)
+ m[i][j] *= det;
+ }
+}
+
+// A := A * B
+static void mp_mul_matrix3x3(float a[3][3], float b[3][3])
+{
+ float a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
+ a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
+ a20 = a[2][0], a21 = a[2][1], a22 = a[2][2];
+
+ for (int i = 0; i < 3; i++) {
+ a[0][i] = a00 * b[0][i] + a01 * b[1][i] + a02 * b[2][i];
+ a[1][i] = a10 * b[0][i] + a11 * b[1][i] + a12 * b[2][i];
+ a[2][i] = a20 * b[0][i] + a21 * b[1][i] + a22 * b[2][i];
+ }
+}
+
+// return the primaries associated with a certain mp_csp_primaries val
+struct mp_csp_primaries mp_get_csp_primaries(enum mp_csp_prim spc)
+{
+ /*
+ Values from: ITU-R Recommendations BT.470-6, BT.601-7, BT.709-5, BT.2020-0
+
+ https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.470-6-199811-S!!PDF-E.pdf
+ https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.601-7-201103-I!!PDF-E.pdf
+ https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.709-5-200204-I!!PDF-E.pdf
+ https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.2020-0-201208-I!!PDF-E.pdf
+
+ Other colorspaces from https://en.wikipedia.org/wiki/RGB_color_space#Specifications
+ */
+
+ // CIE standard illuminant series
+ static const struct mp_csp_col_xy
+ d50 = {0.34577, 0.35850},
+ d65 = {0.31271, 0.32902},
+ c = {0.31006, 0.31616},
+ dci = {0.31400, 0.35100},
+ e = {1.0/3.0, 1.0/3.0};
+
+ switch (spc) {
+ case MP_CSP_PRIM_BT_470M:
+ return (struct mp_csp_primaries) {
+ .red = {0.670, 0.330},
+ .green = {0.210, 0.710},
+ .blue = {0.140, 0.080},
+ .white = c
+ };
+ case MP_CSP_PRIM_BT_601_525:
+ return (struct mp_csp_primaries) {
+ .red = {0.630, 0.340},
+ .green = {0.310, 0.595},
+ .blue = {0.155, 0.070},
+ .white = d65
+ };
+ case MP_CSP_PRIM_BT_601_625:
+ return (struct mp_csp_primaries) {
+ .red = {0.640, 0.330},
+ .green = {0.290, 0.600},
+ .blue = {0.150, 0.060},
+ .white = d65
+ };
+ // This is the default assumption if no colorspace information could
+ // be determined, eg. for files which have no video channel.
+ case MP_CSP_PRIM_AUTO:
+ case MP_CSP_PRIM_BT_709:
+ return (struct mp_csp_primaries) {
+ .red = {0.640, 0.330},
+ .green = {0.300, 0.600},
+ .blue = {0.150, 0.060},
+ .white = d65
+ };
+ case MP_CSP_PRIM_BT_2020:
+ return (struct mp_csp_primaries) {
+ .red = {0.708, 0.292},
+ .green = {0.170, 0.797},
+ .blue = {0.131, 0.046},
+ .white = d65
+ };
+ case MP_CSP_PRIM_APPLE:
+ return (struct mp_csp_primaries) {
+ .red = {0.625, 0.340},
+ .green = {0.280, 0.595},
+ .blue = {0.115, 0.070},
+ .white = d65
+ };
+ case MP_CSP_PRIM_ADOBE:
+ return (struct mp_csp_primaries) {
+ .red = {0.640, 0.330},
+ .green = {0.210, 0.710},
+ .blue = {0.150, 0.060},
+ .white = d65
+ };
+ case MP_CSP_PRIM_PRO_PHOTO:
+ return (struct mp_csp_primaries) {
+ .red = {0.7347, 0.2653},
+ .green = {0.1596, 0.8404},
+ .blue = {0.0366, 0.0001},
+ .white = d50
+ };
+ case MP_CSP_PRIM_CIE_1931:
+ return (struct mp_csp_primaries) {
+ .red = {0.7347, 0.2653},
+ .green = {0.2738, 0.7174},
+ .blue = {0.1666, 0.0089},
+ .white = e
+ };
+ // From SMPTE RP 431-2 and 432-1
+ case MP_CSP_PRIM_DCI_P3:
+ case MP_CSP_PRIM_DISPLAY_P3:
+ return (struct mp_csp_primaries) {
+ .red = {0.680, 0.320},
+ .green = {0.265, 0.690},
+ .blue = {0.150, 0.060},
+ .white = spc == MP_CSP_PRIM_DCI_P3 ? dci : d65
+ };
+ // From Panasonic VARICAM reference manual
+ case MP_CSP_PRIM_V_GAMUT:
+ return (struct mp_csp_primaries) {
+ .red = {0.730, 0.280},
+ .green = {0.165, 0.840},
+ .blue = {0.100, -0.03},
+ .white = d65
+ };
+ // From Sony S-Log reference manual
+ case MP_CSP_PRIM_S_GAMUT:
+ return (struct mp_csp_primaries) {
+ .red = {0.730, 0.280},
+ .green = {0.140, 0.855},
+ .blue = {0.100, -0.05},
+ .white = d65
+ };
+ // from EBU Tech. 3213-E
+ case MP_CSP_PRIM_EBU_3213:
+ return (struct mp_csp_primaries) {
+ .red = {0.630, 0.340},
+ .green = {0.295, 0.605},
+ .blue = {0.155, 0.077},
+ .white = d65
+ };
+ // From H.273, traditional film with Illuminant C
+ case MP_CSP_PRIM_FILM_C:
+ return (struct mp_csp_primaries) {
+ .red = {0.681, 0.319},
+ .green = {0.243, 0.692},
+ .blue = {0.145, 0.049},
+ .white = c
+ };
+ // From libplacebo source code
+ case MP_CSP_PRIM_ACES_AP0:
+ return (struct mp_csp_primaries) {
+ .red = {0.7347, 0.2653},
+ .green = {0.0000, 1.0000},
+ .blue = {0.0001, -0.0770},
+ .white = {0.32168, 0.33767},
+ };
+ // From libplacebo source code
+ case MP_CSP_PRIM_ACES_AP1:
+ return (struct mp_csp_primaries) {
+ .red = {0.713, 0.293},
+ .green = {0.165, 0.830},
+ .blue = {0.128, 0.044},
+ .white = {0.32168, 0.33767},
+ };
+ default:
+ return (struct mp_csp_primaries) {{0}};
+ }
+}
+
+// Get the nominal peak for a given colorspace, relative to the reference white
+// level. In other words, this returns the brightest encodable value that can
+// be represented by a given transfer curve.
+float mp_trc_nom_peak(enum mp_csp_trc trc)
+{
+ switch (trc) {
+ case MP_CSP_TRC_PQ: return 10000.0 / MP_REF_WHITE;
+ case MP_CSP_TRC_HLG: return 12.0 / MP_REF_WHITE_HLG;
+ case MP_CSP_TRC_V_LOG: return 46.0855;
+ case MP_CSP_TRC_S_LOG1: return 6.52;
+ case MP_CSP_TRC_S_LOG2: return 9.212;
+ }
+
+ return 1.0;
+}
+
+bool mp_trc_is_hdr(enum mp_csp_trc trc)
+{
+ return mp_trc_nom_peak(trc) > 1.0;
+}
+
+// Compute the RGB/XYZ matrix as described here:
+// http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
+void mp_get_rgb2xyz_matrix(struct mp_csp_primaries space, float m[3][3])
+{
+ float S[3], X[4], Z[4];
+
+ // Convert from CIE xyY to XYZ. Note that Y=1 holds true for all primaries
+ X[0] = space.red.x / space.red.y;
+ X[1] = space.green.x / space.green.y;
+ X[2] = space.blue.x / space.blue.y;
+ X[3] = space.white.x / space.white.y;
+
+ Z[0] = (1 - space.red.x - space.red.y) / space.red.y;
+ Z[1] = (1 - space.green.x - space.green.y) / space.green.y;
+ Z[2] = (1 - space.blue.x - space.blue.y) / space.blue.y;
+ Z[3] = (1 - space.white.x - space.white.y) / space.white.y;
+
+ // S = XYZ^-1 * W
+ for (int i = 0; i < 3; i++) {
+ m[0][i] = X[i];
+ m[1][i] = 1;
+ m[2][i] = Z[i];
+ }
+
+ mp_invert_matrix3x3(m);
+
+ for (int i = 0; i < 3; i++)
+ S[i] = m[i][0] * X[3] + m[i][1] * 1 + m[i][2] * Z[3];
+
+ // M = [Sc * XYZc]
+ for (int i = 0; i < 3; i++) {
+ m[0][i] = S[i] * X[i];
+ m[1][i] = S[i] * 1;
+ m[2][i] = S[i] * Z[i];
+ }
+}
+
+// M := M * XYZd<-XYZs
+static void mp_apply_chromatic_adaptation(struct mp_csp_col_xy src,
+ struct mp_csp_col_xy dest, float m[3][3])
+{
+ // If the white points are nearly identical, this is a wasteful identity
+ // operation.
+ if (fabs(src.x - dest.x) < 1e-6 && fabs(src.y - dest.y) < 1e-6)
+ return;
+
+ // XYZd<-XYZs = Ma^-1 * (I*[Cd/Cs]) * Ma
+ // http://www.brucelindbloom.com/index.html?Eqn_ChromAdapt.html
+ float C[3][2], tmp[3][3] = {{0}};
+
+ // Ma = Bradford matrix, arguably most popular method in use today.
+ // This is derived experimentally and thus hard-coded.
+ float bradford[3][3] = {
+ { 0.8951, 0.2664, -0.1614 },
+ { -0.7502, 1.7135, 0.0367 },
+ { 0.0389, -0.0685, 1.0296 },
+ };
+
+ for (int i = 0; i < 3; i++) {
+ // source cone
+ C[i][0] = bradford[i][0] * mp_xy_X(src)
+ + bradford[i][1] * 1
+ + bradford[i][2] * mp_xy_Z(src);
+
+ // dest cone
+ C[i][1] = bradford[i][0] * mp_xy_X(dest)
+ + bradford[i][1] * 1
+ + bradford[i][2] * mp_xy_Z(dest);
+ }
+
+ // tmp := I * [Cd/Cs] * Ma
+ for (int i = 0; i < 3; i++)
+ tmp[i][i] = C[i][1] / C[i][0];
+
+ mp_mul_matrix3x3(tmp, bradford);
+
+ // M := M * Ma^-1 * tmp
+ mp_invert_matrix3x3(bradford);
+ mp_mul_matrix3x3(m, bradford);
+ mp_mul_matrix3x3(m, tmp);
+}
+
+// get the coefficients of the source -> dest cms matrix
+void mp_get_cms_matrix(struct mp_csp_primaries src, struct mp_csp_primaries dest,
+ enum mp_render_intent intent, float m[3][3])
+{
+ float tmp[3][3];
+
+ // In saturation mapping, we don't care about accuracy and just want
+ // primaries to map to primaries, making this an identity transformation.
+ if (intent == MP_INTENT_SATURATION) {
+ for (int i = 0; i < 3; i++)
+ m[i][i] = 1;
+ return;
+ }
+
+ // RGBd<-RGBs = RGBd<-XYZd * XYZd<-XYZs * XYZs<-RGBs
+ // Equations from: http://www.brucelindbloom.com/index.html?Math.html
+ // Note: Perceptual is treated like relative colorimetric. There's no
+ // definition for perceptual other than "make it look good".
+
+ // RGBd<-XYZd, inverted from XYZd<-RGBd
+ mp_get_rgb2xyz_matrix(dest, m);
+ mp_invert_matrix3x3(m);
+
+ // Chromatic adaptation, except in absolute colorimetric intent
+ if (intent != MP_INTENT_ABSOLUTE_COLORIMETRIC)
+ mp_apply_chromatic_adaptation(src.white, dest.white, m);
+
+ // XYZs<-RGBs
+ mp_get_rgb2xyz_matrix(src, tmp);
+ mp_mul_matrix3x3(m, tmp);
+}
+
+// get the coefficients of an ST 428-1 xyz -> rgb conversion matrix
+// intent = the rendering intent used to convert to the target primaries
+static void mp_get_xyz2rgb_coeffs(struct mp_csp_params *params,
+ enum mp_render_intent intent, struct mp_cmat *m)
+{
+ // Convert to DCI-P3
+ struct mp_csp_primaries prim = mp_get_csp_primaries(MP_CSP_PRIM_DCI_P3);
+ float brightness = params->brightness;
+ mp_get_rgb2xyz_matrix(prim, m->m);
+ mp_invert_matrix3x3(m->m);
+
+ // All non-absolute mappings want to map source white to target white
+ if (intent != MP_INTENT_ABSOLUTE_COLORIMETRIC) {
+ // SMPTE EG 432-1 Annex H defines the white point as equal energy
+ static const struct mp_csp_col_xy smpte432 = {1.0/3.0, 1.0/3.0};
+ mp_apply_chromatic_adaptation(smpte432, prim.white, m->m);
+ }
+
+ // Since this outputs linear RGB rather than companded RGB, we
+ // want to linearize any brightness additions. 2 is a reasonable
+ // approximation for any sort of gamma function that could be in use.
+ // As this is an aesthetic setting only, any exact values do not matter.
+ brightness *= fabs(brightness);
+
+ for (int i = 0; i < 3; i++)
+ m->c[i] = brightness;
+}
+
+// Get multiplication factor required if image data is fit within the LSBs of a
+// higher smaller bit depth fixed-point texture data.
+// This is broken. Use mp_get_csp_uint_mul().
+double mp_get_csp_mul(enum mp_csp csp, int input_bits, int texture_bits)
+{
+ assert(texture_bits >= input_bits);
+
+ // Convenience for some irrelevant cases, e.g. rgb565 or disabling expansion.
+ if (!input_bits)
+ return 1;
+
+ // RGB always uses the full range available.
+ if (csp == MP_CSP_RGB)
+ return ((1LL << input_bits) - 1.) / ((1LL << texture_bits) - 1.);
+
+ if (csp == MP_CSP_XYZ)
+ return 1;
+
+ // High bit depth YUV uses a range shifted from 8 bit.
+ return (1LL << input_bits) / ((1LL << texture_bits) - 1.) * 255 / 256;
+}
+
+// Return information about color fixed point representation.his is needed for
+// converting color from integer formats to or from float. Use as follows:
+// float_val = uint_val * m + o
+// uint_val = clamp(round((float_val - o) / m))
+// See H.264/5 Annex E.
+// csp: colorspace
+// levels: full range flag
+// component: ID of the channel, as in mp_regular_imgfmt:
+// 1 is red/luminance/gray, 2 is green/Cb, 3 is blue/Cr, 4 is alpha.
+// bits: number of significant bits, e.g. 10 for yuv420p10, 16 for p010
+// out_m: returns factor to multiply the uint number with
+// out_o: returns offset to add after multiplication
+void mp_get_csp_uint_mul(enum mp_csp csp, enum mp_csp_levels levels,
+ int bits, int component, double *out_m, double *out_o)
+{
+ uint16_t i_min = 0;
+ uint16_t i_max = (1u << bits) - 1;
+ double f_min = 0; // min. float value
+
+ if (csp != MP_CSP_RGB && component != 4) {
+ if (component == 2 || component == 3) {
+ f_min = (1u << (bits - 1)) / -(double)i_max; // force center => 0
+
+ if (levels != MP_CSP_LEVELS_PC && bits >= 8) {
+ i_min = 16 << (bits - 8); // => -0.5
+ i_max = 240 << (bits - 8); // => 0.5
+ f_min = -0.5;
+ }
+ } else {
+ if (levels != MP_CSP_LEVELS_PC && bits >= 8) {
+ i_min = 16 << (bits - 8); // => 0
+ i_max = 235 << (bits - 8); // => 1
+ }
+ }
+ }
+
+ *out_m = 1.0 / (i_max - i_min);
+ *out_o = (1 + f_min) - i_max * *out_m;
+}
+
+/* Fill in the Y, U, V vectors of a yuv-to-rgb conversion matrix
+ * based on the given luma weights of the R, G and B components (lr, lg, lb).
+ * lr+lg+lb is assumed to equal 1.
+ * This function is meant for colorspaces satisfying the following
+ * conditions (which are true for common YUV colorspaces):
+ * - The mapping from input [Y, U, V] to output [R, G, B] is linear.
+ * - Y is the vector [1, 1, 1]. (meaning input Y component maps to 1R+1G+1B)
+ * - U maps to a value with zero R and positive B ([0, x, y], y > 0;
+ * i.e. blue and green only).
+ * - V maps to a value with zero B and positive R ([x, y, 0], x > 0;
+ * i.e. red and green only).
+ * - U and V are orthogonal to the luma vector [lr, lg, lb].
+ * - The magnitudes of the vectors U and V are the minimal ones for which
+ * the image of the set Y=[0...1],U=[-0.5...0.5],V=[-0.5...0.5] under the
+ * conversion function will cover the set R=[0...1],G=[0...1],B=[0...1]
+ * (the resulting matrix can be converted for other input/output ranges
+ * outside this function).
+ * Under these conditions the given parameters lr, lg, lb uniquely
+ * determine the mapping of Y, U, V to R, G, B.
+ */
+static void luma_coeffs(struct mp_cmat *mat, float lr, float lg, float lb)
+{
+ assert(fabs(lr+lg+lb - 1) < 1e-6);
+ *mat = (struct mp_cmat) {
+ { {1, 0, 2 * (1-lr) },
+ {1, -2 * (1-lb) * lb/lg, -2 * (1-lr) * lr/lg },
+ {1, 2 * (1-lb), 0 } },
+ // Constant coefficients (mat->c) not set here
+ };
+}
+
+// get the coefficients of the yuv -> rgb conversion matrix
+void mp_get_csp_matrix(struct mp_csp_params *params, struct mp_cmat *m)
+{
+ enum mp_csp colorspace = params->color.space;
+ if (colorspace <= MP_CSP_AUTO || colorspace >= MP_CSP_COUNT)
+ colorspace = MP_CSP_BT_601;
+ enum mp_csp_levels levels_in = params->color.levels;
+ if (levels_in <= MP_CSP_LEVELS_AUTO || levels_in >= MP_CSP_LEVELS_COUNT)
+ levels_in = MP_CSP_LEVELS_TV;
+
+ switch (colorspace) {
+ case MP_CSP_BT_601: luma_coeffs(m, 0.299, 0.587, 0.114 ); break;
+ case MP_CSP_BT_709: luma_coeffs(m, 0.2126, 0.7152, 0.0722); break;
+ case MP_CSP_SMPTE_240M: luma_coeffs(m, 0.2122, 0.7013, 0.0865); break;
+ case MP_CSP_BT_2020_NC: luma_coeffs(m, 0.2627, 0.6780, 0.0593); break;
+ case MP_CSP_BT_2020_C: {
+ // Note: This outputs into the [-0.5,0.5] range for chroma information.
+ // If this clips on any VO, a constant 0.5 coefficient can be added
+ // to the chroma channels to normalize them into [0,1]. This is not
+ // currently needed by anything, though.
+ *m = (struct mp_cmat){{{0, 0, 1}, {1, 0, 0}, {0, 1, 0}}};
+ break;
+ }
+ case MP_CSP_RGB: {
+ *m = (struct mp_cmat){{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}};
+ levels_in = -1;
+ break;
+ }
+ case MP_CSP_XYZ: {
+ // The vo should probably not be using a matrix generated by this
+ // function for XYZ sources, but if it does, let's just convert it to
+ // an equivalent RGB space based on the colorimetry metadata it
+ // provided in mp_csp_params. (At the risk of clipping, if the
+ // chosen primaries are too small to fit the actual data)
+ mp_get_xyz2rgb_coeffs(params, MP_INTENT_RELATIVE_COLORIMETRIC, m);
+ levels_in = -1;
+ break;
+ }
+ case MP_CSP_YCGCO: {
+ *m = (struct mp_cmat) {
+ {{1, -1, 1},
+ {1, 1, 0},
+ {1, -1, -1}},
+ };
+ break;
+ }
+ default:
+ MP_ASSERT_UNREACHABLE();
+ };
+
+ if (params->is_float)
+ levels_in = -1;
+
+ if ((colorspace == MP_CSP_BT_601 || colorspace == MP_CSP_BT_709 ||
+ colorspace == MP_CSP_SMPTE_240M || colorspace == MP_CSP_BT_2020_NC))
+ {
+ // Hue is equivalent to rotating input [U, V] subvector around the origin.
+ // Saturation scales [U, V].
+ float huecos = params->gray ? 0 : params->saturation * cos(params->hue);
+ float huesin = params->gray ? 0 : params->saturation * sin(params->hue);
+ for (int i = 0; i < 3; i++) {
+ float u = m->m[i][1], v = m->m[i][2];
+ m->m[i][1] = huecos * u - huesin * v;
+ m->m[i][2] = huesin * u + huecos * v;
+ }
+ }
+
+ // The values below are written in 0-255 scale - thus bring s into range.
+ double s =
+ mp_get_csp_mul(colorspace, params->input_bits, params->texture_bits) / 255;
+ // NOTE: The yuvfull ranges as presented here are arguably ambiguous,
+ // and conflict with at least the full-range YCbCr/ICtCp values as defined
+ // by ITU-R BT.2100. If somebody ever complains about full-range YUV looking
+ // different from their reference display, this comment is probably why.
+ struct yuvlevels { double ymin, ymax, cmax, cmid; }
+ yuvlim = { 16*s, 235*s, 240*s, 128*s },
+ yuvfull = { 0*s, 255*s, 255*s, 128*s },
+ anyfull = { 0*s, 255*s, 255*s/2, 0 }, // cmax picked to make cmul=ymul
+ yuvlev;
+ switch (levels_in) {
+ case MP_CSP_LEVELS_TV: yuvlev = yuvlim; break;
+ case MP_CSP_LEVELS_PC: yuvlev = yuvfull; break;
+ case -1: yuvlev = anyfull; break;
+ default:
+ MP_ASSERT_UNREACHABLE();
+ }
+
+ int levels_out = params->levels_out;
+ if (levels_out <= MP_CSP_LEVELS_AUTO || levels_out >= MP_CSP_LEVELS_COUNT)
+ levels_out = MP_CSP_LEVELS_PC;
+ struct rgblevels { double min, max; }
+ rgblim = { 16/255., 235/255. },
+ rgbfull = { 0, 1 },
+ rgblev;
+ switch (levels_out) {
+ case MP_CSP_LEVELS_TV: rgblev = rgblim; break;
+ case MP_CSP_LEVELS_PC: rgblev = rgbfull; break;
+ default:
+ MP_ASSERT_UNREACHABLE();
+ }
+
+ double ymul = (rgblev.max - rgblev.min) / (yuvlev.ymax - yuvlev.ymin);
+ double cmul = (rgblev.max - rgblev.min) / (yuvlev.cmax - yuvlev.cmid) / 2;
+
+ // Contrast scales the output value range (gain)
+ ymul *= params->contrast;
+ cmul *= params->contrast;
+
+ for (int i = 0; i < 3; i++) {
+ m->m[i][0] *= ymul;
+ m->m[i][1] *= cmul;
+ m->m[i][2] *= cmul;
+ // Set c so that Y=umin,UV=cmid maps to RGB=min (black to black),
+ // also add brightness offset (black lift)
+ m->c[i] = rgblev.min - m->m[i][0] * yuvlev.ymin
+ - (m->m[i][1] + m->m[i][2]) * yuvlev.cmid
+ + params->brightness;
+ }
+}
+
+// Set colorspace related fields in p from f. Don't touch other fields.
+void mp_csp_set_image_params(struct mp_csp_params *params,
+ const struct mp_image_params *imgparams)
+{
+ struct mp_image_params p = *imgparams;
+ mp_image_params_guess_csp(&p); // ensure consistency
+ params->color = p.color;
+}
+
+bool mp_colorspace_equal(struct mp_colorspace c1, struct mp_colorspace c2)
+{
+ return c1.space == c2.space &&
+ c1.levels == c2.levels &&
+ c1.primaries == c2.primaries &&
+ c1.gamma == c2.gamma &&
+ c1.light == c2.light &&
+ pl_hdr_metadata_equal(&c1.hdr, &c2.hdr);
+}
+
+enum mp_csp_equalizer_param {
+ MP_CSP_EQ_BRIGHTNESS,
+ MP_CSP_EQ_CONTRAST,
+ MP_CSP_EQ_HUE,
+ MP_CSP_EQ_SATURATION,
+ MP_CSP_EQ_GAMMA,
+ MP_CSP_EQ_COUNT,
+};
+
+// Default initialization with 0 is enough, except for the capabilities field
+struct mp_csp_equalizer_opts {
+ // Value for each property is in the range [-100.0, 100.0].
+ // 0.0 is default, meaning neutral or no change.
+ float values[MP_CSP_EQ_COUNT];
+ int output_levels;
+};
+
+#define OPT_BASE_STRUCT struct mp_csp_equalizer_opts
+
+const struct m_sub_options mp_csp_equalizer_conf = {
+ .opts = (const m_option_t[]) {
+ {"brightness", OPT_FLOAT(values[MP_CSP_EQ_BRIGHTNESS]),
+ M_RANGE(-100, 100)},
+ {"saturation", OPT_FLOAT(values[MP_CSP_EQ_SATURATION]),
+ M_RANGE(-100, 100)},
+ {"contrast", OPT_FLOAT(values[MP_CSP_EQ_CONTRAST]),
+ M_RANGE(-100, 100)},
+ {"hue", OPT_FLOAT(values[MP_CSP_EQ_HUE]),
+ M_RANGE(-100, 100)},
+ {"gamma", OPT_FLOAT(values[MP_CSP_EQ_GAMMA]),
+ M_RANGE(-100, 100)},
+ {"video-output-levels",
+ OPT_CHOICE_C(output_levels, mp_csp_levels_names)},
+ {0}
+ },
+ .size = sizeof(struct mp_csp_equalizer_opts),
+};
+
+// Copy settings from eq into params.
+static void mp_csp_copy_equalizer_values(struct mp_csp_params *params,
+ const struct mp_csp_equalizer_opts *eq)
+{
+ params->brightness = eq->values[MP_CSP_EQ_BRIGHTNESS] / 100.0;
+ params->contrast = (eq->values[MP_CSP_EQ_CONTRAST] + 100) / 100.0;
+ params->hue = eq->values[MP_CSP_EQ_HUE] / 100.0 * M_PI;
+ params->saturation = (eq->values[MP_CSP_EQ_SATURATION] + 100) / 100.0;
+ params->gamma = exp(log(8.0) * eq->values[MP_CSP_EQ_GAMMA] / 100.0);
+ params->levels_out = eq->output_levels;
+}
+
+struct mp_csp_equalizer_state *mp_csp_equalizer_create(void *ta_parent,
+ struct mpv_global *global)
+{
+ struct m_config_cache *c = m_config_cache_alloc(ta_parent, global,
+ &mp_csp_equalizer_conf);
+ // The terrible, terrible truth.
+ return (struct mp_csp_equalizer_state *)c;
+}
+
+bool mp_csp_equalizer_state_changed(struct mp_csp_equalizer_state *state)
+{
+ struct m_config_cache *c = (struct m_config_cache *)state;
+ return m_config_cache_update(c);
+}
+
+void mp_csp_equalizer_state_get(struct mp_csp_equalizer_state *state,
+ struct mp_csp_params *params)
+{
+ struct m_config_cache *c = (struct m_config_cache *)state;
+ m_config_cache_update(c);
+ struct mp_csp_equalizer_opts *opts = c->opts;
+ mp_csp_copy_equalizer_values(params, opts);
+}
+
+void mp_invert_cmat(struct mp_cmat *out, struct mp_cmat *in)
+{
+ *out = *in;
+ mp_invert_matrix3x3(out->m);
+
+ // fix the constant coefficient
+ // rgb = M * yuv + C
+ // M^-1 * rgb = yuv + M^-1 * C
+ // yuv = M^-1 * rgb - M^-1 * C
+ // ^^^^^^^^^^
+ out->c[0] = -(out->m[0][0] * in->c[0] + out->m[0][1] * in->c[1] + out->m[0][2] * in->c[2]);
+ out->c[1] = -(out->m[1][0] * in->c[0] + out->m[1][1] * in->c[1] + out->m[1][2] * in->c[2]);
+ out->c[2] = -(out->m[2][0] * in->c[0] + out->m[2][1] * in->c[1] + out->m[2][2] * in->c[2]);
+}
+
+// Multiply the color in c with the given matrix.
+// i/o is {R, G, B} or {Y, U, V} (depending on input/output and matrix), using
+// a fixed point representation with the given number of bits (so for bits==8,
+// [0,255] maps to [0,1]). The output is clipped to the range as needed.
+void mp_map_fixp_color(struct mp_cmat *matrix, int ibits, int in[3],
+ int obits, int out[3])
+{
+ for (int i = 0; i < 3; i++) {
+ double val = matrix->c[i];
+ for (int x = 0; x < 3; x++)
+ val += matrix->m[i][x] * in[x] / ((1 << ibits) - 1);
+ int ival = lrint(val * ((1 << obits) - 1));
+ out[i] = av_clip(ival, 0, (1 << obits) - 1);
+ }
+}