summaryrefslogtreecommitdiffstats
path: root/video/out/gpu/video.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--video/out/gpu/video.c4364
1 files changed, 4364 insertions, 0 deletions
diff --git a/video/out/gpu/video.c b/video/out/gpu/video.c
new file mode 100644
index 0000000..852ee78
--- /dev/null
+++ b/video/out/gpu/video.c
@@ -0,0 +1,4364 @@
+/*
+ * This file is part of mpv.
+ *
+ * mpv is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * mpv is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with mpv. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <assert.h>
+#include <float.h>
+#include <math.h>
+#include <stdarg.h>
+#include <stdbool.h>
+#include <string.h>
+
+#include <libavutil/common.h>
+#include <libavutil/lfg.h>
+
+#include "video.h"
+
+#include "misc/bstr.h"
+#include "options/m_config.h"
+#include "options/path.h"
+#include "common/global.h"
+#include "options/options.h"
+#include "utils.h"
+#include "hwdec.h"
+#include "osd.h"
+#include "ra.h"
+#include "stream/stream.h"
+#include "video_shaders.h"
+#include "user_shaders.h"
+#include "error_diffusion.h"
+#include "video/out/filter_kernels.h"
+#include "video/out/aspect.h"
+#include "video/out/dither.h"
+#include "video/out/vo.h"
+
+// scale/cscale arguments that map directly to shader filter routines.
+// Note that the convolution filters are not included in this list.
+static const char *const fixed_scale_filters[] = {
+ "bilinear",
+ "bicubic_fast",
+ "oversample",
+ NULL
+};
+static const char *const fixed_tscale_filters[] = {
+ "oversample",
+ "linear",
+ NULL
+};
+
+// must be sorted, and terminated with 0
+int filter_sizes[] =
+ {2, 4, 6, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 0};
+int tscale_sizes[] = {2, 4, 6, 8, 0};
+
+struct vertex_pt {
+ float x, y;
+};
+
+struct texplane {
+ struct ra_tex *tex;
+ int w, h;
+ bool flipped;
+};
+
+struct video_image {
+ struct texplane planes[4];
+ struct mp_image *mpi; // original input image
+ uint64_t id; // unique ID identifying mpi contents
+ bool hwdec_mapped;
+};
+
+enum plane_type {
+ PLANE_NONE = 0,
+ PLANE_RGB,
+ PLANE_LUMA,
+ PLANE_CHROMA,
+ PLANE_ALPHA,
+ PLANE_XYZ,
+};
+
+static const char *plane_names[] = {
+ [PLANE_NONE] = "unknown",
+ [PLANE_RGB] = "rgb",
+ [PLANE_LUMA] = "luma",
+ [PLANE_CHROMA] = "chroma",
+ [PLANE_ALPHA] = "alpha",
+ [PLANE_XYZ] = "xyz",
+};
+
+// A self-contained description of a source image which can be bound to a
+// texture unit and sampled from. Contains metadata about how it's to be used
+struct image {
+ enum plane_type type; // must be set to something non-zero
+ int components; // number of relevant coordinates
+ float multiplier; // multiplier to be used when sampling
+ struct ra_tex *tex;
+ int w, h; // logical size (after transformation)
+ struct gl_transform transform; // rendering transformation
+ int padding; // number of leading padding components (e.g. 2 = rg is padding)
+};
+
+// A named image, for user scripting purposes
+struct saved_img {
+ const char *name;
+ struct image img;
+};
+
+// A texture hook. This is some operation that transforms a named texture as
+// soon as it's generated
+struct tex_hook {
+ const char *save_tex;
+ const char *hook_tex[SHADER_MAX_HOOKS];
+ const char *bind_tex[SHADER_MAX_BINDS];
+ int components; // how many components are relevant (0 = same as input)
+ bool align_offset; // whether to align hooked tex with reference.
+ void *priv; // this gets talloc_freed when the tex_hook is removed
+ void (*hook)(struct gl_video *p, struct image img, // generates GLSL
+ struct gl_transform *trans, void *priv);
+ bool (*cond)(struct gl_video *p, struct image img, void *priv);
+};
+
+struct surface {
+ struct ra_tex *tex;
+ uint64_t id;
+ double pts;
+};
+
+#define SURFACES_MAX 10
+
+struct cached_file {
+ char *path;
+ struct bstr body;
+};
+
+struct pass_info {
+ struct bstr desc;
+ struct mp_pass_perf perf;
+};
+
+struct dr_buffer {
+ struct ra_buf *buf;
+ // The mpi reference will keep the data from being recycled (or from other
+ // references gaining write access) while the GPU is accessing the buffer.
+ struct mp_image *mpi;
+};
+
+struct gl_video {
+ struct ra *ra;
+
+ struct mpv_global *global;
+ struct mp_log *log;
+ struct gl_video_opts opts;
+ struct m_config_cache *opts_cache;
+ struct gl_lcms *cms;
+
+ int fb_depth; // actual bits available in GL main framebuffer
+ struct m_color clear_color;
+ bool force_clear_color;
+
+ struct gl_shader_cache *sc;
+
+ struct osd_state *osd_state;
+ struct mpgl_osd *osd;
+ double osd_pts;
+
+ struct ra_tex *lut_3d_texture;
+ bool use_lut_3d;
+ int lut_3d_size[3];
+
+ struct ra_tex *dither_texture;
+
+ struct mp_image_params real_image_params; // configured format
+ struct mp_image_params image_params; // texture format (mind hwdec case)
+ struct ra_imgfmt_desc ra_format; // texture format
+ int plane_count;
+
+ bool is_gray;
+ bool has_alpha;
+ char color_swizzle[5];
+ bool use_integer_conversion;
+
+ struct video_image image;
+
+ struct dr_buffer *dr_buffers;
+ int num_dr_buffers;
+
+ bool using_dr_path;
+
+ bool dumb_mode;
+ bool forced_dumb_mode;
+
+ // Cached vertex array, to avoid re-allocation per frame. For simplicity,
+ // our vertex format is simply a list of `vertex_pt`s, since this greatly
+ // simplifies offset calculation at the cost of (unneeded) flexibility.
+ struct vertex_pt *tmp_vertex;
+ struct ra_renderpass_input *vao;
+ int vao_len;
+
+ const struct ra_format *fbo_format;
+ struct ra_tex *merge_tex[4];
+ struct ra_tex *scale_tex[4];
+ struct ra_tex *integer_tex[4];
+ struct ra_tex *indirect_tex;
+ struct ra_tex *blend_subs_tex;
+ struct ra_tex *error_diffusion_tex[2];
+ struct ra_tex *screen_tex;
+ struct ra_tex *output_tex;
+ struct ra_tex **hook_textures;
+ int num_hook_textures;
+ int idx_hook_textures;
+
+ struct ra_buf *hdr_peak_ssbo;
+ struct surface surfaces[SURFACES_MAX];
+
+ // user pass descriptions and textures
+ struct tex_hook *tex_hooks;
+ int num_tex_hooks;
+ struct gl_user_shader_tex *user_textures;
+ int num_user_textures;
+
+ int surface_idx;
+ int surface_now;
+ int frames_drawn;
+ bool is_interpolated;
+ bool output_tex_valid;
+
+ // state for configured scalers
+ struct scaler scaler[SCALER_COUNT];
+
+ struct mp_csp_equalizer_state *video_eq;
+
+ struct mp_rect src_rect; // displayed part of the source video
+ struct mp_rect dst_rect; // video rectangle on output window
+ struct mp_osd_res osd_rect; // OSD size/margins
+
+ // temporary during rendering
+ struct compute_info pass_compute; // compute shader metadata for this pass
+ struct image *pass_imgs; // bound images for this pass
+ int num_pass_imgs;
+ struct saved_img *saved_imgs; // saved (named) images for this frame
+ int num_saved_imgs;
+
+ // effective current texture metadata - this will essentially affect the
+ // next render pass target, as well as implicitly tracking what needs to
+ // be done with the image
+ int texture_w, texture_h;
+ struct gl_transform texture_offset; // texture transform without rotation
+ int components;
+ bool use_linear;
+ float user_gamma;
+
+ // pass info / metrics
+ struct pass_info pass_fresh[VO_PASS_PERF_MAX];
+ struct pass_info pass_redraw[VO_PASS_PERF_MAX];
+ struct pass_info *pass;
+ int pass_idx;
+ struct timer_pool *upload_timer;
+ struct timer_pool *blit_timer;
+ struct timer_pool *osd_timer;
+
+ int frames_uploaded;
+ int frames_rendered;
+ AVLFG lfg;
+
+ // Cached because computing it can take relatively long
+ int last_dither_matrix_size;
+ float *last_dither_matrix;
+
+ struct cached_file *files;
+ int num_files;
+
+ struct ra_hwdec_ctx hwdec_ctx;
+ struct ra_hwdec_mapper *hwdec_mapper;
+ struct ra_hwdec *hwdec_overlay;
+ bool hwdec_active;
+
+ bool dsi_warned;
+ bool broken_frame; // temporary error state
+
+ bool colorspace_override_warned;
+ bool correct_downscaling_warned;
+};
+
+static const struct gl_video_opts gl_video_opts_def = {
+ .dither_algo = DITHER_FRUIT,
+ .dither_size = 6,
+ .temporal_dither_period = 1,
+ .error_diffusion = "sierra-lite",
+ .fbo_format = "auto",
+ .sigmoid_center = 0.75,
+ .sigmoid_slope = 6.5,
+ .scaler = {
+ {{"lanczos", .params={NAN, NAN}}, {.params = {NAN, NAN}}}, // scale
+ {{"hermite", .params={NAN, NAN}}, {.params = {NAN, NAN}}}, // dscale
+ {{NULL, .params={NAN, NAN}}, {.params = {NAN, NAN}}}, // cscale
+ {{"oversample", .params={NAN, NAN}}, {.params = {NAN, NAN}}}, // tscale
+ },
+ .scaler_resizes_only = true,
+ .correct_downscaling = true,
+ .linear_downscaling = true,
+ .sigmoid_upscaling = true,
+ .interpolation_threshold = 0.01,
+ .alpha_mode = ALPHA_BLEND_TILES,
+ .background = {0, 0, 0, 255},
+ .gamma = 1.0f,
+ .tone_map = {
+ .curve = TONE_MAPPING_AUTO,
+ .curve_param = NAN,
+ .max_boost = 1.0,
+ .decay_rate = 20.0,
+ .scene_threshold_low = 1.0,
+ .scene_threshold_high = 3.0,
+ .contrast_smoothness = 3.5,
+ },
+ .early_flush = -1,
+ .shader_cache = true,
+ .hwdec_interop = "auto",
+};
+
+static int validate_scaler_opt(struct mp_log *log, const m_option_t *opt,
+ struct bstr name, const char **value);
+
+static int validate_window_opt(struct mp_log *log, const m_option_t *opt,
+ struct bstr name, const char **value);
+
+static int validate_error_diffusion_opt(struct mp_log *log, const m_option_t *opt,
+ struct bstr name, const char **value);
+
+#define OPT_BASE_STRUCT struct gl_video_opts
+
+// Use for options which use NAN for defaults.
+#define OPT_FLOATDEF(field) \
+ OPT_FLOAT(field), \
+ .flags = M_OPT_DEFAULT_NAN
+
+#define SCALER_OPTS(n, i) \
+ {n, OPT_STRING_VALIDATE(scaler[i].kernel.name, validate_scaler_opt)}, \
+ {n"-param1", OPT_FLOATDEF(scaler[i].kernel.params[0])}, \
+ {n"-param2", OPT_FLOATDEF(scaler[i].kernel.params[1])}, \
+ {n"-blur", OPT_FLOAT(scaler[i].kernel.blur)}, \
+ {n"-cutoff", OPT_REMOVED("Hard-coded as 0.001")}, \
+ {n"-taper", OPT_FLOAT(scaler[i].kernel.taper), M_RANGE(0.0, 1.0)}, \
+ {n"-wparam", OPT_FLOATDEF(scaler[i].window.params[0])}, \
+ {n"-wblur", OPT_REMOVED("Just adjust filter radius directly")}, \
+ {n"-wtaper", OPT_FLOAT(scaler[i].window.taper), M_RANGE(0.0, 1.0)}, \
+ {n"-clamp", OPT_FLOAT(scaler[i].clamp), M_RANGE(0.0, 1.0)}, \
+ {n"-radius", OPT_FLOAT(scaler[i].radius), M_RANGE(0.5, 16.0)}, \
+ {n"-antiring", OPT_FLOAT(scaler[i].antiring), M_RANGE(0.0, 1.0)}, \
+ {n"-window", OPT_STRING_VALIDATE(scaler[i].window.name, validate_window_opt)}
+
+const struct m_sub_options gl_video_conf = {
+ .opts = (const m_option_t[]) {
+ {"gpu-dumb-mode", OPT_CHOICE(dumb_mode,
+ {"auto", 0}, {"yes", 1}, {"no", -1})},
+ {"gamma-factor", OPT_FLOAT(gamma), M_RANGE(0.1, 2.0),
+ .deprecation_message = "no replacement"},
+ {"gamma-auto", OPT_BOOL(gamma_auto),
+ .deprecation_message = "no replacement"},
+ {"target-prim", OPT_CHOICE_C(target_prim, mp_csp_prim_names)},
+ {"target-trc", OPT_CHOICE_C(target_trc, mp_csp_trc_names)},
+ {"target-peak", OPT_CHOICE(target_peak, {"auto", 0}),
+ M_RANGE(10, 10000)},
+ {"target-contrast", OPT_CHOICE(target_contrast, {"auto", 0}, {"inf", -1}),
+ M_RANGE(10, 1000000)},
+ {"target-gamut", OPT_CHOICE_C(target_gamut, mp_csp_prim_names)},
+ {"tone-mapping", OPT_CHOICE(tone_map.curve,
+ {"auto", TONE_MAPPING_AUTO},
+ {"clip", TONE_MAPPING_CLIP},
+ {"mobius", TONE_MAPPING_MOBIUS},
+ {"reinhard", TONE_MAPPING_REINHARD},
+ {"hable", TONE_MAPPING_HABLE},
+ {"gamma", TONE_MAPPING_GAMMA},
+ {"linear", TONE_MAPPING_LINEAR},
+ {"spline", TONE_MAPPING_SPLINE},
+ {"bt.2390", TONE_MAPPING_BT_2390},
+ {"bt.2446a", TONE_MAPPING_BT_2446A},
+ {"st2094-40", TONE_MAPPING_ST2094_40},
+ {"st2094-10", TONE_MAPPING_ST2094_10})},
+ {"tone-mapping-param", OPT_FLOATDEF(tone_map.curve_param)},
+ {"inverse-tone-mapping", OPT_BOOL(tone_map.inverse)},
+ {"tone-mapping-max-boost", OPT_FLOAT(tone_map.max_boost),
+ M_RANGE(1.0, 10.0)},
+ {"tone-mapping-visualize", OPT_BOOL(tone_map.visualize)},
+ {"gamut-mapping-mode", OPT_CHOICE(tone_map.gamut_mode,
+ {"auto", GAMUT_AUTO},
+ {"clip", GAMUT_CLIP},
+ {"perceptual", GAMUT_PERCEPTUAL},
+ {"relative", GAMUT_RELATIVE},
+ {"saturation", GAMUT_SATURATION},
+ {"absolute", GAMUT_ABSOLUTE},
+ {"desaturate", GAMUT_DESATURATE},
+ {"darken", GAMUT_DARKEN},
+ {"warn", GAMUT_WARN},
+ {"linear", GAMUT_LINEAR})},
+ {"hdr-compute-peak", OPT_CHOICE(tone_map.compute_peak,
+ {"auto", 0},
+ {"yes", 1},
+ {"no", -1})},
+ {"hdr-peak-percentile", OPT_FLOAT(tone_map.peak_percentile),
+ M_RANGE(0.0, 100.0)},
+ {"hdr-peak-decay-rate", OPT_FLOAT(tone_map.decay_rate),
+ M_RANGE(0.0, 1000.0)},
+ {"hdr-scene-threshold-low", OPT_FLOAT(tone_map.scene_threshold_low),
+ M_RANGE(0, 20.0)},
+ {"hdr-scene-threshold-high", OPT_FLOAT(tone_map.scene_threshold_high),
+ M_RANGE(0, 20.0)},
+ {"hdr-contrast-recovery", OPT_FLOAT(tone_map.contrast_recovery),
+ M_RANGE(0, 2.0)},
+ {"hdr-contrast-smoothness", OPT_FLOAT(tone_map.contrast_smoothness),
+ M_RANGE(1.0, 100.0)},
+ {"opengl-pbo", OPT_BOOL(pbo)},
+ SCALER_OPTS("scale", SCALER_SCALE),
+ SCALER_OPTS("dscale", SCALER_DSCALE),
+ SCALER_OPTS("cscale", SCALER_CSCALE),
+ SCALER_OPTS("tscale", SCALER_TSCALE),
+ {"scaler-lut-size", OPT_REMOVED("hard-coded as 8")},
+ {"scaler-resizes-only", OPT_BOOL(scaler_resizes_only)},
+ {"correct-downscaling", OPT_BOOL(correct_downscaling)},
+ {"linear-downscaling", OPT_BOOL(linear_downscaling)},
+ {"linear-upscaling", OPT_BOOL(linear_upscaling)},
+ {"sigmoid-upscaling", OPT_BOOL(sigmoid_upscaling)},
+ {"sigmoid-center", OPT_FLOAT(sigmoid_center), M_RANGE(0.0, 1.0)},
+ {"sigmoid-slope", OPT_FLOAT(sigmoid_slope), M_RANGE(1.0, 20.0)},
+ {"fbo-format", OPT_STRING(fbo_format)},
+ {"dither-depth", OPT_CHOICE(dither_depth, {"no", -1}, {"auto", 0}),
+ M_RANGE(-1, 16)},
+ {"dither", OPT_CHOICE(dither_algo,
+ {"fruit", DITHER_FRUIT},
+ {"ordered", DITHER_ORDERED},
+ {"error-diffusion", DITHER_ERROR_DIFFUSION},
+ {"no", DITHER_NONE})},
+ {"dither-size-fruit", OPT_INT(dither_size), M_RANGE(2, 8)},
+ {"temporal-dither", OPT_BOOL(temporal_dither)},
+ {"temporal-dither-period", OPT_INT(temporal_dither_period),
+ M_RANGE(1, 128)},
+ {"error-diffusion",
+ OPT_STRING_VALIDATE(error_diffusion, validate_error_diffusion_opt)},
+ {"alpha", OPT_CHOICE(alpha_mode,
+ {"no", ALPHA_NO},
+ {"yes", ALPHA_YES},
+ {"blend", ALPHA_BLEND},
+ {"blend-tiles", ALPHA_BLEND_TILES})},
+ {"opengl-rectangle-textures", OPT_BOOL(use_rectangle)},
+ {"background", OPT_COLOR(background)},
+ {"interpolation", OPT_BOOL(interpolation)},
+ {"interpolation-threshold", OPT_FLOAT(interpolation_threshold)},
+ {"blend-subtitles", OPT_CHOICE(blend_subs,
+ {"no", BLEND_SUBS_NO},
+ {"yes", BLEND_SUBS_YES},
+ {"video", BLEND_SUBS_VIDEO})},
+ {"glsl-shaders", OPT_PATHLIST(user_shaders), .flags = M_OPT_FILE},
+ {"glsl-shader", OPT_CLI_ALIAS("glsl-shaders-append")},
+ {"glsl-shader-opts", OPT_KEYVALUELIST(user_shader_opts)},
+ {"deband", OPT_BOOL(deband)},
+ {"deband", OPT_SUBSTRUCT(deband_opts, deband_conf)},
+ {"sharpen", OPT_FLOAT(unsharp)},
+ {"gpu-tex-pad-x", OPT_INT(tex_pad_x), M_RANGE(0, 4096)},
+ {"gpu-tex-pad-y", OPT_INT(tex_pad_y), M_RANGE(0, 4096)},
+ {"", OPT_SUBSTRUCT(icc_opts, mp_icc_conf)},
+ {"gpu-shader-cache", OPT_BOOL(shader_cache)},
+ {"gpu-shader-cache-dir", OPT_STRING(shader_cache_dir), .flags = M_OPT_FILE},
+ {"gpu-hwdec-interop",
+ OPT_STRING_VALIDATE(hwdec_interop, ra_hwdec_validate_opt)},
+ {"gamut-warning", OPT_REMOVED("Replaced by --gamut-mapping-mode=warn")},
+ {"gamut-clipping", OPT_REMOVED("Replaced by --gamut-mapping-mode=desaturate")},
+ {"tone-mapping-desaturate", OPT_REMOVED("Replaced by --tone-mapping-mode")},
+ {"tone-mapping-desaturate-exponent", OPT_REMOVED("Replaced by --tone-mapping-mode")},
+ {"tone-mapping-crosstalk", OPT_REMOVED("Hard-coded as 0.04")},
+ {"tone-mapping-mode", OPT_REMOVED("no replacement")},
+ {0}
+ },
+ .size = sizeof(struct gl_video_opts),
+ .defaults = &gl_video_opts_def,
+};
+
+static void uninit_rendering(struct gl_video *p);
+static void uninit_scaler(struct gl_video *p, struct scaler *scaler);
+static void check_gl_features(struct gl_video *p);
+static bool pass_upload_image(struct gl_video *p, struct mp_image *mpi, uint64_t id);
+static const char *handle_scaler_opt(const char *name, bool tscale);
+static void reinit_from_options(struct gl_video *p);
+static void get_scale_factors(struct gl_video *p, bool transpose_rot, double xy[2]);
+static void gl_video_setup_hooks(struct gl_video *p);
+static void gl_video_update_options(struct gl_video *p);
+
+#define GLSL(x) gl_sc_add(p->sc, #x "\n");
+#define GLSLF(...) gl_sc_addf(p->sc, __VA_ARGS__)
+#define GLSLHF(...) gl_sc_haddf(p->sc, __VA_ARGS__)
+#define PRELUDE(...) gl_sc_paddf(p->sc, __VA_ARGS__)
+
+static struct bstr load_cached_file(struct gl_video *p, const char *path)
+{
+ if (!path || !path[0])
+ return (struct bstr){0};
+ for (int n = 0; n < p->num_files; n++) {
+ if (strcmp(p->files[n].path, path) == 0)
+ return p->files[n].body;
+ }
+ // not found -> load it
+ char *fname = mp_get_user_path(NULL, p->global, path);
+ struct bstr s = stream_read_file(fname, p, p->global, 1000000000); // 1GB
+ talloc_free(fname);
+ if (s.len) {
+ struct cached_file new = {
+ .path = talloc_strdup(p, path),
+ .body = s,
+ };
+ MP_TARRAY_APPEND(p, p->files, p->num_files, new);
+ return new.body;
+ }
+ return (struct bstr){0};
+}
+
+static void debug_check_gl(struct gl_video *p, const char *msg)
+{
+ if (p->ra->fns->debug_marker)
+ p->ra->fns->debug_marker(p->ra, msg);
+}
+
+static void gl_video_reset_surfaces(struct gl_video *p)
+{
+ for (int i = 0; i < SURFACES_MAX; i++) {
+ p->surfaces[i].id = 0;
+ p->surfaces[i].pts = MP_NOPTS_VALUE;
+ }
+ p->surface_idx = 0;
+ p->surface_now = 0;
+ p->frames_drawn = 0;
+ p->output_tex_valid = false;
+}
+
+static void gl_video_reset_hooks(struct gl_video *p)
+{
+ for (int i = 0; i < p->num_tex_hooks; i++)
+ talloc_free(p->tex_hooks[i].priv);
+
+ for (int i = 0; i < p->num_user_textures; i++)
+ ra_tex_free(p->ra, &p->user_textures[i].tex);
+
+ p->num_tex_hooks = 0;
+ p->num_user_textures = 0;
+}
+
+static inline int surface_wrap(int id)
+{
+ id = id % SURFACES_MAX;
+ return id < 0 ? id + SURFACES_MAX : id;
+}
+
+static void reinit_osd(struct gl_video *p)
+{
+ mpgl_osd_destroy(p->osd);
+ p->osd = NULL;
+ if (p->osd_state)
+ p->osd = mpgl_osd_init(p->ra, p->log, p->osd_state);
+}
+
+static void uninit_rendering(struct gl_video *p)
+{
+ for (int n = 0; n < SCALER_COUNT; n++)
+ uninit_scaler(p, &p->scaler[n]);
+
+ ra_tex_free(p->ra, &p->dither_texture);
+
+ for (int n = 0; n < 4; n++) {
+ ra_tex_free(p->ra, &p->merge_tex[n]);
+ ra_tex_free(p->ra, &p->scale_tex[n]);
+ ra_tex_free(p->ra, &p->integer_tex[n]);
+ }
+
+ ra_tex_free(p->ra, &p->indirect_tex);
+ ra_tex_free(p->ra, &p->blend_subs_tex);
+ ra_tex_free(p->ra, &p->screen_tex);
+ ra_tex_free(p->ra, &p->output_tex);
+
+ for (int n = 0; n < 2; n++)
+ ra_tex_free(p->ra, &p->error_diffusion_tex[n]);
+
+ for (int n = 0; n < SURFACES_MAX; n++)
+ ra_tex_free(p->ra, &p->surfaces[n].tex);
+
+ for (int n = 0; n < p->num_hook_textures; n++)
+ ra_tex_free(p->ra, &p->hook_textures[n]);
+
+ gl_video_reset_surfaces(p);
+ gl_video_reset_hooks(p);
+
+ gl_sc_reset_error(p->sc);
+}
+
+bool gl_video_gamma_auto_enabled(struct gl_video *p)
+{
+ return p->opts.gamma_auto;
+}
+
+struct mp_colorspace gl_video_get_output_colorspace(struct gl_video *p)
+{
+ return (struct mp_colorspace) {
+ .primaries = p->opts.target_prim,
+ .gamma = p->opts.target_trc,
+ .hdr.max_luma = p->opts.target_peak,
+ };
+}
+
+// Warning: profile.start must point to a ta allocation, and the function
+// takes over ownership.
+void gl_video_set_icc_profile(struct gl_video *p, bstr icc_data)
+{
+ if (gl_lcms_set_memory_profile(p->cms, icc_data))
+ reinit_from_options(p);
+}
+
+bool gl_video_icc_auto_enabled(struct gl_video *p)
+{
+ return p->opts.icc_opts ? p->opts.icc_opts->profile_auto : false;
+}
+
+static bool gl_video_get_lut3d(struct gl_video *p, enum mp_csp_prim prim,
+ enum mp_csp_trc trc)
+{
+ if (!p->use_lut_3d)
+ return false;
+
+ struct AVBufferRef *icc = NULL;
+ if (p->image.mpi)
+ icc = p->image.mpi->icc_profile;
+
+ if (p->lut_3d_texture && !gl_lcms_has_changed(p->cms, prim, trc, icc))
+ return true;
+
+ // GLES3 doesn't provide filtered 16 bit integer textures
+ // GLES2 doesn't even provide 3D textures
+ const struct ra_format *fmt = ra_find_unorm_format(p->ra, 2, 4);
+ if (!fmt || !(p->ra->caps & RA_CAP_TEX_3D)) {
+ p->use_lut_3d = false;
+ MP_WARN(p, "Disabling color management (no RGBA16 3D textures).\n");
+ return false;
+ }
+
+ struct lut3d *lut3d = NULL;
+ if (!fmt || !gl_lcms_get_lut3d(p->cms, &lut3d, prim, trc, icc) || !lut3d) {
+ p->use_lut_3d = false;
+ return false;
+ }
+
+ ra_tex_free(p->ra, &p->lut_3d_texture);
+
+ struct ra_tex_params params = {
+ .dimensions = 3,
+ .w = lut3d->size[0],
+ .h = lut3d->size[1],
+ .d = lut3d->size[2],
+ .format = fmt,
+ .render_src = true,
+ .src_linear = true,
+ .initial_data = lut3d->data,
+ };
+ p->lut_3d_texture = ra_tex_create(p->ra, &params);
+
+ debug_check_gl(p, "after 3d lut creation");
+
+ for (int i = 0; i < 3; i++)
+ p->lut_3d_size[i] = lut3d->size[i];
+
+ talloc_free(lut3d);
+
+ if (!p->lut_3d_texture) {
+ p->use_lut_3d = false;
+ return false;
+ }
+
+ return true;
+}
+
+// Fill an image struct from a ra_tex + some metadata
+static struct image image_wrap(struct ra_tex *tex, enum plane_type type,
+ int components)
+{
+ assert(type != PLANE_NONE);
+ return (struct image){
+ .type = type,
+ .tex = tex,
+ .multiplier = 1.0,
+ .w = tex ? tex->params.w : 1,
+ .h = tex ? tex->params.h : 1,
+ .transform = identity_trans,
+ .components = components,
+ };
+}
+
+// Bind an image to a free texture unit and return its ID.
+static int pass_bind(struct gl_video *p, struct image img)
+{
+ int idx = p->num_pass_imgs;
+ MP_TARRAY_APPEND(p, p->pass_imgs, p->num_pass_imgs, img);
+ return idx;
+}
+
+// Rotation by 90° and flipping.
+// w/h is used for recentering.
+static void get_transform(float w, float h, int rotate, bool flip,
+ struct gl_transform *out_tr)
+{
+ int a = rotate % 90 ? 0 : rotate / 90;
+ int sin90[4] = {0, 1, 0, -1}; // just to avoid rounding issues etc.
+ int cos90[4] = {1, 0, -1, 0};
+ struct gl_transform tr = {{{ cos90[a], sin90[a]},
+ {-sin90[a], cos90[a]}}};
+
+ // basically, recenter to keep the whole image in view
+ float b[2] = {1, 1};
+ gl_transform_vec(tr, &b[0], &b[1]);
+ tr.t[0] += b[0] < 0 ? w : 0;
+ tr.t[1] += b[1] < 0 ? h : 0;
+
+ if (flip) {
+ struct gl_transform fliptr = {{{1, 0}, {0, -1}}, {0, h}};
+ gl_transform_trans(fliptr, &tr);
+ }
+
+ *out_tr = tr;
+}
+
+// Return the chroma plane upscaled to luma size, but with additional padding
+// for image sizes not aligned to subsampling.
+static int chroma_upsize(int size, int pixel)
+{
+ return (size + pixel - 1) / pixel * pixel;
+}
+
+// If a and b are on the same plane, return what plane type should be used.
+// If a or b are none, the other type always wins.
+// Usually: LUMA/RGB/XYZ > CHROMA > ALPHA
+static enum plane_type merge_plane_types(enum plane_type a, enum plane_type b)
+{
+ if (a == PLANE_NONE)
+ return b;
+ if (b == PLANE_LUMA || b == PLANE_RGB || b == PLANE_XYZ)
+ return b;
+ if (b != PLANE_NONE && a == PLANE_ALPHA)
+ return b;
+ return a;
+}
+
+// Places a video_image's image textures + associated metadata into img[]. The
+// number of textures is equal to p->plane_count. Any necessary plane offsets
+// are stored in off. (e.g. chroma position)
+static void pass_get_images(struct gl_video *p, struct video_image *vimg,
+ struct image img[4], struct gl_transform off[4])
+{
+ assert(vimg->mpi);
+
+ int w = p->image_params.w;
+ int h = p->image_params.h;
+
+ // Determine the chroma offset
+ float ls_w = 1.0 / p->ra_format.chroma_w;
+ float ls_h = 1.0 / p->ra_format.chroma_h;
+
+ struct gl_transform chroma = {{{ls_w, 0.0}, {0.0, ls_h}}};
+
+ if (p->image_params.chroma_location != MP_CHROMA_CENTER) {
+ int cx, cy;
+ mp_get_chroma_location(p->image_params.chroma_location, &cx, &cy);
+ // By default texture coordinates are such that chroma is centered with
+ // any chroma subsampling. If a specific direction is given, make it
+ // so that the luma and chroma sample line up exactly.
+ // For 4:4:4, setting chroma location should have no effect at all.
+ // luma sample size (in chroma coord. space)
+ chroma.t[0] = ls_w < 1 ? ls_w * -cx / 2 : 0;
+ chroma.t[1] = ls_h < 1 ? ls_h * -cy / 2 : 0;
+ }
+
+ memset(img, 0, 4 * sizeof(img[0]));
+ for (int n = 0; n < p->plane_count; n++) {
+ struct texplane *t = &vimg->planes[n];
+
+ enum plane_type type = PLANE_NONE;
+ int padding = 0;
+ for (int i = 0; i < 4; i++) {
+ int c = p->ra_format.components[n][i];
+ enum plane_type ctype;
+ if (c == 0) {
+ ctype = PLANE_NONE;
+ } else if (c == 4) {
+ ctype = PLANE_ALPHA;
+ } else if (p->image_params.color.space == MP_CSP_RGB) {
+ ctype = PLANE_RGB;
+ } else if (p->image_params.color.space == MP_CSP_XYZ) {
+ ctype = PLANE_XYZ;
+ } else {
+ ctype = c == 1 ? PLANE_LUMA : PLANE_CHROMA;
+ }
+ type = merge_plane_types(type, ctype);
+ if (!c && padding == i)
+ padding = i + 1;
+ }
+
+ int msb_valid_bits =
+ p->ra_format.component_bits + MPMIN(p->ra_format.component_pad, 0);
+ int csp = type == PLANE_ALPHA ? MP_CSP_RGB : p->image_params.color.space;
+ float tex_mul =
+ 1.0 / mp_get_csp_mul(csp, msb_valid_bits, p->ra_format.component_bits);
+ if (p->ra_format.component_type == RA_CTYPE_FLOAT)
+ tex_mul = 1.0;
+
+ img[n] = (struct image){
+ .type = type,
+ .tex = t->tex,
+ .multiplier = tex_mul,
+ .w = t->w,
+ .h = t->h,
+ .padding = padding,
+ };
+
+ for (int i = 0; i < 4; i++)
+ img[n].components += !!p->ra_format.components[n][i];
+
+ get_transform(t->w, t->h, p->image_params.rotate, t->flipped,
+ &img[n].transform);
+ if (p->image_params.rotate % 180 == 90)
+ MPSWAP(int, img[n].w, img[n].h);
+
+ off[n] = identity_trans;
+
+ if (type == PLANE_CHROMA) {
+ struct gl_transform rot;
+ get_transform(0, 0, p->image_params.rotate, true, &rot);
+
+ struct gl_transform tr = chroma;
+ gl_transform_vec(rot, &tr.t[0], &tr.t[1]);
+
+ float dx = (chroma_upsize(w, p->ra_format.chroma_w) - w) * ls_w;
+ float dy = (chroma_upsize(h, p->ra_format.chroma_h) - h) * ls_h;
+
+ // Adjust the chroma offset if the real chroma size is fractional
+ // due image sizes not aligned to chroma subsampling.
+ struct gl_transform rot2;
+ get_transform(0, 0, p->image_params.rotate, t->flipped, &rot2);
+ if (rot2.m[0][0] < 0)
+ tr.t[0] += dx;
+ if (rot2.m[1][0] < 0)
+ tr.t[0] += dy;
+ if (rot2.m[0][1] < 0)
+ tr.t[1] += dx;
+ if (rot2.m[1][1] < 0)
+ tr.t[1] += dy;
+
+ off[n] = tr;
+ }
+ }
+}
+
+// Return the index of the given component (assuming all non-padding components
+// of all planes are concatenated into a linear list).
+static int find_comp(struct ra_imgfmt_desc *desc, int component)
+{
+ int cur = 0;
+ for (int n = 0; n < desc->num_planes; n++) {
+ for (int i = 0; i < 4; i++) {
+ if (desc->components[n][i]) {
+ if (desc->components[n][i] == component)
+ return cur;
+ cur++;
+ }
+ }
+ }
+ return -1;
+}
+
+static void init_video(struct gl_video *p)
+{
+ p->use_integer_conversion = false;
+
+ struct ra_hwdec *hwdec = ra_hwdec_get(&p->hwdec_ctx, p->image_params.imgfmt);
+ if (hwdec) {
+ if (hwdec->driver->overlay_frame) {
+ MP_WARN(p, "Using HW-overlay mode. No GL filtering is performed "
+ "on the video!\n");
+ p->hwdec_overlay = hwdec;
+ } else {
+ p->hwdec_mapper = ra_hwdec_mapper_create(hwdec, &p->image_params);
+ if (!p->hwdec_mapper)
+ MP_ERR(p, "Initializing texture for hardware decoding failed.\n");
+ }
+ if (p->hwdec_mapper)
+ p->image_params = p->hwdec_mapper->dst_params;
+ const char **exts = hwdec->glsl_extensions;
+ for (int n = 0; exts && exts[n]; n++)
+ gl_sc_enable_extension(p->sc, (char *)exts[n]);
+ p->hwdec_active = true;
+ }
+
+ p->ra_format = (struct ra_imgfmt_desc){0};
+ ra_get_imgfmt_desc(p->ra, p->image_params.imgfmt, &p->ra_format);
+
+ p->plane_count = p->ra_format.num_planes;
+
+ p->has_alpha = false;
+ p->is_gray = true;
+
+ for (int n = 0; n < p->ra_format.num_planes; n++) {
+ for (int i = 0; i < 4; i++) {
+ if (p->ra_format.components[n][i]) {
+ p->has_alpha |= p->ra_format.components[n][i] == 4;
+ p->is_gray &= p->ra_format.components[n][i] == 1 ||
+ p->ra_format.components[n][i] == 4;
+ }
+ }
+ }
+
+ for (int c = 0; c < 4; c++) {
+ int loc = find_comp(&p->ra_format, c + 1);
+ p->color_swizzle[c] = "rgba"[loc >= 0 && loc < 4 ? loc : 0];
+ }
+ p->color_swizzle[4] = '\0';
+
+ mp_image_params_guess_csp(&p->image_params);
+
+ av_lfg_init(&p->lfg, 1);
+
+ debug_check_gl(p, "before video texture creation");
+
+ if (!p->hwdec_active) {
+ struct video_image *vimg = &p->image;
+
+ struct mp_image layout = {0};
+ mp_image_set_params(&layout, &p->image_params);
+
+ for (int n = 0; n < p->plane_count; n++) {
+ struct texplane *plane = &vimg->planes[n];
+ const struct ra_format *format = p->ra_format.planes[n];
+
+ plane->w = mp_image_plane_w(&layout, n);
+ plane->h = mp_image_plane_h(&layout, n);
+
+ struct ra_tex_params params = {
+ .dimensions = 2,
+ .w = plane->w + p->opts.tex_pad_x,
+ .h = plane->h + p->opts.tex_pad_y,
+ .d = 1,
+ .format = format,
+ .render_src = true,
+ .src_linear = format->linear_filter,
+ .non_normalized = p->opts.use_rectangle,
+ .host_mutable = true,
+ };
+
+ MP_VERBOSE(p, "Texture for plane %d: %dx%d\n", n,
+ params.w, params.h);
+
+ plane->tex = ra_tex_create(p->ra, &params);
+ p->use_integer_conversion |= format->ctype == RA_CTYPE_UINT;
+ }
+ }
+
+ debug_check_gl(p, "after video texture creation");
+
+ // Format-dependent checks.
+ check_gl_features(p);
+
+ gl_video_setup_hooks(p);
+}
+
+static struct dr_buffer *gl_find_dr_buffer(struct gl_video *p, uint8_t *ptr)
+{
+ for (int i = 0; i < p->num_dr_buffers; i++) {
+ struct dr_buffer *buffer = &p->dr_buffers[i];
+ uint8_t *bufptr = buffer->buf->data;
+ size_t size = buffer->buf->params.size;
+ if (ptr >= bufptr && ptr < bufptr + size)
+ return buffer;
+ }
+
+ return NULL;
+}
+
+static void gc_pending_dr_fences(struct gl_video *p, bool force)
+{
+again:;
+ for (int n = 0; n < p->num_dr_buffers; n++) {
+ struct dr_buffer *buffer = &p->dr_buffers[n];
+ if (!buffer->mpi)
+ continue;
+
+ bool res = p->ra->fns->buf_poll(p->ra, buffer->buf);
+ if (res || force) {
+ // Unreferencing the image could cause gl_video_dr_free_buffer()
+ // to be called by the talloc destructor (if it was the last
+ // reference). This will implicitly invalidate the buffer pointer
+ // and change the p->dr_buffers array. To make it worse, it could
+ // free multiple dr_buffers due to weird theoretical corner cases.
+ // This is also why we use the goto to iterate again from the
+ // start, because everything gets fucked up. Hail satan!
+ struct mp_image *ref = buffer->mpi;
+ buffer->mpi = NULL;
+ talloc_free(ref);
+ goto again;
+ }
+ }
+}
+
+static void unref_current_image(struct gl_video *p)
+{
+ struct video_image *vimg = &p->image;
+
+ if (vimg->hwdec_mapped) {
+ assert(p->hwdec_active && p->hwdec_mapper);
+ ra_hwdec_mapper_unmap(p->hwdec_mapper);
+ memset(vimg->planes, 0, sizeof(vimg->planes));
+ vimg->hwdec_mapped = false;
+ }
+
+ vimg->id = 0;
+
+ mp_image_unrefp(&vimg->mpi);
+
+ // While we're at it, also garbage collect pending fences in here to
+ // get it out of the way.
+ gc_pending_dr_fences(p, false);
+}
+
+// If overlay mode is used, make sure to remove the overlay.
+// Be careful with this. Removing the overlay and adding another one will
+// lead to flickering artifacts.
+static void unmap_overlay(struct gl_video *p)
+{
+ if (p->hwdec_overlay)
+ p->hwdec_overlay->driver->overlay_frame(p->hwdec_overlay, NULL, NULL, NULL, true);
+}
+
+static void uninit_video(struct gl_video *p)
+{
+ uninit_rendering(p);
+
+ struct video_image *vimg = &p->image;
+
+ unmap_overlay(p);
+ unref_current_image(p);
+
+ for (int n = 0; n < p->plane_count; n++) {
+ struct texplane *plane = &vimg->planes[n];
+ ra_tex_free(p->ra, &plane->tex);
+ }
+ *vimg = (struct video_image){0};
+
+ // Invalidate image_params to ensure that gl_video_config() will call
+ // init_video() on uninitialized gl_video.
+ p->real_image_params = (struct mp_image_params){0};
+ p->image_params = p->real_image_params;
+ p->hwdec_active = false;
+ p->hwdec_overlay = NULL;
+ ra_hwdec_mapper_free(&p->hwdec_mapper);
+}
+
+static void pass_record(struct gl_video *p, struct mp_pass_perf perf)
+{
+ if (!p->pass || p->pass_idx == VO_PASS_PERF_MAX)
+ return;
+
+ struct pass_info *pass = &p->pass[p->pass_idx];
+ pass->perf = perf;
+
+ if (pass->desc.len == 0)
+ bstr_xappend(p, &pass->desc, bstr0("(unknown)"));
+
+ p->pass_idx++;
+}
+
+PRINTF_ATTRIBUTE(2, 3)
+static void pass_describe(struct gl_video *p, const char *textf, ...)
+{
+ if (!p->pass || p->pass_idx == VO_PASS_PERF_MAX)
+ return;
+
+ struct pass_info *pass = &p->pass[p->pass_idx];
+
+ if (pass->desc.len > 0)
+ bstr_xappend(p, &pass->desc, bstr0(" + "));
+
+ va_list ap;
+ va_start(ap, textf);
+ bstr_xappend_vasprintf(p, &pass->desc, textf, ap);
+ va_end(ap);
+}
+
+static void pass_info_reset(struct gl_video *p, bool is_redraw)
+{
+ p->pass = is_redraw ? p->pass_redraw : p->pass_fresh;
+ p->pass_idx = 0;
+
+ for (int i = 0; i < VO_PASS_PERF_MAX; i++) {
+ p->pass[i].desc.len = 0;
+ p->pass[i].perf = (struct mp_pass_perf){0};
+ }
+}
+
+static void pass_report_performance(struct gl_video *p)
+{
+ if (!p->pass)
+ return;
+
+ for (int i = 0; i < VO_PASS_PERF_MAX; i++) {
+ struct pass_info *pass = &p->pass[i];
+ if (pass->desc.len) {
+ MP_TRACE(p, "pass '%.*s': last %dus avg %dus peak %dus\n",
+ BSTR_P(pass->desc),
+ (int)pass->perf.last/1000,
+ (int)pass->perf.avg/1000,
+ (int)pass->perf.peak/1000);
+ }
+ }
+}
+
+static void pass_prepare_src_tex(struct gl_video *p)
+{
+ struct gl_shader_cache *sc = p->sc;
+
+ for (int n = 0; n < p->num_pass_imgs; n++) {
+ struct image *s = &p->pass_imgs[n];
+ if (!s->tex)
+ continue;
+
+ char *texture_name = mp_tprintf(32, "texture%d", n);
+ char *texture_size = mp_tprintf(32, "texture_size%d", n);
+ char *texture_rot = mp_tprintf(32, "texture_rot%d", n);
+ char *texture_off = mp_tprintf(32, "texture_off%d", n);
+ char *pixel_size = mp_tprintf(32, "pixel_size%d", n);
+
+ gl_sc_uniform_texture(sc, texture_name, s->tex);
+ float f[2] = {1, 1};
+ if (!s->tex->params.non_normalized) {
+ f[0] = s->tex->params.w;
+ f[1] = s->tex->params.h;
+ }
+ gl_sc_uniform_vec2(sc, texture_size, f);
+ gl_sc_uniform_mat2(sc, texture_rot, true, (float *)s->transform.m);
+ gl_sc_uniform_vec2(sc, texture_off, (float *)s->transform.t);
+ gl_sc_uniform_vec2(sc, pixel_size, (float[]){1.0f / f[0],
+ 1.0f / f[1]});
+ }
+}
+
+static void cleanup_binds(struct gl_video *p)
+{
+ p->num_pass_imgs = 0;
+}
+
+// Sets the appropriate compute shader metadata for an implicit compute pass
+// bw/bh: block size
+static void pass_is_compute(struct gl_video *p, int bw, int bh, bool flexible)
+{
+ if (p->pass_compute.active && flexible) {
+ // Avoid overwriting existing block sizes when using a flexible pass
+ bw = p->pass_compute.block_w;
+ bh = p->pass_compute.block_h;
+ }
+
+ p->pass_compute = (struct compute_info){
+ .active = true,
+ .block_w = bw,
+ .block_h = bh,
+ };
+}
+
+// w/h: the width/height of the compute shader's operating domain (e.g. the
+// target target that needs to be written, or the source texture that needs to
+// be reduced)
+static void dispatch_compute(struct gl_video *p, int w, int h,
+ struct compute_info info)
+{
+ PRELUDE("layout (local_size_x = %d, local_size_y = %d) in;\n",
+ info.threads_w > 0 ? info.threads_w : info.block_w,
+ info.threads_h > 0 ? info.threads_h : info.block_h);
+
+ pass_prepare_src_tex(p);
+
+ // Since we don't actually have vertices, we pretend for convenience
+ // reasons that we do and calculate the right texture coordinates based on
+ // the output sample ID
+ gl_sc_uniform_vec2(p->sc, "out_scale", (float[2]){ 1.0 / w, 1.0 / h });
+ PRELUDE("#define outcoord(id) (out_scale * (vec2(id) + vec2(0.5)))\n");
+
+ for (int n = 0; n < p->num_pass_imgs; n++) {
+ struct image *s = &p->pass_imgs[n];
+ if (!s->tex)
+ continue;
+
+ PRELUDE("#define texmap%d(id) (texture_rot%d * outcoord(id) + "
+ "pixel_size%d * texture_off%d)\n", n, n, n, n);
+ PRELUDE("#define texcoord%d texmap%d(gl_GlobalInvocationID)\n", n, n);
+ }
+
+ // always round up when dividing to make sure we don't leave off a part of
+ // the image
+ int num_x = info.block_w > 0 ? (w + info.block_w - 1) / info.block_w : 1,
+ num_y = info.block_h > 0 ? (h + info.block_h - 1) / info.block_h : 1;
+
+ if (!(p->ra->caps & RA_CAP_NUM_GROUPS))
+ PRELUDE("#define gl_NumWorkGroups uvec3(%d, %d, 1)\n", num_x, num_y);
+
+ pass_record(p, gl_sc_dispatch_compute(p->sc, num_x, num_y, 1));
+ cleanup_binds(p);
+}
+
+static struct mp_pass_perf render_pass_quad(struct gl_video *p,
+ struct ra_fbo fbo, bool discard,
+ const struct mp_rect *dst)
+{
+ // The first element is reserved for `vec2 position`
+ int num_vertex_attribs = 1 + p->num_pass_imgs;
+ size_t vertex_stride = num_vertex_attribs * sizeof(struct vertex_pt);
+
+ // Expand the VAO if necessary
+ while (p->vao_len < num_vertex_attribs) {
+ MP_TARRAY_APPEND(p, p->vao, p->vao_len, (struct ra_renderpass_input) {
+ .name = talloc_asprintf(p, "texcoord%d", p->vao_len - 1),
+ .type = RA_VARTYPE_FLOAT,
+ .dim_v = 2,
+ .dim_m = 1,
+ .offset = p->vao_len * sizeof(struct vertex_pt),
+ });
+ }
+
+ int num_vertices = 6; // quad as triangle list
+ int num_attribs_total = num_vertices * num_vertex_attribs;
+ MP_TARRAY_GROW(p, p->tmp_vertex, num_attribs_total);
+
+ struct gl_transform t;
+ gl_transform_ortho_fbo(&t, fbo);
+
+ float x[2] = {dst->x0, dst->x1};
+ float y[2] = {dst->y0, dst->y1};
+ gl_transform_vec(t, &x[0], &y[0]);
+ gl_transform_vec(t, &x[1], &y[1]);
+
+ for (int n = 0; n < 4; n++) {
+ struct vertex_pt *vs = &p->tmp_vertex[num_vertex_attribs * n];
+ // vec2 position in idx 0
+ vs[0].x = x[n / 2];
+ vs[0].y = y[n % 2];
+ for (int i = 0; i < p->num_pass_imgs; i++) {
+ struct image *s = &p->pass_imgs[i];
+ if (!s->tex)
+ continue;
+ struct gl_transform tr = s->transform;
+ float tx = (n / 2) * s->w;
+ float ty = (n % 2) * s->h;
+ gl_transform_vec(tr, &tx, &ty);
+ bool rect = s->tex->params.non_normalized;
+ // vec2 texcoordN in idx N+1
+ vs[i + 1].x = tx / (rect ? 1 : s->tex->params.w);
+ vs[i + 1].y = ty / (rect ? 1 : s->tex->params.h);
+ }
+ }
+
+ memmove(&p->tmp_vertex[num_vertex_attribs * 4],
+ &p->tmp_vertex[num_vertex_attribs * 2],
+ vertex_stride);
+
+ memmove(&p->tmp_vertex[num_vertex_attribs * 5],
+ &p->tmp_vertex[num_vertex_attribs * 1],
+ vertex_stride);
+
+ return gl_sc_dispatch_draw(p->sc, fbo.tex, discard, p->vao, num_vertex_attribs,
+ vertex_stride, p->tmp_vertex, num_vertices);
+}
+
+static void finish_pass_fbo(struct gl_video *p, struct ra_fbo fbo,
+ bool discard, const struct mp_rect *dst)
+{
+ pass_prepare_src_tex(p);
+ pass_record(p, render_pass_quad(p, fbo, discard, dst));
+ debug_check_gl(p, "after rendering");
+ cleanup_binds(p);
+}
+
+// dst_fbo: this will be used for rendering; possibly reallocating the whole
+// FBO, if the required parameters have changed
+// w, h: required FBO target dimension, and also defines the target rectangle
+// used for rasterization
+static void finish_pass_tex(struct gl_video *p, struct ra_tex **dst_tex,
+ int w, int h)
+{
+ if (!ra_tex_resize(p->ra, p->log, dst_tex, w, h, p->fbo_format)) {
+ cleanup_binds(p);
+ gl_sc_reset(p->sc);
+ return;
+ }
+
+ // If RA_CAP_PARALLEL_COMPUTE is set, try to prefer compute shaders
+ // over fragment shaders wherever possible.
+ if (!p->pass_compute.active && (p->ra->caps & RA_CAP_PARALLEL_COMPUTE) &&
+ (*dst_tex)->params.storage_dst)
+ {
+ pass_is_compute(p, 16, 16, true);
+ }
+
+ if (p->pass_compute.active) {
+ gl_sc_uniform_image2D_wo(p->sc, "out_image", *dst_tex);
+ if (!p->pass_compute.directly_writes)
+ GLSL(imageStore(out_image, ivec2(gl_GlobalInvocationID), color);)
+
+ dispatch_compute(p, w, h, p->pass_compute);
+ p->pass_compute = (struct compute_info){0};
+
+ debug_check_gl(p, "after dispatching compute shader");
+ } else {
+ struct ra_fbo fbo = { .tex = *dst_tex, };
+ finish_pass_fbo(p, fbo, true, &(struct mp_rect){0, 0, w, h});
+ }
+}
+
+static const char *get_tex_swizzle(struct image *img)
+{
+ if (!img->tex)
+ return "rgba";
+ return img->tex->params.format->luminance_alpha ? "raaa" : "rgba";
+}
+
+// Copy a texture to the vec4 color, while increasing offset. Also applies
+// the texture multiplier to the sampled color
+static void copy_image(struct gl_video *p, unsigned int *offset, struct image img)
+{
+ const unsigned int count = img.components;
+ char src[5] = {0};
+ char dst[5] = {0};
+
+ assert(*offset + count < sizeof(dst));
+ assert(img.padding + count < sizeof(src));
+
+ int id = pass_bind(p, img);
+
+ const char *tex_fmt = get_tex_swizzle(&img);
+ const char *dst_fmt = "rgba";
+ for (unsigned int i = 0; i < count; i++) {
+ src[i] = tex_fmt[img.padding + i];
+ dst[i] = dst_fmt[*offset + i];
+ }
+
+ if (img.tex && img.tex->params.format->ctype == RA_CTYPE_UINT) {
+ uint64_t tex_max = 1ull << p->ra_format.component_bits;
+ img.multiplier *= 1.0 / (tex_max - 1);
+ }
+
+ GLSLF("color.%s = %f * vec4(texture(texture%d, texcoord%d)).%s;\n",
+ dst, img.multiplier, id, id, src);
+
+ *offset += count;
+}
+
+static void skip_unused(struct gl_video *p, int num_components)
+{
+ for (int i = num_components; i < 4; i++)
+ GLSLF("color.%c = %f;\n", "rgba"[i], i < 3 ? 0.0 : 1.0);
+}
+
+static void uninit_scaler(struct gl_video *p, struct scaler *scaler)
+{
+ ra_tex_free(p->ra, &scaler->sep_fbo);
+ ra_tex_free(p->ra, &scaler->lut);
+ scaler->kernel = NULL;
+ scaler->initialized = false;
+}
+
+static void hook_prelude(struct gl_video *p, const char *name, int id,
+ struct image img)
+{
+ GLSLHF("#define %s_raw texture%d\n", name, id);
+ GLSLHF("#define %s_pos texcoord%d\n", name, id);
+ GLSLHF("#define %s_size texture_size%d\n", name, id);
+ GLSLHF("#define %s_rot texture_rot%d\n", name, id);
+ GLSLHF("#define %s_off texture_off%d\n", name, id);
+ GLSLHF("#define %s_pt pixel_size%d\n", name, id);
+ GLSLHF("#define %s_map texmap%d\n", name, id);
+ GLSLHF("#define %s_mul %f\n", name, img.multiplier);
+
+ char crap[5] = "";
+ snprintf(crap, sizeof(crap), "%s", get_tex_swizzle(&img));
+
+ // Remove leading padding by rotating the swizzle mask.
+ int len = strlen(crap);
+ for (int n = 0; n < img.padding; n++) {
+ if (len) {
+ char f = crap[0];
+ memmove(crap, crap + 1, len - 1);
+ crap[len - 1] = f;
+ }
+ }
+
+ // Set up the sampling functions
+ GLSLHF("#define %s_tex(pos) (%s_mul * vec4(texture(%s_raw, pos)).%s)\n",
+ name, name, name, crap);
+
+ if (p->ra->caps & RA_CAP_GATHER) {
+ GLSLHF("#define %s_gather(pos, c) (%s_mul * vec4("
+ "textureGather(%s_raw, pos, c)))\n", name, name, name);
+ }
+
+ // Since the extra matrix multiplication impacts performance,
+ // skip it unless the texture was actually rotated
+ if (gl_transform_eq(img.transform, identity_trans)) {
+ GLSLHF("#define %s_texOff(off) %s_tex(%s_pos + %s_pt * vec2(off))\n",
+ name, name, name, name);
+ } else {
+ GLSLHF("#define %s_texOff(off) "
+ "%s_tex(%s_pos + %s_rot * vec2(off)/%s_size)\n",
+ name, name, name, name, name);
+ }
+}
+
+static bool saved_img_find(struct gl_video *p, const char *name,
+ struct image *out)
+{
+ if (!name || !out)
+ return false;
+
+ for (int i = 0; i < p->num_saved_imgs; i++) {
+ if (strcmp(p->saved_imgs[i].name, name) == 0) {
+ *out = p->saved_imgs[i].img;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static void saved_img_store(struct gl_video *p, const char *name,
+ struct image img)
+{
+ assert(name);
+
+ for (int i = 0; i < p->num_saved_imgs; i++) {
+ if (strcmp(p->saved_imgs[i].name, name) == 0) {
+ p->saved_imgs[i].img = img;
+ return;
+ }
+ }
+
+ MP_TARRAY_APPEND(p, p->saved_imgs, p->num_saved_imgs, (struct saved_img) {
+ .name = name,
+ .img = img
+ });
+}
+
+static bool pass_hook_setup_binds(struct gl_video *p, const char *name,
+ struct image img, struct tex_hook *hook)
+{
+ for (int t = 0; t < SHADER_MAX_BINDS; t++) {
+ char *bind_name = (char *)hook->bind_tex[t];
+
+ if (!bind_name)
+ continue;
+
+ // This is a special name that means "currently hooked texture"
+ if (strcmp(bind_name, "HOOKED") == 0) {
+ int id = pass_bind(p, img);
+ hook_prelude(p, "HOOKED", id, img);
+ hook_prelude(p, name, id, img);
+ continue;
+ }
+
+ // BIND can also be used to load user-defined textures, in which
+ // case we will directly load them as a uniform instead of
+ // generating the hook_prelude boilerplate
+ for (int u = 0; u < p->num_user_textures; u++) {
+ struct gl_user_shader_tex *utex = &p->user_textures[u];
+ if (bstr_equals0(utex->name, bind_name)) {
+ gl_sc_uniform_texture(p->sc, bind_name, utex->tex);
+ goto next_bind;
+ }
+ }
+
+ struct image bind_img;
+ if (!saved_img_find(p, bind_name, &bind_img)) {
+ // Clean up texture bindings and move on to the next hook
+ MP_TRACE(p, "Skipping hook on %s due to no texture named %s.\n",
+ name, bind_name);
+ p->num_pass_imgs -= t;
+ return false;
+ }
+
+ hook_prelude(p, bind_name, pass_bind(p, bind_img), bind_img);
+
+next_bind: ;
+ }
+
+ return true;
+}
+
+static struct ra_tex **next_hook_tex(struct gl_video *p)
+{
+ if (p->idx_hook_textures == p->num_hook_textures)
+ MP_TARRAY_APPEND(p, p->hook_textures, p->num_hook_textures, NULL);
+
+ return &p->hook_textures[p->idx_hook_textures++];
+}
+
+// Process hooks for a plane, saving the result and returning a new image
+// If 'trans' is NULL, the shader is forbidden from transforming img
+static struct image pass_hook(struct gl_video *p, const char *name,
+ struct image img, struct gl_transform *trans)
+{
+ if (!name)
+ return img;
+
+ saved_img_store(p, name, img);
+
+ MP_TRACE(p, "Running hooks for %s\n", name);
+ for (int i = 0; i < p->num_tex_hooks; i++) {
+ struct tex_hook *hook = &p->tex_hooks[i];
+
+ // Figure out if this pass hooks this texture
+ for (int h = 0; h < SHADER_MAX_HOOKS; h++) {
+ if (hook->hook_tex[h] && strcmp(hook->hook_tex[h], name) == 0)
+ goto found;
+ }
+
+ continue;
+
+found:
+ // Check the hook's condition
+ if (hook->cond && !hook->cond(p, img, hook->priv)) {
+ MP_TRACE(p, "Skipping hook on %s due to condition.\n", name);
+ continue;
+ }
+
+ const char *store_name = hook->save_tex ? hook->save_tex : name;
+ bool is_overwrite = strcmp(store_name, name) == 0;
+
+ // If user shader is set to align HOOKED with reference and fix its
+ // offset, it requires HOOKED to be resizable and overwrited.
+ if (is_overwrite && hook->align_offset) {
+ if (!trans) {
+ MP_ERR(p, "Hook tried to align unresizable texture %s!\n",
+ name);
+ return img;
+ }
+
+ struct gl_transform align_off = identity_trans;
+ align_off.t[0] = trans->t[0];
+ align_off.t[1] = trans->t[1];
+
+ gl_transform_trans(align_off, &img.transform);
+ }
+
+ if (!pass_hook_setup_binds(p, name, img, hook))
+ continue;
+
+ // Run the actual hook. This generates a series of GLSL shader
+ // instructions sufficient for drawing the hook's output
+ struct gl_transform hook_off = identity_trans;
+ hook->hook(p, img, &hook_off, hook->priv);
+
+ int comps = hook->components ? hook->components : img.components;
+ skip_unused(p, comps);
+
+ // Compute the updated FBO dimensions and store the result
+ struct mp_rect_f sz = {0, 0, img.w, img.h};
+ gl_transform_rect(hook_off, &sz);
+ int w = lroundf(fabs(sz.x1 - sz.x0));
+ int h = lroundf(fabs(sz.y1 - sz.y0));
+
+ struct ra_tex **tex = next_hook_tex(p);
+ finish_pass_tex(p, tex, w, h);
+ struct image saved_img = image_wrap(*tex, img.type, comps);
+
+ // If the texture we're saving overwrites the "current" texture, also
+ // update the tex parameter so that the future loop cycles will use the
+ // updated values, and export the offset
+ if (is_overwrite) {
+ if (!trans && !gl_transform_eq(hook_off, identity_trans)) {
+ MP_ERR(p, "Hook tried changing size of unscalable texture %s!\n",
+ name);
+ return img;
+ }
+
+ img = saved_img;
+ if (trans) {
+ gl_transform_trans(hook_off, trans);
+
+ // If user shader is set to align HOOKED, the offset it produces
+ // is dynamic (with static resizing factor though).
+ // Align it with reference manually to get offset fixed.
+ if (hook->align_offset) {
+ trans->t[0] = 0.0;
+ trans->t[1] = 0.0;
+ }
+ }
+ }
+
+ saved_img_store(p, store_name, saved_img);
+ }
+
+ return img;
+}
+
+// This can be used at any time in the middle of rendering to specify an
+// optional hook point, which if triggered will render out to a new FBO and
+// load the result back into vec4 color. Offsets applied by the hooks are
+// accumulated in tex_trans, and the FBO is dimensioned according
+// to p->texture_w/h
+static void pass_opt_hook_point(struct gl_video *p, const char *name,
+ struct gl_transform *tex_trans)
+{
+ if (!name)
+ return;
+
+ for (int i = 0; i < p->num_tex_hooks; i++) {
+ struct tex_hook *hook = &p->tex_hooks[i];
+
+ for (int h = 0; h < SHADER_MAX_HOOKS; h++) {
+ if (hook->hook_tex[h] && strcmp(hook->hook_tex[h], name) == 0)
+ goto found;
+ }
+
+ for (int b = 0; b < SHADER_MAX_BINDS; b++) {
+ if (hook->bind_tex[b] && strcmp(hook->bind_tex[b], name) == 0)
+ goto found;
+ }
+ }
+
+ // Nothing uses this texture, don't bother storing it
+ return;
+
+found: ;
+ struct ra_tex **tex = next_hook_tex(p);
+ finish_pass_tex(p, tex, p->texture_w, p->texture_h);
+ struct image img = image_wrap(*tex, PLANE_RGB, p->components);
+ img = pass_hook(p, name, img, tex_trans);
+ copy_image(p, &(int){0}, img);
+ p->texture_w = img.w;
+ p->texture_h = img.h;
+ p->components = img.components;
+ pass_describe(p, "(remainder pass)");
+}
+
+static void load_shader(struct gl_video *p, struct bstr body)
+{
+ gl_sc_hadd_bstr(p->sc, body);
+ gl_sc_uniform_dynamic(p->sc);
+ gl_sc_uniform_f(p->sc, "random", (double)av_lfg_get(&p->lfg) / UINT32_MAX);
+ gl_sc_uniform_dynamic(p->sc);
+ gl_sc_uniform_i(p->sc, "frame", p->frames_uploaded);
+ gl_sc_uniform_vec2(p->sc, "input_size",
+ (float[]){(p->src_rect.x1 - p->src_rect.x0) *
+ p->texture_offset.m[0][0],
+ (p->src_rect.y1 - p->src_rect.y0) *
+ p->texture_offset.m[1][1]});
+ gl_sc_uniform_vec2(p->sc, "target_size",
+ (float[]){p->dst_rect.x1 - p->dst_rect.x0,
+ p->dst_rect.y1 - p->dst_rect.y0});
+ gl_sc_uniform_vec2(p->sc, "tex_offset",
+ (float[]){p->src_rect.x0 * p->texture_offset.m[0][0] +
+ p->texture_offset.t[0],
+ p->src_rect.y0 * p->texture_offset.m[1][1] +
+ p->texture_offset.t[1]});
+}
+
+// Semantic equality
+static bool double_seq(double a, double b)
+{
+ return (isnan(a) && isnan(b)) || a == b;
+}
+
+static bool scaler_fun_eq(struct scaler_fun a, struct scaler_fun b)
+{
+ if ((a.name && !b.name) || (b.name && !a.name))
+ return false;
+
+ return ((!a.name && !b.name) || strcmp(a.name, b.name) == 0) &&
+ double_seq(a.params[0], b.params[0]) &&
+ double_seq(a.params[1], b.params[1]) &&
+ a.blur == b.blur &&
+ a.taper == b.taper;
+}
+
+static bool scaler_conf_eq(struct scaler_config a, struct scaler_config b)
+{
+ // Note: antiring isn't compared because it doesn't affect LUT
+ // generation
+ return scaler_fun_eq(a.kernel, b.kernel) &&
+ scaler_fun_eq(a.window, b.window) &&
+ a.radius == b.radius &&
+ a.clamp == b.clamp;
+}
+
+static void reinit_scaler(struct gl_video *p, struct scaler *scaler,
+ const struct scaler_config *conf,
+ double scale_factor,
+ int sizes[])
+{
+ assert(conf);
+ if (scaler_conf_eq(scaler->conf, *conf) &&
+ scaler->scale_factor == scale_factor &&
+ scaler->initialized)
+ return;
+
+ uninit_scaler(p, scaler);
+
+ if (scaler->index == SCALER_DSCALE && (!conf->kernel.name ||
+ !conf->kernel.name[0]))
+ {
+ conf = &p->opts.scaler[SCALER_SCALE];
+ }
+
+ if (scaler->index == SCALER_CSCALE && (!conf->kernel.name ||
+ !conf->kernel.name[0]))
+ {
+ conf = &p->opts.scaler[SCALER_SCALE];
+ }
+
+ struct filter_kernel bare_window;
+ const struct filter_kernel *t_kernel = mp_find_filter_kernel(conf->kernel.name);
+ const struct filter_window *t_window = mp_find_filter_window(conf->window.name);
+ bool is_tscale = scaler->index == SCALER_TSCALE;
+ if (!t_kernel) {
+ const struct filter_window *window = mp_find_filter_window(conf->kernel.name);
+ if (window) {
+ bare_window = (struct filter_kernel) { .f = *window };
+ t_kernel = &bare_window;
+ }
+ }
+
+ scaler->conf = *conf;
+ scaler->conf.kernel.name = (char *)handle_scaler_opt(conf->kernel.name, is_tscale);
+ scaler->conf.window.name = t_window ? (char *)t_window->name : NULL;
+ scaler->scale_factor = scale_factor;
+ scaler->insufficient = false;
+ scaler->initialized = true;
+ if (!t_kernel)
+ return;
+
+ scaler->kernel_storage = *t_kernel;
+ scaler->kernel = &scaler->kernel_storage;
+
+ if (!t_window) {
+ // fall back to the scaler's default window if available
+ t_window = mp_find_filter_window(t_kernel->window);
+ }
+ if (t_window)
+ scaler->kernel->w = *t_window;
+
+ for (int n = 0; n < 2; n++) {
+ if (!isnan(conf->kernel.params[n]))
+ scaler->kernel->f.params[n] = conf->kernel.params[n];
+ if (!isnan(conf->window.params[n]))
+ scaler->kernel->w.params[n] = conf->window.params[n];
+ }
+
+ if (conf->kernel.blur > 0.0)
+ scaler->kernel->f.blur = conf->kernel.blur;
+ if (conf->window.blur > 0.0)
+ scaler->kernel->w.blur = conf->window.blur;
+
+ if (conf->kernel.taper > 0.0)
+ scaler->kernel->f.taper = conf->kernel.taper;
+ if (conf->window.taper > 0.0)
+ scaler->kernel->w.taper = conf->window.taper;
+
+ if (scaler->kernel->f.resizable && conf->radius > 0.0)
+ scaler->kernel->f.radius = conf->radius;
+
+ scaler->kernel->clamp = conf->clamp;
+ scaler->insufficient = !mp_init_filter(scaler->kernel, sizes, scale_factor);
+
+ int size = scaler->kernel->size;
+ int num_components = size > 2 ? 4 : size;
+ const struct ra_format *fmt = ra_find_float16_format(p->ra, num_components);
+ assert(fmt);
+
+ int width = (size + num_components - 1) / num_components; // round up
+ int stride = width * num_components;
+ assert(size <= stride);
+
+ static const int lut_size = 256;
+ float *weights = talloc_array(NULL, float, lut_size * stride);
+ mp_compute_lut(scaler->kernel, lut_size, stride, weights);
+
+ bool use_1d = scaler->kernel->polar && (p->ra->caps & RA_CAP_TEX_1D);
+
+ struct ra_tex_params lut_params = {
+ .dimensions = use_1d ? 1 : 2,
+ .w = use_1d ? lut_size : width,
+ .h = use_1d ? 1 : lut_size,
+ .d = 1,
+ .format = fmt,
+ .render_src = true,
+ .src_linear = true,
+ .initial_data = weights,
+ };
+ scaler->lut = ra_tex_create(p->ra, &lut_params);
+
+ talloc_free(weights);
+
+ debug_check_gl(p, "after initializing scaler");
+}
+
+// Special helper for sampling from two separated stages
+static void pass_sample_separated(struct gl_video *p, struct image src,
+ struct scaler *scaler, int w, int h)
+{
+ // Separate the transformation into x and y components, per pass
+ struct gl_transform t_x = {
+ .m = {{src.transform.m[0][0], 0.0}, {src.transform.m[1][0], 1.0}},
+ .t = {src.transform.t[0], 0.0},
+ };
+ struct gl_transform t_y = {
+ .m = {{1.0, src.transform.m[0][1]}, {0.0, src.transform.m[1][1]}},
+ .t = {0.0, src.transform.t[1]},
+ };
+
+ // First pass (scale only in the y dir)
+ src.transform = t_y;
+ sampler_prelude(p->sc, pass_bind(p, src));
+ GLSLF("// first pass\n");
+ pass_sample_separated_gen(p->sc, scaler, 0, 1);
+ GLSLF("color *= %f;\n", src.multiplier);
+ finish_pass_tex(p, &scaler->sep_fbo, src.w, h);
+
+ // Second pass (scale only in the x dir)
+ src = image_wrap(scaler->sep_fbo, src.type, src.components);
+ src.transform = t_x;
+ pass_describe(p, "%s second pass", scaler->conf.kernel.name);
+ sampler_prelude(p->sc, pass_bind(p, src));
+ pass_sample_separated_gen(p->sc, scaler, 1, 0);
+}
+
+// Picks either the compute shader version or the regular sampler version
+// depending on hardware support
+static void pass_dispatch_sample_polar(struct gl_video *p, struct scaler *scaler,
+ struct image img, int w, int h)
+{
+ uint64_t reqs = RA_CAP_COMPUTE;
+ if ((p->ra->caps & reqs) != reqs)
+ goto fallback;
+
+ int bound = ceil(scaler->kernel->radius_cutoff);
+ int offset = bound - 1; // padding top/left
+ int padding = offset + bound; // total padding
+
+ float ratiox = (float)w / img.w,
+ ratioy = (float)h / img.h;
+
+ // For performance we want to load at least as many pixels
+ // horizontally as there are threads in a warp (32 for nvidia), as
+ // well as enough to take advantage of shmem parallelism
+ const int warp_size = 32, threads = 256;
+ int bw = warp_size;
+ int bh = threads / bw;
+
+ // We need to sample everything from base_min to base_max, so make sure
+ // we have enough room in shmem
+ int iw = (int)ceil(bw / ratiox) + padding + 1,
+ ih = (int)ceil(bh / ratioy) + padding + 1;
+
+ int shmem_req = iw * ih * img.components * sizeof(float);
+ if (shmem_req > p->ra->max_shmem)
+ goto fallback;
+
+ pass_is_compute(p, bw, bh, false);
+ pass_compute_polar(p->sc, scaler, img.components, bw, bh, iw, ih);
+ return;
+
+fallback:
+ // Fall back to regular polar shader when compute shaders are unsupported
+ // or the kernel is too big for shmem
+ pass_sample_polar(p->sc, scaler, img.components,
+ p->ra->caps & RA_CAP_GATHER);
+}
+
+// Sample from image, with the src rectangle given by it.
+// The dst rectangle is implicit by what the caller will do next, but w and h
+// must still be what is going to be used (to dimension FBOs correctly).
+// This will write the scaled contents to the vec4 "color".
+// The scaler unit is initialized by this function; in order to avoid cache
+// thrashing, the scaler unit should usually use the same parameters.
+static void pass_sample(struct gl_video *p, struct image img,
+ struct scaler *scaler, const struct scaler_config *conf,
+ double scale_factor, int w, int h)
+{
+ reinit_scaler(p, scaler, conf, scale_factor, filter_sizes);
+
+ // Describe scaler
+ const char *scaler_opt[] = {
+ [SCALER_SCALE] = "scale",
+ [SCALER_DSCALE] = "dscale",
+ [SCALER_CSCALE] = "cscale",
+ [SCALER_TSCALE] = "tscale",
+ };
+
+ pass_describe(p, "%s=%s (%s)", scaler_opt[scaler->index],
+ scaler->conf.kernel.name, plane_names[img.type]);
+
+ bool is_separated = scaler->kernel && !scaler->kernel->polar;
+
+ // Set up the transformation+prelude and bind the texture, for everything
+ // other than separated scaling (which does this in the subfunction)
+ if (!is_separated)
+ sampler_prelude(p->sc, pass_bind(p, img));
+
+ // Dispatch the scaler. They're all wildly different.
+ const char *name = scaler->conf.kernel.name;
+ if (strcmp(name, "bilinear") == 0) {
+ GLSL(color = texture(tex, pos);)
+ } else if (strcmp(name, "bicubic_fast") == 0) {
+ pass_sample_bicubic_fast(p->sc);
+ } else if (strcmp(name, "oversample") == 0) {
+ pass_sample_oversample(p->sc, scaler, w, h);
+ } else if (scaler->kernel && scaler->kernel->polar) {
+ pass_dispatch_sample_polar(p, scaler, img, w, h);
+ } else if (scaler->kernel) {
+ pass_sample_separated(p, img, scaler, w, h);
+ } else {
+ MP_ASSERT_UNREACHABLE(); // should never happen
+ }
+
+ // Apply any required multipliers. Separated scaling already does this in
+ // its first stage
+ if (!is_separated)
+ GLSLF("color *= %f;\n", img.multiplier);
+
+ // Micro-optimization: Avoid scaling unneeded channels
+ skip_unused(p, img.components);
+}
+
+// Returns true if two images are semantically equivalent (same metadata)
+static bool image_equiv(struct image a, struct image b)
+{
+ return a.type == b.type &&
+ a.components == b.components &&
+ a.multiplier == b.multiplier &&
+ a.tex->params.format == b.tex->params.format &&
+ a.tex->params.w == b.tex->params.w &&
+ a.tex->params.h == b.tex->params.h &&
+ a.w == b.w &&
+ a.h == b.h &&
+ gl_transform_eq(a.transform, b.transform);
+}
+
+static void deband_hook(struct gl_video *p, struct image img,
+ struct gl_transform *trans, void *priv)
+{
+ pass_describe(p, "debanding (%s)", plane_names[img.type]);
+ pass_sample_deband(p->sc, p->opts.deband_opts, &p->lfg,
+ p->image_params.color.gamma);
+}
+
+static void unsharp_hook(struct gl_video *p, struct image img,
+ struct gl_transform *trans, void *priv)
+{
+ pass_describe(p, "unsharp masking");
+ pass_sample_unsharp(p->sc, p->opts.unsharp);
+}
+
+struct szexp_ctx {
+ struct gl_video *p;
+ struct image img;
+};
+
+static bool szexp_lookup(void *priv, struct bstr var, float size[2])
+{
+ struct szexp_ctx *ctx = priv;
+ struct gl_video *p = ctx->p;
+
+ if (bstr_equals0(var, "NATIVE_CROPPED")) {
+ size[0] = (p->src_rect.x1 - p->src_rect.x0) * p->texture_offset.m[0][0];
+ size[1] = (p->src_rect.y1 - p->src_rect.y0) * p->texture_offset.m[1][1];
+ return true;
+ }
+
+ // The size of OUTPUT is determined. It could be useful for certain
+ // user shaders to skip passes.
+ if (bstr_equals0(var, "OUTPUT")) {
+ size[0] = p->dst_rect.x1 - p->dst_rect.x0;
+ size[1] = p->dst_rect.y1 - p->dst_rect.y0;
+ return true;
+ }
+
+ // HOOKED is a special case
+ if (bstr_equals0(var, "HOOKED")) {
+ size[0] = ctx->img.w;
+ size[1] = ctx->img.h;
+ return true;
+ }
+
+ for (int o = 0; o < p->num_saved_imgs; o++) {
+ if (bstr_equals0(var, p->saved_imgs[o].name)) {
+ size[0] = p->saved_imgs[o].img.w;
+ size[1] = p->saved_imgs[o].img.h;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static bool user_hook_cond(struct gl_video *p, struct image img, void *priv)
+{
+ struct gl_user_shader_hook *shader = priv;
+ assert(shader);
+
+ float res = false;
+ struct szexp_ctx ctx = {p, img};
+ eval_szexpr(p->log, &ctx, szexp_lookup, shader->cond, &res);
+ return res;
+}
+
+static void user_hook(struct gl_video *p, struct image img,
+ struct gl_transform *trans, void *priv)
+{
+ struct gl_user_shader_hook *shader = priv;
+ assert(shader);
+ load_shader(p, shader->pass_body);
+
+ pass_describe(p, "user shader: %.*s (%s)", BSTR_P(shader->pass_desc),
+ plane_names[img.type]);
+
+ if (shader->compute.active) {
+ p->pass_compute = shader->compute;
+ GLSLF("hook();\n");
+ } else {
+ GLSLF("color = hook();\n");
+ }
+
+ // Make sure we at least create a legal FBO on failure, since it's better
+ // to do this and display an error message than just crash OpenGL
+ float w = 1.0, h = 1.0;
+
+ eval_szexpr(p->log, &(struct szexp_ctx){p, img}, szexp_lookup, shader->width, &w);
+ eval_szexpr(p->log, &(struct szexp_ctx){p, img}, szexp_lookup, shader->height, &h);
+
+ *trans = (struct gl_transform){{{w / img.w, 0}, {0, h / img.h}}};
+ gl_transform_trans(shader->offset, trans);
+}
+
+static bool add_user_hook(void *priv, struct gl_user_shader_hook hook)
+{
+ struct gl_video *p = priv;
+ struct gl_user_shader_hook *copy = talloc_ptrtype(p, copy);
+ *copy = hook;
+
+ struct tex_hook texhook = {
+ .save_tex = bstrdup0(copy, hook.save_tex),
+ .components = hook.components,
+ .align_offset = hook.align_offset,
+ .hook = user_hook,
+ .cond = user_hook_cond,
+ .priv = copy,
+ };
+
+ for (int h = 0; h < SHADER_MAX_HOOKS; h++)
+ texhook.hook_tex[h] = bstrdup0(copy, hook.hook_tex[h]);
+ for (int h = 0; h < SHADER_MAX_BINDS; h++)
+ texhook.bind_tex[h] = bstrdup0(copy, hook.bind_tex[h]);
+
+ MP_TARRAY_APPEND(p, p->tex_hooks, p->num_tex_hooks, texhook);
+ return true;
+}
+
+static bool add_user_tex(void *priv, struct gl_user_shader_tex tex)
+{
+ struct gl_video *p = priv;
+
+ tex.tex = ra_tex_create(p->ra, &tex.params);
+ TA_FREEP(&tex.params.initial_data);
+
+ if (!tex.tex)
+ return false;
+
+ MP_TARRAY_APPEND(p, p->user_textures, p->num_user_textures, tex);
+ return true;
+}
+
+static void load_user_shaders(struct gl_video *p, char **shaders)
+{
+ if (!shaders)
+ return;
+
+ for (int n = 0; shaders[n] != NULL; n++) {
+ struct bstr file = load_cached_file(p, shaders[n]);
+ parse_user_shader(p->log, p->ra, file, p, add_user_hook, add_user_tex);
+ }
+}
+
+static void gl_video_setup_hooks(struct gl_video *p)
+{
+ gl_video_reset_hooks(p);
+
+ if (p->opts.deband) {
+ MP_TARRAY_APPEND(p, p->tex_hooks, p->num_tex_hooks, (struct tex_hook) {
+ .hook_tex = {"LUMA", "CHROMA", "RGB", "XYZ"},
+ .bind_tex = {"HOOKED"},
+ .hook = deband_hook,
+ });
+ }
+
+ if (p->opts.unsharp != 0.0) {
+ MP_TARRAY_APPEND(p, p->tex_hooks, p->num_tex_hooks, (struct tex_hook) {
+ .hook_tex = {"MAIN"},
+ .bind_tex = {"HOOKED"},
+ .hook = unsharp_hook,
+ });
+ }
+
+ load_user_shaders(p, p->opts.user_shaders);
+}
+
+// sample from video textures, set "color" variable to yuv value
+static void pass_read_video(struct gl_video *p)
+{
+ struct image img[4];
+ struct gl_transform offsets[4];
+ pass_get_images(p, &p->image, img, offsets);
+
+ // To keep the code as simple as possibly, we currently run all shader
+ // stages even if they would be unnecessary (e.g. no hooks for a texture).
+ // In the future, deferred image should optimize this away.
+
+ // Merge semantically identical textures. This loop is done from back
+ // to front so that merged textures end up in the right order while
+ // simultaneously allowing us to skip unnecessary merges
+ for (int n = 3; n >= 0; n--) {
+ if (img[n].type == PLANE_NONE)
+ continue;
+
+ int first = n;
+ int num = 0;
+
+ for (int i = 0; i < n; i++) {
+ if (image_equiv(img[n], img[i]) &&
+ gl_transform_eq(offsets[n], offsets[i]))
+ {
+ GLSLF("// merging plane %d ...\n", i);
+ copy_image(p, &num, img[i]);
+ first = MPMIN(first, i);
+ img[i] = (struct image){0};
+ }
+ }
+
+ if (num > 0) {
+ GLSLF("// merging plane %d ... into %d\n", n, first);
+ copy_image(p, &num, img[n]);
+ pass_describe(p, "merging planes");
+ finish_pass_tex(p, &p->merge_tex[n], img[n].w, img[n].h);
+ img[first] = image_wrap(p->merge_tex[n], img[n].type, num);
+ img[n] = (struct image){0};
+ }
+ }
+
+ // If any textures are still in integer format by this point, we need
+ // to introduce an explicit conversion pass to avoid breaking hooks/scaling
+ for (int n = 0; n < 4; n++) {
+ if (img[n].tex && img[n].tex->params.format->ctype == RA_CTYPE_UINT) {
+ GLSLF("// use_integer fix for plane %d\n", n);
+ copy_image(p, &(int){0}, img[n]);
+ pass_describe(p, "use_integer fix");
+ finish_pass_tex(p, &p->integer_tex[n], img[n].w, img[n].h);
+ img[n] = image_wrap(p->integer_tex[n], img[n].type,
+ img[n].components);
+ }
+ }
+
+ // The basic idea is we assume the rgb/luma texture is the "reference" and
+ // scale everything else to match, after all planes are finalized.
+ // We find the reference texture first, in order to maintain texture offset
+ // between hooks on different type of planes.
+ int reference_tex_num = 0;
+ for (int n = 0; n < 4; n++) {
+ switch (img[n].type) {
+ case PLANE_RGB:
+ case PLANE_XYZ:
+ case PLANE_LUMA: break;
+ default: continue;
+ }
+
+ reference_tex_num = n;
+ break;
+ }
+
+ // Dispatch the hooks for all of these textures, saving and perhaps
+ // modifying them in the process
+ for (int n = 0; n < 4; n++) {
+ const char *name;
+ switch (img[n].type) {
+ case PLANE_RGB: name = "RGB"; break;
+ case PLANE_LUMA: name = "LUMA"; break;
+ case PLANE_CHROMA: name = "CHROMA"; break;
+ case PLANE_ALPHA: name = "ALPHA"; break;
+ case PLANE_XYZ: name = "XYZ"; break;
+ default: continue;
+ }
+
+ img[n] = pass_hook(p, name, img[n], &offsets[n]);
+
+ if (reference_tex_num == n) {
+ // The reference texture is finalized now.
+ p->texture_w = img[n].w;
+ p->texture_h = img[n].h;
+ p->texture_offset = offsets[n];
+ }
+ }
+
+ // At this point all planes are finalized but they may not be at the
+ // required size yet. Furthermore, they may have texture offsets that
+ // require realignment.
+
+ // Compute the reference rect
+ struct mp_rect_f src = {0.0, 0.0, p->image_params.w, p->image_params.h};
+ struct mp_rect_f ref = src;
+ gl_transform_rect(p->texture_offset, &ref);
+
+ // Explicitly scale all of the textures that don't match
+ for (int n = 0; n < 4; n++) {
+ if (img[n].type == PLANE_NONE)
+ continue;
+
+ // If the planes are aligned identically, we will end up with the
+ // exact same source rectangle.
+ struct mp_rect_f rect = src;
+ gl_transform_rect(offsets[n], &rect);
+ if (mp_rect_f_seq(ref, rect))
+ continue;
+
+ // If the rectangles differ, then our planes have a different
+ // alignment and/or size. First of all, we have to compute the
+ // corrections required to meet the target rectangle
+ struct gl_transform fix = {
+ .m = {{(ref.x1 - ref.x0) / (rect.x1 - rect.x0), 0.0},
+ {0.0, (ref.y1 - ref.y0) / (rect.y1 - rect.y0)}},
+ .t = {ref.x0, ref.y0},
+ };
+
+ // Since the scale in texture space is different from the scale in
+ // absolute terms, we have to scale the coefficients down to be
+ // relative to the texture's physical dimensions and local offset
+ struct gl_transform scale = {
+ .m = {{(float)img[n].w / p->texture_w, 0.0},
+ {0.0, (float)img[n].h / p->texture_h}},
+ .t = {-rect.x0, -rect.y0},
+ };
+ if (p->image_params.rotate % 180 == 90)
+ MPSWAP(double, scale.m[0][0], scale.m[1][1]);
+
+ gl_transform_trans(scale, &fix);
+
+ // Since the texture transform is a function of the texture coordinates
+ // to texture space, rather than the other way around, we have to
+ // actually apply the *inverse* of this. Fortunately, calculating
+ // the inverse is relatively easy here.
+ fix.m[0][0] = 1.0 / fix.m[0][0];
+ fix.m[1][1] = 1.0 / fix.m[1][1];
+ fix.t[0] = fix.m[0][0] * -fix.t[0];
+ fix.t[1] = fix.m[1][1] * -fix.t[1];
+ gl_transform_trans(fix, &img[n].transform);
+
+ int scaler_id = -1;
+ const char *name = NULL;
+ switch (img[n].type) {
+ case PLANE_RGB:
+ case PLANE_LUMA:
+ case PLANE_XYZ:
+ scaler_id = SCALER_SCALE;
+ // these aren't worth hooking, fringe hypothetical cases only
+ break;
+ case PLANE_CHROMA:
+ scaler_id = SCALER_CSCALE;
+ name = "CHROMA_SCALED";
+ break;
+ case PLANE_ALPHA:
+ // alpha always uses bilinear
+ name = "ALPHA_SCALED";
+ }
+
+ if (scaler_id < 0)
+ continue;
+
+ const struct scaler_config *conf = &p->opts.scaler[scaler_id];
+
+ if (scaler_id == SCALER_CSCALE && (!conf->kernel.name ||
+ !conf->kernel.name[0]))
+ {
+ conf = &p->opts.scaler[SCALER_SCALE];
+ }
+
+ struct scaler *scaler = &p->scaler[scaler_id];
+
+ // bilinear scaling is a free no-op thanks to GPU sampling
+ if (strcmp(conf->kernel.name, "bilinear") != 0) {
+ GLSLF("// upscaling plane %d\n", n);
+ pass_sample(p, img[n], scaler, conf, 1.0, p->texture_w, p->texture_h);
+ finish_pass_tex(p, &p->scale_tex[n], p->texture_w, p->texture_h);
+ img[n] = image_wrap(p->scale_tex[n], img[n].type, img[n].components);
+ }
+
+ // Run any post-scaling hooks
+ img[n] = pass_hook(p, name, img[n], NULL);
+ }
+
+ // All planes are of the same size and properly aligned at this point
+ pass_describe(p, "combining planes");
+ int coord = 0;
+ for (int i = 0; i < 4; i++) {
+ if (img[i].type != PLANE_NONE)
+ copy_image(p, &coord, img[i]);
+ }
+ p->components = coord;
+}
+
+// Utility function that simply binds a texture and reads from it, without any
+// transformations.
+static void pass_read_tex(struct gl_video *p, struct ra_tex *tex)
+{
+ struct image img = image_wrap(tex, PLANE_RGB, p->components);
+ copy_image(p, &(int){0}, img);
+}
+
+// yuv conversion, and any other conversions before main up/down-scaling
+static void pass_convert_yuv(struct gl_video *p)
+{
+ struct gl_shader_cache *sc = p->sc;
+
+ struct mp_csp_params cparams = MP_CSP_PARAMS_DEFAULTS;
+ cparams.gray = p->is_gray;
+ cparams.is_float = p->ra_format.component_type == RA_CTYPE_FLOAT;
+ mp_csp_set_image_params(&cparams, &p->image_params);
+ mp_csp_equalizer_state_get(p->video_eq, &cparams);
+ p->user_gamma = 1.0 / (cparams.gamma * p->opts.gamma);
+
+ pass_describe(p, "color conversion");
+
+ if (p->color_swizzle[0])
+ GLSLF("color = color.%s;\n", p->color_swizzle);
+
+ // Pre-colormatrix input gamma correction
+ if (cparams.color.space == MP_CSP_XYZ)
+ pass_linearize(p->sc, p->image_params.color.gamma);
+
+ // We always explicitly normalize the range in pass_read_video
+ cparams.input_bits = cparams.texture_bits = 0;
+
+ // Conversion to RGB. For RGB itself, this still applies e.g. brightness
+ // and contrast controls, or expansion of e.g. LSB-packed 10 bit data.
+ struct mp_cmat m = {{{0}}};
+ mp_get_csp_matrix(&cparams, &m);
+ gl_sc_uniform_mat3(sc, "colormatrix", true, &m.m[0][0]);
+ gl_sc_uniform_vec3(sc, "colormatrix_c", m.c);
+
+ GLSL(color.rgb = mat3(colormatrix) * color.rgb + colormatrix_c;)
+
+ if (cparams.color.space == MP_CSP_XYZ) {
+ pass_delinearize(p->sc, p->image_params.color.gamma);
+ // mp_get_csp_matrix implicitly converts XYZ to DCI-P3
+ p->image_params.color.space = MP_CSP_RGB;
+ p->image_params.color.primaries = MP_CSP_PRIM_DCI_P3;
+ }
+
+ if (p->image_params.color.space == MP_CSP_BT_2020_C) {
+ // Conversion for C'rcY'cC'bc via the BT.2020 CL system:
+ // C'bc = (B'-Y'c) / 1.9404 | C'bc <= 0
+ // = (B'-Y'c) / 1.5816 | C'bc > 0
+ //
+ // C'rc = (R'-Y'c) / 1.7184 | C'rc <= 0
+ // = (R'-Y'c) / 0.9936 | C'rc > 0
+ //
+ // as per the BT.2020 specification, table 4. This is a non-linear
+ // transformation because (constant) luminance receives non-equal
+ // contributions from the three different channels.
+ GLSLF("// constant luminance conversion \n"
+ "color.br = color.br * mix(vec2(1.5816, 0.9936), \n"
+ " vec2(1.9404, 1.7184), \n"
+ " %s(lessThanEqual(color.br, vec2(0))))\n"
+ " + color.gg; \n",
+ gl_sc_bvec(p->sc, 2));
+ // Expand channels to camera-linear light. This shader currently just
+ // assumes everything uses the BT.2020 12-bit gamma function, since the
+ // difference between 10 and 12-bit is negligible for anything other
+ // than 12-bit content.
+ GLSLF("color.rgb = mix(color.rgb * vec3(1.0/4.5), \n"
+ " pow((color.rgb + vec3(0.0993))*vec3(1.0/1.0993), \n"
+ " vec3(1.0/0.45)), \n"
+ " %s(lessThanEqual(vec3(0.08145), color.rgb))); \n",
+ gl_sc_bvec(p->sc, 3));
+ // Calculate the green channel from the expanded RYcB
+ // The BT.2020 specification says Yc = 0.2627*R + 0.6780*G + 0.0593*B
+ GLSL(color.g = (color.g - 0.2627*color.r - 0.0593*color.b)*1.0/0.6780;)
+ // Recompress to receive the R'G'B' result, same as other systems
+ GLSLF("color.rgb = mix(color.rgb * vec3(4.5), \n"
+ " vec3(1.0993) * pow(color.rgb, vec3(0.45)) - vec3(0.0993), \n"
+ " %s(lessThanEqual(vec3(0.0181), color.rgb))); \n",
+ gl_sc_bvec(p->sc, 3));
+ }
+
+ p->components = 3;
+ if (!p->has_alpha || p->opts.alpha_mode == ALPHA_NO) {
+ GLSL(color.a = 1.0;)
+ } else if (p->image_params.alpha == MP_ALPHA_PREMUL) {
+ p->components = 4;
+ } else {
+ p->components = 4;
+ GLSL(color = vec4(color.rgb * color.a, color.a);) // straight -> premul
+ }
+}
+
+static void get_scale_factors(struct gl_video *p, bool transpose_rot, double xy[2])
+{
+ double target_w = p->src_rect.x1 - p->src_rect.x0;
+ double target_h = p->src_rect.y1 - p->src_rect.y0;
+ if (transpose_rot && p->image_params.rotate % 180 == 90)
+ MPSWAP(double, target_w, target_h);
+ xy[0] = (p->dst_rect.x1 - p->dst_rect.x0) / target_w;
+ xy[1] = (p->dst_rect.y1 - p->dst_rect.y0) / target_h;
+}
+
+// Cropping.
+static void compute_src_transform(struct gl_video *p, struct gl_transform *tr)
+{
+ float sx = (p->src_rect.x1 - p->src_rect.x0) / (float)p->texture_w,
+ sy = (p->src_rect.y1 - p->src_rect.y0) / (float)p->texture_h,
+ ox = p->src_rect.x0,
+ oy = p->src_rect.y0;
+ struct gl_transform transform = {{{sx, 0}, {0, sy}}, {ox, oy}};
+
+ gl_transform_trans(p->texture_offset, &transform);
+
+ *tr = transform;
+}
+
+// Takes care of the main scaling and pre/post-conversions
+static void pass_scale_main(struct gl_video *p)
+{
+ // Figure out the main scaler.
+ double xy[2];
+ get_scale_factors(p, true, xy);
+
+ // actual scale factor should be divided by the scale factor of prescaling.
+ xy[0] /= p->texture_offset.m[0][0];
+ xy[1] /= p->texture_offset.m[1][1];
+
+ // The calculation of scale factor involves 32-bit float(from gl_transform),
+ // use non-strict equality test to tolerate precision loss.
+ bool downscaling = xy[0] < 1.0 - FLT_EPSILON || xy[1] < 1.0 - FLT_EPSILON;
+ bool upscaling = !downscaling && (xy[0] > 1.0 + FLT_EPSILON ||
+ xy[1] > 1.0 + FLT_EPSILON);
+ double scale_factor = 1.0;
+
+ struct scaler *scaler = &p->scaler[SCALER_SCALE];
+ struct scaler_config scaler_conf = p->opts.scaler[SCALER_SCALE];
+ if (p->opts.scaler_resizes_only && !downscaling && !upscaling) {
+ scaler_conf.kernel.name = "bilinear";
+ // For scaler-resizes-only, we round the texture offset to
+ // the nearest round value in order to prevent ugly blurriness
+ // (in exchange for slightly shifting the image by up to half a
+ // subpixel)
+ p->texture_offset.t[0] = roundf(p->texture_offset.t[0]);
+ p->texture_offset.t[1] = roundf(p->texture_offset.t[1]);
+ }
+ if (downscaling && p->opts.scaler[SCALER_DSCALE].kernel.name) {
+ scaler_conf = p->opts.scaler[SCALER_DSCALE];
+ scaler = &p->scaler[SCALER_DSCALE];
+ }
+
+ // When requesting correct-downscaling and the clip is anamorphic, and
+ // because only a single scale factor is used for both axes, enable it only
+ // when both axes are downscaled, and use the milder of the factors to not
+ // end up with too much blur on one axis (even if we end up with sub-optimal
+ // scale factor on the other axis). This is better than not respecting
+ // correct scaling at all for anamorphic clips.
+ double f = MPMAX(xy[0], xy[1]);
+ if (p->opts.correct_downscaling && f < 1.0)
+ scale_factor = 1.0 / f;
+
+ // Pre-conversion, like linear light/sigmoidization
+ GLSLF("// scaler pre-conversion\n");
+ bool use_linear = false;
+ if (downscaling) {
+ use_linear = p->opts.linear_downscaling;
+
+ // Linear light downscaling results in nasty artifacts for HDR curves
+ // due to the potentially extreme brightness differences severely
+ // compounding any ringing. So just scale in gamma light instead.
+ if (mp_trc_is_hdr(p->image_params.color.gamma))
+ use_linear = false;
+ } else if (upscaling) {
+ use_linear = p->opts.linear_upscaling || p->opts.sigmoid_upscaling;
+ }
+
+ if (use_linear) {
+ p->use_linear = true;
+ pass_linearize(p->sc, p->image_params.color.gamma);
+ pass_opt_hook_point(p, "LINEAR", NULL);
+ }
+
+ bool use_sigmoid = use_linear && p->opts.sigmoid_upscaling && upscaling;
+ float sig_center, sig_slope, sig_offset, sig_scale;
+ if (use_sigmoid) {
+ // Coefficients for the sigmoidal transform are taken from the
+ // formula here: http://www.imagemagick.org/Usage/color_mods/#sigmoidal
+ sig_center = p->opts.sigmoid_center;
+ sig_slope = p->opts.sigmoid_slope;
+ // This function needs to go through (0,0) and (1,1) so we compute the
+ // values at 1 and 0, and then scale/shift them, respectively.
+ sig_offset = 1.0/(1+expf(sig_slope * sig_center));
+ sig_scale = 1.0/(1+expf(sig_slope * (sig_center-1))) - sig_offset;
+ GLSL(color.rgb = clamp(color.rgb, 0.0, 1.0);)
+ GLSLF("color.rgb = %f - log(1.0/(color.rgb * %f + %f) - 1.0) * 1.0/%f;\n",
+ sig_center, sig_scale, sig_offset, sig_slope);
+ pass_opt_hook_point(p, "SIGMOID", NULL);
+ }
+
+ pass_opt_hook_point(p, "PREKERNEL", NULL);
+
+ int vp_w = p->dst_rect.x1 - p->dst_rect.x0;
+ int vp_h = p->dst_rect.y1 - p->dst_rect.y0;
+ struct gl_transform transform;
+ compute_src_transform(p, &transform);
+
+ GLSLF("// main scaling\n");
+ finish_pass_tex(p, &p->indirect_tex, p->texture_w, p->texture_h);
+ struct image src = image_wrap(p->indirect_tex, PLANE_RGB, p->components);
+ gl_transform_trans(transform, &src.transform);
+ pass_sample(p, src, scaler, &scaler_conf, scale_factor, vp_w, vp_h);
+
+ // Changes the texture size to display size after main scaler.
+ p->texture_w = vp_w;
+ p->texture_h = vp_h;
+
+ pass_opt_hook_point(p, "POSTKERNEL", NULL);
+
+ GLSLF("// scaler post-conversion\n");
+ if (use_sigmoid) {
+ // Inverse of the transformation above
+ GLSL(color.rgb = clamp(color.rgb, 0.0, 1.0);)
+ GLSLF("color.rgb = (1.0/(1.0 + exp(%f * (%f - color.rgb))) - %f) * 1.0/%f;\n",
+ sig_slope, sig_center, sig_offset, sig_scale);
+ }
+}
+
+// Adapts the colors to the right output color space. (Final pass during
+// rendering)
+// If OSD is true, ignore any changes that may have been made to the video
+// by previous passes (i.e. linear scaling)
+static void pass_colormanage(struct gl_video *p, struct mp_colorspace src,
+ struct mp_colorspace fbo_csp, int flags, bool osd)
+{
+ struct ra *ra = p->ra;
+
+ // Configure the destination according to the FBO color space,
+ // unless specific transfer function, primaries or target peak
+ // is set. If values are set to _AUTO, the most likely intended
+ // values are guesstimated later in this function.
+ struct mp_colorspace dst = {
+ .gamma = p->opts.target_trc == MP_CSP_TRC_AUTO ?
+ fbo_csp.gamma : p->opts.target_trc,
+ .primaries = p->opts.target_prim == MP_CSP_PRIM_AUTO ?
+ fbo_csp.primaries : p->opts.target_prim,
+ .light = MP_CSP_LIGHT_DISPLAY,
+ .hdr.max_luma = !p->opts.target_peak ?
+ fbo_csp.hdr.max_luma : p->opts.target_peak,
+ };
+
+ if (!p->colorspace_override_warned &&
+ ((fbo_csp.gamma && dst.gamma != fbo_csp.gamma) ||
+ (fbo_csp.primaries && dst.primaries != fbo_csp.primaries)))
+ {
+ MP_WARN(p, "One or more colorspace value is being overridden "
+ "by user while the FBO provides colorspace information: "
+ "transfer function: (dst: %s, fbo: %s), "
+ "primaries: (dst: %s, fbo: %s). "
+ "Rendering can lead to incorrect results!\n",
+ m_opt_choice_str(mp_csp_trc_names, dst.gamma),
+ m_opt_choice_str(mp_csp_trc_names, fbo_csp.gamma),
+ m_opt_choice_str(mp_csp_prim_names, dst.primaries),
+ m_opt_choice_str(mp_csp_prim_names, fbo_csp.primaries));
+ p->colorspace_override_warned = true;
+ }
+
+ if (dst.gamma == MP_CSP_TRC_HLG)
+ dst.light = MP_CSP_LIGHT_SCENE_HLG;
+
+ if (p->use_lut_3d && (flags & RENDER_SCREEN_COLOR)) {
+ // The 3DLUT is always generated against the video's original source
+ // space, *not* the reference space. (To avoid having to regenerate
+ // the 3DLUT for the OSD on every frame)
+ enum mp_csp_prim prim_orig = p->image_params.color.primaries;
+ enum mp_csp_trc trc_orig = p->image_params.color.gamma;
+
+ // One exception: HDR is not implemented by LittleCMS for technical
+ // limitation reasons, so we use a gamma 2.2 input curve here instead.
+ // We could pick any value we want here, the difference is just coding
+ // efficiency.
+ if (mp_trc_is_hdr(trc_orig))
+ trc_orig = MP_CSP_TRC_GAMMA22;
+
+ if (gl_video_get_lut3d(p, prim_orig, trc_orig)) {
+ dst.primaries = prim_orig;
+ dst.gamma = trc_orig;
+ assert(dst.primaries && dst.gamma);
+ }
+ }
+
+ if (dst.primaries == MP_CSP_PRIM_AUTO) {
+ // The vast majority of people are on sRGB or BT.709 displays, so pick
+ // this as the default output color space.
+ dst.primaries = MP_CSP_PRIM_BT_709;
+
+ if (src.primaries == MP_CSP_PRIM_BT_601_525 ||
+ src.primaries == MP_CSP_PRIM_BT_601_625)
+ {
+ // Since we auto-pick BT.601 and BT.709 based on the dimensions,
+ // combined with the fact that they're very similar to begin with,
+ // and to avoid confusing the average user, just don't adapt BT.601
+ // content automatically at all.
+ dst.primaries = src.primaries;
+ }
+ }
+
+ if (dst.gamma == MP_CSP_TRC_AUTO) {
+ // Most people seem to complain when the image is darker or brighter
+ // than what they're "used to", so just avoid changing the gamma
+ // altogether by default. The only exceptions to this rule apply to
+ // very unusual TRCs, which even hardcode technoluddites would probably
+ // not enjoy viewing unaltered.
+ dst.gamma = src.gamma;
+
+ // Avoid outputting linear light or HDR content "by default". For these
+ // just pick gamma 2.2 as a default, since it's a good estimate for
+ // the response of typical displays
+ if (dst.gamma == MP_CSP_TRC_LINEAR || mp_trc_is_hdr(dst.gamma))
+ dst.gamma = MP_CSP_TRC_GAMMA22;
+ }
+
+ // If there's no specific signal peak known for the output display, infer
+ // it from the chosen transfer function. Also normalize the src peak, in
+ // case it was unknown
+ if (!dst.hdr.max_luma)
+ dst.hdr.max_luma = mp_trc_nom_peak(dst.gamma) * MP_REF_WHITE;
+ if (!src.hdr.max_luma)
+ src.hdr.max_luma = mp_trc_nom_peak(src.gamma) * MP_REF_WHITE;
+
+ // Whitelist supported modes
+ switch (p->opts.tone_map.curve) {
+ case TONE_MAPPING_AUTO:
+ case TONE_MAPPING_CLIP:
+ case TONE_MAPPING_MOBIUS:
+ case TONE_MAPPING_REINHARD:
+ case TONE_MAPPING_HABLE:
+ case TONE_MAPPING_GAMMA:
+ case TONE_MAPPING_LINEAR:
+ case TONE_MAPPING_BT_2390:
+ break;
+ default:
+ MP_WARN(p, "Tone mapping curve unsupported by vo_gpu, falling back.\n");
+ p->opts.tone_map.curve = TONE_MAPPING_AUTO;
+ break;
+ }
+
+ switch (p->opts.tone_map.gamut_mode) {
+ case GAMUT_AUTO:
+ case GAMUT_WARN:
+ case GAMUT_CLIP:
+ case GAMUT_DESATURATE:
+ break;
+ default:
+ MP_WARN(p, "Gamut mapping mode unsupported by vo_gpu, falling back.\n");
+ p->opts.tone_map.gamut_mode = GAMUT_AUTO;
+ break;
+ }
+
+ struct gl_tone_map_opts tone_map = p->opts.tone_map;
+ bool detect_peak = tone_map.compute_peak >= 0 && mp_trc_is_hdr(src.gamma)
+ && src.hdr.max_luma > dst.hdr.max_luma;
+
+ if (detect_peak && !p->hdr_peak_ssbo) {
+ struct {
+ float average[2];
+ int32_t frame_sum;
+ uint32_t frame_max;
+ uint32_t counter;
+ } peak_ssbo = {0};
+
+ struct ra_buf_params params = {
+ .type = RA_BUF_TYPE_SHADER_STORAGE,
+ .size = sizeof(peak_ssbo),
+ .initial_data = &peak_ssbo,
+ };
+
+ p->hdr_peak_ssbo = ra_buf_create(ra, &params);
+ if (!p->hdr_peak_ssbo) {
+ MP_WARN(p, "Failed to create HDR peak detection SSBO, disabling.\n");
+ tone_map.compute_peak = p->opts.tone_map.compute_peak = -1;
+ detect_peak = false;
+ }
+ }
+
+ if (detect_peak) {
+ pass_describe(p, "detect HDR peak");
+ pass_is_compute(p, 8, 8, true); // 8x8 is good for performance
+ gl_sc_ssbo(p->sc, "PeakDetect", p->hdr_peak_ssbo,
+ "vec2 average;"
+ "int frame_sum;"
+ "uint frame_max;"
+ "uint counter;"
+ );
+ } else {
+ tone_map.compute_peak = -1;
+ }
+
+ // Adapt from src to dst as necessary
+ pass_color_map(p->sc, p->use_linear && !osd, src, dst, &tone_map);
+
+ if (p->use_lut_3d && (flags & RENDER_SCREEN_COLOR)) {
+ gl_sc_uniform_texture(p->sc, "lut_3d", p->lut_3d_texture);
+ GLSL(vec3 cpos;)
+ for (int i = 0; i < 3; i++)
+ GLSLF("cpos[%d] = LUT_POS(color[%d], %d.0);\n", i, i, p->lut_3d_size[i]);
+ GLSL(color.rgb = tex3D(lut_3d, cpos).rgb;)
+ }
+}
+
+void gl_video_set_fb_depth(struct gl_video *p, int fb_depth)
+{
+ p->fb_depth = fb_depth;
+}
+
+static void pass_dither(struct gl_video *p)
+{
+ // Assume 8 bits per component if unknown.
+ int dst_depth = p->fb_depth > 0 ? p->fb_depth : 8;
+ if (p->opts.dither_depth > 0)
+ dst_depth = p->opts.dither_depth;
+
+ if (p->opts.dither_depth < 0 || p->opts.dither_algo == DITHER_NONE)
+ return;
+
+ if (p->opts.dither_algo == DITHER_ERROR_DIFFUSION) {
+ const struct error_diffusion_kernel *kernel =
+ mp_find_error_diffusion_kernel(p->opts.error_diffusion);
+ int o_w = p->dst_rect.x1 - p->dst_rect.x0,
+ o_h = p->dst_rect.y1 - p->dst_rect.y0;
+
+ int shmem_req = mp_ef_compute_shared_memory_size(kernel, o_h);
+ if (shmem_req > p->ra->max_shmem) {
+ MP_WARN(p, "Fallback to dither=fruit because there is no enough "
+ "shared memory (%d/%d).\n",
+ shmem_req, (int)p->ra->max_shmem);
+ p->opts.dither_algo = DITHER_FRUIT;
+ } else {
+ finish_pass_tex(p, &p->error_diffusion_tex[0], o_w, o_h);
+
+ struct image img = image_wrap(p->error_diffusion_tex[0], PLANE_RGB, p->components);
+
+ // Ensure the block size doesn't exceed the maximum of the
+ // implementation.
+ int block_size = MPMIN(p->ra->max_compute_group_threads, o_h);
+
+ pass_describe(p, "dither=error-diffusion (kernel=%s, depth=%d)",
+ kernel->name, dst_depth);
+
+ p->pass_compute = (struct compute_info) {
+ .active = true,
+ .threads_w = block_size,
+ .threads_h = 1,
+ .directly_writes = true
+ };
+
+ int tex_id = pass_bind(p, img);
+
+ pass_error_diffusion(p->sc, kernel, tex_id, o_w, o_h,
+ dst_depth, block_size);
+
+ finish_pass_tex(p, &p->error_diffusion_tex[1], o_w, o_h);
+
+ img = image_wrap(p->error_diffusion_tex[1], PLANE_RGB, p->components);
+ copy_image(p, &(int){0}, img);
+
+ return;
+ }
+ }
+
+ if (!p->dither_texture) {
+ MP_VERBOSE(p, "Dither to %d.\n", dst_depth);
+
+ int tex_size = 0;
+ void *tex_data = NULL;
+ const struct ra_format *fmt = NULL;
+ void *temp = NULL;
+
+ if (p->opts.dither_algo == DITHER_FRUIT) {
+ int sizeb = p->opts.dither_size;
+ int size = 1 << sizeb;
+
+ if (p->last_dither_matrix_size != size) {
+ p->last_dither_matrix = talloc_realloc(p, p->last_dither_matrix,
+ float, size * size);
+ mp_make_fruit_dither_matrix(p->last_dither_matrix, sizeb);
+ p->last_dither_matrix_size = size;
+ }
+
+ // Prefer R16 texture since they provide higher precision.
+ fmt = ra_find_unorm_format(p->ra, 2, 1);
+ if (!fmt)
+ fmt = ra_find_float16_format(p->ra, 1);
+ if (fmt) {
+ tex_size = size;
+ tex_data = p->last_dither_matrix;
+ if (fmt->ctype == RA_CTYPE_UNORM) {
+ uint16_t *t = temp = talloc_array(NULL, uint16_t, size * size);
+ for (int n = 0; n < size * size; n++)
+ t[n] = p->last_dither_matrix[n] * UINT16_MAX;
+ tex_data = t;
+ }
+ } else {
+ MP_VERBOSE(p, "GL too old. Falling back to ordered dither.\n");
+ p->opts.dither_algo = DITHER_ORDERED;
+ }
+ }
+
+ if (p->opts.dither_algo == DITHER_ORDERED) {
+ temp = talloc_array(NULL, char, 8 * 8);
+ mp_make_ordered_dither_matrix(temp, 8);
+
+ fmt = ra_find_unorm_format(p->ra, 1, 1);
+ tex_size = 8;
+ tex_data = temp;
+ }
+
+ struct ra_tex_params params = {
+ .dimensions = 2,
+ .w = tex_size,
+ .h = tex_size,
+ .d = 1,
+ .format = fmt,
+ .render_src = true,
+ .src_repeat = true,
+ .initial_data = tex_data,
+ };
+ p->dither_texture = ra_tex_create(p->ra, &params);
+
+ debug_check_gl(p, "dither setup");
+
+ talloc_free(temp);
+
+ if (!p->dither_texture)
+ return;
+ }
+
+ GLSLF("// dithering\n");
+
+ // This defines how many bits are considered significant for output on
+ // screen. The superfluous bits will be used for rounding according to the
+ // dither matrix. The precision of the source implicitly decides how many
+ // dither patterns can be visible.
+ int dither_quantization = (1 << dst_depth) - 1;
+ int dither_size = p->dither_texture->params.w;
+
+ gl_sc_uniform_texture(p->sc, "dither", p->dither_texture);
+
+ GLSLF("vec2 dither_pos = gl_FragCoord.xy * 1.0/%d.0;\n", dither_size);
+
+ if (p->opts.temporal_dither) {
+ int phase = (p->frames_rendered / p->opts.temporal_dither_period) % 8u;
+ float r = phase * (M_PI / 2); // rotate
+ float m = phase < 4 ? 1 : -1; // mirror
+
+ float matrix[2][2] = {{cos(r), -sin(r) },
+ {sin(r) * m, cos(r) * m}};
+ gl_sc_uniform_dynamic(p->sc);
+ gl_sc_uniform_mat2(p->sc, "dither_trafo", true, &matrix[0][0]);
+
+ GLSL(dither_pos = dither_trafo * dither_pos;)
+ }
+
+ GLSL(float dither_value = texture(dither, dither_pos).r;)
+ GLSLF("color = floor(color * %d.0 + dither_value + 0.5 / %d.0) * 1.0/%d.0;\n",
+ dither_quantization, dither_size * dither_size, dither_quantization);
+}
+
+// Draws the OSD, in scene-referred colors.. If cms is true, subtitles are
+// instead adapted to the display's gamut.
+static void pass_draw_osd(struct gl_video *p, int osd_flags, int frame_flags,
+ double pts, struct mp_osd_res rect, struct ra_fbo fbo,
+ bool cms)
+{
+ if (frame_flags & RENDER_FRAME_VF_SUBS)
+ osd_flags |= OSD_DRAW_SUB_FILTER;
+
+ if ((osd_flags & OSD_DRAW_SUB_ONLY) && (osd_flags & OSD_DRAW_OSD_ONLY))
+ return;
+
+ mpgl_osd_generate(p->osd, rect, pts, p->image_params.stereo3d, osd_flags);
+
+ timer_pool_start(p->osd_timer);
+ for (int n = 0; n < MAX_OSD_PARTS; n++) {
+ // (This returns false if this part is empty with nothing to draw.)
+ if (!mpgl_osd_draw_prepare(p->osd, n, p->sc))
+ continue;
+ // When subtitles need to be color managed, assume they're in sRGB
+ // (for lack of anything saner to do)
+ if (cms) {
+ static const struct mp_colorspace csp_srgb = {
+ .primaries = MP_CSP_PRIM_BT_709,
+ .gamma = MP_CSP_TRC_SRGB,
+ .light = MP_CSP_LIGHT_DISPLAY,
+ };
+
+ pass_colormanage(p, csp_srgb, fbo.color_space, frame_flags, true);
+ }
+ mpgl_osd_draw_finish(p->osd, n, p->sc, fbo);
+ }
+
+ timer_pool_stop(p->osd_timer);
+ pass_describe(p, "drawing osd");
+ pass_record(p, timer_pool_measure(p->osd_timer));
+}
+
+static float chroma_realign(int size, int pixel)
+{
+ return size / (float)chroma_upsize(size, pixel);
+}
+
+// Minimal rendering code path, for GLES or OpenGL 2.1 without proper FBOs.
+static void pass_render_frame_dumb(struct gl_video *p)
+{
+ struct image img[4];
+ struct gl_transform off[4];
+ pass_get_images(p, &p->image, img, off);
+
+ struct gl_transform transform;
+ compute_src_transform(p, &transform);
+
+ int index = 0;
+ for (int i = 0; i < p->plane_count; i++) {
+ int cw = img[i].type == PLANE_CHROMA ? p->ra_format.chroma_w : 1;
+ int ch = img[i].type == PLANE_CHROMA ? p->ra_format.chroma_h : 1;
+ if (p->image_params.rotate % 180 == 90)
+ MPSWAP(int, cw, ch);
+
+ struct gl_transform t = transform;
+ t.m[0][0] *= chroma_realign(p->texture_w, cw);
+ t.m[1][1] *= chroma_realign(p->texture_h, ch);
+
+ t.t[0] /= cw;
+ t.t[1] /= ch;
+
+ t.t[0] += off[i].t[0];
+ t.t[1] += off[i].t[1];
+
+ gl_transform_trans(img[i].transform, &t);
+ img[i].transform = t;
+
+ copy_image(p, &index, img[i]);
+ }
+
+ pass_convert_yuv(p);
+}
+
+// The main rendering function, takes care of everything up to and including
+// upscaling. p->image is rendered.
+// flags: bit set of RENDER_FRAME_* flags
+static bool pass_render_frame(struct gl_video *p, struct mp_image *mpi,
+ uint64_t id, int flags)
+{
+ // initialize the texture parameters and temporary variables
+ p->texture_w = p->image_params.w;
+ p->texture_h = p->image_params.h;
+ p->texture_offset = identity_trans;
+ p->components = 0;
+ p->num_saved_imgs = 0;
+ p->idx_hook_textures = 0;
+ p->use_linear = false;
+
+ // try uploading the frame
+ if (!pass_upload_image(p, mpi, id))
+ return false;
+
+ if (p->image_params.rotate % 180 == 90)
+ MPSWAP(int, p->texture_w, p->texture_h);
+
+ if (p->dumb_mode)
+ return true;
+
+ pass_read_video(p);
+ pass_opt_hook_point(p, "NATIVE", &p->texture_offset);
+ pass_convert_yuv(p);
+ pass_opt_hook_point(p, "MAINPRESUB", &p->texture_offset);
+
+ // For subtitles
+ double vpts = p->image.mpi->pts;
+ if (vpts == MP_NOPTS_VALUE)
+ vpts = p->osd_pts;
+
+ if (p->osd && p->opts.blend_subs == BLEND_SUBS_VIDEO &&
+ (flags & RENDER_FRAME_SUBS))
+ {
+ double scale[2];
+ get_scale_factors(p, false, scale);
+ struct mp_osd_res rect = {
+ .w = p->texture_w, .h = p->texture_h,
+ .display_par = scale[1] / scale[0], // counter compensate scaling
+ };
+ finish_pass_tex(p, &p->blend_subs_tex, rect.w, rect.h);
+ struct ra_fbo fbo = { p->blend_subs_tex };
+ pass_draw_osd(p, OSD_DRAW_SUB_ONLY, flags, vpts, rect, fbo, false);
+ pass_read_tex(p, p->blend_subs_tex);
+ pass_describe(p, "blend subs video");
+ }
+ pass_opt_hook_point(p, "MAIN", &p->texture_offset);
+
+ pass_scale_main(p);
+
+ int vp_w = p->dst_rect.x1 - p->dst_rect.x0,
+ vp_h = p->dst_rect.y1 - p->dst_rect.y0;
+ if (p->osd && p->opts.blend_subs == BLEND_SUBS_YES &&
+ (flags & RENDER_FRAME_SUBS))
+ {
+ // Recreate the real video size from the src/dst rects
+ struct mp_osd_res rect = {
+ .w = vp_w, .h = vp_h,
+ .ml = -p->src_rect.x0, .mr = p->src_rect.x1 - p->image_params.w,
+ .mt = -p->src_rect.y0, .mb = p->src_rect.y1 - p->image_params.h,
+ .display_par = 1.0,
+ };
+ // Adjust margins for scale
+ double scale[2];
+ get_scale_factors(p, true, scale);
+ rect.ml *= scale[0]; rect.mr *= scale[0];
+ rect.mt *= scale[1]; rect.mb *= scale[1];
+ // We should always blend subtitles in non-linear light
+ if (p->use_linear) {
+ pass_delinearize(p->sc, p->image_params.color.gamma);
+ p->use_linear = false;
+ }
+ finish_pass_tex(p, &p->blend_subs_tex, p->texture_w, p->texture_h);
+ struct ra_fbo fbo = { p->blend_subs_tex };
+ pass_draw_osd(p, OSD_DRAW_SUB_ONLY, flags, vpts, rect, fbo, false);
+ pass_read_tex(p, p->blend_subs_tex);
+ pass_describe(p, "blend subs");
+ }
+
+ pass_opt_hook_point(p, "SCALED", NULL);
+
+ return true;
+}
+
+static void pass_draw_to_screen(struct gl_video *p, struct ra_fbo fbo, int flags)
+{
+ if (p->dumb_mode)
+ pass_render_frame_dumb(p);
+
+ // Adjust the overall gamma before drawing to screen
+ if (p->user_gamma != 1) {
+ gl_sc_uniform_f(p->sc, "user_gamma", p->user_gamma);
+ GLSL(color.rgb = clamp(color.rgb, 0.0, 1.0);)
+ GLSL(color.rgb = pow(color.rgb, vec3(user_gamma));)
+ }
+
+ pass_colormanage(p, p->image_params.color, fbo.color_space, flags, false);
+
+ // Since finish_pass_fbo doesn't work with compute shaders, and neither
+ // does the checkerboard/dither code, we may need an indirection via
+ // p->screen_tex here.
+ if (p->pass_compute.active) {
+ int o_w = p->dst_rect.x1 - p->dst_rect.x0,
+ o_h = p->dst_rect.y1 - p->dst_rect.y0;
+ finish_pass_tex(p, &p->screen_tex, o_w, o_h);
+ struct image tmp = image_wrap(p->screen_tex, PLANE_RGB, p->components);
+ copy_image(p, &(int){0}, tmp);
+ }
+
+ if (p->has_alpha){
+ if (p->opts.alpha_mode == ALPHA_BLEND_TILES) {
+ // Draw checkerboard pattern to indicate transparency
+ GLSLF("// transparency checkerboard\n");
+ GLSL(bvec2 tile = lessThan(fract(gl_FragCoord.xy * 1.0/32.0), vec2(0.5));)
+ GLSL(vec3 background = vec3(tile.x == tile.y ? 0.93 : 0.87);)
+ GLSL(color.rgb += background.rgb * (1.0 - color.a);)
+ GLSL(color.a = 1.0;)
+ } else if (p->opts.alpha_mode == ALPHA_BLEND) {
+ // Blend into background color (usually black)
+ struct m_color c = p->opts.background;
+ GLSLF("vec4 background = vec4(%f, %f, %f, %f);\n",
+ c.r / 255.0, c.g / 255.0, c.b / 255.0, c.a / 255.0);
+ GLSL(color.rgb += background.rgb * (1.0 - color.a);)
+ GLSL(color.a = background.a;)
+ }
+ }
+
+ pass_opt_hook_point(p, "OUTPUT", NULL);
+
+ if (flags & RENDER_SCREEN_COLOR)
+ pass_dither(p);
+ pass_describe(p, "output to screen");
+ finish_pass_fbo(p, fbo, false, &p->dst_rect);
+}
+
+// flags: bit set of RENDER_FRAME_* flags
+static bool update_surface(struct gl_video *p, struct mp_image *mpi,
+ uint64_t id, struct surface *surf, int flags)
+{
+ int vp_w = p->dst_rect.x1 - p->dst_rect.x0,
+ vp_h = p->dst_rect.y1 - p->dst_rect.y0;
+
+ pass_info_reset(p, false);
+ if (!pass_render_frame(p, mpi, id, flags))
+ return false;
+
+ // Frame blending should always be done in linear light to preserve the
+ // overall brightness, otherwise this will result in flashing dark frames
+ // because mixing in compressed light artificially darkens the results
+ if (!p->use_linear) {
+ p->use_linear = true;
+ pass_linearize(p->sc, p->image_params.color.gamma);
+ }
+
+ finish_pass_tex(p, &surf->tex, vp_w, vp_h);
+ surf->id = id;
+ surf->pts = mpi->pts;
+ return true;
+}
+
+// Draws an interpolate frame to fbo, based on the frame timing in t
+// flags: bit set of RENDER_FRAME_* flags
+static void gl_video_interpolate_frame(struct gl_video *p, struct vo_frame *t,
+ struct ra_fbo fbo, int flags)
+{
+ bool is_new = false;
+
+ // Reset the queue completely if this is a still image, to avoid any
+ // interpolation artifacts from surrounding frames when unpausing or
+ // framestepping
+ if (t->still)
+ gl_video_reset_surfaces(p);
+
+ // First of all, figure out if we have a frame available at all, and draw
+ // it manually + reset the queue if not
+ if (p->surfaces[p->surface_now].id == 0) {
+ struct surface *now = &p->surfaces[p->surface_now];
+ if (!update_surface(p, t->current, t->frame_id, now, flags))
+ return;
+ p->surface_idx = p->surface_now;
+ is_new = true;
+ }
+
+ // Find the right frame for this instant
+ if (t->current) {
+ int next = surface_wrap(p->surface_now + 1);
+ while (p->surfaces[next].id &&
+ p->surfaces[next].id > p->surfaces[p->surface_now].id &&
+ p->surfaces[p->surface_now].id < t->frame_id)
+ {
+ p->surface_now = next;
+ next = surface_wrap(next + 1);
+ }
+ }
+
+ // Figure out the queue size. For illustration, a filter radius of 2 would
+ // look like this: _ A [B] C D _
+ // A is surface_bse, B is surface_now, C is surface_now+1 and D is
+ // surface_end.
+ struct scaler *tscale = &p->scaler[SCALER_TSCALE];
+ reinit_scaler(p, tscale, &p->opts.scaler[SCALER_TSCALE], 1, tscale_sizes);
+ bool oversample = strcmp(tscale->conf.kernel.name, "oversample") == 0;
+ bool linear = strcmp(tscale->conf.kernel.name, "linear") == 0;
+ int size;
+
+ if (oversample || linear) {
+ size = 2;
+ } else {
+ assert(tscale->kernel && !tscale->kernel->polar);
+ size = ceil(tscale->kernel->size);
+ }
+
+ int radius = size/2;
+ int surface_now = p->surface_now;
+ int surface_bse = surface_wrap(surface_now - (radius-1));
+ int surface_end = surface_wrap(surface_now + radius);
+ assert(surface_wrap(surface_bse + size-1) == surface_end);
+
+ // Render new frames while there's room in the queue. Note that technically,
+ // this should be done before the step where we find the right frame, but
+ // it only barely matters at the very beginning of playback, and this way
+ // makes the code much more linear.
+ int surface_dst = surface_wrap(p->surface_idx + 1);
+ for (int i = 0; i < t->num_frames; i++) {
+ // Avoid overwriting data we might still need
+ if (surface_dst == surface_bse - 1)
+ break;
+
+ struct mp_image *f = t->frames[i];
+ uint64_t f_id = t->frame_id + i;
+ if (!mp_image_params_equal(&f->params, &p->real_image_params))
+ continue;
+
+ if (f_id > p->surfaces[p->surface_idx].id) {
+ struct surface *dst = &p->surfaces[surface_dst];
+ if (!update_surface(p, f, f_id, dst, flags))
+ return;
+ p->surface_idx = surface_dst;
+ surface_dst = surface_wrap(surface_dst + 1);
+ is_new = true;
+ }
+ }
+
+ // Figure out whether the queue is "valid". A queue is invalid if the
+ // frames' PTS is not monotonically increasing. Anything else is invalid,
+ // so avoid blending incorrect data and just draw the latest frame as-is.
+ // Possible causes for failure of this condition include seeks, pausing,
+ // end of playback or start of playback.
+ bool valid = true;
+ for (int i = surface_bse, ii; valid && i != surface_end; i = ii) {
+ ii = surface_wrap(i + 1);
+ if (p->surfaces[i].id == 0 || p->surfaces[ii].id == 0) {
+ valid = false;
+ } else if (p->surfaces[ii].id < p->surfaces[i].id) {
+ valid = false;
+ MP_DBG(p, "interpolation queue underrun\n");
+ }
+ }
+
+ // Update OSD PTS to synchronize subtitles with the displayed frame
+ p->osd_pts = p->surfaces[surface_now].pts;
+
+ // Finally, draw the right mix of frames to the screen.
+ if (!is_new)
+ pass_info_reset(p, true);
+ pass_describe(p, "interpolation");
+ if (!valid || t->still) {
+ // surface_now is guaranteed to be valid, so we can safely use it.
+ pass_read_tex(p, p->surfaces[surface_now].tex);
+ p->is_interpolated = false;
+ } else {
+ double mix = t->vsync_offset / t->ideal_frame_duration;
+ // The scaler code always wants the fcoord to be between 0 and 1,
+ // so we try to adjust by using the previous set of N frames instead
+ // (which requires some extra checking to make sure it's valid)
+ if (mix < 0.0) {
+ int prev = surface_wrap(surface_bse - 1);
+ if (p->surfaces[prev].id != 0 &&
+ p->surfaces[prev].id < p->surfaces[surface_bse].id)
+ {
+ mix += 1.0;
+ surface_bse = prev;
+ } else {
+ mix = 0.0; // at least don't blow up, this should only
+ // ever happen at the start of playback
+ }
+ }
+
+ if (oversample) {
+ // Oversample uses the frame area as mix ratio, not the vsync
+ // position itself
+ double vsync_dist = t->vsync_interval / t->ideal_frame_duration,
+ threshold = tscale->conf.kernel.params[0];
+ threshold = isnan(threshold) ? 0.0 : threshold;
+ mix = (1 - mix) / vsync_dist;
+ mix = mix <= 0 + threshold ? 0 : mix;
+ mix = mix >= 1 - threshold ? 1 : mix;
+ mix = 1 - mix;
+ }
+
+ // Blend the frames together
+ if (oversample || linear) {
+ gl_sc_uniform_dynamic(p->sc);
+ gl_sc_uniform_f(p->sc, "inter_coeff", mix);
+ GLSL(color = mix(texture(texture0, texcoord0),
+ texture(texture1, texcoord1),
+ inter_coeff);)
+ } else {
+ gl_sc_uniform_dynamic(p->sc);
+ gl_sc_uniform_f(p->sc, "fcoord", mix);
+ pass_sample_separated_gen(p->sc, tscale, 0, 0);
+ }
+
+ // Load all the required frames
+ for (int i = 0; i < size; i++) {
+ struct image img =
+ image_wrap(p->surfaces[surface_wrap(surface_bse+i)].tex,
+ PLANE_RGB, p->components);
+ // Since the code in pass_sample_separated currently assumes
+ // the textures are bound in-order and starting at 0, we just
+ // assert to make sure this is the case (which it should always be)
+ int id = pass_bind(p, img);
+ assert(id == i);
+ }
+
+ MP_TRACE(p, "inter frame dur: %f vsync: %f, mix: %f\n",
+ t->ideal_frame_duration, t->vsync_interval, mix);
+ p->is_interpolated = true;
+ }
+ pass_draw_to_screen(p, fbo, flags);
+
+ p->frames_drawn += 1;
+}
+
+void gl_video_render_frame(struct gl_video *p, struct vo_frame *frame,
+ struct ra_fbo fbo, int flags)
+{
+ gl_video_update_options(p);
+
+ struct mp_rect target_rc = {0, 0, fbo.tex->params.w, fbo.tex->params.h};
+
+ p->broken_frame = false;
+
+ bool has_frame = !!frame->current;
+
+ struct m_color c = p->clear_color;
+ float clear_color[4] = {c.r / 255.0, c.g / 255.0, c.b / 255.0, c.a / 255.0};
+ p->ra->fns->clear(p->ra, fbo.tex, clear_color, &target_rc);
+
+ if (p->hwdec_overlay) {
+ if (has_frame) {
+ float *color = p->hwdec_overlay->overlay_colorkey;
+ p->ra->fns->clear(p->ra, fbo.tex, color, &p->dst_rect);
+ }
+
+ p->hwdec_overlay->driver->overlay_frame(p->hwdec_overlay, frame->current,
+ &p->src_rect, &p->dst_rect,
+ frame->frame_id != p->image.id);
+
+ if (frame->current)
+ p->osd_pts = frame->current->pts;
+
+ // Disable GL rendering
+ has_frame = false;
+ }
+
+ if (has_frame) {
+ bool interpolate = p->opts.interpolation && frame->display_synced &&
+ (p->frames_drawn || !frame->still);
+ if (interpolate) {
+ double ratio = frame->ideal_frame_duration / frame->vsync_interval;
+ if (fabs(ratio - 1.0) < p->opts.interpolation_threshold)
+ interpolate = false;
+ }
+
+ if (interpolate) {
+ gl_video_interpolate_frame(p, frame, fbo, flags);
+ } else {
+ bool is_new = frame->frame_id != p->image.id;
+
+ // Redrawing a frame might update subtitles.
+ if (frame->still && p->opts.blend_subs)
+ is_new = true;
+
+ if (is_new || !p->output_tex_valid) {
+ p->output_tex_valid = false;
+
+ pass_info_reset(p, !is_new);
+ if (!pass_render_frame(p, frame->current, frame->frame_id, flags))
+ goto done;
+
+ // For the non-interpolation case, we draw to a single "cache"
+ // texture to speed up subsequent re-draws (if any exist)
+ struct ra_fbo dest_fbo = fbo;
+ bool repeats = frame->num_vsyncs > 1 && frame->display_synced;
+ if ((repeats || frame->still) && !p->dumb_mode &&
+ (p->ra->caps & RA_CAP_BLIT) && fbo.tex->params.blit_dst)
+ {
+ // Attempt to use the same format as the destination FBO
+ // if possible. Some RAs use a wrapped dummy format here,
+ // so fall back to the fbo_format in that case.
+ const struct ra_format *fmt = fbo.tex->params.format;
+ if (fmt->dummy_format)
+ fmt = p->fbo_format;
+
+ bool r = ra_tex_resize(p->ra, p->log, &p->output_tex,
+ fbo.tex->params.w, fbo.tex->params.h,
+ fmt);
+ if (r) {
+ dest_fbo = (struct ra_fbo) { p->output_tex };
+ p->output_tex_valid = true;
+ }
+ }
+ pass_draw_to_screen(p, dest_fbo, flags);
+ }
+
+ // "output tex valid" and "output tex needed" are equivalent
+ if (p->output_tex_valid && fbo.tex->params.blit_dst) {
+ pass_info_reset(p, true);
+ pass_describe(p, "redraw cached frame");
+ struct mp_rect src = p->dst_rect;
+ struct mp_rect dst = src;
+ if (fbo.flip) {
+ dst.y0 = fbo.tex->params.h - src.y0;
+ dst.y1 = fbo.tex->params.h - src.y1;
+ }
+ timer_pool_start(p->blit_timer);
+ p->ra->fns->blit(p->ra, fbo.tex, p->output_tex, &dst, &src);
+ timer_pool_stop(p->blit_timer);
+ pass_record(p, timer_pool_measure(p->blit_timer));
+ }
+ }
+ }
+
+done:
+
+ debug_check_gl(p, "after video rendering");
+
+ if (p->osd && (flags & (RENDER_FRAME_SUBS | RENDER_FRAME_OSD))) {
+ // If we haven't actually drawn anything so far, then we technically
+ // need to consider this the start of a new pass. Let's call it a
+ // redraw just because, since it's basically a blank frame anyway
+ if (!has_frame)
+ pass_info_reset(p, true);
+
+ int osd_flags = p->opts.blend_subs ? OSD_DRAW_OSD_ONLY : 0;
+ if (!(flags & RENDER_FRAME_SUBS))
+ osd_flags |= OSD_DRAW_OSD_ONLY;
+ if (!(flags & RENDER_FRAME_OSD))
+ osd_flags |= OSD_DRAW_SUB_ONLY;
+
+ pass_draw_osd(p, osd_flags, flags, p->osd_pts, p->osd_rect, fbo, true);
+ debug_check_gl(p, "after OSD rendering");
+ }
+
+ p->broken_frame |= gl_sc_error_state(p->sc);
+ if (p->broken_frame) {
+ // Make the screen solid blue to make it visually clear that an
+ // error has occurred
+ float color[4] = {0.0, 0.05, 0.5, 1.0};
+ p->ra->fns->clear(p->ra, fbo.tex, color, &target_rc);
+ }
+
+ p->frames_rendered++;
+ pass_report_performance(p);
+}
+
+void gl_video_screenshot(struct gl_video *p, struct vo_frame *frame,
+ struct voctrl_screenshot *args)
+{
+ if (!p->ra->fns->tex_download)
+ return;
+
+ bool ok = false;
+ struct mp_image *res = NULL;
+ struct ra_tex *target = NULL;
+ struct mp_rect old_src = p->src_rect;
+ struct mp_rect old_dst = p->dst_rect;
+ struct mp_osd_res old_osd = p->osd_rect;
+ struct vo_frame *nframe = vo_frame_ref(frame);
+
+ // Disable interpolation and such.
+ nframe->redraw = true;
+ nframe->repeat = false;
+ nframe->still = true;
+ nframe->pts = 0;
+ nframe->duration = -1;
+
+ if (!args->scaled) {
+ int w, h;
+ mp_image_params_get_dsize(&p->image_params, &w, &h);
+ if (w < 1 || h < 1)
+ return;
+
+ int src_w = p->image_params.w;
+ int src_h = p->image_params.h;
+ struct mp_rect src = {0, 0, src_w, src_h};
+ struct mp_rect dst = {0, 0, w, h};
+
+ if (mp_image_crop_valid(&p->image_params))
+ src = p->image_params.crop;
+
+ if (p->image_params.rotate % 180 == 90) {
+ MPSWAP(int, w, h);
+ MPSWAP(int, src_w, src_h);
+ }
+ mp_rect_rotate(&src, src_w, src_h, p->image_params.rotate);
+ mp_rect_rotate(&dst, w, h, p->image_params.rotate);
+
+ struct mp_osd_res osd = {
+ .display_par = 1.0,
+ .w = mp_rect_w(dst),
+ .h = mp_rect_h(dst),
+ };
+ gl_video_resize(p, &src, &dst, &osd);
+ }
+
+ gl_video_reset_surfaces(p);
+
+ struct ra_tex_params params = {
+ .dimensions = 2,
+ .downloadable = true,
+ .w = p->osd_rect.w,
+ .h = p->osd_rect.h,
+ .d = 1,
+ .render_dst = true,
+ };
+
+ params.format = ra_find_unorm_format(p->ra, 1, 4);
+ int mpfmt = IMGFMT_RGB0;
+ if (args->high_bit_depth && p->ra_format.component_bits > 8) {
+ const struct ra_format *fmt = ra_find_unorm_format(p->ra, 2, 4);
+ if (fmt && fmt->renderable) {
+ params.format = fmt;
+ mpfmt = IMGFMT_RGBA64;
+ }
+ }
+
+ if (!params.format || !params.format->renderable)
+ goto done;
+ target = ra_tex_create(p->ra, &params);
+ if (!target)
+ goto done;
+
+ int flags = 0;
+ if (args->subs)
+ flags |= RENDER_FRAME_SUBS;
+ if (args->osd)
+ flags |= RENDER_FRAME_OSD;
+ if (args->scaled)
+ flags |= RENDER_SCREEN_COLOR;
+ gl_video_render_frame(p, nframe, (struct ra_fbo){target}, flags);
+
+ res = mp_image_alloc(mpfmt, params.w, params.h);
+ if (!res)
+ goto done;
+
+ struct ra_tex_download_params download_params = {
+ .tex = target,
+ .dst = res->planes[0],
+ .stride = res->stride[0],
+ };
+ if (!p->ra->fns->tex_download(p->ra, &download_params))
+ goto done;
+
+ if (p->broken_frame)
+ goto done;
+
+ ok = true;
+done:
+ talloc_free(nframe);
+ ra_tex_free(p->ra, &target);
+ gl_video_resize(p, &old_src, &old_dst, &old_osd);
+ gl_video_reset_surfaces(p);
+ if (!ok)
+ TA_FREEP(&res);
+ args->res = res;
+}
+
+// Use this color instead of the global option.
+void gl_video_set_clear_color(struct gl_video *p, struct m_color c)
+{
+ p->force_clear_color = true;
+ p->clear_color = c;
+}
+
+void gl_video_set_osd_pts(struct gl_video *p, double pts)
+{
+ p->osd_pts = pts;
+}
+
+bool gl_video_check_osd_change(struct gl_video *p, struct mp_osd_res *res,
+ double pts)
+{
+ return p->osd ? mpgl_osd_check_change(p->osd, res, pts) : false;
+}
+
+void gl_video_resize(struct gl_video *p,
+ struct mp_rect *src, struct mp_rect *dst,
+ struct mp_osd_res *osd)
+{
+ if (mp_rect_equals(&p->src_rect, src) &&
+ mp_rect_equals(&p->dst_rect, dst) &&
+ osd_res_equals(p->osd_rect, *osd))
+ return;
+
+ p->src_rect = *src;
+ p->dst_rect = *dst;
+ p->osd_rect = *osd;
+
+ gl_video_reset_surfaces(p);
+
+ if (p->osd)
+ mpgl_osd_resize(p->osd, p->osd_rect, p->image_params.stereo3d);
+}
+
+static void frame_perf_data(struct pass_info pass[], struct mp_frame_perf *out)
+{
+ for (int i = 0; i < VO_PASS_PERF_MAX; i++) {
+ if (!pass[i].desc.len)
+ break;
+ out->perf[out->count] = pass[i].perf;
+ strncpy(out->desc[out->count], pass[i].desc.start,
+ sizeof(out->desc[out->count]) - 1);
+ out->desc[out->count][sizeof(out->desc[out->count]) - 1] = '\0';
+ out->count++;
+ }
+}
+
+void gl_video_perfdata(struct gl_video *p, struct voctrl_performance_data *out)
+{
+ *out = (struct voctrl_performance_data){0};
+ frame_perf_data(p->pass_fresh, &out->fresh);
+ frame_perf_data(p->pass_redraw, &out->redraw);
+}
+
+// Returns false on failure.
+static bool pass_upload_image(struct gl_video *p, struct mp_image *mpi, uint64_t id)
+{
+ struct video_image *vimg = &p->image;
+
+ if (vimg->id == id)
+ return true;
+
+ unref_current_image(p);
+
+ mpi = mp_image_new_ref(mpi);
+ if (!mpi)
+ goto error;
+
+ vimg->mpi = mpi;
+ vimg->id = id;
+ p->osd_pts = mpi->pts;
+ p->frames_uploaded++;
+
+ if (p->hwdec_active) {
+ // Hardware decoding
+
+ if (!p->hwdec_mapper)
+ goto error;
+
+ pass_describe(p, "map frame (hwdec)");
+ timer_pool_start(p->upload_timer);
+ bool ok = ra_hwdec_mapper_map(p->hwdec_mapper, vimg->mpi) >= 0;
+ timer_pool_stop(p->upload_timer);
+ pass_record(p, timer_pool_measure(p->upload_timer));
+
+ vimg->hwdec_mapped = true;
+ if (ok) {
+ struct mp_image layout = {0};
+ mp_image_set_params(&layout, &p->image_params);
+ struct ra_tex **tex = p->hwdec_mapper->tex;
+ for (int n = 0; n < p->plane_count; n++) {
+ vimg->planes[n] = (struct texplane){
+ .w = mp_image_plane_w(&layout, n),
+ .h = mp_image_plane_h(&layout, n),
+ .tex = tex[n],
+ };
+ }
+ } else {
+ MP_FATAL(p, "Mapping hardware decoded surface failed.\n");
+ goto error;
+ }
+ return true;
+ }
+
+ // Software decoding
+ assert(mpi->num_planes == p->plane_count);
+
+ timer_pool_start(p->upload_timer);
+ for (int n = 0; n < p->plane_count; n++) {
+ struct texplane *plane = &vimg->planes[n];
+ if (!plane->tex) {
+ timer_pool_stop(p->upload_timer);
+ goto error;
+ }
+
+ struct ra_tex_upload_params params = {
+ .tex = plane->tex,
+ .src = mpi->planes[n],
+ .invalidate = true,
+ .stride = mpi->stride[n],
+ };
+
+ plane->flipped = params.stride < 0;
+ if (plane->flipped) {
+ int h = mp_image_plane_h(mpi, n);
+ params.src = (char *)params.src + (h - 1) * params.stride;
+ params.stride = -params.stride;
+ }
+
+ struct dr_buffer *mapped = gl_find_dr_buffer(p, mpi->planes[n]);
+ if (mapped) {
+ params.buf = mapped->buf;
+ params.buf_offset = (uintptr_t)params.src -
+ (uintptr_t)mapped->buf->data;
+ params.src = NULL;
+ }
+
+ if (p->using_dr_path != !!mapped) {
+ p->using_dr_path = !!mapped;
+ MP_VERBOSE(p, "DR enabled: %s\n", p->using_dr_path ? "yes" : "no");
+ }
+
+ if (!p->ra->fns->tex_upload(p->ra, &params)) {
+ timer_pool_stop(p->upload_timer);
+ goto error;
+ }
+
+ if (mapped && !mapped->mpi)
+ mapped->mpi = mp_image_new_ref(mpi);
+ }
+ timer_pool_stop(p->upload_timer);
+
+ bool using_pbo = p->ra->use_pbo || !(p->ra->caps & RA_CAP_DIRECT_UPLOAD);
+ const char *mode = p->using_dr_path ? "DR" : using_pbo ? "PBO" : "naive";
+ pass_describe(p, "upload frame (%s)", mode);
+ pass_record(p, timer_pool_measure(p->upload_timer));
+
+ return true;
+
+error:
+ unref_current_image(p);
+ p->broken_frame = true;
+ return false;
+}
+
+static bool test_fbo(struct gl_video *p, const struct ra_format *fmt)
+{
+ MP_VERBOSE(p, "Testing FBO format %s\n", fmt->name);
+ struct ra_tex *tex = NULL;
+ bool success = ra_tex_resize(p->ra, p->log, &tex, 16, 16, fmt);
+ ra_tex_free(p->ra, &tex);
+ return success;
+}
+
+// Return whether dumb-mode can be used without disabling any features.
+// Essentially, vo_gpu with mostly default settings will return true.
+static bool check_dumb_mode(struct gl_video *p)
+{
+ struct gl_video_opts *o = &p->opts;
+ if (p->use_integer_conversion)
+ return false;
+ if (o->dumb_mode > 0) // requested by user
+ return true;
+ if (o->dumb_mode < 0) // disabled by user
+ return false;
+
+ // otherwise, use auto-detection
+ if (o->correct_downscaling || o->linear_downscaling ||
+ o->linear_upscaling || o->sigmoid_upscaling || o->interpolation ||
+ o->blend_subs || o->deband || o->unsharp)
+ return false;
+ // check remaining scalers (tscale is already implicitly excluded above)
+ for (int i = 0; i < SCALER_COUNT; i++) {
+ if (i != SCALER_TSCALE) {
+ const char *name = o->scaler[i].kernel.name;
+ if (name && strcmp(name, "bilinear") != 0)
+ return false;
+ }
+ }
+ if (o->user_shaders && o->user_shaders[0])
+ return false;
+ return true;
+}
+
+// Disable features that are not supported with the current OpenGL version.
+static void check_gl_features(struct gl_video *p)
+{
+ struct ra *ra = p->ra;
+ bool have_float_tex = !!ra_find_float16_format(ra, 1);
+ bool have_mglsl = ra->glsl_version >= 130; // modern GLSL
+ const struct ra_format *rg_tex = ra_find_unorm_format(p->ra, 1, 2);
+ bool have_texrg = rg_tex && !rg_tex->luminance_alpha;
+ bool have_compute = ra->caps & RA_CAP_COMPUTE;
+ bool have_ssbo = ra->caps & RA_CAP_BUF_RW;
+ bool have_fragcoord = ra->caps & RA_CAP_FRAGCOORD;
+
+ const char *auto_fbo_fmts[] = {"rgba16f", "rgba16hf", "rgba16",
+ "rgb10_a2", "rgba8", 0};
+ const char *user_fbo_fmts[] = {p->opts.fbo_format, 0};
+ const char **fbo_fmts = user_fbo_fmts[0] && strcmp(user_fbo_fmts[0], "auto")
+ ? user_fbo_fmts : auto_fbo_fmts;
+ bool user_specified_fbo_fmt = fbo_fmts == user_fbo_fmts;
+ bool fbo_test_result = false;
+ bool have_fbo = false;
+ p->fbo_format = NULL;
+ for (int n = 0; fbo_fmts[n]; n++) {
+ const char *fmt = fbo_fmts[n];
+ const struct ra_format *f = ra_find_named_format(p->ra, fmt);
+ if (!f && user_specified_fbo_fmt)
+ MP_WARN(p, "FBO format '%s' not found!\n", fmt);
+ if (f && f->renderable && f->linear_filter &&
+ (fbo_test_result = test_fbo(p, f))) {
+ MP_VERBOSE(p, "Using FBO format %s.\n", f->name);
+ have_fbo = true;
+ p->fbo_format = f;
+ break;
+ }
+
+ if (user_specified_fbo_fmt) {
+ MP_WARN(p, "User-specified FBO format '%s' failed to initialize! "
+ "(exists=%d, renderable=%d, linear_filter=%d, "
+ "fbo_test_result=%d)\n",
+ fmt, !!f, f ? f->renderable : 0, f ? f->linear_filter : 0,
+ fbo_test_result);
+ }
+ }
+
+ if (!have_fragcoord && p->opts.dither_depth >= 0 &&
+ p->opts.dither_algo != DITHER_NONE)
+ {
+ p->opts.dither_algo = DITHER_NONE;
+ MP_WARN(p, "Disabling dithering (no gl_FragCoord).\n");
+ }
+ if (!have_fragcoord && p->opts.alpha_mode == ALPHA_BLEND_TILES) {
+ p->opts.alpha_mode = ALPHA_BLEND;
+ // Verbose, since this is the default setting
+ MP_VERBOSE(p, "Disabling alpha checkerboard (no gl_FragCoord).\n");
+ }
+ if (!have_fbo && have_compute) {
+ have_compute = false;
+ MP_WARN(p, "Force-disabling compute shaders as an FBO format was not "
+ "available! See your FBO format configuration!\n");
+ }
+
+ if (have_compute && have_fbo && !p->fbo_format->storable) {
+ have_compute = false;
+ MP_WARN(p, "Force-disabling compute shaders as the chosen FBO format "
+ "is not storable! See your FBO format configuration!\n");
+ }
+
+ if (!have_compute && p->opts.dither_algo == DITHER_ERROR_DIFFUSION) {
+ MP_WARN(p, "Disabling error diffusion dithering because compute shader "
+ "was not supported. Fallback to dither=fruit instead.\n");
+ p->opts.dither_algo = DITHER_FRUIT;
+ }
+
+ bool have_compute_peak = have_compute && have_ssbo;
+ if (!have_compute_peak && p->opts.tone_map.compute_peak >= 0) {
+ int msgl = p->opts.tone_map.compute_peak == 1 ? MSGL_WARN : MSGL_V;
+ MP_MSG(p, msgl, "Disabling HDR peak computation (one or more of the "
+ "following is not supported: compute shaders=%d, "
+ "SSBO=%d).\n", have_compute, have_ssbo);
+ p->opts.tone_map.compute_peak = -1;
+ }
+
+ p->forced_dumb_mode = p->opts.dumb_mode > 0 || !have_fbo || !have_texrg;
+ bool voluntarily_dumb = check_dumb_mode(p);
+ if (p->forced_dumb_mode || voluntarily_dumb) {
+ if (voluntarily_dumb) {
+ MP_VERBOSE(p, "No advanced processing required. Enabling dumb mode.\n");
+ } else if (p->opts.dumb_mode <= 0) {
+ MP_WARN(p, "High bit depth FBOs unsupported. Enabling dumb mode.\n"
+ "Most extended features will be disabled.\n");
+ }
+ p->dumb_mode = true;
+ static const struct scaler_config dumb_scaler_config = {
+ {"bilinear", .params = {NAN, NAN}},
+ {.params = {NAN, NAN}},
+ };
+ // Most things don't work, so whitelist all options that still work.
+ p->opts = (struct gl_video_opts){
+ .scaler = {
+ [SCALER_SCALE] = dumb_scaler_config,
+ [SCALER_DSCALE] = dumb_scaler_config,
+ [SCALER_CSCALE] = dumb_scaler_config,
+ [SCALER_TSCALE] = dumb_scaler_config,
+ },
+ .gamma = p->opts.gamma,
+ .gamma_auto = p->opts.gamma_auto,
+ .pbo = p->opts.pbo,
+ .fbo_format = p->opts.fbo_format,
+ .alpha_mode = p->opts.alpha_mode,
+ .use_rectangle = p->opts.use_rectangle,
+ .background = p->opts.background,
+ .dither_algo = p->opts.dither_algo,
+ .dither_depth = p->opts.dither_depth,
+ .dither_size = p->opts.dither_size,
+ .error_diffusion = p->opts.error_diffusion,
+ .temporal_dither = p->opts.temporal_dither,
+ .temporal_dither_period = p->opts.temporal_dither_period,
+ .tex_pad_x = p->opts.tex_pad_x,
+ .tex_pad_y = p->opts.tex_pad_y,
+ .tone_map = p->opts.tone_map,
+ .early_flush = p->opts.early_flush,
+ .icc_opts = p->opts.icc_opts,
+ .hwdec_interop = p->opts.hwdec_interop,
+ .target_trc = p->opts.target_trc,
+ .target_prim = p->opts.target_prim,
+ .target_peak = p->opts.target_peak,
+ };
+ if (!have_fbo)
+ p->use_lut_3d = false;
+ return;
+ }
+ p->dumb_mode = false;
+
+ // Normally, we want to disable them by default if FBOs are unavailable,
+ // because they will be slow (not critically slow, but still slower).
+ // Without FP textures, we must always disable them.
+ // I don't know if luminance alpha float textures exist, so disregard them.
+ for (int n = 0; n < SCALER_COUNT; n++) {
+ const struct filter_kernel *kernel =
+ mp_find_filter_kernel(p->opts.scaler[n].kernel.name);
+ if (kernel) {
+ char *reason = NULL;
+ if (!have_float_tex)
+ reason = "(float tex. missing)";
+ if (!have_mglsl)
+ reason = "(GLSL version too old)";
+ if (reason) {
+ MP_WARN(p, "Disabling scaler #%d %s %s.\n", n,
+ p->opts.scaler[n].kernel.name, reason);
+ // p->opts is a copy => we can just mess with it.
+ p->opts.scaler[n].kernel.name = "bilinear";
+ if (n == SCALER_TSCALE)
+ p->opts.interpolation = false;
+ }
+ }
+ }
+
+ int use_cms = p->opts.target_prim != MP_CSP_PRIM_AUTO ||
+ p->opts.target_trc != MP_CSP_TRC_AUTO || p->use_lut_3d;
+
+ // mix() is needed for some gamma functions
+ if (!have_mglsl && (p->opts.linear_downscaling ||
+ p->opts.linear_upscaling || p->opts.sigmoid_upscaling))
+ {
+ p->opts.linear_downscaling = false;
+ p->opts.linear_upscaling = false;
+ p->opts.sigmoid_upscaling = false;
+ MP_WARN(p, "Disabling linear/sigmoid scaling (GLSL version too old).\n");
+ }
+ if (!have_mglsl && use_cms) {
+ p->opts.target_prim = MP_CSP_PRIM_AUTO;
+ p->opts.target_trc = MP_CSP_TRC_AUTO;
+ p->use_lut_3d = false;
+ MP_WARN(p, "Disabling color management (GLSL version too old).\n");
+ }
+ if (!have_mglsl && p->opts.deband) {
+ p->opts.deband = false;
+ MP_WARN(p, "Disabling debanding (GLSL version too old).\n");
+ }
+}
+
+static void init_gl(struct gl_video *p)
+{
+ debug_check_gl(p, "before init_gl");
+
+ p->upload_timer = timer_pool_create(p->ra);
+ p->blit_timer = timer_pool_create(p->ra);
+ p->osd_timer = timer_pool_create(p->ra);
+
+ debug_check_gl(p, "after init_gl");
+
+ ra_dump_tex_formats(p->ra, MSGL_DEBUG);
+ ra_dump_img_formats(p->ra, MSGL_DEBUG);
+}
+
+void gl_video_uninit(struct gl_video *p)
+{
+ if (!p)
+ return;
+
+ uninit_video(p);
+ ra_hwdec_ctx_uninit(&p->hwdec_ctx);
+ gl_sc_destroy(p->sc);
+
+ ra_tex_free(p->ra, &p->lut_3d_texture);
+ ra_buf_free(p->ra, &p->hdr_peak_ssbo);
+
+ timer_pool_destroy(p->upload_timer);
+ timer_pool_destroy(p->blit_timer);
+ timer_pool_destroy(p->osd_timer);
+
+ for (int i = 0; i < VO_PASS_PERF_MAX; i++) {
+ talloc_free(p->pass_fresh[i].desc.start);
+ talloc_free(p->pass_redraw[i].desc.start);
+ }
+
+ mpgl_osd_destroy(p->osd);
+
+ // Forcibly destroy possibly remaining image references. This should also
+ // cause gl_video_dr_free_buffer() to be called for the remaining buffers.
+ gc_pending_dr_fences(p, true);
+
+ // Should all have been unreffed already.
+ assert(!p->num_dr_buffers);
+
+ talloc_free(p);
+}
+
+void gl_video_reset(struct gl_video *p)
+{
+ gl_video_reset_surfaces(p);
+}
+
+bool gl_video_showing_interpolated_frame(struct gl_video *p)
+{
+ return p->is_interpolated;
+}
+
+static bool is_imgfmt_desc_supported(struct gl_video *p,
+ const struct ra_imgfmt_desc *desc)
+{
+ if (!desc->num_planes)
+ return false;
+
+ if (desc->planes[0]->ctype == RA_CTYPE_UINT && p->forced_dumb_mode)
+ return false;
+
+ return true;
+}
+
+bool gl_video_check_format(struct gl_video *p, int mp_format)
+{
+ struct ra_imgfmt_desc desc;
+ if (ra_get_imgfmt_desc(p->ra, mp_format, &desc) &&
+ is_imgfmt_desc_supported(p, &desc))
+ return true;
+ if (ra_hwdec_get(&p->hwdec_ctx, mp_format))
+ return true;
+ return false;
+}
+
+void gl_video_config(struct gl_video *p, struct mp_image_params *params)
+{
+ unmap_overlay(p);
+ unref_current_image(p);
+
+ if (!mp_image_params_equal(&p->real_image_params, params)) {
+ uninit_video(p);
+ p->real_image_params = *params;
+ p->image_params = *params;
+ if (params->imgfmt)
+ init_video(p);
+ }
+
+ gl_video_reset_surfaces(p);
+}
+
+void gl_video_set_osd_source(struct gl_video *p, struct osd_state *osd)
+{
+ mpgl_osd_destroy(p->osd);
+ p->osd = NULL;
+ p->osd_state = osd;
+ reinit_osd(p);
+}
+
+struct gl_video *gl_video_init(struct ra *ra, struct mp_log *log,
+ struct mpv_global *g)
+{
+ struct gl_video *p = talloc_ptrtype(NULL, p);
+ *p = (struct gl_video) {
+ .ra = ra,
+ .global = g,
+ .log = log,
+ .sc = gl_sc_create(ra, g, log),
+ .video_eq = mp_csp_equalizer_create(p, g),
+ .opts_cache = m_config_cache_alloc(p, g, &gl_video_conf),
+ };
+ // make sure this variable is initialized to *something*
+ p->pass = p->pass_fresh;
+ struct gl_video_opts *opts = p->opts_cache->opts;
+ p->cms = gl_lcms_init(p, log, g, opts->icc_opts),
+ p->opts = *opts;
+ for (int n = 0; n < SCALER_COUNT; n++)
+ p->scaler[n] = (struct scaler){.index = n};
+ // our VAO always has the vec2 position as the first element
+ MP_TARRAY_APPEND(p, p->vao, p->vao_len, (struct ra_renderpass_input) {
+ .name = "position",
+ .type = RA_VARTYPE_FLOAT,
+ .dim_v = 2,
+ .dim_m = 1,
+ .offset = 0,
+ });
+ init_gl(p);
+ reinit_from_options(p);
+ return p;
+}
+
+// Get static string for scaler shader. If "tscale" is set to true, the
+// scaler must be a separable convolution filter.
+static const char *handle_scaler_opt(const char *name, bool tscale)
+{
+ if (name && name[0]) {
+ const struct filter_kernel *kernel = mp_find_filter_kernel(name);
+ if (kernel && (!tscale || !kernel->polar))
+ return kernel->f.name;
+
+ const struct filter_window *window = mp_find_filter_window(name);
+ if (window)
+ return window->name;
+
+ for (const char *const *filter = tscale ? fixed_tscale_filters
+ : fixed_scale_filters;
+ *filter; filter++) {
+ if (strcmp(*filter, name) == 0)
+ return *filter;
+ }
+ }
+ return NULL;
+}
+
+static void gl_video_update_options(struct gl_video *p)
+{
+ if (m_config_cache_update(p->opts_cache)) {
+ gl_lcms_update_options(p->cms);
+ reinit_from_options(p);
+ }
+
+ if (mp_csp_equalizer_state_changed(p->video_eq))
+ p->output_tex_valid = false;
+}
+
+static void reinit_from_options(struct gl_video *p)
+{
+ p->use_lut_3d = gl_lcms_has_profile(p->cms);
+
+ // Copy the option fields, so that check_gl_features() can mutate them.
+ // This works only for the fields themselves of course, not for any memory
+ // referenced by them.
+ p->opts = *(struct gl_video_opts *)p->opts_cache->opts;
+
+ if (!p->force_clear_color)
+ p->clear_color = p->opts.background;
+
+ check_gl_features(p);
+ uninit_rendering(p);
+ if (p->opts.shader_cache)
+ gl_sc_set_cache_dir(p->sc, p->opts.shader_cache_dir);
+ p->ra->use_pbo = p->opts.pbo;
+ gl_video_setup_hooks(p);
+ reinit_osd(p);
+
+ struct mp_vo_opts *vo_opts = mp_get_config_group(p, p->global, &vo_sub_opts);
+ if (p->opts.interpolation && !vo_opts->video_sync && !p->dsi_warned) {
+ MP_WARN(p, "Interpolation now requires enabling display-sync mode.\n"
+ "E.g.: --video-sync=display-resample\n");
+ p->dsi_warned = true;
+ }
+ talloc_free(vo_opts);
+
+ if (p->opts.correct_downscaling && !p->correct_downscaling_warned) {
+ const char *name = p->opts.scaler[SCALER_DSCALE].kernel.name;
+ if (!name)
+ name = p->opts.scaler[SCALER_SCALE].kernel.name;
+ if (!name || !strcmp(name, "bilinear")) {
+ MP_WARN(p, "correct-downscaling requires non-bilinear scaler.\n");
+ p->correct_downscaling_warned = true;
+ }
+ }
+}
+
+void gl_video_configure_queue(struct gl_video *p, struct vo *vo)
+{
+ gl_video_update_options(p);
+
+ int queue_size = 1;
+
+ // Figure out an adequate size for the interpolation queue. The larger
+ // the radius, the earlier we need to queue frames.
+ if (p->opts.interpolation) {
+ const struct filter_kernel *kernel =
+ mp_find_filter_kernel(p->opts.scaler[SCALER_TSCALE].kernel.name);
+ if (kernel) {
+ // filter_scale wouldn't be correctly initialized were we to use it here.
+ // This is fine since we're always upsampling, but beware if downsampling
+ // is added!
+ double radius = kernel->f.radius;
+ radius = radius > 0 ? radius : p->opts.scaler[SCALER_TSCALE].radius;
+ queue_size += 1 + ceil(radius);
+ } else {
+ // Oversample/linear case
+ queue_size += 2;
+ }
+ }
+
+ vo_set_queue_params(vo, 0, queue_size);
+}
+
+static int validate_scaler_opt(struct mp_log *log, const m_option_t *opt,
+ struct bstr name, const char **value)
+{
+ struct bstr param = bstr0(*value);
+ char s[32] = {0};
+ int r = 1;
+ bool tscale = bstr_equals0(name, "tscale");
+ if (bstr_equals0(param, "help")) {
+ r = M_OPT_EXIT;
+ } else if (bstr_equals0(name, "dscale") && !param.len) {
+ return r; // empty dscale means "use same as upscaler"
+ } else if (bstr_equals0(name, "cscale") && !param.len) {
+ return r; // empty cscale means "use same as upscaler"
+ } else {
+ snprintf(s, sizeof(s), "%.*s", BSTR_P(param));
+ if (!handle_scaler_opt(s, tscale))
+ r = M_OPT_INVALID;
+ }
+ if (r < 1) {
+ mp_info(log, "Available scalers:\n");
+ for (const char *const *filter = tscale ? fixed_tscale_filters
+ : fixed_scale_filters;
+ *filter; filter++) {
+ mp_info(log, " %s\n", *filter);
+ }
+ for (int n = 0; mp_filter_kernels[n].f.name; n++) {
+ if (!tscale || !mp_filter_kernels[n].polar)
+ mp_info(log, " %s\n", mp_filter_kernels[n].f.name);
+ }
+ for (int n = 0; mp_filter_windows[n].name; n++) {
+ for (int m = 0; mp_filter_kernels[m].f.name; m++) {
+ if (!strcmp(mp_filter_windows[n].name, mp_filter_kernels[m].f.name))
+ goto next_window; // don't log duplicates
+ }
+ mp_info(log, " %s\n", mp_filter_windows[n].name);
+next_window: ;
+ }
+ if (s[0])
+ mp_fatal(log, "No scaler named '%s' found!\n", s);
+ }
+ return r;
+}
+
+static int validate_window_opt(struct mp_log *log, const m_option_t *opt,
+ struct bstr name, const char **value)
+{
+ struct bstr param = bstr0(*value);
+ char s[32] = {0};
+ int r = 1;
+ if (bstr_equals0(param, "help")) {
+ r = M_OPT_EXIT;
+ } else if (!param.len) {
+ return r; // empty string means "use preferred window"
+ } else {
+ snprintf(s, sizeof(s), "%.*s", BSTR_P(param));
+ const struct filter_window *window = mp_find_filter_window(s);
+ if (!window)
+ r = M_OPT_INVALID;
+ }
+ if (r < 1) {
+ mp_info(log, "Available windows:\n");
+ for (int n = 0; mp_filter_windows[n].name; n++)
+ mp_info(log, " %s\n", mp_filter_windows[n].name);
+ if (s[0])
+ mp_fatal(log, "No window named '%s' found!\n", s);
+ }
+ return r;
+}
+
+static int validate_error_diffusion_opt(struct mp_log *log, const m_option_t *opt,
+ struct bstr name, const char **value)
+{
+ struct bstr param = bstr0(*value);
+ char s[32] = {0};
+ int r = 1;
+ if (bstr_equals0(param, "help")) {
+ r = M_OPT_EXIT;
+ } else {
+ snprintf(s, sizeof(s), "%.*s", BSTR_P(param));
+ const struct error_diffusion_kernel *k = mp_find_error_diffusion_kernel(s);
+ if (!k)
+ r = M_OPT_INVALID;
+ }
+ if (r < 1) {
+ mp_info(log, "Available error diffusion kernels:\n");
+ for (int n = 0; mp_error_diffusion_kernels[n].name; n++)
+ mp_info(log, " %s\n", mp_error_diffusion_kernels[n].name);
+ if (s[0])
+ mp_fatal(log, "No error diffusion kernel named '%s' found!\n", s);
+ }
+ return r;
+}
+
+void gl_video_set_ambient_lux(struct gl_video *p, int lux)
+{
+ if (p->opts.gamma_auto) {
+ p->opts.gamma = gl_video_scale_ambient_lux(16.0, 256.0, 1.0, 1.2, lux);
+ MP_TRACE(p, "ambient light changed: %d lux (gamma: %f)\n", lux,
+ p->opts.gamma);
+ }
+}
+
+static void *gl_video_dr_alloc_buffer(struct gl_video *p, size_t size)
+{
+ struct ra_buf_params params = {
+ .type = RA_BUF_TYPE_TEX_UPLOAD,
+ .host_mapped = true,
+ .size = size,
+ };
+
+ struct ra_buf *buf = ra_buf_create(p->ra, &params);
+ if (!buf)
+ return NULL;
+
+ MP_TARRAY_GROW(p, p->dr_buffers, p->num_dr_buffers);
+ p->dr_buffers[p->num_dr_buffers++] = (struct dr_buffer){ .buf = buf };
+
+ return buf->data;
+}
+
+static void gl_video_dr_free_buffer(void *opaque, uint8_t *data)
+{
+ struct gl_video *p = opaque;
+
+ for (int n = 0; n < p->num_dr_buffers; n++) {
+ struct dr_buffer *buffer = &p->dr_buffers[n];
+ if (buffer->buf->data == data) {
+ assert(!buffer->mpi); // can't be freed while it has a ref
+ ra_buf_free(p->ra, &buffer->buf);
+ MP_TARRAY_REMOVE_AT(p->dr_buffers, p->num_dr_buffers, n);
+ return;
+ }
+ }
+ // not found - must not happen
+ MP_ASSERT_UNREACHABLE();
+}
+
+struct mp_image *gl_video_get_image(struct gl_video *p, int imgfmt, int w, int h,
+ int stride_align, int flags)
+{
+ if (flags & VO_DR_FLAG_HOST_CACHED) {
+ if (p->ra->caps & RA_CAP_SLOW_DR) {
+ MP_VERBOSE(p, "DR path suspected slow/uncached, disabling.\n");
+ return NULL;
+ }
+ }
+
+ if (!gl_video_check_format(p, imgfmt))
+ return NULL;
+
+ int size = mp_image_get_alloc_size(imgfmt, w, h, stride_align);
+ if (size < 0)
+ return NULL;
+
+ int alloc_size = size + stride_align;
+ void *ptr = gl_video_dr_alloc_buffer(p, alloc_size);
+ if (!ptr)
+ return NULL;
+
+ // (we expect vo.c to proxy the free callback, so it happens in the same
+ // thread it was allocated in, removing the need for synchronization)
+ struct mp_image *res = mp_image_from_buffer(imgfmt, w, h, stride_align,
+ ptr, alloc_size, p,
+ gl_video_dr_free_buffer);
+ if (!res)
+ gl_video_dr_free_buffer(p, ptr);
+ return res;
+}
+
+void gl_video_init_hwdecs(struct gl_video *p, struct ra_ctx *ra_ctx,
+ struct mp_hwdec_devices *devs,
+ bool load_all_by_default)
+{
+ assert(!p->hwdec_ctx.ra_ctx);
+ p->hwdec_ctx = (struct ra_hwdec_ctx) {
+ .log = p->log,
+ .global = p->global,
+ .ra_ctx = ra_ctx,
+ };
+
+ ra_hwdec_ctx_init(&p->hwdec_ctx, devs, p->opts.hwdec_interop, load_all_by_default);
+}
+
+void gl_video_load_hwdecs_for_img_fmt(struct gl_video *p, struct mp_hwdec_devices *devs,
+ struct hwdec_imgfmt_request *params)
+{
+ assert(p->hwdec_ctx.ra_ctx);
+ ra_hwdec_ctx_load_fmt(&p->hwdec_ctx, devs, params);
+}