summaryrefslogtreecommitdiffstats
path: root/video/repack.c
diff options
context:
space:
mode:
Diffstat (limited to 'video/repack.c')
-rw-r--r--video/repack.c1203
1 files changed, 1203 insertions, 0 deletions
diff --git a/video/repack.c b/video/repack.c
new file mode 100644
index 0000000..ce3703a
--- /dev/null
+++ b/video/repack.c
@@ -0,0 +1,1203 @@
+/*
+ * This file is part of mpv.
+ *
+ * mpv is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * mpv is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with mpv. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <math.h>
+
+#include <libavutil/bswap.h>
+#include <libavutil/pixfmt.h>
+
+#include "common/common.h"
+#include "repack.h"
+#include "video/csputils.h"
+#include "video/fmt-conversion.h"
+#include "video/img_format.h"
+#include "video/mp_image.h"
+
+enum repack_step_type {
+ REPACK_STEP_FLOAT,
+ REPACK_STEP_REPACK,
+ REPACK_STEP_ENDIAN,
+};
+
+struct repack_step {
+ enum repack_step_type type;
+ // 0=input, 1=output
+ struct mp_image *buf[2];
+ bool user_buf[2]; // user_buf[n]==true if buf[n] = user src/dst buffer
+ struct mp_imgfmt_desc fmt[2];
+ struct mp_image *tmp; // output buffer, if needed
+};
+
+struct mp_repack {
+ bool pack; // if false, this is for unpacking
+ int flags;
+ int imgfmt_user; // original mp format (unchanged endian)
+ int imgfmt_a; // original mp format (possibly packed format,
+ // swapped endian)
+ int imgfmt_b; // equivalent unpacked/planar format
+ struct mp_imgfmt_desc fmt_a;// ==imgfmt_a
+ struct mp_imgfmt_desc fmt_b;// ==imgfmt_b
+
+ void (*repack)(struct mp_repack *rp,
+ struct mp_image *a, int a_x, int a_y,
+ struct mp_image *b, int b_x, int b_y, int w);
+
+ bool passthrough_y; // possible luma plane optimization for e.g. nv12
+ int endian_size; // endian swap; 0=none, 2/4=swap word size
+
+ // For packed_repack.
+ int components[4]; // b[n] = mp_image.planes[components[n]]
+ // pack: a is dst, b is src
+ // unpack: a is src, b is dst
+ void (*packed_repack_scanline)(void *a, void *b[], int w);
+
+ // Fringe RGB/YUV.
+ uint8_t comp_size;
+ uint8_t comp_map[6];
+ uint8_t comp_shifts[3];
+ uint8_t *comp_lut;
+ void (*repack_fringe_yuv)(void *dst, void *src[], int w, uint8_t *c);
+
+ // F32 repacking.
+ int f32_comp_size;
+ float f32_m[4], f32_o[4];
+ uint32_t f32_pmax[4];
+ enum mp_csp f32_csp_space;
+ enum mp_csp_levels f32_csp_levels;
+
+ // REPACK_STEP_REPACK: if true, need to copy this plane
+ bool copy_buf[4];
+
+ struct repack_step steps[4];
+ int num_steps;
+
+ bool configured;
+};
+
+// depth = number of LSB in use
+static int find_gbrp_format(int depth, int num_planes)
+{
+ if (num_planes != 3 && num_planes != 4)
+ return 0;
+ struct mp_regular_imgfmt desc = {
+ .component_type = MP_COMPONENT_TYPE_UINT,
+ .forced_csp = MP_CSP_RGB,
+ .component_size = depth > 8 ? 2 : 1,
+ .component_pad = depth - (depth > 8 ? 16 : 8),
+ .num_planes = num_planes,
+ .planes = { {1, {2}}, {1, {3}}, {1, {1}}, {1, {4}} },
+ };
+ return mp_find_regular_imgfmt(&desc);
+}
+
+// depth = number of LSB in use
+static int find_yuv_format(int depth, int num_planes)
+{
+ if (num_planes < 1 || num_planes > 4)
+ return 0;
+ struct mp_regular_imgfmt desc = {
+ .component_type = MP_COMPONENT_TYPE_UINT,
+ .component_size = depth > 8 ? 2 : 1,
+ .component_pad = depth - (depth > 8 ? 16 : 8),
+ .num_planes = num_planes,
+ .planes = { {1, {1}}, {1, {2}}, {1, {3}}, {1, {4}} },
+ };
+ if (num_planes == 2)
+ desc.planes[1].components[0] = 4;
+ return mp_find_regular_imgfmt(&desc);
+}
+
+// Copy one line on the plane p.
+static void copy_plane(struct mp_image *dst, int dst_x, int dst_y,
+ struct mp_image *src, int src_x, int src_y,
+ int w, int p)
+{
+ // Number of lines on this plane.
+ int h = (1 << dst->fmt.chroma_ys) - (1 << dst->fmt.ys[p]) + 1;
+ size_t size = mp_image_plane_bytes(dst, p, dst_x, w);
+
+ assert(dst->fmt.bpp[p] == src->fmt.bpp[p]);
+
+ for (int y = 0; y < h; y++) {
+ void *pd = mp_image_pixel_ptr_ny(dst, p, dst_x, dst_y + y);
+ void *ps = mp_image_pixel_ptr_ny(src, p, src_x, src_y + y);
+ memcpy(pd, ps, size);
+ }
+}
+
+// Swap endian for one line.
+static void swap_endian(struct mp_image *dst, int dst_x, int dst_y,
+ struct mp_image *src, int src_x, int src_y,
+ int w, int endian_size)
+{
+ assert(src->fmt.num_planes == dst->fmt.num_planes);
+
+ for (int p = 0; p < dst->fmt.num_planes; p++) {
+ int xs = dst->fmt.xs[p];
+ int bpp = dst->fmt.bpp[p] / 8;
+ int words_per_pixel = bpp / endian_size;
+ int num_words = ((w + (1 << xs) - 1) >> xs) * words_per_pixel;
+ // Number of lines on this plane.
+ int h = (1 << dst->fmt.chroma_ys) - (1 << dst->fmt.ys[p]) + 1;
+
+ assert(src->fmt.bpp[p] == bpp * 8);
+
+ for (int y = 0; y < h; y++) {
+ void *s = mp_image_pixel_ptr_ny(src, p, src_x, src_y + y);
+ void *d = mp_image_pixel_ptr_ny(dst, p, dst_x, dst_y + y);
+ switch (endian_size) {
+ case 2:
+ for (int x = 0; x < num_words; x++)
+ ((uint16_t *)d)[x] = av_bswap16(((uint16_t *)s)[x]);
+ break;
+ case 4:
+ for (int x = 0; x < num_words; x++)
+ ((uint32_t *)d)[x] = av_bswap32(((uint32_t *)s)[x]);
+ break;
+ default:
+ MP_ASSERT_UNREACHABLE();
+ }
+ }
+ }
+}
+
+// PA = PAck, copy planar input to single packed array
+// UN = UNpack, copy packed input to planar output
+// Naming convention:
+// pa_/un_ prefix to identify conversion direction.
+// Left (LSB, lowest byte address) -> Right (MSB, highest byte address).
+// (This is unusual; MSB to LSB is more commonly used to describe formats,
+// but our convention makes more sense for byte access in little endian.)
+// "c" identifies a color component.
+// "z" identifies known zero padding.
+// "x" identifies uninitialized padding.
+// A component is followed by its size in bits.
+// Size can be omitted for multiple uniform components (c8c8c8 == ccc8).
+// Unpackers will often use "x" for padding, because they ignore it, while
+// packers will use "z" because they write zero.
+
+#define PA_WORD_4(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, sh_c3) \
+ static void name(void *dst, void *src[], int w) { \
+ for (int x = 0; x < w; x++) { \
+ ((packed_t *)dst)[x] = \
+ ((packed_t)((plane_t *)src[0])[x] << (sh_c0)) | \
+ ((packed_t)((plane_t *)src[1])[x] << (sh_c1)) | \
+ ((packed_t)((plane_t *)src[2])[x] << (sh_c2)) | \
+ ((packed_t)((plane_t *)src[3])[x] << (sh_c3)); \
+ } \
+ }
+
+#define UN_WORD_4(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, sh_c3, mask)\
+ static void name(void *src, void *dst[], int w) { \
+ for (int x = 0; x < w; x++) { \
+ packed_t c = ((packed_t *)src)[x]; \
+ ((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask); \
+ ((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask); \
+ ((plane_t *)dst[2])[x] = (c >> (sh_c2)) & (mask); \
+ ((plane_t *)dst[3])[x] = (c >> (sh_c3)) & (mask); \
+ } \
+ }
+
+
+#define PA_WORD_3(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, pad) \
+ static void name(void *dst, void *src[], int w) { \
+ for (int x = 0; x < w; x++) { \
+ ((packed_t *)dst)[x] = (pad) | \
+ ((packed_t)((plane_t *)src[0])[x] << (sh_c0)) | \
+ ((packed_t)((plane_t *)src[1])[x] << (sh_c1)) | \
+ ((packed_t)((plane_t *)src[2])[x] << (sh_c2)); \
+ } \
+ }
+
+UN_WORD_4(un_cccc8, uint32_t, uint8_t, 0, 8, 16, 24, 0xFFu)
+PA_WORD_4(pa_cccc8, uint32_t, uint8_t, 0, 8, 16, 24)
+// Not sure if this is a good idea; there may be no alignment guarantee.
+UN_WORD_4(un_cccc16, uint64_t, uint16_t, 0, 16, 32, 48, 0xFFFFu)
+PA_WORD_4(pa_cccc16, uint64_t, uint16_t, 0, 16, 32, 48)
+
+#define UN_WORD_3(name, packed_t, plane_t, sh_c0, sh_c1, sh_c2, mask) \
+ static void name(void *src, void *dst[], int w) { \
+ for (int x = 0; x < w; x++) { \
+ packed_t c = ((packed_t *)src)[x]; \
+ ((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask); \
+ ((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask); \
+ ((plane_t *)dst[2])[x] = (c >> (sh_c2)) & (mask); \
+ } \
+ }
+
+UN_WORD_3(un_ccc8x8, uint32_t, uint8_t, 0, 8, 16, 0xFFu)
+PA_WORD_3(pa_ccc8z8, uint32_t, uint8_t, 0, 8, 16, 0)
+UN_WORD_3(un_x8ccc8, uint32_t, uint8_t, 8, 16, 24, 0xFFu)
+PA_WORD_3(pa_z8ccc8, uint32_t, uint8_t, 8, 16, 24, 0)
+UN_WORD_3(un_ccc10x2, uint32_t, uint16_t, 0, 10, 20, 0x3FFu)
+PA_WORD_3(pa_ccc10z2, uint32_t, uint16_t, 0, 10, 20, 0)
+UN_WORD_3(un_ccc16x16, uint64_t, uint16_t, 0, 16, 32, 0xFFFFu)
+PA_WORD_3(pa_ccc16z16, uint64_t, uint16_t, 0, 16, 32, 0)
+
+#define PA_WORD_2(name, packed_t, plane_t, sh_c0, sh_c1, pad) \
+ static void name(void *dst, void *src[], int w) { \
+ for (int x = 0; x < w; x++) { \
+ ((packed_t *)dst)[x] = (pad) | \
+ ((packed_t)((plane_t *)src[0])[x] << (sh_c0)) | \
+ ((packed_t)((plane_t *)src[1])[x] << (sh_c1)); \
+ } \
+ }
+
+#define UN_WORD_2(name, packed_t, plane_t, sh_c0, sh_c1, mask) \
+ static void name(void *src, void *dst[], int w) { \
+ for (int x = 0; x < w; x++) { \
+ packed_t c = ((packed_t *)src)[x]; \
+ ((plane_t *)dst[0])[x] = (c >> (sh_c0)) & (mask); \
+ ((plane_t *)dst[1])[x] = (c >> (sh_c1)) & (mask); \
+ } \
+ }
+
+UN_WORD_2(un_cc8, uint16_t, uint8_t, 0, 8, 0xFFu)
+PA_WORD_2(pa_cc8, uint16_t, uint8_t, 0, 8, 0)
+UN_WORD_2(un_cc16, uint32_t, uint16_t, 0, 16, 0xFFFFu)
+PA_WORD_2(pa_cc16, uint32_t, uint16_t, 0, 16, 0)
+
+#define PA_SEQ_3(name, comp_t) \
+ static void name(void *dst, void *src[], int w) { \
+ comp_t *r = dst; \
+ for (int x = 0; x < w; x++) { \
+ *r++ = ((comp_t *)src[0])[x]; \
+ *r++ = ((comp_t *)src[1])[x]; \
+ *r++ = ((comp_t *)src[2])[x]; \
+ } \
+ }
+
+#define UN_SEQ_3(name, comp_t) \
+ static void name(void *src, void *dst[], int w) { \
+ comp_t *r = src; \
+ for (int x = 0; x < w; x++) { \
+ ((comp_t *)dst[0])[x] = *r++; \
+ ((comp_t *)dst[1])[x] = *r++; \
+ ((comp_t *)dst[2])[x] = *r++; \
+ } \
+ }
+
+UN_SEQ_3(un_ccc8, uint8_t)
+PA_SEQ_3(pa_ccc8, uint8_t)
+UN_SEQ_3(un_ccc16, uint16_t)
+PA_SEQ_3(pa_ccc16, uint16_t)
+
+// "regular": single packed plane, all components have same width (except padding)
+struct regular_repacker {
+ int packed_width; // number of bits of the packed pixel
+ int component_width; // number of bits for a single component
+ int prepadding; // number of bits of LSB padding
+ int num_components; // number of components that can be accessed
+ void (*pa_scanline)(void *a, void *b[], int w);
+ void (*un_scanline)(void *a, void *b[], int w);
+};
+
+static const struct regular_repacker regular_repackers[] = {
+ {32, 8, 0, 3, pa_ccc8z8, un_ccc8x8},
+ {32, 8, 8, 3, pa_z8ccc8, un_x8ccc8},
+ {32, 8, 0, 4, pa_cccc8, un_cccc8},
+ {64, 16, 0, 4, pa_cccc16, un_cccc16},
+ {64, 16, 0, 3, pa_ccc16z16, un_ccc16x16},
+ {24, 8, 0, 3, pa_ccc8, un_ccc8},
+ {48, 16, 0, 3, pa_ccc16, un_ccc16},
+ {16, 8, 0, 2, pa_cc8, un_cc8},
+ {32, 16, 0, 2, pa_cc16, un_cc16},
+ {32, 10, 0, 3, pa_ccc10z2, un_ccc10x2},
+};
+
+static void packed_repack(struct mp_repack *rp,
+ struct mp_image *a, int a_x, int a_y,
+ struct mp_image *b, int b_x, int b_y, int w)
+{
+ uint32_t *pa = mp_image_pixel_ptr(a, 0, a_x, a_y);
+
+ void *pb[4] = {0};
+ for (int p = 0; p < b->num_planes; p++) {
+ int s = rp->components[p];
+ pb[p] = mp_image_pixel_ptr(b, s, b_x, b_y);
+ }
+
+ rp->packed_repack_scanline(pa, pb, w);
+}
+
+// Tries to set a packer/unpacker for component-wise byte aligned formats.
+static void setup_packed_packer(struct mp_repack *rp)
+{
+ struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(rp->imgfmt_a);
+ if (!(desc.flags & MP_IMGFLAG_HAS_COMPS) ||
+ !(desc.flags & MP_IMGFLAG_TYPE_UINT) ||
+ !(desc.flags & MP_IMGFLAG_NE) ||
+ desc.num_planes != 1)
+ return;
+
+ int num_real_components = 0;
+ int components[4] = {0};
+ for (int n = 0; n < MP_NUM_COMPONENTS; n++) {
+ if (!desc.comps[n].size)
+ continue;
+ if (desc.comps[n].size != desc.comps[0].size ||
+ desc.comps[n].pad != desc.comps[0].pad ||
+ desc.comps[n].offset % desc.comps[0].size)
+ return;
+ int item = desc.comps[n].offset / desc.comps[0].size;
+ if (item >= 4)
+ return;
+ components[item] = n + 1;
+ num_real_components++;
+ }
+
+ int depth = desc.comps[0].size + MPMIN(0, desc.comps[0].pad);
+
+ static const int reorder_gbrp[] = {0, 3, 1, 2, 4};
+ static const int reorder_yuv[] = {0, 1, 2, 3, 4};
+ int planar_fmt = 0;
+ const int *reorder = NULL;
+ if (desc.flags & MP_IMGFLAG_COLOR_YUV) {
+ planar_fmt = find_yuv_format(depth, num_real_components);
+ reorder = reorder_yuv;
+ } else {
+ planar_fmt = find_gbrp_format(depth, num_real_components);
+ reorder = reorder_gbrp;
+ }
+ if (!planar_fmt)
+ return;
+
+ for (int i = 0; i < MP_ARRAY_SIZE(regular_repackers); i++) {
+ const struct regular_repacker *pa = &regular_repackers[i];
+
+ // The following may assume little endian (because some repack backends
+ // use word access, while the metadata here uses byte access).
+
+ int prepad = components[0] ? 0 : 8;
+ int first_comp = components[0] ? 0 : 1;
+ void (*repack_cb)(void *pa, void *pb[], int w) =
+ rp->pack ? pa->pa_scanline : pa->un_scanline;
+
+ if (pa->packed_width != desc.bpp[0] ||
+ pa->component_width != depth ||
+ pa->num_components != num_real_components ||
+ pa->prepadding != prepad ||
+ !repack_cb)
+ continue;
+
+ rp->repack = packed_repack;
+ rp->packed_repack_scanline = repack_cb;
+ rp->imgfmt_b = planar_fmt;
+ for (int n = 0; n < num_real_components; n++) {
+ // Determine permutation that maps component order between the two
+ // formats, with has_alpha special case (see above).
+ int c = reorder[components[first_comp + n]];
+ rp->components[n] = c == 4 ? num_real_components - 1 : c - 1;
+ }
+ return;
+ }
+}
+
+#define PA_SHIFT_LUT8(name, packed_t) \
+ static void name(void *dst, void *src[], int w, uint8_t *lut, \
+ uint8_t s0, uint8_t s1, uint8_t s2) { \
+ for (int x = 0; x < w; x++) { \
+ ((packed_t *)dst)[x] = \
+ (lut[((uint8_t *)src[0])[x] + 256 * 0] << s0) | \
+ (lut[((uint8_t *)src[1])[x] + 256 * 1] << s1) | \
+ (lut[((uint8_t *)src[2])[x] + 256 * 2] << s2); \
+ } \
+ }
+
+
+#define UN_SHIFT_LUT8(name, packed_t) \
+ static void name(void *src, void *dst[], int w, uint8_t *lut, \
+ uint8_t s0, uint8_t s1, uint8_t s2) { \
+ for (int x = 0; x < w; x++) { \
+ packed_t c = ((packed_t *)src)[x]; \
+ ((uint8_t *)dst[0])[x] = lut[((c >> s0) & 0xFF) + 256 * 0]; \
+ ((uint8_t *)dst[1])[x] = lut[((c >> s1) & 0xFF) + 256 * 1]; \
+ ((uint8_t *)dst[2])[x] = lut[((c >> s2) & 0xFF) + 256 * 2]; \
+ } \
+ }
+
+PA_SHIFT_LUT8(pa_shift_lut8_8, uint8_t)
+PA_SHIFT_LUT8(pa_shift_lut8_16, uint16_t)
+UN_SHIFT_LUT8(un_shift_lut8_8, uint8_t)
+UN_SHIFT_LUT8(un_shift_lut8_16, uint16_t)
+
+static void fringe_rgb_repack(struct mp_repack *rp,
+ struct mp_image *a, int a_x, int a_y,
+ struct mp_image *b, int b_x, int b_y, int w)
+{
+ void *pa = mp_image_pixel_ptr(a, 0, a_x, a_y);
+
+ void *pb[4] = {0};
+ for (int p = 0; p < b->num_planes; p++) {
+ int s = rp->components[p];
+ pb[p] = mp_image_pixel_ptr(b, s, b_x, b_y);
+ }
+
+ assert(rp->comp_size == 1 || rp->comp_size == 2);
+
+ void (*repack)(void *pa, void *pb[], int w, uint8_t *lut,
+ uint8_t s0, uint8_t s1, uint8_t s2) = NULL;
+ if (rp->pack) {
+ repack = rp->comp_size == 1 ? pa_shift_lut8_8 : pa_shift_lut8_16;
+ } else {
+ repack = rp->comp_size == 1 ? un_shift_lut8_8 : un_shift_lut8_16;
+ }
+ repack(pa, pb, w, rp->comp_lut,
+ rp->comp_shifts[0], rp->comp_shifts[1], rp->comp_shifts[2]);
+}
+
+static void setup_fringe_rgb_packer(struct mp_repack *rp)
+{
+ struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(rp->imgfmt_a);
+ if (!(desc.flags & MP_IMGFLAG_HAS_COMPS))
+ return;
+
+ if (desc.bpp[0] > 16 || (desc.bpp[0] % 8u) ||
+ mp_imgfmt_get_forced_csp(rp->imgfmt_a) != MP_CSP_RGB ||
+ desc.num_planes != 1 || desc.comps[3].size)
+ return;
+
+ int depth = desc.comps[0].size;
+ for (int n = 0; n < 3; n++) {
+ struct mp_imgfmt_comp_desc *c = &desc.comps[n];
+
+ if (c->size < 1 || c->size > 8 || c->pad)
+ return;
+
+ if (rp->flags & REPACK_CREATE_ROUND_DOWN) {
+ depth = MPMIN(depth, c->size);
+ } else {
+ depth = MPMAX(depth, c->size);
+ }
+ }
+ if (rp->flags & REPACK_CREATE_EXPAND_8BIT)
+ depth = 8;
+
+ rp->imgfmt_b = find_gbrp_format(depth, 3);
+ if (!rp->imgfmt_b)
+ return;
+ rp->comp_lut = talloc_array(rp, uint8_t, 256 * 3);
+ rp->repack = fringe_rgb_repack;
+ for (int n = 0; n < 3; n++)
+ rp->components[n] = ((int[]){3, 1, 2})[n] - 1;
+
+ for (int n = 0; n < 3; n++) {
+ int bits = desc.comps[n].size;
+ rp->comp_shifts[n] = desc.comps[n].offset;
+ if (rp->comp_lut) {
+ uint8_t *lut = rp->comp_lut + 256 * n;
+ uint8_t zmax = (1 << depth) - 1;
+ uint8_t cmax = (1 << bits) - 1;
+ for (int v = 0; v < 256; v++) {
+ if (rp->pack) {
+ lut[v] = (v * cmax + zmax / 2) / zmax;
+ } else {
+ lut[v] = (v & cmax) * zmax / cmax;
+ }
+ }
+ }
+ }
+
+ rp->comp_size = (desc.bpp[0] + 7) / 8;
+ assert(rp->comp_size == 1 || rp->comp_size == 2);
+
+ if (desc.endian_shift) {
+ assert(rp->comp_size == 2 && (1 << desc.endian_shift) == 2);
+ rp->endian_size = 2;
+ }
+}
+
+static void unpack_pal(struct mp_repack *rp,
+ struct mp_image *a, int a_x, int a_y,
+ struct mp_image *b, int b_x, int b_y, int w)
+{
+ uint8_t *src = mp_image_pixel_ptr(a, 0, a_x, a_y);
+ uint32_t *pal = (void *)a->planes[1];
+
+ uint8_t *dst[4] = {0};
+ for (int p = 0; p < b->num_planes; p++)
+ dst[p] = mp_image_pixel_ptr(b, p, b_x, b_y);
+
+ for (int x = 0; x < w; x++) {
+ uint32_t c = pal[src[x]];
+ dst[0][x] = (c >> 8) & 0xFF; // G
+ dst[1][x] = (c >> 0) & 0xFF; // B
+ dst[2][x] = (c >> 16) & 0xFF; // R
+ dst[3][x] = (c >> 24) & 0xFF; // A
+ }
+}
+
+static void bitmap_repack(struct mp_repack *rp,
+ struct mp_image *a, int a_x, int a_y,
+ struct mp_image *b, int b_x, int b_y, int w)
+{
+ uint8_t *pa = mp_image_pixel_ptr(a, 0, a_x, a_y);
+ uint8_t *pb = mp_image_pixel_ptr(b, 0, b_x, b_y);
+
+ if (rp->pack) {
+ for (unsigned x = 0; x < w; x += 8) {
+ uint8_t d = 0;
+ int max_b = MPMIN(8, w - x);
+ for (int bp = 0; bp < max_b; bp++)
+ d |= (rp->comp_lut[pb[x + bp]]) << (7 - bp);
+ pa[x / 8] = d;
+ }
+ } else {
+ for (unsigned x = 0; x < w; x += 8) {
+ uint8_t d = pa[x / 8];
+ int max_b = MPMIN(8, w - x);
+ for (int bp = 0; bp < max_b; bp++)
+ pb[x + bp] = rp->comp_lut[d & (1 << (7 - bp))];
+ }
+ }
+}
+
+static void setup_misc_packer(struct mp_repack *rp)
+{
+ if (rp->imgfmt_a == IMGFMT_PAL8 && !rp->pack) {
+ int grap_fmt = find_gbrp_format(8, 4);
+ if (!grap_fmt)
+ return;
+ rp->imgfmt_b = grap_fmt;
+ rp->repack = unpack_pal;
+ } else {
+ enum AVPixelFormat avfmt = imgfmt2pixfmt(rp->imgfmt_a);
+ if (avfmt == AV_PIX_FMT_MONOWHITE || avfmt == AV_PIX_FMT_MONOBLACK) {
+ rp->comp_lut = talloc_array(rp, uint8_t, 256);
+ rp->imgfmt_b = IMGFMT_Y1;
+ int max = 1;
+ if (rp->flags & REPACK_CREATE_EXPAND_8BIT) {
+ rp->imgfmt_b = IMGFMT_Y8;
+ max = 255;
+ }
+ bool inv = avfmt == AV_PIX_FMT_MONOWHITE;
+ for (int n = 0; n < 256; n++) {
+ rp->comp_lut[n] = rp->pack ? (inv ^ (n >= (max + 1) / 2))
+ : ((inv ^ !!n) ? max : 0);
+ }
+ rp->repack = bitmap_repack;
+ return;
+ }
+ }
+}
+
+#define PA_P422(name, comp_t) \
+ static void name(void *dst, void *src[], int w, uint8_t *c) { \
+ for (int x = 0; x < w; x += 2) { \
+ ((comp_t *)dst)[x * 2 + c[0]] = ((comp_t *)src[0])[x + 0]; \
+ ((comp_t *)dst)[x * 2 + c[1]] = ((comp_t *)src[0])[x + 1]; \
+ ((comp_t *)dst)[x * 2 + c[4]] = ((comp_t *)src[1])[x >> 1]; \
+ ((comp_t *)dst)[x * 2 + c[5]] = ((comp_t *)src[2])[x >> 1]; \
+ } \
+ }
+
+
+#define UN_P422(name, comp_t) \
+ static void name(void *src, void *dst[], int w, uint8_t *c) { \
+ for (int x = 0; x < w; x += 2) { \
+ ((comp_t *)dst[0])[x + 0] = ((comp_t *)src)[x * 2 + c[0]]; \
+ ((comp_t *)dst[0])[x + 1] = ((comp_t *)src)[x * 2 + c[1]]; \
+ ((comp_t *)dst[1])[x >> 1] = ((comp_t *)src)[x * 2 + c[4]]; \
+ ((comp_t *)dst[2])[x >> 1] = ((comp_t *)src)[x * 2 + c[5]]; \
+ } \
+ }
+
+PA_P422(pa_p422_8, uint8_t)
+PA_P422(pa_p422_16, uint16_t)
+UN_P422(un_p422_8, uint8_t)
+UN_P422(un_p422_16, uint16_t)
+
+static void pa_p411_8(void *dst, void *src[], int w, uint8_t *c)
+{
+ for (int x = 0; x < w; x += 4) {
+ ((uint8_t *)dst)[x / 4 * 6 + c[0]] = ((uint8_t *)src[0])[x + 0];
+ ((uint8_t *)dst)[x / 4 * 6 + c[1]] = ((uint8_t *)src[0])[x + 1];
+ ((uint8_t *)dst)[x / 4 * 6 + c[2]] = ((uint8_t *)src[0])[x + 2];
+ ((uint8_t *)dst)[x / 4 * 6 + c[3]] = ((uint8_t *)src[0])[x + 3];
+ ((uint8_t *)dst)[x / 4 * 6 + c[4]] = ((uint8_t *)src[1])[x >> 2];
+ ((uint8_t *)dst)[x / 4 * 6 + c[5]] = ((uint8_t *)src[2])[x >> 2];
+ }
+}
+
+
+static void un_p411_8(void *src, void *dst[], int w, uint8_t *c)
+{
+ for (int x = 0; x < w; x += 4) {
+ ((uint8_t *)dst[0])[x + 0] = ((uint8_t *)src)[x / 4 * 6 + c[0]];
+ ((uint8_t *)dst[0])[x + 1] = ((uint8_t *)src)[x / 4 * 6 + c[1]];
+ ((uint8_t *)dst[0])[x + 2] = ((uint8_t *)src)[x / 4 * 6 + c[2]];
+ ((uint8_t *)dst[0])[x + 3] = ((uint8_t *)src)[x / 4 * 6 + c[3]];
+ ((uint8_t *)dst[1])[x >> 2] = ((uint8_t *)src)[x / 4 * 6 + c[4]];
+ ((uint8_t *)dst[2])[x >> 2] = ((uint8_t *)src)[x / 4 * 6 + c[5]];
+ }
+}
+
+static void fringe_yuv_repack(struct mp_repack *rp,
+ struct mp_image *a, int a_x, int a_y,
+ struct mp_image *b, int b_x, int b_y, int w)
+{
+ void *pa = mp_image_pixel_ptr(a, 0, a_x, a_y);
+
+ void *pb[4] = {0};
+ for (int p = 0; p < b->num_planes; p++)
+ pb[p] = mp_image_pixel_ptr(b, p, b_x, b_y);
+
+ rp->repack_fringe_yuv(pa, pb, w, rp->comp_map);
+}
+
+static void setup_fringe_yuv_packer(struct mp_repack *rp)
+{
+ struct mp_imgfmt_desc desc = mp_imgfmt_get_desc(rp->imgfmt_a);
+ if (!(desc.flags & MP_IMGFLAG_PACKED_SS_YUV) ||
+ mp_imgfmt_desc_get_num_comps(&desc) != 3 ||
+ desc.align_x > 4)
+ return;
+
+ uint8_t y_loc[4];
+ if (!mp_imgfmt_get_packed_yuv_locations(desc.id, y_loc))
+ return;
+
+ for (int n = 0; n < MP_NUM_COMPONENTS; n++) {
+ if (!desc.comps[n].size)
+ continue;
+ if (desc.comps[n].size != desc.comps[0].size ||
+ desc.comps[n].pad < 0 ||
+ desc.comps[n].offset % desc.comps[0].size)
+ return;
+ if (n == 1 || n == 2) {
+ rp->comp_map[4 + (n - 1)] =
+ desc.comps[n].offset / desc.comps[0].size;
+ }
+ }
+ for (int n = 0; n < desc.align_x; n++) {
+ if (y_loc[n] % desc.comps[0].size)
+ return;
+ rp->comp_map[n] = y_loc[n] / desc.comps[0].size;
+ }
+
+ if (desc.comps[0].size == 8 && desc.align_x == 2) {
+ rp->repack_fringe_yuv = rp->pack ? pa_p422_8 : un_p422_8;
+ } else if (desc.comps[0].size == 16 && desc.align_x == 2) {
+ rp->repack_fringe_yuv = rp->pack ? pa_p422_16 : un_p422_16;
+ } else if (desc.comps[0].size == 8 && desc.align_x == 4) {
+ rp->repack_fringe_yuv = rp->pack ? pa_p411_8 : un_p411_8;
+ }
+
+ if (!rp->repack_fringe_yuv)
+ return;
+
+ struct mp_regular_imgfmt yuvfmt = {
+ .component_type = MP_COMPONENT_TYPE_UINT,
+ // NB: same problem with P010 and not clearing padding.
+ .component_size = desc.comps[0].size / 8u,
+ .num_planes = 3,
+ .planes = { {1, {1}}, {1, {2}}, {1, {3}} },
+ .chroma_xs = desc.chroma_xs,
+ .chroma_ys = 0,
+ };
+ rp->imgfmt_b = mp_find_regular_imgfmt(&yuvfmt);
+ rp->repack = fringe_yuv_repack;
+
+ if (desc.endian_shift) {
+ rp->endian_size = 1 << desc.endian_shift;
+ assert(rp->endian_size == 2);
+ }
+}
+
+static void repack_nv(struct mp_repack *rp,
+ struct mp_image *a, int a_x, int a_y,
+ struct mp_image *b, int b_x, int b_y, int w)
+{
+ int xs = a->fmt.chroma_xs;
+
+ uint32_t *pa = mp_image_pixel_ptr(a, 1, a_x, a_y);
+
+ void *pb[2];
+ for (int p = 0; p < 2; p++) {
+ int s = rp->components[p];
+ pb[p] = mp_image_pixel_ptr(b, s, b_x, b_y);
+ }
+
+ rp->packed_repack_scanline(pa, pb, (w + (1 << xs) - 1) >> xs);
+}
+
+static void setup_nv_packer(struct mp_repack *rp)
+{
+ struct mp_regular_imgfmt desc;
+ if (!mp_get_regular_imgfmt(&desc, rp->imgfmt_a))
+ return;
+
+ // Check for NV.
+ if (desc.num_planes != 2)
+ return;
+ if (desc.planes[0].num_components != 1 || desc.planes[0].components[0] != 1)
+ return;
+ if (desc.planes[1].num_components != 2)
+ return;
+ int cr0 = desc.planes[1].components[0];
+ int cr1 = desc.planes[1].components[1];
+ if (cr0 > cr1)
+ MPSWAP(int, cr0, cr1);
+ if (cr0 != 2 || cr1 != 3)
+ return;
+
+ // Construct equivalent planar format.
+ struct mp_regular_imgfmt desc2 = desc;
+ desc2.num_planes = 3;
+ desc2.planes[1].num_components = 1;
+ desc2.planes[1].components[0] = 2;
+ desc2.planes[2].num_components = 1;
+ desc2.planes[2].components[0] = 3;
+ // For P010. Strangely this concept exists only for the NV format.
+ if (desc2.component_pad > 0)
+ desc2.component_pad = 0;
+
+ int planar_fmt = mp_find_regular_imgfmt(&desc2);
+ if (!planar_fmt)
+ return;
+
+ for (int i = 0; i < MP_ARRAY_SIZE(regular_repackers); i++) {
+ const struct regular_repacker *pa = &regular_repackers[i];
+
+ void (*repack_cb)(void *pa, void *pb[], int w) =
+ rp->pack ? pa->pa_scanline : pa->un_scanline;
+
+ if (pa->packed_width != desc.component_size * 2 * 8 ||
+ pa->component_width != desc.component_size * 8 ||
+ pa->num_components != 2 ||
+ pa->prepadding != 0 ||
+ !repack_cb)
+ continue;
+
+ rp->repack = repack_nv;
+ rp->passthrough_y = true;
+ rp->packed_repack_scanline = repack_cb;
+ rp->imgfmt_b = planar_fmt;
+ rp->components[0] = desc.planes[1].components[0] - 1;
+ rp->components[1] = desc.planes[1].components[1] - 1;
+ return;
+ }
+}
+
+#define PA_F32(name, packed_t) \
+ static void name(void *dst, float *src, int w, float m, float o, \
+ uint32_t p_max) { \
+ for (int x = 0; x < w; x++) { \
+ ((packed_t *)dst)[x] = \
+ MPCLAMP(lrint((src[x] + o) * m), 0, (packed_t)p_max); \
+ } \
+ }
+
+#define UN_F32(name, packed_t) \
+ static void name(void *src, float *dst, int w, float m, float o, \
+ uint32_t unused) { \
+ for (int x = 0; x < w; x++) \
+ dst[x] = ((packed_t *)src)[x] * m + o; \
+ }
+
+PA_F32(pa_f32_8, uint8_t)
+UN_F32(un_f32_8, uint8_t)
+PA_F32(pa_f32_16, uint16_t)
+UN_F32(un_f32_16, uint16_t)
+
+// In all this, float counts as "unpacked".
+static void repack_float(struct mp_repack *rp,
+ struct mp_image *a, int a_x, int a_y,
+ struct mp_image *b, int b_x, int b_y, int w)
+{
+ assert(rp->f32_comp_size == 1 || rp->f32_comp_size == 2);
+
+ void (*packer)(void *a, float *b, int w, float fm, float fb, uint32_t max)
+ = rp->pack ? (rp->f32_comp_size == 1 ? pa_f32_8 : pa_f32_16)
+ : (rp->f32_comp_size == 1 ? un_f32_8 : un_f32_16);
+
+ for (int p = 0; p < b->num_planes; p++) {
+ int h = (1 << b->fmt.chroma_ys) - (1 << b->fmt.ys[p]) + 1;
+ for (int y = 0; y < h; y++) {
+ void *pa = mp_image_pixel_ptr_ny(a, p, a_x, a_y + y);
+ void *pb = mp_image_pixel_ptr_ny(b, p, b_x, b_y + y);
+
+ packer(pa, pb, w >> b->fmt.xs[p], rp->f32_m[p], rp->f32_o[p],
+ rp->f32_pmax[p]);
+ }
+ }
+}
+
+static void update_repack_float(struct mp_repack *rp)
+{
+ if (!rp->f32_comp_size)
+ return;
+
+ // Image in input format.
+ struct mp_image *ui = rp->pack ? rp->steps[rp->num_steps - 1].buf[1]
+ : rp->steps[0].buf[0];
+ enum mp_csp csp = ui->params.color.space;
+ enum mp_csp_levels levels = ui->params.color.levels;
+ if (rp->f32_csp_space == csp && rp->f32_csp_levels == levels)
+ return;
+
+ // The fixed point format.
+ struct mp_regular_imgfmt desc = {0};
+ mp_get_regular_imgfmt(&desc, rp->imgfmt_b);
+ assert(desc.component_size);
+
+ int comp_bits = desc.component_size * 8 + MPMIN(desc.component_pad, 0);
+ for (int p = 0; p < desc.num_planes; p++) {
+ double m, o;
+ mp_get_csp_uint_mul(csp, levels, comp_bits, desc.planes[p].components[0],
+ &m, &o);
+ rp->f32_m[p] = rp->pack ? 1.0 / m : m;
+ rp->f32_o[p] = rp->pack ? -o : o;
+ rp->f32_pmax[p] = (1u << comp_bits) - 1;
+ }
+
+ rp->f32_csp_space = csp;
+ rp->f32_csp_levels = levels;
+}
+
+void repack_line(struct mp_repack *rp, int dst_x, int dst_y,
+ int src_x, int src_y, int w)
+{
+ assert(rp->configured);
+
+ struct repack_step *first = &rp->steps[0];
+ struct repack_step *last = &rp->steps[rp->num_steps - 1];
+
+ assert(dst_x >= 0 && dst_y >= 0 && src_x >= 0 && src_y >= 0 && w >= 0);
+ assert(dst_x + w <= MP_ALIGN_UP(last->buf[1]->w, last->fmt[1].align_x));
+ assert(src_x + w <= MP_ALIGN_UP(first->buf[0]->w, first->fmt[0].align_x));
+ assert(dst_y < last->buf[1]->h);
+ assert(src_y < first->buf[0]->h);
+ assert(!(dst_x & (last->fmt[1].align_x - 1)));
+ assert(!(src_x & (first->fmt[0].align_x - 1)));
+ assert(!(w & ((1 << first->fmt[0].chroma_xs) - 1)));
+ assert(!(dst_y & (last->fmt[1].align_y - 1)));
+ assert(!(src_y & (first->fmt[0].align_y - 1)));
+
+ for (int n = 0; n < rp->num_steps; n++) {
+ struct repack_step *rs = &rp->steps[n];
+
+ // When writing to temporary buffers, always write to the start (maybe
+ // helps with locality).
+ int sx = rs->user_buf[0] ? src_x : 0;
+ int sy = rs->user_buf[0] ? src_y : 0;
+ int dx = rs->user_buf[1] ? dst_x : 0;
+ int dy = rs->user_buf[1] ? dst_y : 0;
+
+ struct mp_image *buf_a = rs->buf[rp->pack];
+ struct mp_image *buf_b = rs->buf[!rp->pack];
+ int a_x = rp->pack ? dx : sx;
+ int a_y = rp->pack ? dy : sy;
+ int b_x = rp->pack ? sx : dx;
+ int b_y = rp->pack ? sy : dy;
+
+ switch (rs->type) {
+ case REPACK_STEP_REPACK: {
+ if (rp->repack)
+ rp->repack(rp, buf_a, a_x, a_y, buf_b, b_x, b_y, w);
+
+ for (int p = 0; p < rs->fmt[0].num_planes; p++) {
+ if (rp->copy_buf[p])
+ copy_plane(rs->buf[1], dx, dy, rs->buf[0], sx, sy, w, p);
+ }
+ break;
+ }
+ case REPACK_STEP_ENDIAN:
+ swap_endian(rs->buf[1], dx, dy, rs->buf[0], sx, sy, w,
+ rp->endian_size);
+ break;
+ case REPACK_STEP_FLOAT:
+ repack_float(rp, buf_a, a_x, a_y, buf_b, b_x, b_y, w);
+ break;
+ }
+ }
+}
+
+static bool setup_format_ne(struct mp_repack *rp)
+{
+ if (!rp->imgfmt_b)
+ setup_nv_packer(rp);
+ if (!rp->imgfmt_b)
+ setup_misc_packer(rp);
+ if (!rp->imgfmt_b)
+ setup_packed_packer(rp);
+ if (!rp->imgfmt_b)
+ setup_fringe_rgb_packer(rp);
+ if (!rp->imgfmt_b)
+ setup_fringe_yuv_packer(rp);
+ if (!rp->imgfmt_b)
+ rp->imgfmt_b = rp->imgfmt_a; // maybe it was planar after all
+
+ struct mp_regular_imgfmt desc;
+ if (!mp_get_regular_imgfmt(&desc, rp->imgfmt_b))
+ return false;
+
+ // no weird stuff
+ if (desc.num_planes > 4)
+ return false;
+
+ // Endian swapping.
+ if (rp->imgfmt_a != rp->imgfmt_user &&
+ rp->imgfmt_a == mp_find_other_endian(rp->imgfmt_user))
+ {
+ struct mp_imgfmt_desc desc_a = mp_imgfmt_get_desc(rp->imgfmt_a);
+ struct mp_imgfmt_desc desc_u = mp_imgfmt_get_desc(rp->imgfmt_user);
+ rp->endian_size = 1 << desc_u.endian_shift;
+ if (!desc_a.endian_shift && rp->endian_size != 2 && rp->endian_size != 4)
+ return false;
+ }
+
+ // Accept only true planar formats (with known components and no padding).
+ for (int n = 0; n < desc.num_planes; n++) {
+ if (desc.planes[n].num_components != 1)
+ return false;
+ int c = desc.planes[n].components[0];
+ if (c < 1 || c > 4)
+ return false;
+ }
+
+ rp->fmt_a = mp_imgfmt_get_desc(rp->imgfmt_a);
+ rp->fmt_b = mp_imgfmt_get_desc(rp->imgfmt_b);
+
+ // This is if we did a pack step.
+
+ if (rp->flags & REPACK_CREATE_PLANAR_F32) {
+ // imgfmt_b with float32 component type.
+ struct mp_regular_imgfmt fdesc = desc;
+ fdesc.component_type = MP_COMPONENT_TYPE_FLOAT;
+ fdesc.component_size = 4;
+ fdesc.component_pad = 0;
+ int ffmt = mp_find_regular_imgfmt(&fdesc);
+ if (!ffmt)
+ return false;
+ if (ffmt != rp->imgfmt_b) {
+ if (desc.component_type != MP_COMPONENT_TYPE_UINT ||
+ (desc.component_size != 1 && desc.component_size != 2))
+ return false;
+ rp->f32_comp_size = desc.component_size;
+ rp->f32_csp_space = MP_CSP_COUNT;
+ rp->f32_csp_levels = MP_CSP_LEVELS_COUNT;
+ rp->steps[rp->num_steps++] = (struct repack_step) {
+ .type = REPACK_STEP_FLOAT,
+ .fmt = {
+ mp_imgfmt_get_desc(ffmt),
+ rp->fmt_b,
+ },
+ };
+ }
+ }
+
+ rp->steps[rp->num_steps++] = (struct repack_step) {
+ .type = REPACK_STEP_REPACK,
+ .fmt = { rp->fmt_b, rp->fmt_a },
+ };
+
+ if (rp->endian_size) {
+ rp->steps[rp->num_steps++] = (struct repack_step) {
+ .type = REPACK_STEP_ENDIAN,
+ .fmt = {
+ rp->fmt_a,
+ mp_imgfmt_get_desc(rp->imgfmt_user),
+ },
+ };
+ }
+
+ // Reverse if unpack (to reflect actual data flow)
+ if (!rp->pack) {
+ for (int n = 0; n < rp->num_steps / 2; n++) {
+ MPSWAP(struct repack_step, rp->steps[n],
+ rp->steps[rp->num_steps - 1 - n]);
+ }
+ for (int n = 0; n < rp->num_steps; n++) {
+ struct repack_step *rs = &rp->steps[n];
+ MPSWAP(struct mp_imgfmt_desc, rs->fmt[0], rs->fmt[1]);
+ }
+ }
+
+ for (int n = 0; n < rp->num_steps - 1; n++)
+ assert(rp->steps[n].fmt[1].id == rp->steps[n + 1].fmt[0].id);
+
+ return true;
+}
+
+static void reset_params(struct mp_repack *rp)
+{
+ rp->num_steps = 0;
+ rp->imgfmt_b = 0;
+ rp->repack = NULL;
+ rp->passthrough_y = false;
+ rp->endian_size = 0;
+ rp->packed_repack_scanline = NULL;
+ rp->comp_size = 0;
+ talloc_free(rp->comp_lut);
+ rp->comp_lut = NULL;
+}
+
+static bool setup_format(struct mp_repack *rp)
+{
+ reset_params(rp);
+ rp->imgfmt_a = rp->imgfmt_user;
+ if (setup_format_ne(rp))
+ return true;
+ // Try reverse endian.
+ reset_params(rp);
+ rp->imgfmt_a = mp_find_other_endian(rp->imgfmt_user);
+ return rp->imgfmt_a && setup_format_ne(rp);
+}
+
+struct mp_repack *mp_repack_create_planar(int imgfmt, bool pack, int flags)
+{
+ struct mp_repack *rp = talloc_zero(NULL, struct mp_repack);
+ rp->imgfmt_user = imgfmt;
+ rp->pack = pack;
+ rp->flags = flags;
+
+ if (!setup_format(rp)) {
+ talloc_free(rp);
+ return NULL;
+ }
+
+ return rp;
+}
+
+int mp_repack_get_format_src(struct mp_repack *rp)
+{
+ return rp->steps[0].fmt[0].id;
+}
+
+int mp_repack_get_format_dst(struct mp_repack *rp)
+{
+ return rp->steps[rp->num_steps - 1].fmt[1].id;
+}
+
+int mp_repack_get_align_x(struct mp_repack *rp)
+{
+ // We really want the LCM between those, but since only one of them is
+ // packed (or they're the same format), and the chroma subsampling is the
+ // same for both, only the packed one matters.
+ return rp->fmt_a.align_x;
+}
+
+int mp_repack_get_align_y(struct mp_repack *rp)
+{
+ return rp->fmt_a.align_y; // should be the same for packed/planar formats
+}
+
+static void image_realloc(struct mp_image **img, int fmt, int w, int h)
+{
+ if (*img && (*img)->imgfmt == fmt && (*img)->w == w && (*img)->h == h)
+ return;
+ talloc_free(*img);
+ *img = mp_image_alloc(fmt, w, h);
+}
+
+bool repack_config_buffers(struct mp_repack *rp,
+ int dst_flags, struct mp_image *dst,
+ int src_flags, struct mp_image *src,
+ bool *enable_passthrough)
+{
+ struct repack_step *rs_first = &rp->steps[0];
+ struct repack_step *rs_last = &rp->steps[rp->num_steps - 1];
+
+ rp->configured = false;
+
+ assert(dst && src);
+
+ int buf_w = MPMAX(dst->w, src->w);
+
+ assert(dst->imgfmt == rs_last->fmt[1].id);
+ assert(src->imgfmt == rs_first->fmt[0].id);
+
+ // Chain/allocate buffers.
+
+ for (int n = 0; n < rp->num_steps; n++)
+ rp->steps[n].buf[0] = rp->steps[n].buf[1] = NULL;
+
+ rs_first->buf[0] = src;
+ rs_last->buf[1] = dst;
+
+ for (int n = 0; n < rp->num_steps; n++) {
+ struct repack_step *rs = &rp->steps[n];
+
+ if (!rs->buf[0]) {
+ assert(n > 0);
+ rs->buf[0] = rp->steps[n - 1].buf[1];
+ }
+
+ if (rs->buf[1])
+ continue;
+
+ // Note: since repack_line() can have different src/dst offsets, we
+ // can't do true in-place in general.
+ bool can_inplace = rs->type == REPACK_STEP_ENDIAN &&
+ rs->buf[0] != src && rs->buf[0] != dst;
+ if (can_inplace) {
+ rs->buf[1] = rs->buf[0];
+ continue;
+ }
+
+ if (rs != rs_last) {
+ struct repack_step *next = &rp->steps[n + 1];
+ if (next->buf[0]) {
+ rs->buf[1] = next->buf[0];
+ continue;
+ }
+ }
+
+ image_realloc(&rs->tmp, rs->fmt[1].id, buf_w, rs->fmt[1].align_y);
+ if (!rs->tmp)
+ return false;
+ talloc_steal(rp, rs->tmp);
+ rs->buf[1] = rs->tmp;
+ }
+
+ for (int n = 0; n < rp->num_steps; n++) {
+ struct repack_step *rs = &rp->steps[n];
+ rs->user_buf[0] = rs->buf[0] == src || rs->buf[0] == dst;
+ rs->user_buf[1] = rs->buf[1] == src || rs->buf[1] == dst;
+ }
+
+ // If repacking is the only operation. It's also responsible for simply
+ // copying src to dst if absolutely no filtering is done.
+ bool may_passthrough =
+ rp->num_steps == 1 && rp->steps[0].type == REPACK_STEP_REPACK;
+
+ for (int p = 0; p < rp->fmt_b.num_planes; p++) {
+ // (All repack callbacks copy, except nv12 does not copy luma.)
+ bool repack_copies_plane = rp->repack && !(rp->passthrough_y && p == 0);
+
+ bool can_pt = may_passthrough && !repack_copies_plane &&
+ enable_passthrough && enable_passthrough[p];
+
+ // Copy if needed, unless the repack callback does it anyway.
+ rp->copy_buf[p] = !repack_copies_plane && !can_pt;
+
+ if (enable_passthrough)
+ enable_passthrough[p] = can_pt && !rp->copy_buf[p];
+ }
+
+ if (enable_passthrough) {
+ for (int n = rp->fmt_b.num_planes; n < MP_MAX_PLANES; n++)
+ enable_passthrough[n] = false;
+ }
+
+ update_repack_float(rp);
+
+ rp->configured = true;
+
+ return true;
+}