summaryrefslogtreecommitdiffstats
path: root/ml/dlib/tools/python/src/sequence_segmenter.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 02:57:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 02:57:58 +0000
commitbe1c7e50e1e8809ea56f2c9d472eccd8ffd73a97 (patch)
tree9754ff1ca740f6346cf8483ec915d4054bc5da2d /ml/dlib/tools/python/src/sequence_segmenter.cpp
parentInitial commit. (diff)
downloadnetdata-be1c7e50e1e8809ea56f2c9d472eccd8ffd73a97.tar.xz
netdata-be1c7e50e1e8809ea56f2c9d472eccd8ffd73a97.zip
Adding upstream version 1.44.3.upstream/1.44.3upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'ml/dlib/tools/python/src/sequence_segmenter.cpp')
-rw-r--r--ml/dlib/tools/python/src/sequence_segmenter.cpp827
1 files changed, 827 insertions, 0 deletions
diff --git a/ml/dlib/tools/python/src/sequence_segmenter.cpp b/ml/dlib/tools/python/src/sequence_segmenter.cpp
new file mode 100644
index 00000000..9fde1e77
--- /dev/null
+++ b/ml/dlib/tools/python/src/sequence_segmenter.cpp
@@ -0,0 +1,827 @@
+// Copyright (C) 2013 Davis E. King (davis@dlib.net)
+// License: Boost Software License See LICENSE.txt for the full license.
+
+#include "opaque_types.h"
+#include <dlib/python.h>
+#include <dlib/matrix.h>
+#include <dlib/svm_threaded.h>
+
+using namespace dlib;
+using namespace std;
+namespace py = pybind11;
+
+typedef matrix<double,0,1> dense_vect;
+typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
+typedef std::vector<std::pair<unsigned long, unsigned long> > ranges;
+
+// ----------------------------------------------------------------------------------------
+
+template <typename samp_type, bool BIO, bool high_order, bool nonnegative>
+class segmenter_feature_extractor
+{
+
+public:
+ typedef std::vector<samp_type> sequence_type;
+ const static bool use_BIO_model = BIO;
+ const static bool use_high_order_features = high_order;
+ const static bool allow_negative_weights = nonnegative;
+
+
+ unsigned long _num_features;
+ unsigned long _window_size;
+
+ segmenter_feature_extractor(
+ ) : _num_features(1), _window_size(1) {}
+
+ segmenter_feature_extractor(
+ unsigned long _num_features_,
+ unsigned long _window_size_
+ ) : _num_features(_num_features_), _window_size(_window_size_) {}
+
+ unsigned long num_features(
+ ) const { return _num_features; }
+
+ unsigned long window_size(
+ ) const {return _window_size; }
+
+ template <typename feature_setter>
+ void get_features (
+ feature_setter& set_feature,
+ const std::vector<dense_vect>& x,
+ unsigned long position
+ ) const
+ {
+ for (long i = 0; i < x[position].size(); ++i)
+ {
+ set_feature(i, x[position](i));
+ }
+ }
+
+ template <typename feature_setter>
+ void get_features (
+ feature_setter& set_feature,
+ const std::vector<sparse_vect>& x,
+ unsigned long position
+ ) const
+ {
+ for (unsigned long i = 0; i < x[position].size(); ++i)
+ {
+ set_feature(x[position][i].first, x[position][i].second);
+ }
+ }
+
+ friend void serialize(const segmenter_feature_extractor& item, std::ostream& out)
+ {
+ dlib::serialize(item._num_features, out);
+ dlib::serialize(item._window_size, out);
+ }
+ friend void deserialize(segmenter_feature_extractor& item, std::istream& in)
+ {
+ dlib::deserialize(item._num_features, in);
+ dlib::deserialize(item._window_size, in);
+ }
+};
+
+// ----------------------------------------------------------------------------------------
+
+struct segmenter_type
+{
+ /*!
+ WHAT THIS OBJECT REPRESENTS
+ This the object that python will use directly to represent a
+ sequence_segmenter. All it does is contain all the possible template
+ instantiations of a sequence_segmenter and invoke the right one depending on
+ the mode variable.
+ !*/
+
+ segmenter_type() : mode(-1)
+ { }
+
+ ranges segment_sequence_dense (
+ const std::vector<dense_vect>& x
+ ) const
+ {
+ switch (mode)
+ {
+ case 0: return segmenter0(x);
+ case 1: return segmenter1(x);
+ case 2: return segmenter2(x);
+ case 3: return segmenter3(x);
+ case 4: return segmenter4(x);
+ case 5: return segmenter5(x);
+ case 6: return segmenter6(x);
+ case 7: return segmenter7(x);
+ default: throw dlib::error("Invalid mode");
+ }
+ }
+
+ ranges segment_sequence_sparse (
+ const std::vector<sparse_vect>& x
+ ) const
+ {
+ switch (mode)
+ {
+ case 8: return segmenter8(x);
+ case 9: return segmenter9(x);
+ case 10: return segmenter10(x);
+ case 11: return segmenter11(x);
+ case 12: return segmenter12(x);
+ case 13: return segmenter13(x);
+ case 14: return segmenter14(x);
+ case 15: return segmenter15(x);
+ default: throw dlib::error("Invalid mode");
+ }
+ }
+
+ const matrix<double,0,1> get_weights()
+ {
+ switch(mode)
+ {
+ case 0: return segmenter0.get_weights();
+ case 1: return segmenter1.get_weights();
+ case 2: return segmenter2.get_weights();
+ case 3: return segmenter3.get_weights();
+ case 4: return segmenter4.get_weights();
+ case 5: return segmenter5.get_weights();
+ case 6: return segmenter6.get_weights();
+ case 7: return segmenter7.get_weights();
+
+ case 8: return segmenter8.get_weights();
+ case 9: return segmenter9.get_weights();
+ case 10: return segmenter10.get_weights();
+ case 11: return segmenter11.get_weights();
+ case 12: return segmenter12.get_weights();
+ case 13: return segmenter13.get_weights();
+ case 14: return segmenter14.get_weights();
+ case 15: return segmenter15.get_weights();
+
+ default: throw dlib::error("Invalid mode");
+ }
+ }
+
+ friend void serialize (const segmenter_type& item, std::ostream& out)
+ {
+ serialize(item.mode, out);
+ switch(item.mode)
+ {
+ case 0: serialize(item.segmenter0, out); break;
+ case 1: serialize(item.segmenter1, out); break;
+ case 2: serialize(item.segmenter2, out); break;
+ case 3: serialize(item.segmenter3, out); break;
+ case 4: serialize(item.segmenter4, out); break;
+ case 5: serialize(item.segmenter5, out); break;
+ case 6: serialize(item.segmenter6, out); break;
+ case 7: serialize(item.segmenter7, out); break;
+
+ case 8: serialize(item.segmenter8, out); break;
+ case 9: serialize(item.segmenter9, out); break;
+ case 10: serialize(item.segmenter10, out); break;
+ case 11: serialize(item.segmenter11, out); break;
+ case 12: serialize(item.segmenter12, out); break;
+ case 13: serialize(item.segmenter13, out); break;
+ case 14: serialize(item.segmenter14, out); break;
+ case 15: serialize(item.segmenter15, out); break;
+ default: throw dlib::error("Invalid mode");
+ }
+ }
+ friend void deserialize (segmenter_type& item, std::istream& in)
+ {
+ deserialize(item.mode, in);
+ switch(item.mode)
+ {
+ case 0: deserialize(item.segmenter0, in); break;
+ case 1: deserialize(item.segmenter1, in); break;
+ case 2: deserialize(item.segmenter2, in); break;
+ case 3: deserialize(item.segmenter3, in); break;
+ case 4: deserialize(item.segmenter4, in); break;
+ case 5: deserialize(item.segmenter5, in); break;
+ case 6: deserialize(item.segmenter6, in); break;
+ case 7: deserialize(item.segmenter7, in); break;
+
+ case 8: deserialize(item.segmenter8, in); break;
+ case 9: deserialize(item.segmenter9, in); break;
+ case 10: deserialize(item.segmenter10, in); break;
+ case 11: deserialize(item.segmenter11, in); break;
+ case 12: deserialize(item.segmenter12, in); break;
+ case 13: deserialize(item.segmenter13, in); break;
+ case 14: deserialize(item.segmenter14, in); break;
+ case 15: deserialize(item.segmenter15, in); break;
+ default: throw dlib::error("Invalid mode");
+ }
+ }
+
+ int mode;
+
+ typedef segmenter_feature_extractor<dense_vect, false,false,false> fe0;
+ typedef segmenter_feature_extractor<dense_vect, false,false,true> fe1;
+ typedef segmenter_feature_extractor<dense_vect, false,true, false> fe2;
+ typedef segmenter_feature_extractor<dense_vect, false,true, true> fe3;
+ typedef segmenter_feature_extractor<dense_vect, true, false,false> fe4;
+ typedef segmenter_feature_extractor<dense_vect, true, false,true> fe5;
+ typedef segmenter_feature_extractor<dense_vect, true, true, false> fe6;
+ typedef segmenter_feature_extractor<dense_vect, true, true, true> fe7;
+ sequence_segmenter<fe0> segmenter0;
+ sequence_segmenter<fe1> segmenter1;
+ sequence_segmenter<fe2> segmenter2;
+ sequence_segmenter<fe3> segmenter3;
+ sequence_segmenter<fe4> segmenter4;
+ sequence_segmenter<fe5> segmenter5;
+ sequence_segmenter<fe6> segmenter6;
+ sequence_segmenter<fe7> segmenter7;
+
+ typedef segmenter_feature_extractor<sparse_vect, false,false,false> fe8;
+ typedef segmenter_feature_extractor<sparse_vect, false,false,true> fe9;
+ typedef segmenter_feature_extractor<sparse_vect, false,true, false> fe10;
+ typedef segmenter_feature_extractor<sparse_vect, false,true, true> fe11;
+ typedef segmenter_feature_extractor<sparse_vect, true, false,false> fe12;
+ typedef segmenter_feature_extractor<sparse_vect, true, false,true> fe13;
+ typedef segmenter_feature_extractor<sparse_vect, true, true, false> fe14;
+ typedef segmenter_feature_extractor<sparse_vect, true, true, true> fe15;
+ sequence_segmenter<fe8> segmenter8;
+ sequence_segmenter<fe9> segmenter9;
+ sequence_segmenter<fe10> segmenter10;
+ sequence_segmenter<fe11> segmenter11;
+ sequence_segmenter<fe12> segmenter12;
+ sequence_segmenter<fe13> segmenter13;
+ sequence_segmenter<fe14> segmenter14;
+ sequence_segmenter<fe15> segmenter15;
+};
+
+
+// ----------------------------------------------------------------------------------------
+
+struct segmenter_params
+{
+ segmenter_params()
+ {
+ use_BIO_model = true;
+ use_high_order_features = true;
+ allow_negative_weights = true;
+ window_size = 5;
+ num_threads = 4;
+ epsilon = 0.1;
+ max_cache_size = 40;
+ be_verbose = false;
+ C = 100;
+ }
+
+ bool use_BIO_model;
+ bool use_high_order_features;
+ bool allow_negative_weights;
+ unsigned long window_size;
+ unsigned long num_threads;
+ double epsilon;
+ unsigned long max_cache_size;
+ bool be_verbose;
+ double C;
+};
+
+
+string segmenter_params__str__(const segmenter_params& p)
+{
+ ostringstream sout;
+ if (p.use_BIO_model)
+ sout << "BIO,";
+ else
+ sout << "BILOU,";
+
+ if (p.use_high_order_features)
+ sout << "highFeats,";
+ else
+ sout << "lowFeats,";
+
+ if (p.allow_negative_weights)
+ sout << "signed,";
+ else
+ sout << "non-negative,";
+
+ sout << "win="<<p.window_size << ",";
+ sout << "threads="<<p.num_threads << ",";
+ sout << "eps="<<p.epsilon << ",";
+ sout << "cache="<<p.max_cache_size << ",";
+ if (p.be_verbose)
+ sout << "verbose,";
+ else
+ sout << "non-verbose,";
+ sout << "C="<<p.C;
+ return trim(sout.str());
+}
+
+string segmenter_params__repr__(const segmenter_params& p)
+{
+ ostringstream sout;
+ sout << "<";
+ sout << segmenter_params__str__(p);
+ sout << ">";
+ return sout.str();
+}
+
+void serialize ( const segmenter_params& item, std::ostream& out)
+{
+ serialize(item.use_BIO_model, out);
+ serialize(item.use_high_order_features, out);
+ serialize(item.allow_negative_weights, out);
+ serialize(item.window_size, out);
+ serialize(item.num_threads, out);
+ serialize(item.epsilon, out);
+ serialize(item.max_cache_size, out);
+ serialize(item.be_verbose, out);
+ serialize(item.C, out);
+}
+
+void deserialize (segmenter_params& item, std::istream& in)
+{
+ deserialize(item.use_BIO_model, in);
+ deserialize(item.use_high_order_features, in);
+ deserialize(item.allow_negative_weights, in);
+ deserialize(item.window_size, in);
+ deserialize(item.num_threads, in);
+ deserialize(item.epsilon, in);
+ deserialize(item.max_cache_size, in);
+ deserialize(item.be_verbose, in);
+ deserialize(item.C, in);
+}
+
+// ----------------------------------------------------------------------------------------
+
+template <typename T>
+void configure_trainer (
+ const std::vector<std::vector<dense_vect> >& samples,
+ structural_sequence_segmentation_trainer<T>& trainer,
+ const segmenter_params& params
+)
+{
+ pyassert(samples.size() != 0, "Invalid arguments. You must give some training sequences.");
+ pyassert(samples[0].size() != 0, "Invalid arguments. You can't have zero length training sequences.");
+ pyassert(params.window_size != 0, "Invalid window_size parameter, it must be > 0.");
+ pyassert(params.epsilon > 0, "Invalid epsilon parameter, it must be > 0.");
+ pyassert(params.C > 0, "Invalid C parameter, it must be > 0.");
+ const long dims = samples[0][0].size();
+
+ trainer = structural_sequence_segmentation_trainer<T>(T(dims, params.window_size));
+ trainer.set_num_threads(params.num_threads);
+ trainer.set_epsilon(params.epsilon);
+ trainer.set_max_cache_size(params.max_cache_size);
+ trainer.set_c(params.C);
+ if (params.be_verbose)
+ trainer.be_verbose();
+}
+
+// ----------------------------------------------------------------------------------------
+
+template <typename T>
+void configure_trainer (
+ const std::vector<std::vector<sparse_vect> >& samples,
+ structural_sequence_segmentation_trainer<T>& trainer,
+ const segmenter_params& params
+)
+{
+ pyassert(samples.size() != 0, "Invalid arguments. You must give some training sequences.");
+ pyassert(samples[0].size() != 0, "Invalid arguments. You can't have zero length training sequences.");
+
+ unsigned long dims = 0;
+ for (unsigned long i = 0; i < samples.size(); ++i)
+ {
+ dims = std::max(dims, max_index_plus_one(samples[i]));
+ }
+
+ trainer = structural_sequence_segmentation_trainer<T>(T(dims, params.window_size));
+ trainer.set_num_threads(params.num_threads);
+ trainer.set_epsilon(params.epsilon);
+ trainer.set_max_cache_size(params.max_cache_size);
+ trainer.set_c(params.C);
+ if (params.be_verbose)
+ trainer.be_verbose();
+}
+
+// ----------------------------------------------------------------------------------------
+
+segmenter_type train_dense (
+ const std::vector<std::vector<dense_vect> >& samples,
+ const std::vector<ranges>& segments,
+ segmenter_params params
+)
+{
+ pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");
+
+ int mode = 0;
+ if (params.use_BIO_model)
+ mode = mode*2 + 1;
+ else
+ mode = mode*2;
+ if (params.use_high_order_features)
+ mode = mode*2 + 1;
+ else
+ mode = mode*2;
+ if (params.allow_negative_weights)
+ mode = mode*2 + 1;
+ else
+ mode = mode*2;
+
+
+ segmenter_type res;
+ res.mode = mode;
+ switch(mode)
+ {
+ case 0: { structural_sequence_segmentation_trainer<segmenter_type::fe0> trainer;
+ configure_trainer(samples, trainer, params);
+ res.segmenter0 = trainer.train(samples, segments);
+ } break;
+ case 1: { structural_sequence_segmentation_trainer<segmenter_type::fe1> trainer;
+ configure_trainer(samples, trainer, params);
+ res.segmenter1 = trainer.train(samples, segments);
+ } break;
+ case 2: { structural_sequence_segmentation_trainer<segmenter_type::fe2> trainer;
+ configure_trainer(samples, trainer, params);
+ res.segmenter2 = trainer.train(samples, segments);
+ } break;
+ case 3: { structural_sequence_segmentation_trainer<segmenter_type::fe3> trainer;
+ configure_trainer(samples, trainer, params);
+ res.segmenter3 = trainer.train(samples, segments);
+ } break;
+ case 4: { structural_sequence_segmentation_trainer<segmenter_type::fe4> trainer;
+ configure_trainer(samples, trainer, params);
+ res.segmenter4 = trainer.train(samples, segments);
+ } break;
+ case 5: { structural_sequence_segmentation_trainer<segmenter_type::fe5> trainer;
+ configure_trainer(samples, trainer, params);
+ res.segmenter5 = trainer.train(samples, segments);
+ } break;
+ case 6: { structural_sequence_segmentation_trainer<segmenter_type::fe6> trainer;
+ configure_trainer(samples, trainer, params);
+ res.segmenter6 = trainer.train(samples, segments);
+ } break;
+ case 7: { structural_sequence_segmentation_trainer<segmenter_type::fe7> trainer;
+ configure_trainer(samples, trainer, params);
+ res.segmenter7 = trainer.train(samples, segments);
+ } break;
+ default: throw dlib::error("Invalid mode");
+ }
+
+
+ return res;
+}
+
+// ----------------------------------------------------------------------------------------
+
+segmenter_type train_sparse (
+ const std::vector<std::vector<sparse_vect> >& samples,
+ const std::vector<ranges>& segments,
+ segmenter_params params
+)
+{
+ pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");
+
+ int mode = 0;
+ if (params.use_BIO_model)
+ mode = mode*2 + 1;
+ else
+ mode = mode*2;
+ if (params.use_high_order_features)
+ mode = mode*2 + 1;
+ else
+ mode = mode*2;
+ if (params.allow_negative_weights)
+ mode = mode*2 + 1;
+ else
+ mode = mode*2;
+
+ mode += 8;
+
+ segmenter_type res;
+ res.mode = mode;
+ switch(mode)
+ {
+ case 8: { structural_sequence_segmentation_trainer<segmenter_type::fe8> trainer;
+ configure_trainer(samples, trainer, params);
+ res.segmenter8 = trainer.train(samples, segments);
+ } break;
+ case 9: { structural_sequence_segmentation_trainer<segmenter_type::fe9> trainer;
+ configure_trainer(samples, trainer, params);
+ res.segmenter9 = trainer.train(samples, segments);
+ } break;
+ case 10: { structural_sequence_segmentation_trainer<segmenter_type::fe10> trainer;
+ configure_trainer(samples, trainer, params);
+ res.segmenter10 = trainer.train(samples, segments);
+ } break;
+ case 11: { structural_sequence_segmentation_trainer<segmenter_type::fe11> trainer;
+ configure_trainer(samples, trainer, params);
+ res.segmenter11 = trainer.train(samples, segments);
+ } break;
+ case 12: { structural_sequence_segmentation_trainer<segmenter_type::fe12> trainer;
+ configure_trainer(samples, trainer, params);
+ res.segmenter12 = trainer.train(samples, segments);
+ } break;
+ case 13: { structural_sequence_segmentation_trainer<segmenter_type::fe13> trainer;
+ configure_trainer(samples, trainer, params);
+ res.segmenter13 = trainer.train(samples, segments);
+ } break;
+ case 14: { structural_sequence_segmentation_trainer<segmenter_type::fe14> trainer;
+ configure_trainer(samples, trainer, params);
+ res.segmenter14 = trainer.train(samples, segments);
+ } break;
+ case 15: { structural_sequence_segmentation_trainer<segmenter_type::fe15> trainer;
+ configure_trainer(samples, trainer, params);
+ res.segmenter15 = trainer.train(samples, segments);
+ } break;
+ default: throw dlib::error("Invalid mode");
+ }
+
+
+ return res;
+}
+
+// ----------------------------------------------------------------------------------------
+
+
+struct segmenter_test
+{
+ double precision;
+ double recall;
+ double f1;
+};
+
+void serialize(const segmenter_test& item, std::ostream& out)
+{
+ serialize(item.precision, out);
+ serialize(item.recall, out);
+ serialize(item.f1, out);
+}
+
+void deserialize(segmenter_test& item, std::istream& in)
+{
+ deserialize(item.precision, in);
+ deserialize(item.recall, in);
+ deserialize(item.f1, in);
+}
+
+std::string segmenter_test__str__(const segmenter_test& item)
+{
+ std::ostringstream sout;
+ sout << "precision: "<< item.precision << " recall: "<< item.recall << " f1-score: " << item.f1;
+ return sout.str();
+}
+std::string segmenter_test__repr__(const segmenter_test& item) { return "< " + segmenter_test__str__(item) + " >";}
+
+// ----------------------------------------------------------------------------------------
+
+const segmenter_test test_sequence_segmenter1 (
+ const segmenter_type& segmenter,
+ const std::vector<std::vector<dense_vect> >& samples,
+ const std::vector<ranges>& segments
+)
+{
+ pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");
+ matrix<double,1,3> res;
+
+ switch(segmenter.mode)
+ {
+ case 0: res = test_sequence_segmenter(segmenter.segmenter0, samples, segments); break;
+ case 1: res = test_sequence_segmenter(segmenter.segmenter1, samples, segments); break;
+ case 2: res = test_sequence_segmenter(segmenter.segmenter2, samples, segments); break;
+ case 3: res = test_sequence_segmenter(segmenter.segmenter3, samples, segments); break;
+ case 4: res = test_sequence_segmenter(segmenter.segmenter4, samples, segments); break;
+ case 5: res = test_sequence_segmenter(segmenter.segmenter5, samples, segments); break;
+ case 6: res = test_sequence_segmenter(segmenter.segmenter6, samples, segments); break;
+ case 7: res = test_sequence_segmenter(segmenter.segmenter7, samples, segments); break;
+ default: throw dlib::error("Invalid mode");
+ }
+
+
+ segmenter_test temp;
+ temp.precision = res(0);
+ temp.recall = res(1);
+ temp.f1 = res(2);
+ return temp;
+}
+
+const segmenter_test test_sequence_segmenter2 (
+ const segmenter_type& segmenter,
+ const std::vector<std::vector<sparse_vect> >& samples,
+ const std::vector<ranges>& segments
+)
+{
+ pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");
+ matrix<double,1,3> res;
+
+ switch(segmenter.mode)
+ {
+ case 8: res = test_sequence_segmenter(segmenter.segmenter8, samples, segments); break;
+ case 9: res = test_sequence_segmenter(segmenter.segmenter9, samples, segments); break;
+ case 10: res = test_sequence_segmenter(segmenter.segmenter10, samples, segments); break;
+ case 11: res = test_sequence_segmenter(segmenter.segmenter11, samples, segments); break;
+ case 12: res = test_sequence_segmenter(segmenter.segmenter12, samples, segments); break;
+ case 13: res = test_sequence_segmenter(segmenter.segmenter13, samples, segments); break;
+ case 14: res = test_sequence_segmenter(segmenter.segmenter14, samples, segments); break;
+ case 15: res = test_sequence_segmenter(segmenter.segmenter15, samples, segments); break;
+ default: throw dlib::error("Invalid mode");
+ }
+
+
+ segmenter_test temp;
+ temp.precision = res(0);
+ temp.recall = res(1);
+ temp.f1 = res(2);
+ return temp;
+}
+
+// ----------------------------------------------------------------------------------------
+
+const segmenter_test cross_validate_sequence_segmenter1 (
+ const std::vector<std::vector<dense_vect> >& samples,
+ const std::vector<ranges>& segments,
+ long folds,
+ segmenter_params params
+)
+{
+ pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");
+ pyassert(1 < folds && folds <= static_cast<long>(samples.size()), "folds argument is outside the valid range.");
+
+ matrix<double,1,3> res;
+
+ int mode = 0;
+ if (params.use_BIO_model)
+ mode = mode*2 + 1;
+ else
+ mode = mode*2;
+ if (params.use_high_order_features)
+ mode = mode*2 + 1;
+ else
+ mode = mode*2;
+ if (params.allow_negative_weights)
+ mode = mode*2 + 1;
+ else
+ mode = mode*2;
+
+
+ switch(mode)
+ {
+ case 0: { structural_sequence_segmentation_trainer<segmenter_type::fe0> trainer;
+ configure_trainer(samples, trainer, params);
+ res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
+ } break;
+ case 1: { structural_sequence_segmentation_trainer<segmenter_type::fe1> trainer;
+ configure_trainer(samples, trainer, params);
+ res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
+ } break;
+ case 2: { structural_sequence_segmentation_trainer<segmenter_type::fe2> trainer;
+ configure_trainer(samples, trainer, params);
+ res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
+ } break;
+ case 3: { structural_sequence_segmentation_trainer<segmenter_type::fe3> trainer;
+ configure_trainer(samples, trainer, params);
+ res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
+ } break;
+ case 4: { structural_sequence_segmentation_trainer<segmenter_type::fe4> trainer;
+ configure_trainer(samples, trainer, params);
+ res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
+ } break;
+ case 5: { structural_sequence_segmentation_trainer<segmenter_type::fe5> trainer;
+ configure_trainer(samples, trainer, params);
+ res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
+ } break;
+ case 6: { structural_sequence_segmentation_trainer<segmenter_type::fe6> trainer;
+ configure_trainer(samples, trainer, params);
+ res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
+ } break;
+ case 7: { structural_sequence_segmentation_trainer<segmenter_type::fe7> trainer;
+ configure_trainer(samples, trainer, params);
+ res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
+ } break;
+ default: throw dlib::error("Invalid mode");
+ }
+
+
+ segmenter_test temp;
+ temp.precision = res(0);
+ temp.recall = res(1);
+ temp.f1 = res(2);
+ return temp;
+}
+
+const segmenter_test cross_validate_sequence_segmenter2 (
+ const std::vector<std::vector<sparse_vect> >& samples,
+ const std::vector<ranges>& segments,
+ long folds,
+ segmenter_params params
+)
+{
+ pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");
+ pyassert(1 < folds && folds <= static_cast<long>(samples.size()), "folds argument is outside the valid range.");
+
+ matrix<double,1,3> res;
+
+ int mode = 0;
+ if (params.use_BIO_model)
+ mode = mode*2 + 1;
+ else
+ mode = mode*2;
+ if (params.use_high_order_features)
+ mode = mode*2 + 1;
+ else
+ mode = mode*2;
+ if (params.allow_negative_weights)
+ mode = mode*2 + 1;
+ else
+ mode = mode*2;
+
+ mode += 8;
+
+ switch(mode)
+ {
+ case 8: { structural_sequence_segmentation_trainer<segmenter_type::fe8> trainer;
+ configure_trainer(samples, trainer, params);
+ res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
+ } break;
+ case 9: { structural_sequence_segmentation_trainer<segmenter_type::fe9> trainer;
+ configure_trainer(samples, trainer, params);
+ res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
+ } break;
+ case 10: { structural_sequence_segmentation_trainer<segmenter_type::fe10> trainer;
+ configure_trainer(samples, trainer, params);
+ res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
+ } break;
+ case 11: { structural_sequence_segmentation_trainer<segmenter_type::fe11> trainer;
+ configure_trainer(samples, trainer, params);
+ res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
+ } break;
+ case 12: { structural_sequence_segmentation_trainer<segmenter_type::fe12> trainer;
+ configure_trainer(samples, trainer, params);
+ res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
+ } break;
+ case 13: { structural_sequence_segmentation_trainer<segmenter_type::fe13> trainer;
+ configure_trainer(samples, trainer, params);
+ res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
+ } break;
+ case 14: { structural_sequence_segmentation_trainer<segmenter_type::fe14> trainer;
+ configure_trainer(samples, trainer, params);
+ res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
+ } break;
+ case 15: { structural_sequence_segmentation_trainer<segmenter_type::fe15> trainer;
+ configure_trainer(samples, trainer, params);
+ res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
+ } break;
+ default: throw dlib::error("Invalid mode");
+ }
+
+
+ segmenter_test temp;
+ temp.precision = res(0);
+ temp.recall = res(1);
+ temp.f1 = res(2);
+ return temp;
+}
+
+// ----------------------------------------------------------------------------------------
+
+void bind_sequence_segmenter(py::module& m)
+{
+ py::class_<segmenter_params>(m, "segmenter_params",
+"This class is used to define all the optional parameters to the \n\
+train_sequence_segmenter() and cross_validate_sequence_segmenter() routines. ")
+ .def(py::init<>())
+ .def_readwrite("use_BIO_model", &segmenter_params::use_BIO_model)
+ .def_readwrite("use_high_order_features", &segmenter_params::use_high_order_features)
+ .def_readwrite("allow_negative_weights", &segmenter_params::allow_negative_weights)
+ .def_readwrite("window_size", &segmenter_params::window_size)
+ .def_readwrite("num_threads", &segmenter_params::num_threads)
+ .def_readwrite("epsilon", &segmenter_params::epsilon)
+ .def_readwrite("max_cache_size", &segmenter_params::max_cache_size)
+ .def_readwrite("C", &segmenter_params::C, "SVM C parameter")
+ .def_readwrite("be_verbose", &segmenter_params::be_verbose)
+ .def("__repr__",&segmenter_params__repr__)
+ .def("__str__",&segmenter_params__str__)
+ .def(py::pickle(&getstate<segmenter_params>, &setstate<segmenter_params>));
+
+ py::class_<segmenter_type> (m, "segmenter_type", "This object represents a sequence segmenter and is the type of object "
+ "returned by the dlib.train_sequence_segmenter() routine.")
+ .def("__call__", &segmenter_type::segment_sequence_dense)
+ .def("__call__", &segmenter_type::segment_sequence_sparse)
+ .def_property_readonly("weights", &segmenter_type::get_weights)
+ .def(py::pickle(&getstate<segmenter_type>, &setstate<segmenter_type>));
+
+ py::class_<segmenter_test> (m, "segmenter_test", "This object is the output of the dlib.test_sequence_segmenter() and "
+ "dlib.cross_validate_sequence_segmenter() routines.")
+ .def_readwrite("precision", &segmenter_test::precision)
+ .def_readwrite("recall", &segmenter_test::recall)
+ .def_readwrite("f1", &segmenter_test::f1)
+ .def("__repr__",&segmenter_test__repr__)
+ .def("__str__",&segmenter_test__str__)
+ .def(py::pickle(&getstate<segmenter_test>, &setstate<segmenter_test>));
+
+ m.def("train_sequence_segmenter", train_dense, py::arg("samples"), py::arg("segments"), py::arg("params")=segmenter_params());
+ m.def("train_sequence_segmenter", train_sparse, py::arg("samples"), py::arg("segments"), py::arg("params")=segmenter_params());
+
+
+ m.def("test_sequence_segmenter", test_sequence_segmenter1);
+ m.def("test_sequence_segmenter", test_sequence_segmenter2);
+
+ m.def("cross_validate_sequence_segmenter", cross_validate_sequence_segmenter1,
+ py::arg("samples"), py::arg("segments"), py::arg("folds"), py::arg("params")=segmenter_params());
+ m.def("cross_validate_sequence_segmenter", cross_validate_sequence_segmenter2,
+ py::arg("samples"), py::arg("segments"), py::arg("folds"), py::arg("params")=segmenter_params());
+}
+
+
+
+