summaryrefslogtreecommitdiffstats
path: root/web/server/h2o/libh2o/deps/brotli/enc/block_splitter.cc
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--web/server/h2o/libh2o/deps/brotli/enc/block_splitter.cc389
1 files changed, 389 insertions, 0 deletions
diff --git a/web/server/h2o/libh2o/deps/brotli/enc/block_splitter.cc b/web/server/h2o/libh2o/deps/brotli/enc/block_splitter.cc
new file mode 100644
index 00000000..8eaf9535
--- /dev/null
+++ b/web/server/h2o/libh2o/deps/brotli/enc/block_splitter.cc
@@ -0,0 +1,389 @@
+/* Copyright 2013 Google Inc. All Rights Reserved.
+
+ Distributed under MIT license.
+ See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
+*/
+
+// Block split point selection utilities.
+
+#include "./block_splitter.h"
+
+#include <assert.h>
+#include <math.h>
+
+#include <algorithm>
+#include <cstring>
+#include <map>
+
+#include "./cluster.h"
+#include "./command.h"
+#include "./fast_log.h"
+#include "./histogram.h"
+
+namespace brotli {
+
+static const size_t kMaxLiteralHistograms = 100;
+static const size_t kMaxCommandHistograms = 50;
+static const double kLiteralBlockSwitchCost = 28.1;
+static const double kCommandBlockSwitchCost = 13.5;
+static const double kDistanceBlockSwitchCost = 14.6;
+static const size_t kLiteralStrideLength = 70;
+static const size_t kCommandStrideLength = 40;
+static const size_t kSymbolsPerLiteralHistogram = 544;
+static const size_t kSymbolsPerCommandHistogram = 530;
+static const size_t kSymbolsPerDistanceHistogram = 544;
+static const size_t kMinLengthForBlockSplitting = 128;
+static const size_t kIterMulForRefining = 2;
+static const size_t kMinItersForRefining = 100;
+
+void CopyLiteralsToByteArray(const Command* cmds,
+ const size_t num_commands,
+ const uint8_t* data,
+ const size_t offset,
+ const size_t mask,
+ std::vector<uint8_t>* literals) {
+ // Count how many we have.
+ size_t total_length = 0;
+ for (size_t i = 0; i < num_commands; ++i) {
+ total_length += cmds[i].insert_len_;
+ }
+ if (total_length == 0) {
+ return;
+ }
+
+ // Allocate.
+ literals->resize(total_length);
+
+ // Loop again, and copy this time.
+ size_t pos = 0;
+ size_t from_pos = offset & mask;
+ for (size_t i = 0; i < num_commands && pos < total_length; ++i) {
+ size_t insert_len = cmds[i].insert_len_;
+ if (from_pos + insert_len > mask) {
+ size_t head_size = mask + 1 - from_pos;
+ memcpy(&(*literals)[pos], data + from_pos, head_size);
+ from_pos = 0;
+ pos += head_size;
+ insert_len -= head_size;
+ }
+ if (insert_len > 0) {
+ memcpy(&(*literals)[pos], data + from_pos, insert_len);
+ pos += insert_len;
+ }
+ from_pos = (from_pos + insert_len + cmds[i].copy_len_) & mask;
+ }
+}
+
+void CopyCommandsToByteArray(const Command* cmds,
+ const size_t num_commands,
+ std::vector<uint16_t>* insert_and_copy_codes,
+ std::vector<uint16_t>* distance_prefixes) {
+ for (size_t i = 0; i < num_commands; ++i) {
+ const Command& cmd = cmds[i];
+ insert_and_copy_codes->push_back(cmd.cmd_prefix_);
+ if (cmd.copy_len_ > 0 && cmd.cmd_prefix_ >= 128) {
+ distance_prefixes->push_back(cmd.dist_prefix_);
+ }
+ }
+}
+
+inline static unsigned int MyRand(unsigned int* seed) {
+ *seed *= 16807U;
+ if (*seed == 0) {
+ *seed = 1;
+ }
+ return *seed;
+}
+
+template<typename HistogramType, typename DataType>
+void InitialEntropyCodes(const DataType* data, size_t length,
+ size_t literals_per_histogram,
+ size_t max_histograms,
+ size_t stride,
+ std::vector<HistogramType>* vec) {
+ size_t total_histograms = length / literals_per_histogram + 1;
+ if (total_histograms > max_histograms) {
+ total_histograms = max_histograms;
+ }
+ unsigned int seed = 7;
+ size_t block_length = length / total_histograms;
+ for (size_t i = 0; i < total_histograms; ++i) {
+ size_t pos = length * i / total_histograms;
+ if (i != 0) {
+ pos += MyRand(&seed) % block_length;
+ }
+ if (pos + stride >= length) {
+ pos = length - stride - 1;
+ }
+ HistogramType histo;
+ histo.Add(data + pos, stride);
+ vec->push_back(histo);
+ }
+}
+
+template<typename HistogramType, typename DataType>
+void RandomSample(unsigned int* seed,
+ const DataType* data,
+ size_t length,
+ size_t stride,
+ HistogramType* sample) {
+ size_t pos = 0;
+ if (stride >= length) {
+ pos = 0;
+ stride = length;
+ } else {
+ pos = MyRand(seed) % (length - stride + 1);
+ }
+ sample->Add(data + pos, stride);
+}
+
+template<typename HistogramType, typename DataType>
+void RefineEntropyCodes(const DataType* data, size_t length,
+ size_t stride,
+ std::vector<HistogramType>* vec) {
+ size_t iters =
+ kIterMulForRefining * length / stride + kMinItersForRefining;
+ unsigned int seed = 7;
+ iters = ((iters + vec->size() - 1) / vec->size()) * vec->size();
+ for (size_t iter = 0; iter < iters; ++iter) {
+ HistogramType sample;
+ RandomSample(&seed, data, length, stride, &sample);
+ size_t ix = iter % vec->size();
+ (*vec)[ix].AddHistogram(sample);
+ }
+}
+
+inline static double BitCost(size_t count) {
+ return count == 0 ? -2.0 : FastLog2(count);
+}
+
+template<typename DataType, int kSize>
+void FindBlocks(const DataType* data, const size_t length,
+ const double block_switch_bitcost,
+ const std::vector<Histogram<kSize> > &vec,
+ uint8_t *block_id) {
+ if (vec.size() <= 1) {
+ for (size_t i = 0; i < length; ++i) {
+ block_id[i] = 0;
+ }
+ return;
+ }
+ size_t vecsize = vec.size();
+ assert(vecsize <= 256);
+ double* insert_cost = new double[kSize * vecsize];
+ memset(insert_cost, 0, sizeof(insert_cost[0]) * kSize * vecsize);
+ for (size_t j = 0; j < vecsize; ++j) {
+ insert_cost[j] = FastLog2(static_cast<uint32_t>(vec[j].total_count_));
+ }
+ for (size_t i = kSize; i != 0;) {
+ --i;
+ for (size_t j = 0; j < vecsize; ++j) {
+ insert_cost[i * vecsize + j] = insert_cost[j] - BitCost(vec[j].data_[i]);
+ }
+ }
+ double *cost = new double[vecsize];
+ memset(cost, 0, sizeof(cost[0]) * vecsize);
+ bool* switch_signal = new bool[length * vecsize];
+ memset(switch_signal, 0, sizeof(switch_signal[0]) * length * vecsize);
+ // After each iteration of this loop, cost[k] will contain the difference
+ // between the minimum cost of arriving at the current byte position using
+ // entropy code k, and the minimum cost of arriving at the current byte
+ // position. This difference is capped at the block switch cost, and if it
+ // reaches block switch cost, it means that when we trace back from the last
+ // position, we need to switch here.
+ for (size_t byte_ix = 0; byte_ix < length; ++byte_ix) {
+ size_t ix = byte_ix * vecsize;
+ size_t insert_cost_ix = data[byte_ix] * vecsize;
+ double min_cost = 1e99;
+ for (size_t k = 0; k < vecsize; ++k) {
+ // We are coding the symbol in data[byte_ix] with entropy code k.
+ cost[k] += insert_cost[insert_cost_ix + k];
+ if (cost[k] < min_cost) {
+ min_cost = cost[k];
+ block_id[byte_ix] = static_cast<uint8_t>(k);
+ }
+ }
+ double block_switch_cost = block_switch_bitcost;
+ // More blocks for the beginning.
+ if (byte_ix < 2000) {
+ block_switch_cost *= 0.77 + 0.07 * static_cast<double>(byte_ix) / 2000;
+ }
+ for (size_t k = 0; k < vecsize; ++k) {
+ cost[k] -= min_cost;
+ if (cost[k] >= block_switch_cost) {
+ cost[k] = block_switch_cost;
+ switch_signal[ix + k] = true;
+ }
+ }
+ }
+ // Now trace back from the last position and switch at the marked places.
+ size_t byte_ix = length - 1;
+ size_t ix = byte_ix * vecsize;
+ uint8_t cur_id = block_id[byte_ix];
+ while (byte_ix > 0) {
+ --byte_ix;
+ ix -= vecsize;
+ if (switch_signal[ix + cur_id]) {
+ cur_id = block_id[byte_ix];
+ }
+ block_id[byte_ix] = cur_id;
+ }
+ delete[] insert_cost;
+ delete[] cost;
+ delete[] switch_signal;
+}
+
+size_t RemapBlockIds(uint8_t* block_ids, const size_t length) {
+ std::map<uint8_t, uint8_t> new_id;
+ size_t next_id = 0;
+ for (size_t i = 0; i < length; ++i) {
+ if (new_id.find(block_ids[i]) == new_id.end()) {
+ new_id[block_ids[i]] = static_cast<uint8_t>(next_id);
+ ++next_id;
+ }
+ }
+ for (size_t i = 0; i < length; ++i) {
+ block_ids[i] = new_id[block_ids[i]];
+ }
+ return next_id;
+}
+
+template<typename HistogramType, typename DataType>
+void BuildBlockHistograms(const DataType* data, const size_t length,
+ uint8_t* block_ids,
+ std::vector<HistogramType>* histograms) {
+ size_t num_types = RemapBlockIds(block_ids, length);
+ assert(num_types <= 256);
+ histograms->clear();
+ histograms->resize(num_types);
+ for (size_t i = 0; i < length; ++i) {
+ (*histograms)[block_ids[i]].Add(data[i]);
+ }
+}
+
+template<typename HistogramType, typename DataType>
+void ClusterBlocks(const DataType* data, const size_t length,
+ uint8_t* block_ids) {
+ std::vector<HistogramType> histograms;
+ std::vector<uint32_t> block_index(length);
+ uint32_t cur_idx = 0;
+ HistogramType cur_histogram;
+ for (size_t i = 0; i < length; ++i) {
+ bool block_boundary = (i + 1 == length || block_ids[i] != block_ids[i + 1]);
+ block_index[i] = cur_idx;
+ cur_histogram.Add(data[i]);
+ if (block_boundary) {
+ histograms.push_back(cur_histogram);
+ cur_histogram.Clear();
+ ++cur_idx;
+ }
+ }
+ std::vector<HistogramType> clustered_histograms;
+ std::vector<uint32_t> histogram_symbols;
+ // Block ids need to fit in one byte.
+ static const size_t kMaxNumberOfBlockTypes = 256;
+ ClusterHistograms(histograms, 1, histograms.size(),
+ kMaxNumberOfBlockTypes,
+ &clustered_histograms,
+ &histogram_symbols);
+ for (size_t i = 0; i < length; ++i) {
+ block_ids[i] = static_cast<uint8_t>(histogram_symbols[block_index[i]]);
+ }
+}
+
+void BuildBlockSplit(const std::vector<uint8_t>& block_ids, BlockSplit* split) {
+ uint8_t cur_id = block_ids[0];
+ uint8_t max_type = cur_id;
+ uint32_t cur_length = 1;
+ for (size_t i = 1; i < block_ids.size(); ++i) {
+ uint8_t next_id = block_ids[i];
+ if (next_id != cur_id) {
+ split->types.push_back(cur_id);
+ split->lengths.push_back(cur_length);
+ max_type = std::max(max_type, next_id);
+ cur_id = next_id;
+ cur_length = 0;
+ }
+ ++cur_length;
+ }
+ split->types.push_back(cur_id);
+ split->lengths.push_back(cur_length);
+ split->num_types = static_cast<size_t>(max_type) + 1;
+}
+
+template<typename HistogramType, typename DataType>
+void SplitByteVector(const std::vector<DataType>& data,
+ const size_t literals_per_histogram,
+ const size_t max_histograms,
+ const size_t sampling_stride_length,
+ const double block_switch_cost,
+ BlockSplit* split) {
+ if (data.empty()) {
+ split->num_types = 1;
+ return;
+ } else if (data.size() < kMinLengthForBlockSplitting) {
+ split->num_types = 1;
+ split->types.push_back(0);
+ split->lengths.push_back(static_cast<uint32_t>(data.size()));
+ return;
+ }
+ std::vector<HistogramType> histograms;
+ // Find good entropy codes.
+ InitialEntropyCodes(&data[0], data.size(),
+ literals_per_histogram,
+ max_histograms,
+ sampling_stride_length,
+ &histograms);
+ RefineEntropyCodes(&data[0], data.size(),
+ sampling_stride_length,
+ &histograms);
+ // Find a good path through literals with the good entropy codes.
+ std::vector<uint8_t> block_ids(data.size());
+ for (size_t i = 0; i < 10; ++i) {
+ FindBlocks(&data[0], data.size(),
+ block_switch_cost,
+ histograms,
+ &block_ids[0]);
+ BuildBlockHistograms(&data[0], data.size(), &block_ids[0], &histograms);
+ }
+ ClusterBlocks<HistogramType>(&data[0], data.size(), &block_ids[0]);
+ BuildBlockSplit(block_ids, split);
+}
+
+void SplitBlock(const Command* cmds,
+ const size_t num_commands,
+ const uint8_t* data,
+ const size_t pos,
+ const size_t mask,
+ BlockSplit* literal_split,
+ BlockSplit* insert_and_copy_split,
+ BlockSplit* dist_split) {
+ // Create a continuous array of literals.
+ std::vector<uint8_t> literals;
+ CopyLiteralsToByteArray(cmds, num_commands, data, pos, mask, &literals);
+
+ // Compute prefix codes for commands.
+ std::vector<uint16_t> insert_and_copy_codes;
+ std::vector<uint16_t> distance_prefixes;
+ CopyCommandsToByteArray(cmds, num_commands,
+ &insert_and_copy_codes,
+ &distance_prefixes);
+
+ SplitByteVector<HistogramLiteral>(
+ literals,
+ kSymbolsPerLiteralHistogram, kMaxLiteralHistograms,
+ kLiteralStrideLength, kLiteralBlockSwitchCost,
+ literal_split);
+ SplitByteVector<HistogramCommand>(
+ insert_and_copy_codes,
+ kSymbolsPerCommandHistogram, kMaxCommandHistograms,
+ kCommandStrideLength, kCommandBlockSwitchCost,
+ insert_and_copy_split);
+ SplitByteVector<HistogramDistance>(
+ distance_prefixes,
+ kSymbolsPerDistanceHistogram, kMaxCommandHistograms,
+ kCommandStrideLength, kDistanceBlockSwitchCost,
+ dist_split);
+}
+
+} // namespace brotli