summaryrefslogtreecommitdiffstats
path: root/web/server/h2o/libh2o/deps/brotli/enc/brotli_bit_stream.cc
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--web/server/h2o/libh2o/deps/brotli/enc/brotli_bit_stream.cc1127
1 files changed, 1127 insertions, 0 deletions
diff --git a/web/server/h2o/libh2o/deps/brotli/enc/brotli_bit_stream.cc b/web/server/h2o/libh2o/deps/brotli/enc/brotli_bit_stream.cc
new file mode 100644
index 00000000..69a73fc0
--- /dev/null
+++ b/web/server/h2o/libh2o/deps/brotli/enc/brotli_bit_stream.cc
@@ -0,0 +1,1127 @@
+/* Copyright 2014 Google Inc. All Rights Reserved.
+
+ Distributed under MIT license.
+ See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
+*/
+
+// Brotli bit stream functions to support the low level format. There are no
+// compression algorithms here, just the right ordering of bits to match the
+// specs.
+
+#include "./brotli_bit_stream.h"
+
+#include <algorithm>
+#include <cstdlib>
+#include <cstring>
+#include <limits>
+#include <vector>
+
+#include "./bit_cost.h"
+#include "./context.h"
+#include "./entropy_encode.h"
+#include "./entropy_encode_static.h"
+#include "./fast_log.h"
+#include "./prefix.h"
+#include "./write_bits.h"
+namespace brotli {
+
+namespace {
+
+// nibblesbits represents the 2 bits to encode MNIBBLES (0-3)
+// REQUIRES: length > 0
+// REQUIRES: length <= (1 << 24)
+void EncodeMlen(size_t length, uint64_t* bits,
+ size_t* numbits, uint64_t* nibblesbits) {
+ assert(length > 0);
+ assert(length <= (1 << 24));
+ length--; // MLEN - 1 is encoded
+ size_t lg = length == 0 ? 1 : Log2FloorNonZero(
+ static_cast<uint32_t>(length)) + 1;
+ assert(lg <= 24);
+ size_t mnibbles = (lg < 16 ? 16 : (lg + 3)) / 4;
+ *nibblesbits = mnibbles - 4;
+ *numbits = mnibbles * 4;
+ *bits = length;
+}
+
+} // namespace
+
+void StoreVarLenUint8(size_t n, size_t* storage_ix, uint8_t* storage) {
+ if (n == 0) {
+ WriteBits(1, 0, storage_ix, storage);
+ } else {
+ WriteBits(1, 1, storage_ix, storage);
+ size_t nbits = Log2FloorNonZero(n);
+ WriteBits(3, nbits, storage_ix, storage);
+ WriteBits(nbits, n - (1 << nbits), storage_ix, storage);
+ }
+}
+
+void StoreCompressedMetaBlockHeader(bool final_block,
+ size_t length,
+ size_t* storage_ix,
+ uint8_t* storage) {
+ // Write ISLAST bit.
+ WriteBits(1, final_block, storage_ix, storage);
+ // Write ISEMPTY bit.
+ if (final_block) {
+ WriteBits(1, 0, storage_ix, storage);
+ }
+
+ uint64_t lenbits;
+ size_t nlenbits;
+ uint64_t nibblesbits;
+ EncodeMlen(length, &lenbits, &nlenbits, &nibblesbits);
+ WriteBits(2, nibblesbits, storage_ix, storage);
+ WriteBits(nlenbits, lenbits, storage_ix, storage);
+
+ if (!final_block) {
+ // Write ISUNCOMPRESSED bit.
+ WriteBits(1, 0, storage_ix, storage);
+ }
+}
+
+void StoreUncompressedMetaBlockHeader(size_t length,
+ size_t* storage_ix,
+ uint8_t* storage) {
+ // Write ISLAST bit. Uncompressed block cannot be the last one, so set to 0.
+ WriteBits(1, 0, storage_ix, storage);
+ uint64_t lenbits;
+ size_t nlenbits;
+ uint64_t nibblesbits;
+ EncodeMlen(length, &lenbits, &nlenbits, &nibblesbits);
+ WriteBits(2, nibblesbits, storage_ix, storage);
+ WriteBits(nlenbits, lenbits, storage_ix, storage);
+ // Write ISUNCOMPRESSED bit.
+ WriteBits(1, 1, storage_ix, storage);
+}
+
+void StoreHuffmanTreeOfHuffmanTreeToBitMask(
+ const int num_codes,
+ const uint8_t *code_length_bitdepth,
+ size_t *storage_ix,
+ uint8_t *storage) {
+ static const uint8_t kStorageOrder[kCodeLengthCodes] = {
+ 1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15
+ };
+ // The bit lengths of the Huffman code over the code length alphabet
+ // are compressed with the following static Huffman code:
+ // Symbol Code
+ // ------ ----
+ // 0 00
+ // 1 1110
+ // 2 110
+ // 3 01
+ // 4 10
+ // 5 1111
+ static const uint8_t kHuffmanBitLengthHuffmanCodeSymbols[6] = {
+ 0, 7, 3, 2, 1, 15
+ };
+ static const uint8_t kHuffmanBitLengthHuffmanCodeBitLengths[6] = {
+ 2, 4, 3, 2, 2, 4
+ };
+
+ // Throw away trailing zeros:
+ size_t codes_to_store = kCodeLengthCodes;
+ if (num_codes > 1) {
+ for (; codes_to_store > 0; --codes_to_store) {
+ if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
+ break;
+ }
+ }
+ }
+ size_t skip_some = 0; // skips none.
+ if (code_length_bitdepth[kStorageOrder[0]] == 0 &&
+ code_length_bitdepth[kStorageOrder[1]] == 0) {
+ skip_some = 2; // skips two.
+ if (code_length_bitdepth[kStorageOrder[2]] == 0) {
+ skip_some = 3; // skips three.
+ }
+ }
+ WriteBits(2, skip_some, storage_ix, storage);
+ for (size_t i = skip_some; i < codes_to_store; ++i) {
+ size_t l = code_length_bitdepth[kStorageOrder[i]];
+ WriteBits(kHuffmanBitLengthHuffmanCodeBitLengths[l],
+ kHuffmanBitLengthHuffmanCodeSymbols[l], storage_ix, storage);
+ }
+}
+
+void StoreHuffmanTreeToBitMask(
+ const std::vector<uint8_t> &huffman_tree,
+ const std::vector<uint8_t> &huffman_tree_extra_bits,
+ const uint8_t *code_length_bitdepth,
+ const std::vector<uint16_t> &code_length_bitdepth_symbols,
+ size_t * __restrict storage_ix,
+ uint8_t * __restrict storage) {
+ for (size_t i = 0; i < huffman_tree.size(); ++i) {
+ size_t ix = huffman_tree[i];
+ WriteBits(code_length_bitdepth[ix], code_length_bitdepth_symbols[ix],
+ storage_ix, storage);
+ // Extra bits
+ switch (ix) {
+ case 16:
+ WriteBits(2, huffman_tree_extra_bits[i], storage_ix, storage);
+ break;
+ case 17:
+ WriteBits(3, huffman_tree_extra_bits[i], storage_ix, storage);
+ break;
+ }
+ }
+}
+
+void StoreSimpleHuffmanTree(const uint8_t* depths,
+ size_t symbols[4],
+ size_t num_symbols,
+ size_t max_bits,
+ size_t *storage_ix, uint8_t *storage) {
+ // value of 1 indicates a simple Huffman code
+ WriteBits(2, 1, storage_ix, storage);
+ WriteBits(2, num_symbols - 1, storage_ix, storage); // NSYM - 1
+
+ // Sort
+ for (size_t i = 0; i < num_symbols; i++) {
+ for (size_t j = i + 1; j < num_symbols; j++) {
+ if (depths[symbols[j]] < depths[symbols[i]]) {
+ std::swap(symbols[j], symbols[i]);
+ }
+ }
+ }
+
+ if (num_symbols == 2) {
+ WriteBits(max_bits, symbols[0], storage_ix, storage);
+ WriteBits(max_bits, symbols[1], storage_ix, storage);
+ } else if (num_symbols == 3) {
+ WriteBits(max_bits, symbols[0], storage_ix, storage);
+ WriteBits(max_bits, symbols[1], storage_ix, storage);
+ WriteBits(max_bits, symbols[2], storage_ix, storage);
+ } else {
+ WriteBits(max_bits, symbols[0], storage_ix, storage);
+ WriteBits(max_bits, symbols[1], storage_ix, storage);
+ WriteBits(max_bits, symbols[2], storage_ix, storage);
+ WriteBits(max_bits, symbols[3], storage_ix, storage);
+ // tree-select
+ WriteBits(1, depths[symbols[0]] == 1 ? 1 : 0, storage_ix, storage);
+ }
+}
+
+// num = alphabet size
+// depths = symbol depths
+void StoreHuffmanTree(const uint8_t* depths, size_t num,
+ size_t *storage_ix, uint8_t *storage) {
+ // Write the Huffman tree into the brotli-representation.
+ std::vector<uint8_t> huffman_tree;
+ std::vector<uint8_t> huffman_tree_extra_bits;
+ // TODO: Consider allocating these from stack.
+ huffman_tree.reserve(256);
+ huffman_tree_extra_bits.reserve(256);
+ WriteHuffmanTree(depths, num, &huffman_tree, &huffman_tree_extra_bits);
+
+ // Calculate the statistics of the Huffman tree in brotli-representation.
+ uint32_t huffman_tree_histogram[kCodeLengthCodes] = { 0 };
+ for (size_t i = 0; i < huffman_tree.size(); ++i) {
+ ++huffman_tree_histogram[huffman_tree[i]];
+ }
+
+ int num_codes = 0;
+ int code = 0;
+ for (int i = 0; i < kCodeLengthCodes; ++i) {
+ if (huffman_tree_histogram[i]) {
+ if (num_codes == 0) {
+ code = i;
+ num_codes = 1;
+ } else if (num_codes == 1) {
+ num_codes = 2;
+ break;
+ }
+ }
+ }
+
+ // Calculate another Huffman tree to use for compressing both the
+ // earlier Huffman tree with.
+ // TODO: Consider allocating these from stack.
+ uint8_t code_length_bitdepth[kCodeLengthCodes] = { 0 };
+ std::vector<uint16_t> code_length_bitdepth_symbols(kCodeLengthCodes);
+ CreateHuffmanTree(&huffman_tree_histogram[0], kCodeLengthCodes,
+ 5, &code_length_bitdepth[0]);
+ ConvertBitDepthsToSymbols(code_length_bitdepth, kCodeLengthCodes,
+ &code_length_bitdepth_symbols[0]);
+
+ // Now, we have all the data, let's start storing it
+ StoreHuffmanTreeOfHuffmanTreeToBitMask(num_codes, code_length_bitdepth,
+ storage_ix, storage);
+
+ if (num_codes == 1) {
+ code_length_bitdepth[code] = 0;
+ }
+
+ // Store the real huffman tree now.
+ StoreHuffmanTreeToBitMask(huffman_tree,
+ huffman_tree_extra_bits,
+ &code_length_bitdepth[0],
+ code_length_bitdepth_symbols,
+ storage_ix, storage);
+}
+
+
+void BuildAndStoreHuffmanTree(const uint32_t *histogram,
+ const size_t length,
+ uint8_t* depth,
+ uint16_t* bits,
+ size_t* storage_ix,
+ uint8_t* storage) {
+ size_t count = 0;
+ size_t s4[4] = { 0 };
+ for (size_t i = 0; i < length; i++) {
+ if (histogram[i]) {
+ if (count < 4) {
+ s4[count] = i;
+ } else if (count > 4) {
+ break;
+ }
+ count++;
+ }
+ }
+
+ size_t max_bits_counter = length - 1;
+ size_t max_bits = 0;
+ while (max_bits_counter) {
+ max_bits_counter >>= 1;
+ ++max_bits;
+ }
+
+ if (count <= 1) {
+ WriteBits(4, 1, storage_ix, storage);
+ WriteBits(max_bits, s4[0], storage_ix, storage);
+ return;
+ }
+
+ CreateHuffmanTree(histogram, length, 15, depth);
+ ConvertBitDepthsToSymbols(depth, length, bits);
+
+ if (count <= 4) {
+ StoreSimpleHuffmanTree(depth, s4, count, max_bits, storage_ix, storage);
+ } else {
+ StoreHuffmanTree(depth, length, storage_ix, storage);
+ }
+}
+
+void BuildAndStoreHuffmanTreeFast(const uint32_t *histogram,
+ const size_t histogram_total,
+ const size_t max_bits,
+ uint8_t* depth,
+ uint16_t* bits,
+ size_t* storage_ix,
+ uint8_t* storage) {
+ size_t count = 0;
+ size_t symbols[4] = { 0 };
+ size_t length = 0;
+ size_t total = histogram_total;
+ while (total != 0) {
+ if (histogram[length]) {
+ if (count < 4) {
+ symbols[count] = length;
+ }
+ ++count;
+ total -= histogram[length];
+ }
+ ++length;
+ }
+
+ if (count <= 1) {
+ WriteBits(4, 1, storage_ix, storage);
+ WriteBits(max_bits, symbols[0], storage_ix, storage);
+ return;
+ }
+
+ const size_t max_tree_size = 2 * length + 1;
+ HuffmanTree* const tree =
+ static_cast<HuffmanTree*>(malloc(max_tree_size * sizeof(HuffmanTree)));
+ for (uint32_t count_limit = 1; ; count_limit *= 2) {
+ HuffmanTree* node = tree;
+ for (size_t i = length; i != 0;) {
+ --i;
+ if (histogram[i]) {
+ if (PREDICT_TRUE(histogram[i] >= count_limit)) {
+ *node = HuffmanTree(histogram[i], -1, static_cast<int16_t>(i));
+ } else {
+ *node = HuffmanTree(count_limit, -1, static_cast<int16_t>(i));
+ }
+ ++node;
+ }
+ }
+ const int n = static_cast<int>(node - tree);
+ std::sort(tree, node, SortHuffmanTree);
+ // The nodes are:
+ // [0, n): the sorted leaf nodes that we start with.
+ // [n]: we add a sentinel here.
+ // [n + 1, 2n): new parent nodes are added here, starting from
+ // (n+1). These are naturally in ascending order.
+ // [2n]: we add a sentinel at the end as well.
+ // There will be (2n+1) elements at the end.
+ const HuffmanTree sentinel(std::numeric_limits<int>::max(), -1, -1);
+ *node++ = sentinel;
+ *node++ = sentinel;
+
+ int i = 0; // Points to the next leaf node.
+ int j = n + 1; // Points to the next non-leaf node.
+ for (int k = n - 1; k > 0; --k) {
+ int left, right;
+ if (tree[i].total_count_ <= tree[j].total_count_) {
+ left = i;
+ ++i;
+ } else {
+ left = j;
+ ++j;
+ }
+ if (tree[i].total_count_ <= tree[j].total_count_) {
+ right = i;
+ ++i;
+ } else {
+ right = j;
+ ++j;
+ }
+ // The sentinel node becomes the parent node.
+ node[-1].total_count_ =
+ tree[left].total_count_ + tree[right].total_count_;
+ node[-1].index_left_ = static_cast<int16_t>(left);
+ node[-1].index_right_or_value_ = static_cast<int16_t>(right);
+ // Add back the last sentinel node.
+ *node++ = sentinel;
+ }
+ SetDepth(tree[2 * n - 1], &tree[0], depth, 0);
+ // We need to pack the Huffman tree in 14 bits.
+ // If this was not successful, add fake entities to the lowest values
+ // and retry.
+ if (PREDICT_TRUE(*std::max_element(&depth[0], &depth[length]) <= 14)) {
+ break;
+ }
+ }
+ free(tree);
+ ConvertBitDepthsToSymbols(depth, length, bits);
+ if (count <= 4) {
+ // value of 1 indicates a simple Huffman code
+ WriteBits(2, 1, storage_ix, storage);
+ WriteBits(2, count - 1, storage_ix, storage); // NSYM - 1
+
+ // Sort
+ for (size_t i = 0; i < count; i++) {
+ for (size_t j = i + 1; j < count; j++) {
+ if (depth[symbols[j]] < depth[symbols[i]]) {
+ std::swap(symbols[j], symbols[i]);
+ }
+ }
+ }
+
+ if (count == 2) {
+ WriteBits(max_bits, symbols[0], storage_ix, storage);
+ WriteBits(max_bits, symbols[1], storage_ix, storage);
+ } else if (count == 3) {
+ WriteBits(max_bits, symbols[0], storage_ix, storage);
+ WriteBits(max_bits, symbols[1], storage_ix, storage);
+ WriteBits(max_bits, symbols[2], storage_ix, storage);
+ } else {
+ WriteBits(max_bits, symbols[0], storage_ix, storage);
+ WriteBits(max_bits, symbols[1], storage_ix, storage);
+ WriteBits(max_bits, symbols[2], storage_ix, storage);
+ WriteBits(max_bits, symbols[3], storage_ix, storage);
+ // tree-select
+ WriteBits(1, depth[symbols[0]] == 1 ? 1 : 0, storage_ix, storage);
+ }
+ } else {
+ // Complex Huffman Tree
+ StoreStaticCodeLengthCode(storage_ix, storage);
+
+ // Actual rle coding.
+ uint8_t previous_value = 8;
+ for (size_t i = 0; i < length;) {
+ const uint8_t value = depth[i];
+ size_t reps = 1;
+ for (size_t k = i + 1; k < length && depth[k] == value; ++k) {
+ ++reps;
+ }
+ i += reps;
+ if (value == 0) {
+ WriteBits(kZeroRepsDepth[reps], kZeroRepsBits[reps],
+ storage_ix, storage);
+ } else {
+ if (previous_value != value) {
+ WriteBits(kCodeLengthDepth[value], kCodeLengthBits[value],
+ storage_ix, storage);
+ --reps;
+ }
+ if (reps < 3) {
+ while (reps != 0) {
+ reps--;
+ WriteBits(kCodeLengthDepth[value], kCodeLengthBits[value],
+ storage_ix, storage);
+ }
+ } else {
+ reps -= 3;
+ WriteBits(kNonZeroRepsDepth[reps], kNonZeroRepsBits[reps],
+ storage_ix, storage);
+ }
+ previous_value = value;
+ }
+ }
+ }
+}
+
+size_t IndexOf(const std::vector<uint32_t>& v, uint32_t value) {
+ size_t i = 0;
+ for (; i < v.size(); ++i) {
+ if (v[i] == value) return i;
+ }
+ return i;
+}
+
+void MoveToFront(std::vector<uint32_t>* v, size_t index) {
+ uint32_t value = (*v)[index];
+ for (size_t i = index; i != 0; --i) {
+ (*v)[i] = (*v)[i - 1];
+ }
+ (*v)[0] = value;
+}
+
+std::vector<uint32_t> MoveToFrontTransform(const std::vector<uint32_t>& v) {
+ if (v.empty()) return v;
+ uint32_t max_value = *std::max_element(v.begin(), v.end());
+ std::vector<uint32_t> mtf(max_value + 1);
+ for (uint32_t i = 0; i <= max_value; ++i) mtf[i] = i;
+ std::vector<uint32_t> result(v.size());
+ for (size_t i = 0; i < v.size(); ++i) {
+ size_t index = IndexOf(mtf, v[i]);
+ assert(index < mtf.size());
+ result[i] = static_cast<uint32_t>(index);
+ MoveToFront(&mtf, index);
+ }
+ return result;
+}
+
+// Finds runs of zeros in v_in and replaces them with a prefix code of the run
+// length plus extra bits in *v_out and *extra_bits. Non-zero values in v_in are
+// shifted by *max_length_prefix. Will not create prefix codes bigger than the
+// initial value of *max_run_length_prefix. The prefix code of run length L is
+// simply Log2Floor(L) and the number of extra bits is the same as the prefix
+// code.
+void RunLengthCodeZeros(const std::vector<uint32_t>& v_in,
+ uint32_t* max_run_length_prefix,
+ std::vector<uint32_t>* v_out,
+ std::vector<uint32_t>* extra_bits) {
+ uint32_t max_reps = 0;
+ for (size_t i = 0; i < v_in.size();) {
+ for (; i < v_in.size() && v_in[i] != 0; ++i) ;
+ uint32_t reps = 0;
+ for (; i < v_in.size() && v_in[i] == 0; ++i) {
+ ++reps;
+ }
+ max_reps = std::max(reps, max_reps);
+ }
+ uint32_t max_prefix = max_reps > 0 ? Log2FloorNonZero(max_reps) : 0;
+ max_prefix = std::min(max_prefix, *max_run_length_prefix);
+ *max_run_length_prefix = max_prefix;
+ for (size_t i = 0; i < v_in.size();) {
+ if (v_in[i] != 0) {
+ v_out->push_back(v_in[i] + *max_run_length_prefix);
+ extra_bits->push_back(0);
+ ++i;
+ } else {
+ uint32_t reps = 1;
+ for (size_t k = i + 1; k < v_in.size() && v_in[k] == 0; ++k) {
+ ++reps;
+ }
+ i += reps;
+ while (reps != 0) {
+ if (reps < (2u << max_prefix)) {
+ uint32_t run_length_prefix = Log2FloorNonZero(reps);
+ v_out->push_back(run_length_prefix);
+ extra_bits->push_back(reps - (1u << run_length_prefix));
+ break;
+ } else {
+ v_out->push_back(max_prefix);
+ extra_bits->push_back((1u << max_prefix) - 1u);
+ reps -= (2u << max_prefix) - 1u;
+ }
+ }
+ }
+ }
+}
+
+void EncodeContextMap(const std::vector<uint32_t>& context_map,
+ size_t num_clusters,
+ size_t* storage_ix, uint8_t* storage) {
+ StoreVarLenUint8(num_clusters - 1, storage_ix, storage);
+
+ if (num_clusters == 1) {
+ return;
+ }
+
+ std::vector<uint32_t> transformed_symbols = MoveToFrontTransform(context_map);
+ std::vector<uint32_t> rle_symbols;
+ std::vector<uint32_t> extra_bits;
+ uint32_t max_run_length_prefix = 6;
+ RunLengthCodeZeros(transformed_symbols, &max_run_length_prefix,
+ &rle_symbols, &extra_bits);
+ HistogramContextMap symbol_histogram;
+ for (size_t i = 0; i < rle_symbols.size(); ++i) {
+ symbol_histogram.Add(rle_symbols[i]);
+ }
+ bool use_rle = max_run_length_prefix > 0;
+ WriteBits(1, use_rle, storage_ix, storage);
+ if (use_rle) {
+ WriteBits(4, max_run_length_prefix - 1, storage_ix, storage);
+ }
+ EntropyCodeContextMap symbol_code;
+ memset(symbol_code.depth_, 0, sizeof(symbol_code.depth_));
+ memset(symbol_code.bits_, 0, sizeof(symbol_code.bits_));
+ BuildAndStoreHuffmanTree(symbol_histogram.data_,
+ num_clusters + max_run_length_prefix,
+ symbol_code.depth_, symbol_code.bits_,
+ storage_ix, storage);
+ for (size_t i = 0; i < rle_symbols.size(); ++i) {
+ WriteBits(symbol_code.depth_[rle_symbols[i]],
+ symbol_code.bits_[rle_symbols[i]],
+ storage_ix, storage);
+ if (rle_symbols[i] > 0 && rle_symbols[i] <= max_run_length_prefix) {
+ WriteBits(rle_symbols[i], extra_bits[i], storage_ix, storage);
+ }
+ }
+ WriteBits(1, 1, storage_ix, storage); // use move-to-front
+}
+
+void StoreBlockSwitch(const BlockSplitCode& code,
+ const size_t block_ix,
+ size_t* storage_ix,
+ uint8_t* storage) {
+ if (block_ix > 0) {
+ size_t typecode = code.type_code[block_ix];
+ WriteBits(code.type_depths[typecode], code.type_bits[typecode],
+ storage_ix, storage);
+ }
+ size_t lencode = code.length_prefix[block_ix];
+ WriteBits(code.length_depths[lencode], code.length_bits[lencode],
+ storage_ix, storage);
+ WriteBits(code.length_nextra[block_ix], code.length_extra[block_ix],
+ storage_ix, storage);
+}
+
+void BuildAndStoreBlockSplitCode(const std::vector<uint8_t>& types,
+ const std::vector<uint32_t>& lengths,
+ const size_t num_types,
+ BlockSplitCode* code,
+ size_t* storage_ix,
+ uint8_t* storage) {
+ const size_t num_blocks = types.size();
+ std::vector<uint32_t> type_histo(num_types + 2);
+ std::vector<uint32_t> length_histo(26);
+ size_t last_type = 1;
+ size_t second_last_type = 0;
+ code->type_code.resize(num_blocks);
+ code->length_prefix.resize(num_blocks);
+ code->length_nextra.resize(num_blocks);
+ code->length_extra.resize(num_blocks);
+ code->type_depths.resize(num_types + 2);
+ code->type_bits.resize(num_types + 2);
+ code->length_depths.resize(26);
+ code->length_bits.resize(26);
+ for (size_t i = 0; i < num_blocks; ++i) {
+ size_t type = types[i];
+ size_t type_code = (type == last_type + 1 ? 1 :
+ type == second_last_type ? 0 :
+ type + 2);
+ second_last_type = last_type;
+ last_type = type;
+ code->type_code[i] = static_cast<uint32_t>(type_code);
+ if (i != 0) ++type_histo[type_code];
+ GetBlockLengthPrefixCode(lengths[i],
+ &code->length_prefix[i],
+ &code->length_nextra[i],
+ &code->length_extra[i]);
+ ++length_histo[code->length_prefix[i]];
+ }
+ StoreVarLenUint8(num_types - 1, storage_ix, storage);
+ if (num_types > 1) {
+ BuildAndStoreHuffmanTree(&type_histo[0], num_types + 2,
+ &code->type_depths[0], &code->type_bits[0],
+ storage_ix, storage);
+ BuildAndStoreHuffmanTree(&length_histo[0], 26,
+ &code->length_depths[0], &code->length_bits[0],
+ storage_ix, storage);
+ StoreBlockSwitch(*code, 0, storage_ix, storage);
+ }
+}
+
+void StoreTrivialContextMap(size_t num_types,
+ size_t context_bits,
+ size_t* storage_ix,
+ uint8_t* storage) {
+ StoreVarLenUint8(num_types - 1, storage_ix, storage);
+ if (num_types > 1) {
+ size_t repeat_code = context_bits - 1u;
+ size_t repeat_bits = (1u << repeat_code) - 1u;
+ size_t alphabet_size = num_types + repeat_code;
+ std::vector<uint32_t> histogram(alphabet_size);
+ std::vector<uint8_t> depths(alphabet_size);
+ std::vector<uint16_t> bits(alphabet_size);
+ // Write RLEMAX.
+ WriteBits(1, 1, storage_ix, storage);
+ WriteBits(4, repeat_code - 1, storage_ix, storage);
+ histogram[repeat_code] = static_cast<uint32_t>(num_types);
+ histogram[0] = 1;
+ for (size_t i = context_bits; i < alphabet_size; ++i) {
+ histogram[i] = 1;
+ }
+ BuildAndStoreHuffmanTree(&histogram[0], alphabet_size,
+ &depths[0], &bits[0],
+ storage_ix, storage);
+ for (size_t i = 0; i < num_types; ++i) {
+ size_t code = (i == 0 ? 0 : i + context_bits - 1);
+ WriteBits(depths[code], bits[code], storage_ix, storage);
+ WriteBits(depths[repeat_code], bits[repeat_code], storage_ix, storage);
+ WriteBits(repeat_code, repeat_bits, storage_ix, storage);
+ }
+ // Write IMTF (inverse-move-to-front) bit.
+ WriteBits(1, 1, storage_ix, storage);
+ }
+}
+
+// Manages the encoding of one block category (literal, command or distance).
+class BlockEncoder {
+ public:
+ BlockEncoder(size_t alphabet_size,
+ size_t num_block_types,
+ const std::vector<uint8_t>& block_types,
+ const std::vector<uint32_t>& block_lengths)
+ : alphabet_size_(alphabet_size),
+ num_block_types_(num_block_types),
+ block_types_(block_types),
+ block_lengths_(block_lengths),
+ block_ix_(0),
+ block_len_(block_lengths.empty() ? 0 : block_lengths[0]),
+ entropy_ix_(0) {}
+
+ // Creates entropy codes of block lengths and block types and stores them
+ // to the bit stream.
+ void BuildAndStoreBlockSwitchEntropyCodes(size_t* storage_ix,
+ uint8_t* storage) {
+ BuildAndStoreBlockSplitCode(
+ block_types_, block_lengths_, num_block_types_,
+ &block_split_code_, storage_ix, storage);
+ }
+
+ // Creates entropy codes for all block types and stores them to the bit
+ // stream.
+ template<int kSize>
+ void BuildAndStoreEntropyCodes(
+ const std::vector<Histogram<kSize> >& histograms,
+ size_t* storage_ix, uint8_t* storage) {
+ depths_.resize(histograms.size() * alphabet_size_);
+ bits_.resize(histograms.size() * alphabet_size_);
+ for (size_t i = 0; i < histograms.size(); ++i) {
+ size_t ix = i * alphabet_size_;
+ BuildAndStoreHuffmanTree(&histograms[i].data_[0], alphabet_size_,
+ &depths_[ix], &bits_[ix],
+ storage_ix, storage);
+ }
+ }
+
+ // Stores the next symbol with the entropy code of the current block type.
+ // Updates the block type and block length at block boundaries.
+ void StoreSymbol(size_t symbol, size_t* storage_ix, uint8_t* storage) {
+ if (block_len_ == 0) {
+ ++block_ix_;
+ block_len_ = block_lengths_[block_ix_];
+ entropy_ix_ = block_types_[block_ix_] * alphabet_size_;
+ StoreBlockSwitch(block_split_code_, block_ix_, storage_ix, storage);
+ }
+ --block_len_;
+ size_t ix = entropy_ix_ + symbol;
+ WriteBits(depths_[ix], bits_[ix], storage_ix, storage);
+ }
+
+ // Stores the next symbol with the entropy code of the current block type and
+ // context value.
+ // Updates the block type and block length at block boundaries.
+ template<int kContextBits>
+ void StoreSymbolWithContext(size_t symbol, size_t context,
+ const std::vector<uint32_t>& context_map,
+ size_t* storage_ix, uint8_t* storage) {
+ if (block_len_ == 0) {
+ ++block_ix_;
+ block_len_ = block_lengths_[block_ix_];
+ size_t block_type = block_types_[block_ix_];
+ entropy_ix_ = block_type << kContextBits;
+ StoreBlockSwitch(block_split_code_, block_ix_, storage_ix, storage);
+ }
+ --block_len_;
+ size_t histo_ix = context_map[entropy_ix_ + context];
+ size_t ix = histo_ix * alphabet_size_ + symbol;
+ WriteBits(depths_[ix], bits_[ix], storage_ix, storage);
+ }
+
+ private:
+ const size_t alphabet_size_;
+ const size_t num_block_types_;
+ const std::vector<uint8_t>& block_types_;
+ const std::vector<uint32_t>& block_lengths_;
+ BlockSplitCode block_split_code_;
+ size_t block_ix_;
+ size_t block_len_;
+ size_t entropy_ix_;
+ std::vector<uint8_t> depths_;
+ std::vector<uint16_t> bits_;
+};
+
+void JumpToByteBoundary(size_t* storage_ix, uint8_t* storage) {
+ *storage_ix = (*storage_ix + 7u) & ~7u;
+ storage[*storage_ix >> 3] = 0;
+}
+
+void StoreMetaBlock(const uint8_t* input,
+ size_t start_pos,
+ size_t length,
+ size_t mask,
+ uint8_t prev_byte,
+ uint8_t prev_byte2,
+ bool is_last,
+ uint32_t num_direct_distance_codes,
+ uint32_t distance_postfix_bits,
+ ContextType literal_context_mode,
+ const brotli::Command *commands,
+ size_t n_commands,
+ const MetaBlockSplit& mb,
+ size_t *storage_ix,
+ uint8_t *storage) {
+ StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
+
+ size_t num_distance_codes =
+ kNumDistanceShortCodes + num_direct_distance_codes +
+ (48u << distance_postfix_bits);
+
+ BlockEncoder literal_enc(256,
+ mb.literal_split.num_types,
+ mb.literal_split.types,
+ mb.literal_split.lengths);
+ BlockEncoder command_enc(kNumCommandPrefixes,
+ mb.command_split.num_types,
+ mb.command_split.types,
+ mb.command_split.lengths);
+ BlockEncoder distance_enc(num_distance_codes,
+ mb.distance_split.num_types,
+ mb.distance_split.types,
+ mb.distance_split.lengths);
+
+ literal_enc.BuildAndStoreBlockSwitchEntropyCodes(storage_ix, storage);
+ command_enc.BuildAndStoreBlockSwitchEntropyCodes(storage_ix, storage);
+ distance_enc.BuildAndStoreBlockSwitchEntropyCodes(storage_ix, storage);
+
+ WriteBits(2, distance_postfix_bits, storage_ix, storage);
+ WriteBits(4, num_direct_distance_codes >> distance_postfix_bits,
+ storage_ix, storage);
+ for (size_t i = 0; i < mb.literal_split.num_types; ++i) {
+ WriteBits(2, literal_context_mode, storage_ix, storage);
+ }
+
+ size_t num_literal_histograms = mb.literal_histograms.size();
+ if (mb.literal_context_map.empty()) {
+ StoreTrivialContextMap(num_literal_histograms, kLiteralContextBits,
+ storage_ix, storage);
+ } else {
+ EncodeContextMap(mb.literal_context_map, num_literal_histograms,
+ storage_ix, storage);
+ }
+
+ size_t num_dist_histograms = mb.distance_histograms.size();
+ if (mb.distance_context_map.empty()) {
+ StoreTrivialContextMap(num_dist_histograms, kDistanceContextBits,
+ storage_ix, storage);
+ } else {
+ EncodeContextMap(mb.distance_context_map, num_dist_histograms,
+ storage_ix, storage);
+ }
+
+ literal_enc.BuildAndStoreEntropyCodes(mb.literal_histograms,
+ storage_ix, storage);
+ command_enc.BuildAndStoreEntropyCodes(mb.command_histograms,
+ storage_ix, storage);
+ distance_enc.BuildAndStoreEntropyCodes(mb.distance_histograms,
+ storage_ix, storage);
+
+ size_t pos = start_pos;
+ for (size_t i = 0; i < n_commands; ++i) {
+ const Command cmd = commands[i];
+ size_t cmd_code = cmd.cmd_prefix_;
+ uint32_t lennumextra = static_cast<uint32_t>(cmd.cmd_extra_ >> 48);
+ uint64_t lenextra = cmd.cmd_extra_ & 0xffffffffffffUL;
+ command_enc.StoreSymbol(cmd_code, storage_ix, storage);
+ WriteBits(lennumextra, lenextra, storage_ix, storage);
+ if (mb.literal_context_map.empty()) {
+ for (size_t j = cmd.insert_len_; j != 0; --j) {
+ literal_enc.StoreSymbol(input[pos & mask], storage_ix, storage);
+ ++pos;
+ }
+ } else {
+ for (size_t j = cmd.insert_len_; j != 0; --j) {
+ size_t context = Context(prev_byte, prev_byte2, literal_context_mode);
+ uint8_t literal = input[pos & mask];
+ literal_enc.StoreSymbolWithContext<kLiteralContextBits>(
+ literal, context, mb.literal_context_map, storage_ix, storage);
+ prev_byte2 = prev_byte;
+ prev_byte = literal;
+ ++pos;
+ }
+ }
+ pos += cmd.copy_len_;
+ if (cmd.copy_len_ > 0) {
+ prev_byte2 = input[(pos - 2) & mask];
+ prev_byte = input[(pos - 1) & mask];
+ if (cmd.cmd_prefix_ >= 128) {
+ size_t dist_code = cmd.dist_prefix_;
+ uint32_t distnumextra = cmd.dist_extra_ >> 24;
+ uint64_t distextra = cmd.dist_extra_ & 0xffffff;
+ if (mb.distance_context_map.empty()) {
+ distance_enc.StoreSymbol(dist_code, storage_ix, storage);
+ } else {
+ size_t context = cmd.DistanceContext();
+ distance_enc.StoreSymbolWithContext<kDistanceContextBits>(
+ dist_code, context, mb.distance_context_map, storage_ix, storage);
+ }
+ brotli::WriteBits(distnumextra, distextra, storage_ix, storage);
+ }
+ }
+ }
+ if (is_last) {
+ JumpToByteBoundary(storage_ix, storage);
+ }
+}
+
+void BuildHistograms(const uint8_t* input,
+ size_t start_pos,
+ size_t mask,
+ const brotli::Command *commands,
+ size_t n_commands,
+ HistogramLiteral* lit_histo,
+ HistogramCommand* cmd_histo,
+ HistogramDistance* dist_histo) {
+ size_t pos = start_pos;
+ for (size_t i = 0; i < n_commands; ++i) {
+ const Command cmd = commands[i];
+ cmd_histo->Add(cmd.cmd_prefix_);
+ for (size_t j = cmd.insert_len_; j != 0; --j) {
+ lit_histo->Add(input[pos & mask]);
+ ++pos;
+ }
+ pos += cmd.copy_len_;
+ if (cmd.copy_len_ > 0 && cmd.cmd_prefix_ >= 128) {
+ dist_histo->Add(cmd.dist_prefix_);
+ }
+ }
+}
+
+void StoreDataWithHuffmanCodes(const uint8_t* input,
+ size_t start_pos,
+ size_t mask,
+ const brotli::Command *commands,
+ size_t n_commands,
+ const uint8_t* lit_depth,
+ const uint16_t* lit_bits,
+ const uint8_t* cmd_depth,
+ const uint16_t* cmd_bits,
+ const uint8_t* dist_depth,
+ const uint16_t* dist_bits,
+ size_t* storage_ix,
+ uint8_t* storage) {
+ size_t pos = start_pos;
+ for (size_t i = 0; i < n_commands; ++i) {
+ const Command cmd = commands[i];
+ const size_t cmd_code = cmd.cmd_prefix_;
+ const uint32_t lennumextra = static_cast<uint32_t>(cmd.cmd_extra_ >> 48);
+ const uint64_t lenextra = cmd.cmd_extra_ & 0xffffffffffffUL;
+ WriteBits(cmd_depth[cmd_code], cmd_bits[cmd_code], storage_ix, storage);
+ WriteBits(lennumextra, lenextra, storage_ix, storage);
+ for (size_t j = cmd.insert_len_; j != 0; --j) {
+ const uint8_t literal = input[pos & mask];
+ WriteBits(lit_depth[literal], lit_bits[literal], storage_ix, storage);
+ ++pos;
+ }
+ pos += cmd.copy_len_;
+ if (cmd.copy_len_ > 0 && cmd.cmd_prefix_ >= 128) {
+ const size_t dist_code = cmd.dist_prefix_;
+ const uint32_t distnumextra = cmd.dist_extra_ >> 24;
+ const uint32_t distextra = cmd.dist_extra_ & 0xffffff;
+ WriteBits(dist_depth[dist_code], dist_bits[dist_code],
+ storage_ix, storage);
+ WriteBits(distnumextra, distextra, storage_ix, storage);
+ }
+ }
+}
+
+void StoreMetaBlockTrivial(const uint8_t* input,
+ size_t start_pos,
+ size_t length,
+ size_t mask,
+ bool is_last,
+ const brotli::Command *commands,
+ size_t n_commands,
+ size_t *storage_ix,
+ uint8_t *storage) {
+ StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
+
+ HistogramLiteral lit_histo;
+ HistogramCommand cmd_histo;
+ HistogramDistance dist_histo;
+
+ BuildHistograms(input, start_pos, mask, commands, n_commands,
+ &lit_histo, &cmd_histo, &dist_histo);
+
+ WriteBits(13, 0, storage_ix, storage);
+
+ std::vector<uint8_t> lit_depth(256);
+ std::vector<uint16_t> lit_bits(256);
+ std::vector<uint8_t> cmd_depth(kNumCommandPrefixes);
+ std::vector<uint16_t> cmd_bits(kNumCommandPrefixes);
+ std::vector<uint8_t> dist_depth(64);
+ std::vector<uint16_t> dist_bits(64);
+
+ BuildAndStoreHuffmanTree(&lit_histo.data_[0], 256,
+ &lit_depth[0], &lit_bits[0],
+ storage_ix, storage);
+ BuildAndStoreHuffmanTree(&cmd_histo.data_[0], kNumCommandPrefixes,
+ &cmd_depth[0], &cmd_bits[0],
+ storage_ix, storage);
+ BuildAndStoreHuffmanTree(&dist_histo.data_[0], 64,
+ &dist_depth[0], &dist_bits[0],
+ storage_ix, storage);
+ StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
+ n_commands, &lit_depth[0], &lit_bits[0],
+ &cmd_depth[0], &cmd_bits[0],
+ &dist_depth[0], &dist_bits[0],
+ storage_ix, storage);
+ if (is_last) {
+ JumpToByteBoundary(storage_ix, storage);
+ }
+}
+
+void StoreMetaBlockFast(const uint8_t* input,
+ size_t start_pos,
+ size_t length,
+ size_t mask,
+ bool is_last,
+ const brotli::Command *commands,
+ size_t n_commands,
+ size_t *storage_ix,
+ uint8_t *storage) {
+ StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
+
+ WriteBits(13, 0, storage_ix, storage);
+
+ if (n_commands <= 128) {
+ uint32_t histogram[256] = { 0 };
+ size_t pos = start_pos;
+ size_t num_literals = 0;
+ for (size_t i = 0; i < n_commands; ++i) {
+ const Command cmd = commands[i];
+ for (size_t j = cmd.insert_len_; j != 0; --j) {
+ ++histogram[input[pos & mask]];
+ ++pos;
+ }
+ num_literals += cmd.insert_len_;
+ pos += cmd.copy_len_;
+ }
+ uint8_t lit_depth[256] = { 0 };
+ uint16_t lit_bits[256] = { 0 };
+ BuildAndStoreHuffmanTreeFast(histogram, num_literals,
+ /* max_bits = */ 8,
+ lit_depth, lit_bits,
+ storage_ix, storage);
+ StoreStaticCommandHuffmanTree(storage_ix, storage);
+ StoreStaticDistanceHuffmanTree(storage_ix, storage);
+ StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
+ n_commands, &lit_depth[0], &lit_bits[0],
+ kStaticCommandCodeDepth,
+ kStaticCommandCodeBits,
+ kStaticDistanceCodeDepth,
+ kStaticDistanceCodeBits,
+ storage_ix, storage);
+ } else {
+ HistogramLiteral lit_histo;
+ HistogramCommand cmd_histo;
+ HistogramDistance dist_histo;
+ BuildHistograms(input, start_pos, mask, commands, n_commands,
+ &lit_histo, &cmd_histo, &dist_histo);
+ std::vector<uint8_t> lit_depth(256);
+ std::vector<uint16_t> lit_bits(256);
+ std::vector<uint8_t> cmd_depth(kNumCommandPrefixes);
+ std::vector<uint16_t> cmd_bits(kNumCommandPrefixes);
+ std::vector<uint8_t> dist_depth(64);
+ std::vector<uint16_t> dist_bits(64);
+ BuildAndStoreHuffmanTreeFast(&lit_histo.data_[0], lit_histo.total_count_,
+ /* max_bits = */ 8,
+ &lit_depth[0], &lit_bits[0],
+ storage_ix, storage);
+ BuildAndStoreHuffmanTreeFast(&cmd_histo.data_[0], cmd_histo.total_count_,
+ /* max_bits = */ 10,
+ &cmd_depth[0], &cmd_bits[0],
+ storage_ix, storage);
+ BuildAndStoreHuffmanTreeFast(&dist_histo.data_[0], dist_histo.total_count_,
+ /* max_bits = */ 6,
+ &dist_depth[0], &dist_bits[0],
+ storage_ix, storage);
+ StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
+ n_commands, &lit_depth[0], &lit_bits[0],
+ &cmd_depth[0], &cmd_bits[0],
+ &dist_depth[0], &dist_bits[0],
+ storage_ix, storage);
+ }
+
+ if (is_last) {
+ JumpToByteBoundary(storage_ix, storage);
+ }
+}
+
+// This is for storing uncompressed blocks (simple raw storage of
+// bytes-as-bytes).
+void StoreUncompressedMetaBlock(bool final_block,
+ const uint8_t * __restrict input,
+ size_t position, size_t mask,
+ size_t len,
+ size_t * __restrict storage_ix,
+ uint8_t * __restrict storage) {
+ StoreUncompressedMetaBlockHeader(len, storage_ix, storage);
+ JumpToByteBoundary(storage_ix, storage);
+
+ size_t masked_pos = position & mask;
+ if (masked_pos + len > mask + 1) {
+ size_t len1 = mask + 1 - masked_pos;
+ memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len1);
+ *storage_ix += len1 << 3;
+ len -= len1;
+ masked_pos = 0;
+ }
+ memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len);
+ *storage_ix += len << 3;
+
+ // We need to clear the next 4 bytes to continue to be
+ // compatible with WriteBits.
+ brotli::WriteBitsPrepareStorage(*storage_ix, storage);
+
+ // Since the uncompressed block itself may not be the final block, add an
+ // empty one after this.
+ if (final_block) {
+ brotli::WriteBits(1, 1, storage_ix, storage); // islast
+ brotli::WriteBits(1, 1, storage_ix, storage); // isempty
+ JumpToByteBoundary(storage_ix, storage);
+ }
+}
+
+void StoreSyncMetaBlock(size_t * __restrict storage_ix,
+ uint8_t * __restrict storage) {
+ // Empty metadata meta-block bit pattern:
+ // 1 bit: is_last (0)
+ // 2 bits: num nibbles (3)
+ // 1 bit: reserved (0)
+ // 2 bits: metadata length bytes (0)
+ WriteBits(6, 6, storage_ix, storage);
+ JumpToByteBoundary(storage_ix, storage);
+}
+
+} // namespace brotli