From be1c7e50e1e8809ea56f2c9d472eccd8ffd73a97 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Fri, 19 Apr 2024 04:57:58 +0200 Subject: Adding upstream version 1.44.3. Signed-off-by: Daniel Baumann --- web/server/h2o/libh2o/deps/brotli/enc/hash.h | 953 +++++++++++++++++++++++++++ 1 file changed, 953 insertions(+) create mode 100644 web/server/h2o/libh2o/deps/brotli/enc/hash.h (limited to 'web/server/h2o/libh2o/deps/brotli/enc/hash.h') diff --git a/web/server/h2o/libh2o/deps/brotli/enc/hash.h b/web/server/h2o/libh2o/deps/brotli/enc/hash.h new file mode 100644 index 00000000..1f5f168c --- /dev/null +++ b/web/server/h2o/libh2o/deps/brotli/enc/hash.h @@ -0,0 +1,953 @@ +/* Copyright 2010 Google Inc. All Rights Reserved. + + Distributed under MIT license. + See file LICENSE for detail or copy at https://opensource.org/licenses/MIT +*/ + +// A (forgetful) hash table to the data seen by the compressor, to +// help create backward references to previous data. + +#ifndef BROTLI_ENC_HASH_H_ +#define BROTLI_ENC_HASH_H_ + +#include +#include +#include +#include +#include + +#include "./dictionary_hash.h" +#include "./fast_log.h" +#include "./find_match_length.h" +#include "./port.h" +#include "./prefix.h" +#include "./static_dict.h" +#include "./transform.h" +#include "./types.h" + +namespace brotli { + +static const size_t kMaxTreeSearchDepth = 64; +static const size_t kMaxTreeCompLength = 128; + +static const uint32_t kDistanceCacheIndex[] = { + 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, +}; +static const int kDistanceCacheOffset[] = { + 0, 0, 0, 0, -1, 1, -2, 2, -3, 3, -1, 1, -2, 2, -3, 3 +}; + +static const uint32_t kCutoffTransformsCount = 10; +static const uint8_t kCutoffTransforms[] = { + 0, 12, 27, 23, 42, 63, 56, 48, 59, 64 +}; + +// kHashMul32 multiplier has these properties: +// * The multiplier must be odd. Otherwise we may lose the highest bit. +// * No long streaks of 1s or 0s. +// * There is no effort to ensure that it is a prime, the oddity is enough +// for this use. +// * The number has been tuned heuristically against compression benchmarks. +static const uint32_t kHashMul32 = 0x1e35a7bd; + +template +inline uint32_t Hash(const uint8_t *data) { + uint32_t h = BROTLI_UNALIGNED_LOAD32(data) * kHashMul32; + // The higher bits contain more mixture from the multiplication, + // so we take our results from there. + return h >> (32 - kShiftBits); +} + +// Usually, we always choose the longest backward reference. This function +// allows for the exception of that rule. +// +// If we choose a backward reference that is further away, it will +// usually be coded with more bits. We approximate this by assuming +// log2(distance). If the distance can be expressed in terms of the +// last four distances, we use some heuristic constants to estimate +// the bits cost. For the first up to four literals we use the bit +// cost of the literals from the literal cost model, after that we +// use the average bit cost of the cost model. +// +// This function is used to sometimes discard a longer backward reference +// when it is not much longer and the bit cost for encoding it is more +// than the saved literals. +// +// backward_reference_offset MUST be positive. +inline double BackwardReferenceScore(size_t copy_length, + size_t backward_reference_offset) { + return 5.4 * static_cast(copy_length) - + 1.20 * Log2FloorNonZero(backward_reference_offset); +} + +inline double BackwardReferenceScoreUsingLastDistance(size_t copy_length, + size_t distance_short_code) { + static const double kDistanceShortCodeBitCost[16] = { + -0.6, 0.95, 1.17, 1.27, + 0.93, 0.93, 0.96, 0.96, 0.99, 0.99, + 1.05, 1.05, 1.15, 1.15, 1.25, 1.25 + }; + return 5.4 * static_cast(copy_length) - + kDistanceShortCodeBitCost[distance_short_code]; +} + +struct BackwardMatch { + BackwardMatch() : distance(0), length_and_code(0) {} + + BackwardMatch(size_t dist, size_t len) + : distance(static_cast(dist)) + , length_and_code(static_cast(len << 5)) {} + + BackwardMatch(size_t dist, size_t len, size_t len_code) + : distance(static_cast(dist)) + , length_and_code(static_cast( + (len << 5) | (len == len_code ? 0 : len_code))) {} + + size_t length() const { + return length_and_code >> 5; + } + size_t length_code() const { + size_t code = length_and_code & 31; + return code ? code : length(); + } + + uint32_t distance; + uint32_t length_and_code; +}; + +// A (forgetful) hash table to the data seen by the compressor, to +// help create backward references to previous data. +// +// This is a hash map of fixed size (kBucketSize). Starting from the +// given index, kBucketSweep buckets are used to store values of a key. +template +class HashLongestMatchQuickly { + public: + HashLongestMatchQuickly() { + Reset(); + } + void Reset() { + need_init_ = true; + num_dict_lookups_ = 0; + num_dict_matches_ = 0; + } + void Init() { + if (need_init_) { + // It is not strictly necessary to fill this buffer here, but + // not filling will make the results of the compression stochastic + // (but correct). This is because random data would cause the + // system to find accidentally good backward references here and there. + memset(&buckets_[0], 0, sizeof(buckets_)); + need_init_ = false; + } + } + void InitForData(const uint8_t* data, size_t num) { + for (size_t i = 0; i < num; ++i) { + const uint32_t key = HashBytes(&data[i]); + memset(&buckets_[key], 0, kBucketSweep * sizeof(buckets_[0])); + need_init_ = false; + } + } + // Look at 4 bytes at data. + // Compute a hash from these, and store the value somewhere within + // [ix .. ix+3]. + inline void Store(const uint8_t *data, const uint32_t ix) { + const uint32_t key = HashBytes(data); + // Wiggle the value with the bucket sweep range. + const uint32_t off = (ix >> 3) % kBucketSweep; + buckets_[key + off] = ix; + } + + // Find a longest backward match of &ring_buffer[cur_ix & ring_buffer_mask] + // up to the length of max_length and stores the position cur_ix in the + // hash table. + // + // Does not look for matches longer than max_length. + // Does not look for matches further away than max_backward. + // Writes the best found match length into best_len_out. + // Writes the index (&data[index]) of the start of the best match into + // best_distance_out. + inline bool FindLongestMatch(const uint8_t * __restrict ring_buffer, + const size_t ring_buffer_mask, + const int* __restrict distance_cache, + const size_t cur_ix, + const size_t max_length, + const size_t max_backward, + size_t * __restrict best_len_out, + size_t * __restrict best_len_code_out, + size_t * __restrict best_distance_out, + double* __restrict best_score_out) { + const size_t best_len_in = *best_len_out; + const size_t cur_ix_masked = cur_ix & ring_buffer_mask; + const uint32_t key = HashBytes(&ring_buffer[cur_ix_masked]); + int compare_char = ring_buffer[cur_ix_masked + best_len_in]; + double best_score = *best_score_out; + size_t best_len = best_len_in; + size_t cached_backward = static_cast(distance_cache[0]); + size_t prev_ix = cur_ix - cached_backward; + bool match_found = false; + if (prev_ix < cur_ix) { + prev_ix &= static_cast(ring_buffer_mask); + if (compare_char == ring_buffer[prev_ix + best_len]) { + size_t len = FindMatchLengthWithLimit(&ring_buffer[prev_ix], + &ring_buffer[cur_ix_masked], + max_length); + if (len >= 4) { + best_score = BackwardReferenceScoreUsingLastDistance(len, 0); + best_len = len; + *best_len_out = len; + *best_len_code_out = len; + *best_distance_out = cached_backward; + *best_score_out = best_score; + compare_char = ring_buffer[cur_ix_masked + best_len]; + if (kBucketSweep == 1) { + buckets_[key] = static_cast(cur_ix); + return true; + } else { + match_found = true; + } + } + } + } + if (kBucketSweep == 1) { + // Only one to look for, don't bother to prepare for a loop. + prev_ix = buckets_[key]; + buckets_[key] = static_cast(cur_ix); + size_t backward = cur_ix - prev_ix; + prev_ix &= static_cast(ring_buffer_mask); + if (compare_char != ring_buffer[prev_ix + best_len_in]) { + return false; + } + if (PREDICT_FALSE(backward == 0 || backward > max_backward)) { + return false; + } + const size_t len = FindMatchLengthWithLimit(&ring_buffer[prev_ix], + &ring_buffer[cur_ix_masked], + max_length); + if (len >= 4) { + *best_len_out = len; + *best_len_code_out = len; + *best_distance_out = backward; + *best_score_out = BackwardReferenceScore(len, backward); + return true; + } + } else { + uint32_t *bucket = buckets_ + key; + prev_ix = *bucket++; + for (int i = 0; i < kBucketSweep; ++i, prev_ix = *bucket++) { + const size_t backward = cur_ix - prev_ix; + prev_ix &= static_cast(ring_buffer_mask); + if (compare_char != ring_buffer[prev_ix + best_len]) { + continue; + } + if (PREDICT_FALSE(backward == 0 || backward > max_backward)) { + continue; + } + const size_t len = FindMatchLengthWithLimit(&ring_buffer[prev_ix], + &ring_buffer[cur_ix_masked], + max_length); + if (len >= 4) { + const double score = BackwardReferenceScore(len, backward); + if (best_score < score) { + best_score = score; + best_len = len; + *best_len_out = best_len; + *best_len_code_out = best_len; + *best_distance_out = backward; + *best_score_out = score; + compare_char = ring_buffer[cur_ix_masked + best_len]; + match_found = true; + } + } + } + } + if (kUseDictionary && !match_found && + num_dict_matches_ >= (num_dict_lookups_ >> 7)) { + ++num_dict_lookups_; + const uint32_t dict_key = Hash<14>(&ring_buffer[cur_ix_masked]) << 1; + const uint16_t v = kStaticDictionaryHash[dict_key]; + if (v > 0) { + const uint32_t len = v & 31; + const uint32_t dist = v >> 5; + const size_t offset = + kBrotliDictionaryOffsetsByLength[len] + len * dist; + if (len <= max_length) { + const size_t matchlen = + FindMatchLengthWithLimit(&ring_buffer[cur_ix_masked], + &kBrotliDictionary[offset], len); + if (matchlen + kCutoffTransformsCount > len && matchlen > 0) { + const size_t transform_id = kCutoffTransforms[len - matchlen]; + const size_t word_id = + transform_id * (1 << kBrotliDictionarySizeBitsByLength[len]) + + dist; + const size_t backward = max_backward + word_id + 1; + const double score = BackwardReferenceScore(matchlen, backward); + if (best_score < score) { + ++num_dict_matches_; + best_score = score; + best_len = matchlen; + *best_len_out = best_len; + *best_len_code_out = len; + *best_distance_out = backward; + *best_score_out = best_score; + match_found = true; + } + } + } + } + } + const uint32_t off = (cur_ix >> 3) % kBucketSweep; + buckets_[key + off] = static_cast(cur_ix); + return match_found; + } + + enum { kHashLength = 5 }; + enum { kHashTypeLength = 8 }; + // HashBytes is the function that chooses the bucket to place + // the address in. The HashLongestMatch and HashLongestMatchQuickly + // classes have separate, different implementations of hashing. + static uint32_t HashBytes(const uint8_t *data) { + // Computing a hash based on 5 bytes works much better for + // qualities 1 and 3, where the next hash value is likely to replace + uint64_t h = (BROTLI_UNALIGNED_LOAD64(data) << 24) * kHashMul32; + // The higher bits contain more mixture from the multiplication, + // so we take our results from there. + return static_cast(h >> (64 - kBucketBits)); + } + + enum { kHashMapSize = 4 << kBucketBits }; + + private: + static const uint32_t kBucketSize = 1 << kBucketBits; + uint32_t buckets_[kBucketSize + kBucketSweep]; + // True if buckets_ array needs to be initialized. + bool need_init_; + size_t num_dict_lookups_; + size_t num_dict_matches_; +}; + +// A (forgetful) hash table to the data seen by the compressor, to +// help create backward references to previous data. +// +// This is a hash map of fixed size (kBucketSize) to a ring buffer of +// fixed size (kBlockSize). The ring buffer contains the last kBlockSize +// index positions of the given hash key in the compressed data. +template +class HashLongestMatch { + public: + HashLongestMatch() { + Reset(); + } + + void Reset() { + need_init_ = true; + num_dict_lookups_ = 0; + num_dict_matches_ = 0; + } + + void Init() { + if (need_init_) { + memset(&num_[0], 0, sizeof(num_)); + need_init_ = false; + } + } + + void InitForData(const uint8_t* data, size_t num) { + for (size_t i = 0; i < num; ++i) { + const uint32_t key = HashBytes(&data[i]); + num_[key] = 0; + need_init_ = false; + } + } + + // Look at 3 bytes at data. + // Compute a hash from these, and store the value of ix at that position. + inline void Store(const uint8_t *data, const uint32_t ix) { + const uint32_t key = HashBytes(data); + const int minor_ix = num_[key] & kBlockMask; + buckets_[key][minor_ix] = ix; + ++num_[key]; + } + + // Find a longest backward match of &data[cur_ix] up to the length of + // max_length and stores the position cur_ix in the hash table. + // + // Does not look for matches longer than max_length. + // Does not look for matches further away than max_backward. + // Writes the best found match length into best_len_out. + // Writes the index (&data[index]) offset from the start of the best match + // into best_distance_out. + // Write the score of the best match into best_score_out. + bool FindLongestMatch(const uint8_t * __restrict data, + const size_t ring_buffer_mask, + const int* __restrict distance_cache, + const size_t cur_ix, + const size_t max_length, + const size_t max_backward, + size_t * __restrict best_len_out, + size_t * __restrict best_len_code_out, + size_t * __restrict best_distance_out, + double * __restrict best_score_out) { + *best_len_code_out = 0; + const size_t cur_ix_masked = cur_ix & ring_buffer_mask; + bool match_found = false; + // Don't accept a short copy from far away. + double best_score = *best_score_out; + size_t best_len = *best_len_out; + *best_len_out = 0; + // Try last distance first. + for (size_t i = 0; i < kNumLastDistancesToCheck; ++i) { + const size_t idx = kDistanceCacheIndex[i]; + const size_t backward = + static_cast(distance_cache[idx] + kDistanceCacheOffset[i]); + size_t prev_ix = static_cast(cur_ix - backward); + if (prev_ix >= cur_ix) { + continue; + } + if (PREDICT_FALSE(backward > max_backward)) { + continue; + } + prev_ix &= ring_buffer_mask; + + if (cur_ix_masked + best_len > ring_buffer_mask || + prev_ix + best_len > ring_buffer_mask || + data[cur_ix_masked + best_len] != data[prev_ix + best_len]) { + continue; + } + const size_t len = FindMatchLengthWithLimit(&data[prev_ix], + &data[cur_ix_masked], + max_length); + if (len >= 3 || (len == 2 && i < 2)) { + // Comparing for >= 2 does not change the semantics, but just saves for + // a few unnecessary binary logarithms in backward reference score, + // since we are not interested in such short matches. + double score = BackwardReferenceScoreUsingLastDistance(len, i); + if (best_score < score) { + best_score = score; + best_len = len; + *best_len_out = best_len; + *best_len_code_out = best_len; + *best_distance_out = backward; + *best_score_out = best_score; + match_found = true; + } + } + } + const uint32_t key = HashBytes(&data[cur_ix_masked]); + const uint32_t * __restrict const bucket = &buckets_[key][0]; + const size_t down = (num_[key] > kBlockSize) ? (num_[key] - kBlockSize) : 0; + for (size_t i = num_[key]; i > down;) { + --i; + size_t prev_ix = bucket[i & kBlockMask]; + const size_t backward = cur_ix - prev_ix; + if (PREDICT_FALSE(backward == 0 || backward > max_backward)) { + break; + } + prev_ix &= ring_buffer_mask; + if (cur_ix_masked + best_len > ring_buffer_mask || + prev_ix + best_len > ring_buffer_mask || + data[cur_ix_masked + best_len] != data[prev_ix + best_len]) { + continue; + } + const size_t len = FindMatchLengthWithLimit(&data[prev_ix], + &data[cur_ix_masked], + max_length); + if (len >= 4) { + // Comparing for >= 3 does not change the semantics, but just saves + // for a few unnecessary binary logarithms in backward reference + // score, since we are not interested in such short matches. + double score = BackwardReferenceScore(len, backward); + if (best_score < score) { + best_score = score; + best_len = len; + *best_len_out = best_len; + *best_len_code_out = best_len; + *best_distance_out = backward; + *best_score_out = best_score; + match_found = true; + } + } + } + buckets_[key][num_[key] & kBlockMask] = static_cast(cur_ix); + ++num_[key]; + if (!match_found && num_dict_matches_ >= (num_dict_lookups_ >> 7)) { + size_t dict_key = Hash<14>(&data[cur_ix_masked]) << 1; + for (int k = 0; k < 2; ++k, ++dict_key) { + ++num_dict_lookups_; + const uint16_t v = kStaticDictionaryHash[dict_key]; + if (v > 0) { + const size_t len = v & 31; + const size_t dist = v >> 5; + const size_t offset = + kBrotliDictionaryOffsetsByLength[len] + len * dist; + if (len <= max_length) { + const size_t matchlen = + FindMatchLengthWithLimit(&data[cur_ix_masked], + &kBrotliDictionary[offset], len); + if (matchlen + kCutoffTransformsCount > len && matchlen > 0) { + const size_t transform_id = kCutoffTransforms[len - matchlen]; + const size_t word_id = + transform_id * (1 << kBrotliDictionarySizeBitsByLength[len]) + + dist; + const size_t backward = max_backward + word_id + 1; + double score = BackwardReferenceScore(matchlen, backward); + if (best_score < score) { + ++num_dict_matches_; + best_score = score; + best_len = matchlen; + *best_len_out = best_len; + *best_len_code_out = len; + *best_distance_out = backward; + *best_score_out = best_score; + match_found = true; + } + } + } + } + } + } + return match_found; + } + + // Finds all backward matches of &data[cur_ix & ring_buffer_mask] up to the + // length of max_length and stores the position cur_ix in the hash table. + // + // Sets *num_matches to the number of matches found, and stores the found + // matches in matches[0] to matches[*num_matches - 1]. The matches will be + // sorted by strictly increasing length and (non-strictly) increasing + // distance. + size_t FindAllMatches(const uint8_t* data, + const size_t ring_buffer_mask, + const size_t cur_ix, + const size_t max_length, + const size_t max_backward, + BackwardMatch* matches) { + BackwardMatch* const orig_matches = matches; + const size_t cur_ix_masked = cur_ix & ring_buffer_mask; + size_t best_len = 1; + size_t stop = cur_ix - 64; + if (cur_ix < 64) { stop = 0; } + for (size_t i = cur_ix - 1; i > stop && best_len <= 2; --i) { + size_t prev_ix = i; + const size_t backward = cur_ix - prev_ix; + if (PREDICT_FALSE(backward > max_backward)) { + break; + } + prev_ix &= ring_buffer_mask; + if (data[cur_ix_masked] != data[prev_ix] || + data[cur_ix_masked + 1] != data[prev_ix + 1]) { + continue; + } + const size_t len = + FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked], + max_length); + if (len > best_len) { + best_len = len; + *matches++ = BackwardMatch(backward, len); + } + } + const uint32_t key = HashBytes(&data[cur_ix_masked]); + const uint32_t * __restrict const bucket = &buckets_[key][0]; + const size_t down = (num_[key] > kBlockSize) ? (num_[key] - kBlockSize) : 0; + for (size_t i = num_[key]; i > down;) { + --i; + size_t prev_ix = bucket[i & kBlockMask]; + const size_t backward = cur_ix - prev_ix; + if (PREDICT_FALSE(backward == 0 || backward > max_backward)) { + break; + } + prev_ix &= ring_buffer_mask; + if (cur_ix_masked + best_len > ring_buffer_mask || + prev_ix + best_len > ring_buffer_mask || + data[cur_ix_masked + best_len] != data[prev_ix + best_len]) { + continue; + } + const size_t len = + FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked], + max_length); + if (len > best_len) { + best_len = len; + *matches++ = BackwardMatch(backward, len); + } + } + buckets_[key][num_[key] & kBlockMask] = static_cast(cur_ix); + ++num_[key]; + std::vector dict_matches(kMaxDictionaryMatchLen + 1, + kInvalidMatch); + size_t minlen = std::max(4, best_len + 1); + if (FindAllStaticDictionaryMatches(&data[cur_ix_masked], minlen, max_length, + &dict_matches[0])) { + size_t maxlen = std::min(kMaxDictionaryMatchLen, max_length); + for (size_t l = minlen; l <= maxlen; ++l) { + uint32_t dict_id = dict_matches[l]; + if (dict_id < kInvalidMatch) { + *matches++ = BackwardMatch(max_backward + (dict_id >> 5) + 1, l, + dict_id & 31); + } + } + } + return static_cast(matches - orig_matches); + } + + enum { kHashLength = 4 }; + enum { kHashTypeLength = 4 }; + + // HashBytes is the function that chooses the bucket to place + // the address in. The HashLongestMatch and HashLongestMatchQuickly + // classes have separate, different implementations of hashing. + static uint32_t HashBytes(const uint8_t *data) { + uint32_t h = BROTLI_UNALIGNED_LOAD32(data) * kHashMul32; + // The higher bits contain more mixture from the multiplication, + // so we take our results from there. + return h >> (32 - kBucketBits); + } + + enum { kHashMapSize = 2 << kBucketBits }; + + static const size_t kMaxNumMatches = 64 + (1 << kBlockBits); + + private: + // Number of hash buckets. + static const uint32_t kBucketSize = 1 << kBucketBits; + + // Only kBlockSize newest backward references are kept, + // and the older are forgotten. + static const uint32_t kBlockSize = 1 << kBlockBits; + + // Mask for accessing entries in a block (in a ringbuffer manner). + static const uint32_t kBlockMask = (1 << kBlockBits) - 1; + + // Number of entries in a particular bucket. + uint16_t num_[kBucketSize]; + + // Buckets containing kBlockSize of backward references. + uint32_t buckets_[kBucketSize][kBlockSize]; + + // True if num_ array needs to be initialized. + bool need_init_; + + size_t num_dict_lookups_; + size_t num_dict_matches_; +}; + +// A (forgetful) hash table where each hash bucket contains a binary tree of +// sequences whose first 4 bytes share the same hash code. +// Each sequence is kMaxTreeCompLength long and is identified by its starting +// position in the input data. The binary tree is sorted by the lexicographic +// order of the sequences, and it is also a max-heap with respect to the +// starting positions. +class HashToBinaryTree { + public: + HashToBinaryTree() : forest_(NULL) { + Reset(); + } + + ~HashToBinaryTree() { + delete[] forest_; + } + + void Reset() { + need_init_ = true; + } + + void Init(int lgwin, size_t position, size_t bytes, bool is_last) { + if (need_init_) { + window_mask_ = (1u << lgwin) - 1u; + invalid_pos_ = static_cast(-window_mask_); + for (uint32_t i = 0; i < kBucketSize; i++) { + buckets_[i] = invalid_pos_; + } + size_t num_nodes = (position == 0 && is_last) ? bytes : window_mask_ + 1; + forest_ = new uint32_t[2 * num_nodes]; + need_init_ = false; + } + } + + // Finds all backward matches of &data[cur_ix & ring_buffer_mask] up to the + // length of max_length and stores the position cur_ix in the hash table. + // + // Sets *num_matches to the number of matches found, and stores the found + // matches in matches[0] to matches[*num_matches - 1]. The matches will be + // sorted by strictly increasing length and (non-strictly) increasing + // distance. + size_t FindAllMatches(const uint8_t* data, + const size_t ring_buffer_mask, + const size_t cur_ix, + const size_t max_length, + const size_t max_backward, + BackwardMatch* matches) { + BackwardMatch* const orig_matches = matches; + const size_t cur_ix_masked = cur_ix & ring_buffer_mask; + size_t best_len = 1; + size_t stop = cur_ix - 64; + if (cur_ix < 64) { stop = 0; } + for (size_t i = cur_ix - 1; i > stop && best_len <= 2; --i) { + size_t prev_ix = i; + const size_t backward = cur_ix - prev_ix; + if (PREDICT_FALSE(backward > max_backward)) { + break; + } + prev_ix &= ring_buffer_mask; + if (data[cur_ix_masked] != data[prev_ix] || + data[cur_ix_masked + 1] != data[prev_ix + 1]) { + continue; + } + const size_t len = + FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked], + max_length); + if (len > best_len) { + best_len = len; + *matches++ = BackwardMatch(backward, len); + } + } + if (best_len < max_length) { + matches = StoreAndFindMatches(data, cur_ix, ring_buffer_mask, + max_length, &best_len, matches); + } + std::vector dict_matches(kMaxDictionaryMatchLen + 1, + kInvalidMatch); + size_t minlen = std::max(4, best_len + 1); + if (FindAllStaticDictionaryMatches(&data[cur_ix_masked], minlen, max_length, + &dict_matches[0])) { + size_t maxlen = std::min(kMaxDictionaryMatchLen, max_length); + for (size_t l = minlen; l <= maxlen; ++l) { + uint32_t dict_id = dict_matches[l]; + if (dict_id < kInvalidMatch) { + *matches++ = BackwardMatch(max_backward + (dict_id >> 5) + 1, l, + dict_id & 31); + } + } + } + return static_cast(matches - orig_matches); + } + + // Stores the hash of the next 4 bytes and re-roots the binary tree at the + // current sequence, without returning any matches. + void Store(const uint8_t* data, + const size_t ring_buffer_mask, + const size_t cur_ix, + const size_t max_length) { + size_t best_len = 0; + StoreAndFindMatches(data, cur_ix, ring_buffer_mask, max_length, + &best_len, NULL); + } + + static const size_t kMaxNumMatches = 64 + kMaxTreeSearchDepth; + + private: + // Stores the hash of the next 4 bytes and in a single tree-traversal, the + // hash bucket's binary tree is searched for matches and is re-rooted at the + // current position. + // + // If less than kMaxTreeCompLength data is available, the hash bucket of the + // current position is searched for matches, but the state of the hash table + // is not changed, since we can not know the final sorting order of the + // current (incomplete) sequence. + // + // This function must be called with increasing cur_ix positions. + BackwardMatch* StoreAndFindMatches(const uint8_t* const __restrict data, + const size_t cur_ix, + const size_t ring_buffer_mask, + const size_t max_length, + size_t* const __restrict best_len, + BackwardMatch* __restrict matches) { + const size_t cur_ix_masked = cur_ix & ring_buffer_mask; + const size_t max_backward = window_mask_ - 15; + const size_t max_comp_len = std::min(max_length, kMaxTreeCompLength); + const bool reroot_tree = max_length >= kMaxTreeCompLength; + const uint32_t key = HashBytes(&data[cur_ix_masked]); + size_t prev_ix = buckets_[key]; + // The forest index of the rightmost node of the left subtree of the new + // root, updated as we traverse and reroot the tree of the hash bucket. + size_t node_left = LeftChildIndex(cur_ix); + // The forest index of the leftmost node of the right subtree of the new + // root, updated as we traverse and reroot the tree of the hash bucket. + size_t node_right = RightChildIndex(cur_ix); + // The match length of the rightmost node of the left subtree of the new + // root, updated as we traverse and reroot the tree of the hash bucket. + size_t best_len_left = 0; + // The match length of the leftmost node of the right subtree of the new + // root, updated as we traverse and reroot the tree of the hash bucket. + size_t best_len_right = 0; + if (reroot_tree) { + buckets_[key] = static_cast(cur_ix); + } + for (size_t depth_remaining = kMaxTreeSearchDepth; ; --depth_remaining) { + const size_t backward = cur_ix - prev_ix; + const size_t prev_ix_masked = prev_ix & ring_buffer_mask; + if (backward == 0 || backward > max_backward || depth_remaining == 0) { + if (reroot_tree) { + forest_[node_left] = invalid_pos_; + forest_[node_right] = invalid_pos_; + } + break; + } + const size_t cur_len = std::min(best_len_left, best_len_right); + const size_t len = cur_len + + FindMatchLengthWithLimit(&data[cur_ix_masked + cur_len], + &data[prev_ix_masked + cur_len], + max_length - cur_len); + if (len > *best_len) { + *best_len = len; + if (matches) { + *matches++ = BackwardMatch(backward, len); + } + if (len >= max_comp_len) { + if (reroot_tree) { + forest_[node_left] = forest_[LeftChildIndex(prev_ix)]; + forest_[node_right] = forest_[RightChildIndex(prev_ix)]; + } + break; + } + } + if (data[cur_ix_masked + len] > data[prev_ix_masked + len]) { + best_len_left = len; + if (reroot_tree) { + forest_[node_left] = static_cast(prev_ix); + } + node_left = RightChildIndex(prev_ix); + prev_ix = forest_[node_left]; + } else { + best_len_right = len; + if (reroot_tree) { + forest_[node_right] = static_cast(prev_ix); + } + node_right = LeftChildIndex(prev_ix); + prev_ix = forest_[node_right]; + } + } + return matches; + } + + inline size_t LeftChildIndex(const size_t pos) { + return 2 * (pos & window_mask_); + } + + inline size_t RightChildIndex(const size_t pos) { + return 2 * (pos & window_mask_) + 1; + } + + static uint32_t HashBytes(const uint8_t *data) { + uint32_t h = BROTLI_UNALIGNED_LOAD32(data) * kHashMul32; + // The higher bits contain more mixture from the multiplication, + // so we take our results from there. + return h >> (32 - kBucketBits); + } + + static const int kBucketBits = 17; + static const size_t kBucketSize = 1 << kBucketBits; + + // The window size minus 1 + size_t window_mask_; + + // Hash table that maps the 4-byte hashes of the sequence to the last + // position where this hash was found, which is the root of the binary + // tree of sequences that share this hash bucket. + uint32_t buckets_[kBucketSize]; + + // The union of the binary trees of each hash bucket. The root of the tree + // corresponding to a hash is a sequence starting at buckets_[hash] and + // the left and right children of a sequence starting at pos are + // forest_[2 * pos] and forest_[2 * pos + 1]. + uint32_t* forest_; + + // A position used to mark a non-existent sequence, i.e. a tree is empty if + // its root is at invalid_pos_ and a node is a leaf if both its children + // are at invalid_pos_. + uint32_t invalid_pos_; + + bool need_init_; +}; + +struct Hashers { + // For kBucketSweep == 1, enabling the dictionary lookup makes compression + // a little faster (0.5% - 1%) and it compresses 0.15% better on small text + // and html inputs. + typedef HashLongestMatchQuickly<16, 1, true> H2; + typedef HashLongestMatchQuickly<16, 2, false> H3; + typedef HashLongestMatchQuickly<17, 4, true> H4; + typedef HashLongestMatch<14, 4, 4> H5; + typedef HashLongestMatch<14, 5, 4> H6; + typedef HashLongestMatch<15, 6, 10> H7; + typedef HashLongestMatch<15, 7, 10> H8; + typedef HashLongestMatch<15, 8, 16> H9; + typedef HashToBinaryTree H10; + + Hashers() : hash_h2(0), hash_h3(0), hash_h4(0), hash_h5(0), + hash_h6(0), hash_h7(0), hash_h8(0), hash_h9(0), hash_h10(0) {} + + ~Hashers() { + delete hash_h2; + delete hash_h3; + delete hash_h4; + delete hash_h5; + delete hash_h6; + delete hash_h7; + delete hash_h8; + delete hash_h9; + delete hash_h10; + } + + void Init(int type) { + switch (type) { + case 2: hash_h2 = new H2; break; + case 3: hash_h3 = new H3; break; + case 4: hash_h4 = new H4; break; + case 5: hash_h5 = new H5; break; + case 6: hash_h6 = new H6; break; + case 7: hash_h7 = new H7; break; + case 8: hash_h8 = new H8; break; + case 9: hash_h9 = new H9; break; + case 10: hash_h10 = new H10; break; + default: break; + } + } + + template + void WarmupHash(const size_t size, const uint8_t* dict, Hasher* hasher) { + hasher->Init(); + for (size_t i = 0; i + Hasher::kHashTypeLength - 1 < size; i++) { + hasher->Store(&dict[i], static_cast(i)); + } + } + + // Custom LZ77 window. + void PrependCustomDictionary( + int type, int lgwin, const size_t size, const uint8_t* dict) { + switch (type) { + case 2: WarmupHash(size, dict, hash_h2); break; + case 3: WarmupHash(size, dict, hash_h3); break; + case 4: WarmupHash(size, dict, hash_h4); break; + case 5: WarmupHash(size, dict, hash_h5); break; + case 6: WarmupHash(size, dict, hash_h6); break; + case 7: WarmupHash(size, dict, hash_h7); break; + case 8: WarmupHash(size, dict, hash_h8); break; + case 9: WarmupHash(size, dict, hash_h9); break; + case 10: + hash_h10->Init(lgwin, 0, size, false); + for (size_t i = 0; i + kMaxTreeCompLength - 1 < size; ++i) { + hash_h10->Store(dict, std::numeric_limits::max(), + i, size - i); + } + break; + default: break; + } + } + + + H2* hash_h2; + H3* hash_h3; + H4* hash_h4; + H5* hash_h5; + H6* hash_h6; + H7* hash_h7; + H8* hash_h8; + H9* hash_h9; + H10* hash_h10; +}; + +} // namespace brotli + +#endif // BROTLI_ENC_HASH_H_ -- cgit v1.2.3