// SPDX-License-Identifier: GPL-3.0-or-later #include "common.h" static bool cmd_arg_sanitization_test(const char *expected, const char *src, char *dst, size_t dst_size) { bool ok = sanitize_command_argument_string(dst, src, dst_size); if (!expected) return ok == false; return strcmp(expected, dst) == 0; } bool command_argument_sanitization_tests() { char dst[1024]; for (size_t i = 0; i != 5; i++) { const char *expected = i == 4 ? "'\\''" : NULL; if (cmd_arg_sanitization_test(expected, "'", dst, i) == false) { fprintf(stderr, "expected: >>>%s<<<, got: >>>%s<<<\n", expected, dst); return 1; } } for (size_t i = 0; i != 9; i++) { const char *expected = i == 8 ? "'\\'''\\''" : NULL; if (cmd_arg_sanitization_test(expected, "''", dst, i) == false) { fprintf(stderr, "expected: >>>%s<<<, got: >>>%s<<<\n", expected, dst); return 1; } } for (size_t i = 0; i != 7; i++) { const char *expected = i == 6 ? "'\\''a" : NULL; if (cmd_arg_sanitization_test(expected, "'a", dst, i) == false) { fprintf(stderr, "expected: >>>%s<<<, got: >>>%s<<<\n", expected, dst); return 1; } } for (size_t i = 0; i != 7; i++) { const char *expected = i == 6 ? "a'\\''" : NULL; if (cmd_arg_sanitization_test(expected, "a'", dst, i) == false) { fprintf(stderr, "expected: >>>%s<<<, got: >>>%s<<<\n", expected, dst); return 1; } } for (size_t i = 0; i != 22; i++) { const char *expected = i == 21 ? "foo'\\''a'\\'''\\'''\\''b" : NULL; if (cmd_arg_sanitization_test(expected, "--foo'a'''b", dst, i) == false) { fprintf(stderr, "expected: >>>%s<<<, got: >>>%s<<<\n length: %zu\n", expected, dst, strlen(dst)); return 1; } } return 0; } static int check_number_printing(void) { struct { NETDATA_DOUBLE n; const char *correct; } values[] = { { .n = 0, .correct = "0" }, { .n = 0.0000001, .correct = "0.0000001" }, { .n = 0.00000009, .correct = "0.0000001" }, { .n = 0.000000001, .correct = "0" }, { .n = 99.99999999999999999, .correct = "100" }, { .n = -99.99999999999999999, .correct = "-100" }, { .n = 123.4567899123456789, .correct = "123.4567899" }, { .n = 123.4567890123456789, .correct = "123.456789" }, { .n = 123.4567800123456789, .correct = "123.45678" }, { .n = 123.4567000123456789, .correct = "123.4567" }, { .n = 123.4560000123456789, .correct = "123.456" }, { .n = 123.4500000123456789, .correct = "123.45" }, { .n = 123.4000000123456789, .correct = "123.4" }, { .n = 123.0000000123456789, .correct = "123" }, { .n = 123.0000000923456789, .correct = "123.0000001" }, { .n = 4294967295.123456789, .correct = "4294967295.123457" }, { .n = 8294967295.123456789, .correct = "8294967295.123457" }, { .n = 1.000000000000002e+19, .correct = "1.000000000000001998e+19" }, { .n = 9.2233720368547676e+18, .correct = "9.223372036854767584e+18" }, { .n = 18446744073709541376.0, .correct = "1.84467440737095424e+19" }, { .n = 18446744073709551616.0, .correct = "1.844674407370955136e+19" }, { .n = 12318446744073710600192.0, .correct = "1.231844674407371008e+22" }, { .n = 1677721499999999885312.0, .correct = "1.677721499999999872e+21" }, { .n = -1677721499999999885312.0, .correct = "-1.677721499999999872e+21" }, { .n = -1.677721499999999885312e40, .correct = "-1.677721499999999872e+40" }, { .n = -16777214999999997337621690403742592008192.0, .correct = "-1.677721499999999616e+40" }, { .n = 9999.9999999, .correct = "9999.9999999" }, { .n = -9999.9999999, .correct = "-9999.9999999" }, { .n = 0, .correct = NULL }, }; char netdata[512 + 2], system[512 + 2]; int i, failed = 0; for(i = 0; values[i].correct ; i++) { print_netdata_double(netdata, values[i].n); snprintfz(system, sizeof(system) - 1, "%0.12" NETDATA_DOUBLE_MODIFIER, (NETDATA_DOUBLE)values[i].n); int ok = 1; if(strcmp(netdata, values[i].correct) != 0) { ok = 0; failed++; } NETDATA_DOUBLE parsed_netdata = str2ndd(netdata, NULL); NETDATA_DOUBLE parsed_system = strtondd(netdata, NULL); if(parsed_system != parsed_netdata) failed++; fprintf(stderr, "[%d]. '%s' (system) printed as '%s' (netdata): PRINT %s, " "PARSED %0.12" NETDATA_DOUBLE_MODIFIER " (system), %0.12" NETDATA_DOUBLE_MODIFIER " (netdata): %s\n", i, system, netdata, ok?"OK":"FAILED", parsed_system, parsed_netdata, parsed_netdata == parsed_system ? "OK" : "FAILED"); } if(failed) return 1; return 0; } static int check_rrdcalc_comparisons(void) { RRDCALC_STATUS a, b; // make sure calloc() sets the status to UNINITIALIZED memset(&a, 0, sizeof(RRDCALC_STATUS)); if(a != RRDCALC_STATUS_UNINITIALIZED) { fprintf(stderr, "%s is not zero.\n", rrdcalc_status2string(RRDCALC_STATUS_UNINITIALIZED)); return 1; } a = RRDCALC_STATUS_REMOVED; b = RRDCALC_STATUS_UNDEFINED; if(!(a < b)) { fprintf(stderr, "%s is not less than %s\n", rrdcalc_status2string(a), rrdcalc_status2string(b)); return 1; } a = RRDCALC_STATUS_UNDEFINED; b = RRDCALC_STATUS_UNINITIALIZED; if(!(a < b)) { fprintf(stderr, "%s is not less than %s\n", rrdcalc_status2string(a), rrdcalc_status2string(b)); return 1; } a = RRDCALC_STATUS_UNINITIALIZED; b = RRDCALC_STATUS_CLEAR; if(!(a < b)) { fprintf(stderr, "%s is not less than %s\n", rrdcalc_status2string(a), rrdcalc_status2string(b)); return 1; } a = RRDCALC_STATUS_CLEAR; b = RRDCALC_STATUS_RAISED; if(!(a < b)) { fprintf(stderr, "%s is not less than %s\n", rrdcalc_status2string(a), rrdcalc_status2string(b)); return 1; } a = RRDCALC_STATUS_RAISED; b = RRDCALC_STATUS_WARNING; if(!(a < b)) { fprintf(stderr, "%s is not less than %s\n", rrdcalc_status2string(a), rrdcalc_status2string(b)); return 1; } a = RRDCALC_STATUS_WARNING; b = RRDCALC_STATUS_CRITICAL; if(!(a < b)) { fprintf(stderr, "%s is not less than %s\n", rrdcalc_status2string(a), rrdcalc_status2string(b)); return 1; } fprintf(stderr, "RRDCALC_STATUSes are sortable.\n"); return 0; } int check_storage_number(NETDATA_DOUBLE n, int debug) { char buffer[100]; uint32_t flags = SN_DEFAULT_FLAGS; storage_number s = pack_storage_number(n, flags); NETDATA_DOUBLE d = unpack_storage_number(s); if(!does_storage_number_exist(s)) { fprintf(stderr, "Exists flags missing for number " NETDATA_DOUBLE_FORMAT "!\n", n); return 5; } NETDATA_DOUBLE ddiff = d - n; NETDATA_DOUBLE dcdiff = ddiff * 100.0 / n; if(dcdiff < 0) dcdiff = -dcdiff; size_t len = (size_t)print_netdata_double(buffer, d); NETDATA_DOUBLE p = str2ndd(buffer, NULL); NETDATA_DOUBLE pdiff = n - p; NETDATA_DOUBLE pcdiff = pdiff * 100.0 / n; if(pcdiff < 0) pcdiff = -pcdiff; if(debug) { fprintf(stderr, NETDATA_DOUBLE_FORMAT " original\n" NETDATA_DOUBLE_FORMAT " packed and unpacked, (stored as 0x%08X, diff " NETDATA_DOUBLE_FORMAT ", " NETDATA_DOUBLE_FORMAT "%%)\n" "%s printed after unpacked (%zu bytes)\n" NETDATA_DOUBLE_FORMAT " re-parsed from printed (diff " NETDATA_DOUBLE_FORMAT ", " NETDATA_DOUBLE_FORMAT "%%)\n\n", n, d, s, ddiff, dcdiff, buffer, len, p, pdiff, pcdiff ); if(len != strlen(buffer)) fprintf(stderr, "ERROR: printed number %s is reported to have length %zu but it has %zu\n", buffer, len, strlen(buffer)); if(dcdiff > ACCURACY_LOSS_ACCEPTED_PERCENT) fprintf(stderr, "WARNING: packing number " NETDATA_DOUBLE_FORMAT " has accuracy loss " NETDATA_DOUBLE_FORMAT " %%\n", n, dcdiff); if(pcdiff > ACCURACY_LOSS_ACCEPTED_PERCENT) fprintf(stderr, "WARNING: re-parsing the packed, unpacked and printed number " NETDATA_DOUBLE_FORMAT " has accuracy loss " NETDATA_DOUBLE_FORMAT " %%\n", n, pcdiff); } if(len != strlen(buffer)) return 1; if(dcdiff > ACCURACY_LOSS_ACCEPTED_PERCENT) return 3; if(pcdiff > ACCURACY_LOSS_ACCEPTED_PERCENT) return 4; return 0; } NETDATA_DOUBLE storage_number_min(NETDATA_DOUBLE n) { NETDATA_DOUBLE r = 1, last; do { last = n; n /= 2.0; storage_number t = pack_storage_number(n, SN_DEFAULT_FLAGS); r = unpack_storage_number(t); } while(r != 0.0 && r != last); return last; } void benchmark_storage_number(int loop, int multiplier) { int i, j; NETDATA_DOUBLE n, d; storage_number s; unsigned long long user, system, total, mine, their; NETDATA_DOUBLE storage_number_positive_min = unpack_storage_number(STORAGE_NUMBER_POSITIVE_MIN_RAW); NETDATA_DOUBLE storage_number_positive_max = unpack_storage_number(STORAGE_NUMBER_POSITIVE_MAX_RAW); char buffer[100]; struct rusage now, last; fprintf(stderr, "\n\nBenchmarking %d numbers, please wait...\n\n", loop); // ------------------------------------------------------------------------ fprintf(stderr, "SYSTEM LONG DOUBLE SIZE: %zu bytes\n", sizeof(NETDATA_DOUBLE)); fprintf(stderr, "NETDATA FLOATING POINT SIZE: %zu bytes\n", sizeof(storage_number)); mine = (NETDATA_DOUBLE)sizeof(storage_number) * (NETDATA_DOUBLE)loop; their = (NETDATA_DOUBLE)sizeof(NETDATA_DOUBLE) * (NETDATA_DOUBLE)loop; if(mine > their) { fprintf(stderr, "\nNETDATA NEEDS %0.2" NETDATA_DOUBLE_MODIFIER " TIMES MORE MEMORY. Sorry!\n", (NETDATA_DOUBLE)(mine / their)); } else { fprintf(stderr, "\nNETDATA INTERNAL FLOATING POINT ARITHMETICS NEEDS %0.2" NETDATA_DOUBLE_MODIFIER " TIMES LESS MEMORY.\n", (NETDATA_DOUBLE)(their / mine)); } fprintf(stderr, "\nNETDATA FLOATING POINT\n"); fprintf(stderr, "MIN POSITIVE VALUE " NETDATA_DOUBLE_FORMAT "\n", unpack_storage_number(STORAGE_NUMBER_POSITIVE_MIN_RAW)); fprintf(stderr, "MAX POSITIVE VALUE " NETDATA_DOUBLE_FORMAT "\n", unpack_storage_number(STORAGE_NUMBER_POSITIVE_MAX_RAW)); fprintf(stderr, "MIN NEGATIVE VALUE " NETDATA_DOUBLE_FORMAT "\n", unpack_storage_number(STORAGE_NUMBER_NEGATIVE_MIN_RAW)); fprintf(stderr, "MAX NEGATIVE VALUE " NETDATA_DOUBLE_FORMAT "\n", unpack_storage_number(STORAGE_NUMBER_NEGATIVE_MAX_RAW)); fprintf(stderr, "Maximum accuracy loss accepted: " NETDATA_DOUBLE_FORMAT "%%\n\n\n", (NETDATA_DOUBLE)ACCURACY_LOSS_ACCEPTED_PERCENT); // ------------------------------------------------------------------------ fprintf(stderr, "INTERNAL LONG DOUBLE PRINTING: "); getrusage(RUSAGE_SELF, &last); // do the job for(j = 1; j < 11 ;j++) { n = storage_number_positive_min * j; for(i = 0; i < loop ;i++) { n *= multiplier; if(n > storage_number_positive_max) n = storage_number_positive_min; print_netdata_double(buffer, n); } } getrusage(RUSAGE_SELF, &now); user = now.ru_utime.tv_sec * 1000000ULL + now.ru_utime.tv_usec - last.ru_utime.tv_sec * 1000000ULL + last.ru_utime.tv_usec; system = now.ru_stime.tv_sec * 1000000ULL + now.ru_stime.tv_usec - last.ru_stime.tv_sec * 1000000ULL + last.ru_stime.tv_usec; total = user + system; mine = total; fprintf(stderr, "user %0.5" NETDATA_DOUBLE_MODIFIER ", system %0.5" NETDATA_DOUBLE_MODIFIER ", total %0.5" NETDATA_DOUBLE_MODIFIER "\n", (NETDATA_DOUBLE)(user / 1000000.0), (NETDATA_DOUBLE)(system / 1000000.0), (NETDATA_DOUBLE)(total / 1000000.0)); // ------------------------------------------------------------------------ fprintf(stderr, "SYSTEM LONG DOUBLE PRINTING: "); getrusage(RUSAGE_SELF, &last); // do the job for(j = 1; j < 11 ;j++) { n = storage_number_positive_min * j; for(i = 0; i < loop ;i++) { n *= multiplier; if(n > storage_number_positive_max) n = storage_number_positive_min; snprintfz(buffer, sizeof(buffer) - 1, NETDATA_DOUBLE_FORMAT, n); } } getrusage(RUSAGE_SELF, &now); user = now.ru_utime.tv_sec * 1000000ULL + now.ru_utime.tv_usec - last.ru_utime.tv_sec * 1000000ULL + last.ru_utime.tv_usec; system = now.ru_stime.tv_sec * 1000000ULL + now.ru_stime.tv_usec - last.ru_stime.tv_sec * 1000000ULL + last.ru_stime.tv_usec; total = user + system; their = total; fprintf(stderr, "user %0.5" NETDATA_DOUBLE_MODIFIER ", system %0.5" NETDATA_DOUBLE_MODIFIER ", total %0.5" NETDATA_DOUBLE_MODIFIER "\n", (NETDATA_DOUBLE)(user / 1000000.0), (NETDATA_DOUBLE)(system / 1000000.0), (NETDATA_DOUBLE)(total / 1000000.0)); if(mine > total) { fprintf(stderr, "NETDATA CODE IS SLOWER %0.2" NETDATA_DOUBLE_MODIFIER " %%\n", (NETDATA_DOUBLE)(mine * 100.0 / their - 100.0)); } else { fprintf(stderr, "NETDATA CODE IS F A S T E R %0.2" NETDATA_DOUBLE_MODIFIER " %%\n", (NETDATA_DOUBLE)(their * 100.0 / mine - 100.0)); } // ------------------------------------------------------------------------ fprintf(stderr, "\nINTERNAL LONG DOUBLE PRINTING WITH PACK / UNPACK: "); getrusage(RUSAGE_SELF, &last); // do the job for(j = 1; j < 11 ;j++) { n = storage_number_positive_min * j; for(i = 0; i < loop ;i++) { n *= multiplier; if(n > storage_number_positive_max) n = storage_number_positive_min; s = pack_storage_number(n, SN_DEFAULT_FLAGS); d = unpack_storage_number(s); print_netdata_double(buffer, d); } } getrusage(RUSAGE_SELF, &now); user = now.ru_utime.tv_sec * 1000000ULL + now.ru_utime.tv_usec - last.ru_utime.tv_sec * 1000000ULL + last.ru_utime.tv_usec; system = now.ru_stime.tv_sec * 1000000ULL + now.ru_stime.tv_usec - last.ru_stime.tv_sec * 1000000ULL + last.ru_stime.tv_usec; total = user + system; mine = total; fprintf(stderr, "user %0.5" NETDATA_DOUBLE_MODIFIER ", system %0.5" NETDATA_DOUBLE_MODIFIER ", total %0.5" NETDATA_DOUBLE_MODIFIER "\n", (NETDATA_DOUBLE)(user / 1000000.0), (NETDATA_DOUBLE)(system / 1000000.0), (NETDATA_DOUBLE)(total / 1000000.0)); if(mine > their) { fprintf(stderr, "WITH PACKING UNPACKING NETDATA CODE IS SLOWER %0.2" NETDATA_DOUBLE_MODIFIER " %%\n", (NETDATA_DOUBLE)(mine * 100.0 / their - 100.0)); } else { fprintf(stderr, "EVEN WITH PACKING AND UNPACKING, NETDATA CODE IS F A S T E R %0.2" NETDATA_DOUBLE_MODIFIER " %%\n", (NETDATA_DOUBLE)(their * 100.0 / mine - 100.0)); } // ------------------------------------------------------------------------ } static int check_storage_number_exists() { uint32_t flags = SN_DEFAULT_FLAGS; NETDATA_DOUBLE n = 0.0; storage_number s = pack_storage_number(n, flags); NETDATA_DOUBLE d = unpack_storage_number(s); if(n != d) { fprintf(stderr, "Wrong number returned. Expected " NETDATA_DOUBLE_FORMAT ", returned " NETDATA_DOUBLE_FORMAT "!\n", n, d); return 1; } return 0; } int unit_test_storage() { if(check_storage_number_exists()) return 0; NETDATA_DOUBLE storage_number_positive_min = unpack_storage_number(STORAGE_NUMBER_POSITIVE_MIN_RAW); NETDATA_DOUBLE storage_number_negative_max = unpack_storage_number(STORAGE_NUMBER_NEGATIVE_MAX_RAW); NETDATA_DOUBLE c, a = 0; int i, j, g, r = 0; for(g = -1; g <= 1 ; g++) { a = 0; if(!g) continue; for(j = 0; j < 9 ;j++) { a += 0.0000001; c = a * g; for(i = 0; i < 21 ;i++, c *= 10) { if(c > 0 && c < storage_number_positive_min) continue; if(c < 0 && c > storage_number_negative_max) continue; if(check_storage_number(c, 1)) return 1; } } } // if(check_storage_number(858993459.1234567, 1)) return 1; benchmark_storage_number(1000000, 2); return r; } int unit_test_str2ld() { is_system_ieee754_double(); char *values[] = { "1.2345678", "-35.6", "0.00123", "23842384234234.2", ".1", "1.2e-10", "18446744073709551616.0", "18446744073709551616123456789123456789123456789123456789123456789123456789123456789.0", "1.8446744073709551616123456789123456789123456789123456789123456789123456789123456789e+300", "9.", "9.e2", "1.2e", "1.2e+", "1.2e-", "1.2e0", "1.2e-0", "1.2e+0", "-1.2e+1", "-1.2e-1", "1.2e1", "1.2e400", "hello", "1wrong", "nan", "inf", NULL }; int i; for(i = 0; values[i] ; i++) { char *e_mine = "hello", *e_sys = "world"; NETDATA_DOUBLE mine = str2ndd(values[i], &e_mine); NETDATA_DOUBLE sys = strtondd(values[i], &e_sys); if(isnan(mine)) { if(!isnan(sys)) { fprintf(stderr, "Value '%s' is parsed as %" NETDATA_DOUBLE_MODIFIER ", but system believes it is %" NETDATA_DOUBLE_MODIFIER ".\n", values[i], mine, sys); return -1; } } else if(isinf(mine)) { if(!isinf(sys)) { fprintf(stderr, "Value '%s' is parsed as %" NETDATA_DOUBLE_MODIFIER ", but system believes it is %" NETDATA_DOUBLE_MODIFIER ".\n", values[i], mine, sys); return -1; } } else if(mine != sys && ABS(mine-sys) > 0.000001) { fprintf(stderr, "Value '%s' is parsed as %" NETDATA_DOUBLE_MODIFIER ", but system believes it is %" NETDATA_DOUBLE_MODIFIER ", delta %" NETDATA_DOUBLE_MODIFIER ".\n", values[i], mine, sys, sys-mine); return -1; } if(e_mine != e_sys) { fprintf(stderr, "Value '%s' is parsed correctly, but endptr is not right (netdata returned %d, but system returned %d)\n", values[i], (int)(e_mine - values[i]), (int)(e_sys - values[i])); return -1; } fprintf(stderr, "str2ndd() parsed value '%s' exactly the same way with strtold(), returned %" NETDATA_DOUBLE_MODIFIER " vs %" NETDATA_DOUBLE_MODIFIER "\n", values[i], mine, sys); } return 0; } int unit_test_buffer() { BUFFER *wb = buffer_create(1, NULL); char string[2048 + 1]; char final[9000 + 1]; int i; for(i = 0; i < 2048; i++) string[i] = (char)((i % 24) + 'a'); string[2048] = '\0'; const char *fmt = "string1: %s\nstring2: %s\nstring3: %s\nstring4: %s"; buffer_sprintf(wb, fmt, string, string, string, string); snprintfz(final, sizeof(final) - 1, fmt, string, string, string, string); const char *s = buffer_tostring(wb); if(buffer_strlen(wb) != strlen(final) || strcmp(s, final) != 0) { fprintf(stderr, "\nbuffer_sprintf() is faulty.\n"); fprintf(stderr, "\nstring : %s (length %zu)\n", string, strlen(string)); fprintf(stderr, "\nbuffer : %s (length %zu)\n", s, buffer_strlen(wb)); fprintf(stderr, "\nexpected: %s (length %zu)\n", final, strlen(final)); buffer_free(wb); return -1; } fprintf(stderr, "buffer_sprintf() works as expected.\n"); buffer_free(wb); return 0; } int unit_test_static_threads() { struct netdata_static_thread *static_threads = static_threads_get(); /* * make sure enough static threads have been registered */ if (!static_threads) { fprintf(stderr, "empty static_threads array\n"); return 1; } int n; for (n = 0; static_threads[n].start_routine != NULL; n++) {} if (n < 2) { fprintf(stderr, "only %d static threads registered", n); freez(static_threads); return 1; } /* * verify that each thread's start routine is unique. */ for (int i = 0; i != n - 1; i++) { for (int j = i + 1; j != n; j++) { if (static_threads[i].start_routine != static_threads[j].start_routine) continue; fprintf(stderr, "Found duplicate threads with name: %s\n", static_threads[i].name); freez(static_threads); return 1; } } freez(static_threads); return 0; } // -------------------------------------------------------------------------------------------------------------------- struct feed_values { unsigned long long microseconds; collected_number value; }; struct test { char name[100]; char description[1024]; int update_every; unsigned long long multiplier; unsigned long long divisor; RRD_ALGORITHM algorithm; unsigned long feed_entries; unsigned long result_entries; struct feed_values *feed; NETDATA_DOUBLE *results; collected_number *feed2; NETDATA_DOUBLE *results2; }; // -------------------------------------------------------------------------------------------------------------------- // test1 // test absolute values stored struct feed_values test1_feed[] = { { 0, 10 }, { 1000000, 20 }, { 1000000, 30 }, { 1000000, 40 }, { 1000000, 50 }, { 1000000, 60 }, { 1000000, 70 }, { 1000000, 80 }, { 1000000, 90 }, { 1000000, 100 }, }; NETDATA_DOUBLE test1_results[] = { 20, 30, 40, 50, 60, 70, 80, 90, 100 }; struct test test1 = { "test1", // name "test absolute values stored at exactly second boundaries", 1, // update_every 1, // multiplier 1, // divisor RRD_ALGORITHM_ABSOLUTE, // algorithm 10, // feed entries 9, // result entries test1_feed, // feed test1_results, // results NULL, // feed2 NULL // results2 }; // -------------------------------------------------------------------------------------------------------------------- // test2 // test absolute values stored in the middle of second boundaries struct feed_values test2_feed[] = { { 500000, 10 }, { 1000000, 20 }, { 1000000, 30 }, { 1000000, 40 }, { 1000000, 50 }, { 1000000, 60 }, { 1000000, 70 }, { 1000000, 80 }, { 1000000, 90 }, { 1000000, 100 }, }; NETDATA_DOUBLE test2_results[] = { 20, 30, 40, 50, 60, 70, 80, 90, 100 }; struct test test2 = { "test2", // name "test absolute values stored in the middle of second boundaries", 1, // update_every 1, // multiplier 1, // divisor RRD_ALGORITHM_ABSOLUTE, // algorithm 10, // feed entries 9, // result entries test2_feed, // feed test2_results, // results NULL, // feed2 NULL // results2 }; // -------------------------------------------------------------------------------------------------------------------- // test3 struct feed_values test3_feed[] = { { 0, 10 }, { 1000000, 20 }, { 1000000, 30 }, { 1000000, 40 }, { 1000000, 50 }, { 1000000, 60 }, { 1000000, 70 }, { 1000000, 80 }, { 1000000, 90 }, { 1000000, 100 }, }; NETDATA_DOUBLE test3_results[] = { 10, 10, 10, 10, 10, 10, 10, 10, 10 }; struct test test3 = { "test3", // name "test incremental values stored at exactly second boundaries", 1, // update_every 1, // multiplier 1, // divisor RRD_ALGORITHM_INCREMENTAL, // algorithm 10, // feed entries 9, // result entries test3_feed, // feed test3_results, // results NULL, // feed2 NULL // results2 }; // -------------------------------------------------------------------------------------------------------------------- // test4 struct feed_values test4_feed[] = { { 500000, 10 }, { 1000000, 20 }, { 1000000, 30 }, { 1000000, 40 }, { 1000000, 50 }, { 1000000, 60 }, { 1000000, 70 }, { 1000000, 80 }, { 1000000, 90 }, { 1000000, 100 }, }; NETDATA_DOUBLE test4_results[] = { 10, 10, 10, 10, 10, 10, 10, 10, 10 }; struct test test4 = { "test4", // name "test incremental values stored in the middle of second boundaries", 1, // update_every 1, // multiplier 1, // divisor RRD_ALGORITHM_INCREMENTAL, // algorithm 10, // feed entries 9, // result entries test4_feed, // feed test4_results, // results NULL, // feed2 NULL // results2 }; // -------------------------------------------------------------------------------------------------------------------- // test5 - 32 bit overflows struct feed_values test5_feed[] = { { 0, 0x00000000FFFFFFFFULL / 15 * 0 }, { 1000000, 0x00000000FFFFFFFFULL / 15 * 7 }, { 1000000, 0x00000000FFFFFFFFULL / 15 * 14 }, { 1000000, 0x00000000FFFFFFFFULL / 15 * 0 }, { 1000000, 0x00000000FFFFFFFFULL / 15 * 7 }, { 1000000, 0x00000000FFFFFFFFULL / 15 * 14 }, { 1000000, 0x00000000FFFFFFFFULL / 15 * 0 }, { 1000000, 0x00000000FFFFFFFFULL / 15 * 7 }, { 1000000, 0x00000000FFFFFFFFULL / 15 * 14 }, { 1000000, 0x00000000FFFFFFFFULL / 15 * 0 }, }; NETDATA_DOUBLE test5_results[] = { 0x00000000FFFFFFFFULL / 15 * 7, 0x00000000FFFFFFFFULL / 15 * 7, 0x00000000FFFFFFFFULL / 15, 0x00000000FFFFFFFFULL / 15 * 7, 0x00000000FFFFFFFFULL / 15 * 7, 0x00000000FFFFFFFFULL / 15, 0x00000000FFFFFFFFULL / 15 * 7, 0x00000000FFFFFFFFULL / 15 * 7, 0x00000000FFFFFFFFULL / 15, }; struct test test5 = { "test5", // name "test 32-bit incremental values overflow", 1, // update_every 1, // multiplier 1, // divisor RRD_ALGORITHM_INCREMENTAL, // algorithm 10, // feed entries 9, // result entries test5_feed, // feed test5_results, // results NULL, // feed2 NULL // results2 }; // -------------------------------------------------------------------------------------------------------------------- // test5b - 64 bit overflows struct feed_values test5b_feed[] = { { 0, 0xFFFFFFFFFFFFFFFFULL / 15 * 0 }, { 1000000, 0xFFFFFFFFFFFFFFFFULL / 15 * 7 }, { 1000000, 0xFFFFFFFFFFFFFFFFULL / 15 * 14 }, { 1000000, 0xFFFFFFFFFFFFFFFFULL / 15 * 0 }, { 1000000, 0xFFFFFFFFFFFFFFFFULL / 15 * 7 }, { 1000000, 0xFFFFFFFFFFFFFFFFULL / 15 * 14 }, { 1000000, 0xFFFFFFFFFFFFFFFFULL / 15 * 0 }, { 1000000, 0xFFFFFFFFFFFFFFFFULL / 15 * 7 }, { 1000000, 0xFFFFFFFFFFFFFFFFULL / 15 * 14 }, { 1000000, 0xFFFFFFFFFFFFFFFFULL / 15 * 0 }, }; NETDATA_DOUBLE test5b_results[] = { 0xFFFFFFFFFFFFFFFFULL / 15 * 7, 0xFFFFFFFFFFFFFFFFULL / 15 * 7, 0xFFFFFFFFFFFFFFFFULL / 15, 0xFFFFFFFFFFFFFFFFULL / 15 * 7, 0xFFFFFFFFFFFFFFFFULL / 15 * 7, 0xFFFFFFFFFFFFFFFFULL / 15, 0xFFFFFFFFFFFFFFFFULL / 15 * 7, 0xFFFFFFFFFFFFFFFFULL / 15 * 7, 0xFFFFFFFFFFFFFFFFULL / 15, }; struct test test5b = { "test5b", // name "test 64-bit incremental values overflow", 1, // update_every 1, // multiplier 1, // divisor RRD_ALGORITHM_INCREMENTAL, // algorithm 10, // feed entries 9, // result entries test5b_feed, // feed test5b_results, // results NULL, // feed2 NULL // results2 }; // -------------------------------------------------------------------------------------------------------------------- // test6 struct feed_values test6_feed[] = { { 250000, 1000 }, { 250000, 2000 }, { 250000, 3000 }, { 250000, 4000 }, { 250000, 5000 }, { 250000, 6000 }, { 250000, 7000 }, { 250000, 8000 }, { 250000, 9000 }, { 250000, 10000 }, { 250000, 11000 }, { 250000, 12000 }, { 250000, 13000 }, { 250000, 14000 }, { 250000, 15000 }, { 250000, 16000 }, }; NETDATA_DOUBLE test6_results[] = { 4000, 4000, 4000, 4000 }; struct test test6 = { "test6", // name "test incremental values updated within the same second", 1, // update_every 1, // multiplier 1, // divisor RRD_ALGORITHM_INCREMENTAL, // algorithm 16, // feed entries 4, // result entries test6_feed, // feed test6_results, // results NULL, // feed2 NULL // results2 }; // -------------------------------------------------------------------------------------------------------------------- // test7 struct feed_values test7_feed[] = { { 500000, 1000 }, { 2000000, 2000 }, { 2000000, 3000 }, { 2000000, 4000 }, { 2000000, 5000 }, { 2000000, 6000 }, { 2000000, 7000 }, { 2000000, 8000 }, { 2000000, 9000 }, { 2000000, 10000 }, }; NETDATA_DOUBLE test7_results[] = { 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500 }; struct test test7 = { "test7", // name "test incremental values updated in long durations", 1, // update_every 1, // multiplier 1, // divisor RRD_ALGORITHM_INCREMENTAL, // algorithm 10, // feed entries 18, // result entries test7_feed, // feed test7_results, // results NULL, // feed2 NULL // results2 }; // -------------------------------------------------------------------------------------------------------------------- // test8 struct feed_values test8_feed[] = { { 500000, 1000 }, { 2000000, 2000 }, { 2000000, 3000 }, { 2000000, 4000 }, { 2000000, 5000 }, { 2000000, 6000 }, }; NETDATA_DOUBLE test8_results[] = { 1250, 2000, 2250, 3000, 3250, 4000, 4250, 5000, 5250, 6000 }; struct test test8 = { "test8", // name "test absolute values updated in long durations", 1, // update_every 1, // multiplier 1, // divisor RRD_ALGORITHM_ABSOLUTE, // algorithm 6, // feed entries 10, // result entries test8_feed, // feed test8_results, // results NULL, // feed2 NULL // results2 }; // -------------------------------------------------------------------------------------------------------------------- // test9 struct feed_values test9_feed[] = { { 250000, 1000 }, { 250000, 2000 }, { 250000, 3000 }, { 250000, 4000 }, { 250000, 5000 }, { 250000, 6000 }, { 250000, 7000 }, { 250000, 8000 }, { 250000, 9000 }, { 250000, 10000 }, { 250000, 11000 }, { 250000, 12000 }, { 250000, 13000 }, { 250000, 14000 }, { 250000, 15000 }, { 250000, 16000 }, }; NETDATA_DOUBLE test9_results[] = { 4000, 8000, 12000, 16000 }; struct test test9 = { "test9", // name "test absolute values updated within the same second", 1, // update_every 1, // multiplier 1, // divisor RRD_ALGORITHM_ABSOLUTE, // algorithm 16, // feed entries 4, // result entries test9_feed, // feed test9_results, // results NULL, // feed2 NULL // results2 }; // -------------------------------------------------------------------------------------------------------------------- // test10 struct feed_values test10_feed[] = { { 500000, 1000 }, { 600000, 1000 + 600 }, { 200000, 1600 + 200 }, { 1000000, 1800 + 1000 }, { 200000, 2800 + 200 }, { 2000000, 3000 + 2000 }, { 600000, 5000 + 600 }, { 400000, 5600 + 400 }, { 900000, 6000 + 900 }, { 1000000, 6900 + 1000 }, }; NETDATA_DOUBLE test10_results[] = { 1000, 1000, 1000, 1000, 1000, 1000, 1000 }; struct test test10 = { "test10", // name "test incremental values updated in short and long durations", 1, // update_every 1, // multiplier 1, // divisor RRD_ALGORITHM_INCREMENTAL, // algorithm 10, // feed entries 7, // result entries test10_feed, // feed test10_results, // results NULL, // feed2 NULL // results2 }; // -------------------------------------------------------------------------------------------------------------------- // test11 struct feed_values test11_feed[] = { { 0, 10 }, { 1000000, 20 }, { 1000000, 30 }, { 1000000, 40 }, { 1000000, 50 }, { 1000000, 60 }, { 1000000, 70 }, { 1000000, 80 }, { 1000000, 90 }, { 1000000, 100 }, }; collected_number test11_feed2[] = { 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 }; NETDATA_DOUBLE test11_results[] = { 50, 50, 50, 50, 50, 50, 50, 50, 50 }; NETDATA_DOUBLE test11_results2[] = { 50, 50, 50, 50, 50, 50, 50, 50, 50 }; struct test test11 = { "test11", // name "test percentage-of-incremental-row with equal values", 1, // update_every 1, // multiplier 1, // divisor RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL, // algorithm 10, // feed entries 9, // result entries test11_feed, // feed test11_results, // results test11_feed2, // feed2 test11_results2 // results2 }; // -------------------------------------------------------------------------------------------------------------------- // test12 struct feed_values test12_feed[] = { { 0, 10 }, { 1000000, 20 }, { 1000000, 30 }, { 1000000, 40 }, { 1000000, 50 }, { 1000000, 60 }, { 1000000, 70 }, { 1000000, 80 }, { 1000000, 90 }, { 1000000, 100 }, }; collected_number test12_feed2[] = { 10*3, 20*3, 30*3, 40*3, 50*3, 60*3, 70*3, 80*3, 90*3, 100*3 }; NETDATA_DOUBLE test12_results[] = { 25, 25, 25, 25, 25, 25, 25, 25, 25 }; NETDATA_DOUBLE test12_results2[] = { 75, 75, 75, 75, 75, 75, 75, 75, 75 }; struct test test12 = { "test12", // name "test percentage-of-incremental-row with equal values", 1, // update_every 1, // multiplier 1, // divisor RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL, // algorithm 10, // feed entries 9, // result entries test12_feed, // feed test12_results, // results test12_feed2, // feed2 test12_results2 // results2 }; // -------------------------------------------------------------------------------------------------------------------- // test13 struct feed_values test13_feed[] = { { 500000, 1000 }, { 600000, 1000 + 600 }, { 200000, 1600 + 200 }, { 1000000, 1800 + 1000 }, { 200000, 2800 + 200 }, { 2000000, 3000 + 2000 }, { 600000, 5000 + 600 }, { 400000, 5600 + 400 }, { 900000, 6000 + 900 }, { 1000000, 6900 + 1000 }, }; NETDATA_DOUBLE test13_results[] = { 83.3333300, 100, 100, 100, 100, 100, 100 }; struct test test13 = { "test13", // name "test incremental values updated in short and long durations", 1, // update_every 1, // multiplier 1, // divisor RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL, // algorithm 10, // feed entries 7, // result entries test13_feed, // feed test13_results, // results NULL, // feed2 NULL // results2 }; // -------------------------------------------------------------------------------------------------------------------- // test14 struct feed_values test14_feed[] = { { 0, 0x015397dc42151c41ULL }, { 13573000, 0x015397e612e3ff5dULL }, { 29969000, 0x015397f905ecdaa8ULL }, { 29958000, 0x0153980c2a6cb5e4ULL }, { 30054000, 0x0153981f4032fb83ULL }, { 34952000, 0x015398355efadaccULL }, { 25046000, 0x01539845ba4b09f8ULL }, { 29947000, 0x0153985948bf381dULL }, { 30054000, 0x0153986c5b9c27e2ULL }, { 29942000, 0x0153987f888982d0ULL }, }; NETDATA_DOUBLE test14_results[] = { 23.1383300, 21.8515600, 21.8804600, 21.7788000, 22.0112200, 22.4386100, 22.0906100, 21.9150800 }; struct test test14 = { "test14", // name "issue #981 with real data", 30, // update_every 8, // multiplier 1000000000, // divisor RRD_ALGORITHM_INCREMENTAL, // algorithm 10, // feed entries 8, // result entries test14_feed, // feed test14_results, // results NULL, // feed2 NULL // results2 }; struct feed_values test14b_feed[] = { { 0, 0 }, { 13573000, 13573000 }, { 29969000, 13573000 + 29969000 }, { 29958000, 13573000 + 29969000 + 29958000 }, { 30054000, 13573000 + 29969000 + 29958000 + 30054000 }, { 34952000, 13573000 + 29969000 + 29958000 + 30054000 + 34952000 }, { 25046000, 13573000 + 29969000 + 29958000 + 30054000 + 34952000 + 25046000 }, { 29947000, 13573000 + 29969000 + 29958000 + 30054000 + 34952000 + 25046000 + 29947000 }, { 30054000, 13573000 + 29969000 + 29958000 + 30054000 + 34952000 + 25046000 + 29947000 + 30054000 }, { 29942000, 13573000 + 29969000 + 29958000 + 30054000 + 34952000 + 25046000 + 29947000 + 30054000 + 29942000 }, }; NETDATA_DOUBLE test14b_results[] = { 1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000 }; struct test test14b = { "test14b", // name "issue #981 with dummy data", 30, // update_every 1, // multiplier 1, // divisor RRD_ALGORITHM_INCREMENTAL, // algorithm 10, // feed entries 8, // result entries test14b_feed, // feed test14b_results, // results NULL, // feed2 NULL // results2 }; struct feed_values test14c_feed[] = { { 29000000, 29000000 }, { 1000000, 29000000 + 1000000 }, { 30000000, 29000000 + 1000000 + 30000000 }, { 30000000, 29000000 + 1000000 + 30000000 + 30000000 }, { 30000000, 29000000 + 1000000 + 30000000 + 30000000 + 30000000 }, { 30000000, 29000000 + 1000000 + 30000000 + 30000000 + 30000000 + 30000000 }, { 30000000, 29000000 + 1000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 }, { 30000000, 29000000 + 1000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 }, { 30000000, 29000000 + 1000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 }, { 30000000, 29000000 + 1000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 }, }; NETDATA_DOUBLE test14c_results[] = { 1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000 }; struct test test14c = { "test14c", // name "issue #981 with dummy data, checking for late start", 30, // update_every 1, // multiplier 1, // divisor RRD_ALGORITHM_INCREMENTAL, // algorithm 10, // feed entries 9, // result entries test14c_feed, // feed test14c_results, // results NULL, // feed2 NULL // results2 }; // -------------------------------------------------------------------------------------------------------------------- // test15 struct feed_values test15_feed[] = { { 0, 1068066388 }, { 1008752, 1068822698 }, { 993809, 1069573072 }, { 995911, 1070324135 }, { 1014562, 1071078166 }, { 994684, 1071831349 }, { 993128, 1072235739 }, { 1010332, 1072958871 }, { 1003394, 1073707019 }, { 995201, 1074460255 }, }; collected_number test15_feed2[] = { 178825286, 178825286, 178825286, 178825286, 178825498, 178825498, 179165652, 179202964, 179203282, 179204130 }; NETDATA_DOUBLE test15_results[] = { 5857.4080000, 5898.4540000, 5891.6590000, 5806.3160000, 5914.2640000, 3202.2630000, 5589.6560000, 5822.5260000, 5911.7520000 }; NETDATA_DOUBLE test15_results2[] = { 0.0000000, 0.0000000, 0.0024944, 1.6324779, 0.0212777, 2655.1890000, 290.5387000, 5.6733610, 6.5960220 }; struct test test15 = { "test15", // name "test incremental with 2 dimensions", 1, // update_every 8, // multiplier 1024, // divisor RRD_ALGORITHM_INCREMENTAL, // algorithm 10, // feed entries 9, // result entries test15_feed, // feed test15_results, // results test15_feed2, // feed2 test15_results2 // results2 }; // -------------------------------------------------------------------------------------------------------------------- int run_test(struct test *test) { fprintf(stderr, "\nRunning test '%s':\n%s\n", test->name, test->description); default_rrd_memory_mode = RRD_MEMORY_MODE_ALLOC; default_rrd_update_every = test->update_every; char name[101]; snprintfz(name, sizeof(name) - 1, "unittest-%s", test->name); // create the chart RRDSET *st = rrdset_create_localhost("netdata", name, name, "netdata", NULL, "Unit Testing", "a value", "unittest", NULL, 1 , test->update_every, RRDSET_TYPE_LINE); RRDDIM *rd = rrddim_add(st, "dim1", NULL, test->multiplier, test->divisor, test->algorithm); RRDDIM *rd2 = NULL; if(test->feed2) rd2 = rrddim_add(st, "dim2", NULL, test->multiplier, test->divisor, test->algorithm); rrdset_flag_set(st, RRDSET_FLAG_DEBUG); // feed it with the test data time_t time_now = 0, time_start = now_realtime_sec(); unsigned long c; collected_number last = 0; for(c = 0; c < test->feed_entries; c++) { if(debug_flags) fprintf(stderr, "\n\n"); if(c) { time_now += test->feed[c].microseconds; fprintf(stderr, " > %s: feeding position %lu, after %0.3f seconds (%0.3f seconds from start), delta " NETDATA_DOUBLE_FORMAT ", rate " NETDATA_DOUBLE_FORMAT "\n", test->name, c+1, (float)test->feed[c].microseconds / 1000000.0, (float)time_now / 1000000.0, ((NETDATA_DOUBLE)test->feed[c].value - (NETDATA_DOUBLE)last) * (NETDATA_DOUBLE)test->multiplier / (NETDATA_DOUBLE)test->divisor, (((NETDATA_DOUBLE)test->feed[c].value - (NETDATA_DOUBLE)last) * (NETDATA_DOUBLE)test->multiplier / (NETDATA_DOUBLE)test->divisor) / (NETDATA_DOUBLE)test->feed[c].microseconds * (NETDATA_DOUBLE)1000000); // rrdset_next_usec_unfiltered(st, test->feed[c].microseconds); st->usec_since_last_update = test->feed[c].microseconds; } else { fprintf(stderr, " > %s: feeding position %lu\n", test->name, c+1); } fprintf(stderr, " >> %s with value " COLLECTED_NUMBER_FORMAT "\n", rrddim_name(rd), test->feed[c].value); rrddim_set(st, "dim1", test->feed[c].value); last = test->feed[c].value; if(rd2) { fprintf(stderr, " >> %s with value " COLLECTED_NUMBER_FORMAT "\n", rrddim_name(rd2), test->feed2[c]); rrddim_set(st, "dim2", test->feed2[c]); } struct timeval now; now_realtime_timeval(&now); rrdset_timed_done(st, now, false); // align the first entry to second boundary if(!c) { fprintf(stderr, " > %s: fixing first collection time to be %llu microseconds to second boundary\n", test->name, test->feed[c].microseconds); rd->collector.last_collected_time.tv_usec = st->last_collected_time.tv_usec = st->last_updated.tv_usec = test->feed[c].microseconds; // time_start = st->last_collected_time.tv_sec; } } // check the result int errors = 0; if(st->counter != test->result_entries) { fprintf(stderr, " %s stored %u entries, but we were expecting %lu, ### E R R O R ###\n", test->name, st->counter, test->result_entries); errors++; } unsigned long max = (st->counter < test->result_entries)?st->counter:test->result_entries; for(c = 0 ; c < max ; c++) { NETDATA_DOUBLE v = unpack_storage_number(rd->db.data[c]); NETDATA_DOUBLE n = unpack_storage_number(pack_storage_number(test->results[c], SN_DEFAULT_FLAGS)); int same = (roundndd(v * 10000000.0) == roundndd(n * 10000000.0))?1:0; fprintf(stderr, " %s/%s: checking position %lu (at %"PRId64" secs), expecting value " NETDATA_DOUBLE_FORMAT ", found " NETDATA_DOUBLE_FORMAT ", %s\n", test->name, rrddim_name(rd), c+1, (int64_t)((rrdset_first_entry_s(st) + c * st->update_every) - time_start), n, v, (same)?"OK":"### E R R O R ###"); if(!same) errors++; if(rd2) { v = unpack_storage_number(rd2->db.data[c]); n = test->results2[c]; same = (roundndd(v * 10000000.0) == roundndd(n * 10000000.0))?1:0; fprintf(stderr, " %s/%s: checking position %lu (at %"PRId64" secs), expecting value " NETDATA_DOUBLE_FORMAT ", found " NETDATA_DOUBLE_FORMAT ", %s\n", test->name, rrddim_name(rd2), c+1, (int64_t)((rrdset_first_entry_s(st) + c * st->update_every) - time_start), n, v, (same)?"OK":"### E R R O R ###"); if(!same) errors++; } } return errors; } static int test_variable_renames(void) { fprintf(stderr, "%s() running...\n", __FUNCTION__ ); fprintf(stderr, "Creating chart\n"); RRDSET *st = rrdset_create_localhost("chart", "ID", NULL, "family", "context", "Unit Testing", "a value", "unittest", NULL, 1, 1, RRDSET_TYPE_LINE); fprintf(stderr, "Created chart with id '%s', name '%s'\n", rrdset_id(st), rrdset_name(st)); fprintf(stderr, "Creating dimension DIM1\n"); RRDDIM *rd1 = rrddim_add(st, "DIM1", NULL, 1, 1, RRD_ALGORITHM_INCREMENTAL); fprintf(stderr, "Created dimension with id '%s', name '%s'\n", rrddim_id(rd1), rrddim_name(rd1)); fprintf(stderr, "Creating dimension DIM2\n"); RRDDIM *rd2 = rrddim_add(st, "DIM2", NULL, 1, 1, RRD_ALGORITHM_INCREMENTAL); fprintf(stderr, "Created dimension with id '%s', name '%s'\n", rrddim_id(rd2), rrddim_name(rd2)); fprintf(stderr, "Renaming chart to CHARTNAME1\n"); rrdset_reset_name(st, "CHARTNAME1"); fprintf(stderr, "Renamed chart with id '%s' to name '%s'\n", rrdset_id(st), rrdset_name(st)); fprintf(stderr, "Renaming chart to CHARTNAME2\n"); rrdset_reset_name(st, "CHARTNAME2"); fprintf(stderr, "Renamed chart with id '%s' to name '%s'\n", rrdset_id(st), rrdset_name(st)); fprintf(stderr, "Renaming dimension DIM1 to DIM1NAME1\n"); rrddim_reset_name(st, rd1, "DIM1NAME1"); fprintf(stderr, "Renamed dimension with id '%s' to name '%s'\n", rrddim_id(rd1), rrddim_name(rd1)); fprintf(stderr, "Renaming dimension DIM1 to DIM1NAME2\n"); rrddim_reset_name(st, rd1, "DIM1NAME2"); fprintf(stderr, "Renamed dimension with id '%s' to name '%s'\n", rrddim_id(rd1), rrddim_name(rd1)); fprintf(stderr, "Renaming dimension DIM2 to DIM2NAME1\n"); rrddim_reset_name(st, rd2, "DIM2NAME1"); fprintf(stderr, "Renamed dimension with id '%s' to name '%s'\n", rrddim_id(rd2), rrddim_name(rd2)); fprintf(stderr, "Renaming dimension DIM2 to DIM2NAME2\n"); rrddim_reset_name(st, rd2, "DIM2NAME2"); fprintf(stderr, "Renamed dimension with id '%s' to name '%s'\n", rrddim_id(rd2), rrddim_name(rd2)); BUFFER *buf = buffer_create(1, NULL); health_api_v1_chart_variables2json(st, buf); fprintf(stderr, "%s", buffer_tostring(buf)); buffer_free(buf); return 1; } int check_strdupz_path_subpath() { struct strdupz_path_subpath_checks { const char *path; const char *subpath; const char *result; } checks[] = { { "", "", "." }, { "/", "", "/" }, { "/etc/netdata", "", "/etc/netdata" }, { "/etc/netdata///", "", "/etc/netdata" }, { "/etc/netdata///", "health.d", "/etc/netdata/health.d" }, { "/etc/netdata///", "///health.d", "/etc/netdata/health.d" }, { "/etc/netdata", "///health.d", "/etc/netdata/health.d" }, { "", "///health.d", "./health.d" }, { "/", "///health.d", "/health.d" }, // terminator { NULL, NULL, NULL } }; size_t i; for(i = 0; checks[i].result ; i++) { char *s = strdupz_path_subpath(checks[i].path, checks[i].subpath); fprintf(stderr, "strdupz_path_subpath(\"%s\", \"%s\") = \"%s\": ", checks[i].path, checks[i].subpath, s); if(!s || strcmp(s, checks[i].result) != 0) { freez(s); fprintf(stderr, "FAILED\n"); return 1; } else { freez(s); fprintf(stderr, "OK\n"); } } return 0; } int run_all_mockup_tests(void) { fprintf(stderr, "%s() running...\n", __FUNCTION__ ); if(check_strdupz_path_subpath()) return 1; if(check_number_printing()) return 1; if(check_rrdcalc_comparisons()) return 1; if(!test_variable_renames()) return 1; if(run_test(&test1)) return 1; if(run_test(&test2)) return 1; if(run_test(&test3)) return 1; if(run_test(&test4)) return 1; if(run_test(&test5)) return 1; if(run_test(&test5b)) return 1; if(run_test(&test6)) return 1; if(run_test(&test7)) return 1; if(run_test(&test8)) return 1; if(run_test(&test9)) return 1; if(run_test(&test10)) return 1; if(run_test(&test11)) return 1; if(run_test(&test12)) return 1; if(run_test(&test13)) return 1; if(run_test(&test14)) return 1; if(run_test(&test14b)) return 1; if(run_test(&test14c)) return 1; if(run_test(&test15)) return 1; return 0; } int unit_test(long delay, long shift) { fprintf(stderr, "%s() running...\n", __FUNCTION__ ); static int repeat = 0; repeat++; char name[101]; snprintfz(name, sizeof(name) - 1, "unittest-%d-%ld-%ld", repeat, delay, shift); //debug_flags = 0xffffffff; default_rrd_memory_mode = RRD_MEMORY_MODE_ALLOC; default_rrd_update_every = 1; int do_abs = 1; int do_inc = 1; int do_abst = 0; int do_absi = 0; RRDSET *st = rrdset_create_localhost("netdata", name, name, "netdata", NULL, "Unit Testing", "a value", "unittest", NULL, 1, 1 , RRDSET_TYPE_LINE); rrdset_flag_set(st, RRDSET_FLAG_DEBUG); RRDDIM *rdabs = NULL; RRDDIM *rdinc = NULL; RRDDIM *rdabst = NULL; RRDDIM *rdabsi = NULL; if(do_abs) rdabs = rrddim_add(st, "absolute", "absolute", 1, 1, RRD_ALGORITHM_ABSOLUTE); if(do_inc) rdinc = rrddim_add(st, "incremental", "incremental", 1, 1, RRD_ALGORITHM_INCREMENTAL); if(do_abst) rdabst = rrddim_add(st, "percentage-of-absolute-row", "percentage-of-absolute-row", 1, 1, RRD_ALGORITHM_PCENT_OVER_ROW_TOTAL); if(do_absi) rdabsi = rrddim_add(st, "percentage-of-incremental-row", "percentage-of-incremental-row", 1, 1, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL); long increment = 1000; collected_number i = 0; unsigned long c, dimensions = rrdset_number_of_dimensions(st); RRDDIM *rd; for(c = 0; c < 20 ;c++) { i += increment; fprintf(stderr, "\n\nLOOP = %lu, DELAY = %ld, VALUE = " COLLECTED_NUMBER_FORMAT "\n", c, delay, i); if(c) { // rrdset_next_usec_unfiltered(st, delay); st->usec_since_last_update = delay; } if(do_abs) rrddim_set(st, "absolute", i); if(do_inc) rrddim_set(st, "incremental", i); if(do_abst) rrddim_set(st, "percentage-of-absolute-row", i); if(do_absi) rrddim_set(st, "percentage-of-incremental-row", i); if(!c) { now_realtime_timeval(&st->last_collected_time); st->last_collected_time.tv_usec = shift; } // prevent it from deleting the dimensions rrddim_foreach_read(rd, st) { rd->collector.last_collected_time.tv_sec = st->last_collected_time.tv_sec; } rrddim_foreach_done(rd); rrdset_done(st); } unsigned long oincrement = increment; increment = increment * st->update_every * 1000000 / delay; fprintf(stderr, "\n\nORIGINAL INCREMENT: %lu, INCREMENT %ld, DELAY %ld, SHIFT %ld\n", oincrement * 10, increment * 10, delay, shift); int ret = 0; storage_number sn; NETDATA_DOUBLE cn, v; for(c = 0 ; c < st->counter ; c++) { fprintf(stderr, "\nPOSITION: c = %lu, EXPECTED VALUE %lu\n", c, (oincrement + c * increment + increment * (1000000 - shift) / 1000000 )* 10); rrddim_foreach_read(rd, st) { sn = rd->db.data[c]; cn = unpack_storage_number(sn); fprintf(stderr, "\t %s " NETDATA_DOUBLE_FORMAT " (PACKED AS " STORAGE_NUMBER_FORMAT ") -> ", rrddim_id(rd), cn, sn); if(rd == rdabs) v = ( oincrement // + (increment * (1000000 - shift) / 1000000) + (c + 1) * increment ); else if(rd == rdinc) v = (c?(increment):(increment * (1000000 - shift) / 1000000)); else if(rd == rdabst) v = oincrement / dimensions / 10; else if(rd == rdabsi) v = oincrement / dimensions / 10; else v = 0; if(v == cn) fprintf(stderr, "passed.\n"); else { fprintf(stderr, "ERROR! (expected " NETDATA_DOUBLE_FORMAT ")\n", v); ret = 1; } } rrddim_foreach_done(rd); } if(ret) fprintf(stderr, "\n\nUNIT TEST(%ld, %ld) FAILED\n\n", delay, shift); return ret; } int test_sqlite(void) { fprintf(stderr, "%s() running...\n", __FUNCTION__ ); sqlite3 *db_meta; fprintf(stderr, "Testing SQLIte\n"); int rc = sqlite3_open(":memory:", &db_meta); if (rc != SQLITE_OK) { fprintf(stderr,"Failed to test SQLite: DB init failed\n"); return 1; } rc = sqlite3_exec_monitored(db_meta, "CREATE TABLE IF NOT EXISTS mine (id1, id2);", 0, 0, NULL); if (rc != SQLITE_OK) { fprintf(stderr,"Failed to test SQLite: Create table failed\n"); return 1; } rc = sqlite3_exec_monitored(db_meta, "DELETE FROM MINE LIMIT 1;", 0, 0, NULL); if (rc != SQLITE_OK) { fprintf(stderr,"Failed to test SQLite: Delete with LIMIT failed\n"); return 1; } rc = sqlite3_exec_monitored(db_meta, "UPDATE MINE SET id1=1 LIMIT 1;", 0, 0, NULL); if (rc != SQLITE_OK) { fprintf(stderr,"Failed to test SQLite: Update with LIMIT failed\n"); return 1; } rc = sqlite3_create_function(db_meta, "now_usec", 1, SQLITE_ANY, 0, sqlite_now_usec, 0, 0); if (unlikely(rc != SQLITE_OK)) { fprintf(stderr, "Failed to register internal now_usec function"); return 1; } rc = sqlite3_exec_monitored(db_meta, "UPDATE MINE SET id1=now_usec(0);", 0, 0, NULL); if (rc != SQLITE_OK) { fprintf(stderr,"Failed to test SQLite: Update with now_usec() failed\n"); return 1; } BUFFER *sql = buffer_create(ACLK_SYNC_QUERY_SIZE, NULL); char *uuid_str = "0000_000"; buffer_sprintf(sql, TABLE_ACLK_ALERT, uuid_str); rc = sqlite3_exec_monitored(db_meta, buffer_tostring(sql), 0, 0, NULL); if (rc != SQLITE_OK) goto error; buffer_free(sql); fprintf(stderr,"SQLite is OK\n"); rc = sqlite3_close_v2(db_meta); return 0; error: rc = sqlite3_close_v2(db_meta); fprintf(stderr,"SQLite statement failed: %s\n", buffer_tostring(sql)); buffer_free(sql); fprintf(stderr,"SQLite tests failed\n"); return 1; } static int bitmapX_test(BITMAPX *ptr, char *expected, const char *msg) { int errors = 0; for(uint32_t idx = 0; idx < ptr->bits ; idx++) { bool found_set = bitmapX_get_bit(ptr, idx); bool expected_set = expected[idx]; if(found_set != expected_set) { fprintf(stderr, " >>> %s(): %s, bit %u is expected %s but found %s\n", __FUNCTION__, msg, idx, expected_set?"SET":"UNSET", found_set?"SET":"UNSET"); errors++; } } if(errors) fprintf(stderr,"%s(): %s, found %d errors\n", __FUNCTION__, msg, errors); return errors; } #define bitmapX_set_bit_and_track(ptr, bit, value, expected) do { \ bitmapX_set_bit(ptr, bit, value); \ (expected)[bit] = value; \ } while(0) int unit_test_bitmaps(void) { fprintf(stderr, "%s() running...\n", __FUNCTION__ ); int errors = 0; char expected[8192]; BITMAP256 bmp256 = BITMAP256_INITIALIZER; BITMAP1024 bmp1024 = BITMAP1024_INITIALIZER; BITMAPX *bmp = NULL; for(int x = 0; x < 3 ; x++) { char msg[100 + 1]; switch (x) { default: case 0: bmp = (BITMAPX *) &bmp256; break; case 1: bmp = (BITMAPX *) &bmp1024; break; case 2: bmp = bitmapX_create(8192); break; } // reset memset(expected, 0, bmp->bits); memset(bmp->data, 0, bmp->bits / 8); snprintf(msg, 100, "TEST 1 BITMAP %u", bmp->bits); bitmapX_set_bit_and_track(bmp, 0, true, expected); errors += bitmapX_test(bmp, expected, msg); snprintf(msg, 100, "TEST 2 BITMAP %u", bmp->bits); bitmapX_set_bit_and_track(bmp, 64, true, expected); errors += bitmapX_test(bmp, expected, msg); snprintf(msg, 100, "TEST 3 BITMAP %u", bmp->bits); bitmapX_set_bit_and_track(bmp, 128, true, expected); errors += bitmapX_test(bmp, expected, msg); snprintf(msg, 100, "TEST 4 BITMAP %u", bmp->bits); bitmapX_set_bit_and_track(bmp, 192, true, expected); errors += bitmapX_test(bmp, expected, msg); for (uint32_t step = 1; step < 256; step++) { snprintf(msg, 100, "TEST 5 (setting) BITMAP %u STEP %u", bmp->bits, step); // reset memset(expected, 0, bmp->bits); memset(bmp->data, 0, bmp->bits / 8); for (uint32_t i = 0; i < bmp->bits ; i += step) bitmapX_set_bit_and_track(bmp, i, true, expected); errors += bitmapX_test(bmp, expected, msg); } for (uint32_t step = 1; step < 256; step++) { snprintf(msg, 100, "TEST 6 (clearing) BITMAP %u STEP %u", bmp->bits, step); // reset memset(expected, 0, bmp->bits); memset(bmp->data, 0, bmp->bits / 8); for (uint32_t i = 0; i < bmp->bits ; i++) bitmapX_set_bit_and_track(bmp, i, true, expected); for (uint32_t i = 0; i < bmp->bits ; i += step) bitmapX_set_bit_and_track(bmp, i, false, expected); errors += bitmapX_test(bmp, expected, msg); } } freez(bmp); fprintf(stderr, "%s() %d errors\n", __FUNCTION__, errors); return errors; } #ifdef ENABLE_DBENGINE static inline void rrddim_set_by_pointer_fake_time(RRDDIM *rd, collected_number value, time_t now) { rd->collector.last_collected_time.tv_sec = now; rd->collector.last_collected_time.tv_usec = 0; rd->collector.collected_value = value; rrddim_set_updated(rd); rd->collector.counter++; collected_number v = (value >= 0) ? value : -value; if(unlikely(v > rd->collector.collected_value_max)) rd->collector.collected_value_max = v; } static RRDHOST *dbengine_rrdhost_find_or_create(char *name) { /* We don't want to drop metrics when generating load, we prefer to block data generation itself */ return rrdhost_find_or_create( name, name, name, os_type, netdata_configured_timezone, netdata_configured_abbrev_timezone, netdata_configured_utc_offset, "", program_name, program_version, default_rrd_update_every, default_rrd_history_entries, RRD_MEMORY_MODE_DBENGINE, default_health_enabled, default_rrdpush_enabled, default_rrdpush_destination, default_rrdpush_api_key, default_rrdpush_send_charts_matching, default_rrdpush_enable_replication, default_rrdpush_seconds_to_replicate, default_rrdpush_replication_step, NULL, 0); } // constants for test_dbengine static const int CHARTS = 64; static const int DIMS = 16; // That gives us 64 * 16 = 1024 metrics #define REGIONS (3) // 3 regions of update_every // first region update_every is 2, second is 3, third is 1 static const int REGION_UPDATE_EVERY[REGIONS] = {2, 3, 1}; static const int REGION_POINTS[REGIONS] = { 16384, // This produces 64MiB of metric data for the first region: update_every = 2 16384, // This produces 64MiB of metric data for the second region: update_every = 3 16384, // This produces 64MiB of metric data for the third region: update_every = 1 }; static const int QUERY_BATCH = 4096; static void test_dbengine_create_charts(RRDHOST *host, RRDSET *st[CHARTS], RRDDIM *rd[CHARTS][DIMS], int update_every) { fprintf(stderr, "%s() running...\n", __FUNCTION__ ); int i, j; char name[101]; for (i = 0 ; i < CHARTS ; ++i) { snprintfz(name, sizeof(name) - 1, "dbengine-chart-%d", i); // create the chart st[i] = rrdset_create(host, "netdata", name, name, "netdata", NULL, "Unit Testing", "a value", "unittest", NULL, 1, update_every, RRDSET_TYPE_LINE); rrdset_flag_set(st[i], RRDSET_FLAG_DEBUG); rrdset_flag_set(st[i], RRDSET_FLAG_STORE_FIRST); for (j = 0 ; j < DIMS ; ++j) { snprintfz(name, sizeof(name) - 1, "dim-%d", j); rd[i][j] = rrddim_add(st[i], name, NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); } } // Initialize DB with the very first entries for (i = 0 ; i < CHARTS ; ++i) { for (j = 0 ; j < DIMS ; ++j) { rd[i][j]->collector.last_collected_time.tv_sec = st[i]->last_collected_time.tv_sec = st[i]->last_updated.tv_sec = 2 * API_RELATIVE_TIME_MAX - 1; rd[i][j]->collector.last_collected_time.tv_usec = st[i]->last_collected_time.tv_usec = st[i]->last_updated.tv_usec = 0; } } for (i = 0 ; i < CHARTS ; ++i) { st[i]->usec_since_last_update = USEC_PER_SEC; for (j = 0; j < DIMS; ++j) { rrddim_set_by_pointer_fake_time(rd[i][j], 69, 2 * API_RELATIVE_TIME_MAX); // set first value to 69 } struct timeval now; now_realtime_timeval(&now); rrdset_timed_done(st[i], now, false); } // Flush pages for subsequent real values for (i = 0 ; i < CHARTS ; ++i) { for (j = 0; j < DIMS; ++j) { rrdeng_store_metric_flush_current_page((rd[i][j])->tiers[0].db_collection_handle); } } } // Feeds the database region with test data, returns last timestamp of region static time_t test_dbengine_create_metrics(RRDSET *st[CHARTS], RRDDIM *rd[CHARTS][DIMS], int current_region, time_t time_start) { fprintf(stderr, "%s() running...\n", __FUNCTION__ ); time_t time_now; int i, j, c, update_every; collected_number next; update_every = REGION_UPDATE_EVERY[current_region]; time_now = time_start; // feed it with the test data for (i = 0 ; i < CHARTS ; ++i) { for (j = 0 ; j < DIMS ; ++j) { storage_engine_store_change_collection_frequency(rd[i][j]->tiers[0].db_collection_handle, update_every); rd[i][j]->collector.last_collected_time.tv_sec = st[i]->last_collected_time.tv_sec = st[i]->last_updated.tv_sec = time_now; rd[i][j]->collector.last_collected_time.tv_usec = st[i]->last_collected_time.tv_usec = st[i]->last_updated.tv_usec = 0; } } for (c = 0; c < REGION_POINTS[current_region] ; ++c) { time_now += update_every; // time_now = start + (c + 1) * update_every for (i = 0 ; i < CHARTS ; ++i) { st[i]->usec_since_last_update = USEC_PER_SEC * update_every; for (j = 0; j < DIMS; ++j) { next = ((collected_number)i * DIMS) * REGION_POINTS[current_region] + j * REGION_POINTS[current_region] + c; rrddim_set_by_pointer_fake_time(rd[i][j], next, time_now); } struct timeval now; now.tv_sec = time_now; now.tv_usec = 0; rrdset_timed_done(st[i], now, false); } } return time_now; //time_end } // Checks the metric data for the given region, returns number of errors static int test_dbengine_check_metrics(RRDSET *st[CHARTS], RRDDIM *rd[CHARTS][DIMS], int current_region, time_t time_start) { fprintf(stderr, "%s() running...\n", __FUNCTION__ ); uint8_t same; time_t time_now, time_retrieved, end_time; int i, j, k, c, errors, update_every; collected_number last; NETDATA_DOUBLE value, expected; struct storage_engine_query_handle handle; size_t value_errors = 0, time_errors = 0; update_every = REGION_UPDATE_EVERY[current_region]; errors = 0; // check the result for (c = 0; c < REGION_POINTS[current_region] ; c += QUERY_BATCH) { time_now = time_start + (c + 1) * update_every; for (i = 0 ; i < CHARTS ; ++i) { for (j = 0; j < DIMS; ++j) { storage_engine_query_init(rd[i][j]->tiers[0].backend, rd[i][j]->tiers[0].db_metric_handle, &handle, time_now, time_now + QUERY_BATCH * update_every, STORAGE_PRIORITY_NORMAL); for (k = 0; k < QUERY_BATCH; ++k) { last = ((collected_number)i * DIMS) * REGION_POINTS[current_region] + j * REGION_POINTS[current_region] + c + k; expected = unpack_storage_number(pack_storage_number((NETDATA_DOUBLE)last, SN_DEFAULT_FLAGS)); STORAGE_POINT sp = storage_engine_query_next_metric(&handle); value = sp.sum; time_retrieved = sp.start_time_s; end_time = sp.end_time_s; same = (roundndd(value) == roundndd(expected)) ? 1 : 0; if(!same) { if(!value_errors) fprintf(stderr, " DB-engine unittest %s/%s: at %lu secs, expecting value " NETDATA_DOUBLE_FORMAT ", found " NETDATA_DOUBLE_FORMAT ", ### E R R O R ###\n", rrdset_name(st[i]), rrddim_name(rd[i][j]), (unsigned long)time_now + k * update_every, expected, value); value_errors++; errors++; } if(end_time != time_now + k * update_every) { if(!time_errors) fprintf(stderr, " DB-engine unittest %s/%s: at %lu secs, found timestamp %lu ### E R R O R ###\n", rrdset_name(st[i]), rrddim_name(rd[i][j]), (unsigned long)time_now + k * update_every, (unsigned long)time_retrieved); time_errors++; errors++; } } storage_engine_query_finalize(&handle); } } } if(value_errors) fprintf(stderr, "%zu value errors encountered\n", value_errors); if(time_errors) fprintf(stderr, "%zu time errors encountered\n", time_errors); return errors; } // Check rrdr transformations static int test_dbengine_check_rrdr(RRDSET *st[CHARTS], RRDDIM *rd[CHARTS][DIMS], int current_region, time_t time_start, time_t time_end) { int update_every = REGION_UPDATE_EVERY[current_region]; fprintf(stderr, "%s() running on region %d, start time %lld, end time %lld, update every %d, on %d dimensions...\n", __FUNCTION__, current_region, (long long)time_start, (long long)time_end, update_every, CHARTS * DIMS); uint8_t same; time_t time_now, time_retrieved; int i, j, errors, value_errors = 0, time_errors = 0, value_right = 0, time_right = 0; long c; collected_number last; NETDATA_DOUBLE value, expected; errors = 0; long points = (time_end - time_start) / update_every; for (i = 0 ; i < CHARTS ; ++i) { ONEWAYALLOC *owa = onewayalloc_create(0); RRDR *r = rrd2rrdr_legacy(owa, st[i], points, time_start, time_end, RRDR_GROUPING_AVERAGE, 0, RRDR_OPTION_NATURAL_POINTS, NULL, NULL, 0, 0, QUERY_SOURCE_UNITTEST, STORAGE_PRIORITY_NORMAL); if (!r) { fprintf(stderr, " DB-engine unittest %s: empty RRDR on region %d ### E R R O R ###\n", rrdset_name(st[i]), current_region); return ++errors; } else { assert(r->internal.qt->request.st == st[i]); for (c = 0; c != (long)rrdr_rows(r) ; ++c) { RRDDIM *d; time_now = time_start + (c + 1) * update_every; time_retrieved = r->t[c]; // for each dimension rrddim_foreach_read(d, r->internal.qt->request.st) { if(unlikely(d_dfe.counter >= r->d)) break; // d_counter is provided by the dictionary dfe j = (int)d_dfe.counter; NETDATA_DOUBLE *cn = &r->v[ c * r->d ]; value = cn[j]; assert(rd[i][j] == d); last = i * DIMS * REGION_POINTS[current_region] + j * REGION_POINTS[current_region] + c; expected = unpack_storage_number(pack_storage_number((NETDATA_DOUBLE)last, SN_DEFAULT_FLAGS)); same = (roundndd(value) == roundndd(expected)) ? 1 : 0; if(!same) { if(value_errors < 20) fprintf(stderr, " DB-engine unittest %s/%s: point #%ld, at %lu secs, expecting value " NETDATA_DOUBLE_FORMAT ", RRDR found " NETDATA_DOUBLE_FORMAT ", ### E R R O R ###\n", rrdset_name(st[i]), rrddim_name(rd[i][j]), (long) c+1, (unsigned long)time_now, expected, value); value_errors++; } else value_right++; if(time_retrieved != time_now) { if(time_errors < 20) fprintf(stderr, " DB-engine unittest %s/%s: point #%ld at %lu secs, found RRDR timestamp %lu ### E R R O R ###\n", rrdset_name(st[i]), rrddim_name(rd[i][j]), (long)c+1, (unsigned long)time_now, (unsigned long)time_retrieved); time_errors++; } else time_right++; } rrddim_foreach_done(d); } rrdr_free(owa, r); } onewayalloc_destroy(owa); } if(value_errors) fprintf(stderr, "%d value errors encountered (%d were ok)\n", value_errors, value_right); if(time_errors) fprintf(stderr, "%d time errors encountered (%d were ok)\n", time_errors, value_right); return errors + value_errors + time_errors; } void test_dbengine_charts_and_dims_are_not_collected(RRDSET *st[CHARTS], RRDDIM *rd[CHARTS][DIMS]) { for(int c = 0; c < CHARTS ; c++) { st[c]->rrdcontexts.collected = false; for(int d = 0; d < DIMS ; d++) rd[c][d]->rrdcontexts.collected = false; } } int test_dbengine(void) { fprintf(stderr, "%s() running...\n", __FUNCTION__ ); int i, j, errors = 0, value_errors = 0, time_errors = 0, update_every, current_region; RRDHOST *host = NULL; RRDSET *st[CHARTS]; RRDDIM *rd[CHARTS][DIMS]; time_t time_start[REGIONS], time_end[REGIONS]; nd_log_limits_unlimited(); fprintf(stderr, "\nRunning DB-engine test\n"); default_rrd_memory_mode = RRD_MEMORY_MODE_DBENGINE; fprintf(stderr, "Initializing localhost with hostname 'unittest-dbengine'"); host = dbengine_rrdhost_find_or_create("unittest-dbengine"); if (NULL == host) return 1; current_region = 0; // this is the first region of data update_every = REGION_UPDATE_EVERY[current_region]; // set data collection frequency to 2 seconds test_dbengine_create_charts(host, st, rd, update_every); time_start[current_region] = 2 * API_RELATIVE_TIME_MAX; time_end[current_region] = test_dbengine_create_metrics(st,rd, current_region, time_start[current_region]); errors += test_dbengine_check_metrics(st, rd, current_region, time_start[current_region]); test_dbengine_charts_and_dims_are_not_collected(st, rd); current_region = 1; //this is the second region of data update_every = REGION_UPDATE_EVERY[current_region]; // set data collection frequency to 3 seconds // Align pages for frequency change for (i = 0 ; i < CHARTS ; ++i) { st[i]->update_every = update_every; for (j = 0; j < DIMS; ++j) { rrdeng_store_metric_flush_current_page((rd[i][j])->tiers[0].db_collection_handle); } } time_start[current_region] = time_end[current_region - 1] + update_every; if (0 != time_start[current_region] % update_every) // align to update_every time_start[current_region] += update_every - time_start[current_region] % update_every; time_end[current_region] = test_dbengine_create_metrics(st,rd, current_region, time_start[current_region]); errors += test_dbengine_check_metrics(st, rd, current_region, time_start[current_region]); test_dbengine_charts_and_dims_are_not_collected(st, rd); current_region = 2; //this is the third region of data update_every = REGION_UPDATE_EVERY[current_region]; // set data collection frequency to 1 seconds // Align pages for frequency change for (i = 0 ; i < CHARTS ; ++i) { st[i]->update_every = update_every; for (j = 0; j < DIMS; ++j) { rrdeng_store_metric_flush_current_page((rd[i][j])->tiers[0].db_collection_handle); } } time_start[current_region] = time_end[current_region - 1] + update_every; if (0 != time_start[current_region] % update_every) // align to update_every time_start[current_region] += update_every - time_start[current_region] % update_every; time_end[current_region] = test_dbengine_create_metrics(st,rd, current_region, time_start[current_region]); errors += test_dbengine_check_metrics(st, rd, current_region, time_start[current_region]); test_dbengine_charts_and_dims_are_not_collected(st, rd); for (current_region = 0 ; current_region < REGIONS ; ++current_region) { errors += test_dbengine_check_rrdr(st, rd, current_region, time_start[current_region], time_end[current_region]); } current_region = 1; update_every = REGION_UPDATE_EVERY[current_region]; // use the maximum update_every = 3 long points = (time_end[REGIONS - 1] - time_start[0]) / update_every; // cover all time regions with RRDR long point_offset = (time_start[current_region] - time_start[0]) / update_every; for (i = 0 ; i < CHARTS ; ++i) { ONEWAYALLOC *owa = onewayalloc_create(0); RRDR *r = rrd2rrdr_legacy(owa, st[i], points, time_start[0] + update_every, time_end[REGIONS - 1], RRDR_GROUPING_AVERAGE, 0, RRDR_OPTION_NATURAL_POINTS, NULL, NULL, 0, 0, QUERY_SOURCE_UNITTEST, STORAGE_PRIORITY_NORMAL); if (!r) { fprintf(stderr, " DB-engine unittest %s: empty RRDR ### E R R O R ###\n", rrdset_name(st[i])); ++errors; } else { long c; assert(r->internal.qt->request.st == st[i]); // test current region values only, since they must be left unchanged for (c = point_offset ; c < (long)(point_offset + rrdr_rows(r) / REGIONS / 2) ; ++c) { RRDDIM *d; time_t time_now = time_start[current_region] + (c - point_offset + 2) * update_every; time_t time_retrieved = r->t[c]; // for each dimension rrddim_foreach_read(d, r->internal.qt->request.st) { if(unlikely(d_dfe.counter >= r->d)) break; // d_counter is provided by the dictionary dfe j = (int)d_dfe.counter; NETDATA_DOUBLE *cn = &r->v[ c * r->d ]; NETDATA_DOUBLE value = cn[j]; assert(rd[i][j] == d); collected_number last = i * DIMS * REGION_POINTS[current_region] + j * REGION_POINTS[current_region] + c - point_offset + 1; NETDATA_DOUBLE expected = unpack_storage_number(pack_storage_number((NETDATA_DOUBLE)last, SN_DEFAULT_FLAGS)); uint8_t same = (roundndd(value) == roundndd(expected)) ? 1 : 0; if(!same) { if(!value_errors) fprintf(stderr, " DB-engine unittest %s/%s: at %lu secs, expecting value " NETDATA_DOUBLE_FORMAT ", RRDR found " NETDATA_DOUBLE_FORMAT ", ### E R R O R ###\n", rrdset_name(st[i]), rrddim_name(rd[i][j]), (unsigned long)time_now, expected, value); value_errors++; } if(time_retrieved != time_now) { if(!time_errors) fprintf(stderr, " DB-engine unittest %s/%s: at %lu secs, found RRDR timestamp %lu ### E R R O R ###\n", rrdset_name(st[i]), rrddim_name(rd[i][j]), (unsigned long)time_now, (unsigned long)time_retrieved); time_errors++; } } rrddim_foreach_done(d); } rrdr_free(owa, r); } onewayalloc_destroy(owa); } rrd_wrlock(); rrdeng_prepare_exit((struct rrdengine_instance *)host->db[0].instance); rrdhost_delete_charts(host); rrdeng_exit((struct rrdengine_instance *)host->db[0].instance); rrdeng_enq_cmd(NULL, RRDENG_OPCODE_SHUTDOWN_EVLOOP, NULL, NULL, STORAGE_PRIORITY_BEST_EFFORT, NULL, NULL); rrd_unlock(); return errors + value_errors + time_errors; } struct dbengine_chart_thread { uv_thread_t thread; RRDHOST *host; char *chartname; /* Will be prefixed by type, e.g. "example_local1.", "example_local2." etc */ unsigned dset_charts; /* number of charts */ unsigned dset_dims; /* dimensions per chart */ unsigned chart_i; /* current chart offset */ time_t time_present; /* current virtual time of the benchmark */ volatile time_t time_max; /* latest timestamp of stored values */ unsigned history_seconds; /* how far back in the past to go */ volatile long done; /* initialize to 0, set to 1 to stop thread */ struct completion charts_initialized; unsigned long errors, stored_metrics_nr; /* statistics */ RRDSET *st; RRDDIM *rd[]; /* dset_dims elements */ }; collected_number generate_dbengine_chart_value(int chart_i, int dim_i, time_t time_current) { collected_number value; value = ((collected_number)time_current) * (chart_i + 1); value += ((collected_number)time_current) * (dim_i + 1); value %= 1024LLU; return value; } static void generate_dbengine_chart(void *arg) { fprintf(stderr, "%s() running...\n", __FUNCTION__ ); struct dbengine_chart_thread *thread_info = (struct dbengine_chart_thread *)arg; RRDHOST *host = thread_info->host; char *chartname = thread_info->chartname; const unsigned DSET_DIMS = thread_info->dset_dims; unsigned history_seconds = thread_info->history_seconds; time_t time_present = thread_info->time_present; unsigned j, update_every = 1; RRDSET *st; RRDDIM *rd[DSET_DIMS]; char name[RRD_ID_LENGTH_MAX + 1]; time_t time_current; // create the chart snprintfz(name, RRD_ID_LENGTH_MAX, "example_local%u", thread_info->chart_i + 1); thread_info->st = st = rrdset_create(host, name, chartname, chartname, "example", NULL, chartname, chartname, chartname, NULL, 1, update_every, RRDSET_TYPE_LINE); for (j = 0 ; j < DSET_DIMS ; ++j) { snprintfz(name, RRD_ID_LENGTH_MAX, "%s%u", chartname, j + 1); thread_info->rd[j] = rd[j] = rrddim_add(st, name, NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE); } completion_mark_complete(&thread_info->charts_initialized); // feed it with the test data time_current = time_present - history_seconds; for (j = 0 ; j < DSET_DIMS ; ++j) { rd[j]->collector.last_collected_time.tv_sec = st->last_collected_time.tv_sec = st->last_updated.tv_sec = time_current - update_every; rd[j]->collector.last_collected_time.tv_usec = st->last_collected_time.tv_usec = st->last_updated.tv_usec = 0; } for( ; !thread_info->done && time_current < time_present ; time_current += update_every) { st->usec_since_last_update = USEC_PER_SEC * update_every; for (j = 0; j < DSET_DIMS; ++j) { collected_number value; value = generate_dbengine_chart_value(thread_info->chart_i, j, time_current); rrddim_set_by_pointer_fake_time(rd[j], value, time_current); ++thread_info->stored_metrics_nr; } rrdset_done(st); thread_info->time_max = time_current; } for (j = 0; j < DSET_DIMS; ++j) { rrdeng_store_metric_finalize((rd[j])->tiers[0].db_collection_handle); } } void generate_dbengine_dataset(unsigned history_seconds) { fprintf(stderr, "%s() running...\n", __FUNCTION__ ); const int DSET_CHARTS = 16; const int DSET_DIMS = 128; const uint64_t EXPECTED_COMPRESSION_RATIO = 20; RRDHOST *host = NULL; struct dbengine_chart_thread **thread_info; int i; time_t time_present; default_rrd_memory_mode = RRD_MEMORY_MODE_DBENGINE; default_rrdeng_page_cache_mb = 128; // Worst case for uncompressible data default_rrdeng_disk_quota_mb = (((uint64_t)DSET_DIMS * DSET_CHARTS) * sizeof(storage_number) * history_seconds) / (1024 * 1024); default_rrdeng_disk_quota_mb -= default_rrdeng_disk_quota_mb * EXPECTED_COMPRESSION_RATIO / 100; nd_log_limits_unlimited(); fprintf(stderr, "Initializing localhost with hostname 'dbengine-dataset'"); host = dbengine_rrdhost_find_or_create("dbengine-dataset"); if (NULL == host) return; thread_info = mallocz(sizeof(*thread_info) * DSET_CHARTS); for (i = 0 ; i < DSET_CHARTS ; ++i) { thread_info[i] = mallocz(sizeof(*thread_info[i]) + sizeof(RRDDIM *) * DSET_DIMS); } fprintf(stderr, "\nRunning DB-engine workload generator\n"); time_present = now_realtime_sec(); for (i = 0 ; i < DSET_CHARTS ; ++i) { thread_info[i]->host = host; thread_info[i]->chartname = "random"; thread_info[i]->dset_charts = DSET_CHARTS; thread_info[i]->chart_i = i; thread_info[i]->dset_dims = DSET_DIMS; thread_info[i]->history_seconds = history_seconds; thread_info[i]->time_present = time_present; thread_info[i]->time_max = 0; thread_info[i]->done = 0; completion_init(&thread_info[i]->charts_initialized); fatal_assert(0 == uv_thread_create(&thread_info[i]->thread, generate_dbengine_chart, thread_info[i])); completion_wait_for(&thread_info[i]->charts_initialized); completion_destroy(&thread_info[i]->charts_initialized); } for (i = 0 ; i < DSET_CHARTS ; ++i) { fatal_assert(0 == uv_thread_join(&thread_info[i]->thread)); } for (i = 0 ; i < DSET_CHARTS ; ++i) { freez(thread_info[i]); } freez(thread_info); rrd_wrlock(); rrdhost_free___while_having_rrd_wrlock(localhost, true); rrd_unlock(); } struct dbengine_query_thread { uv_thread_t thread; RRDHOST *host; char *chartname; /* Will be prefixed by type, e.g. "example_local1.", "example_local2." etc */ unsigned dset_charts; /* number of charts */ unsigned dset_dims; /* dimensions per chart */ time_t time_present; /* current virtual time of the benchmark */ unsigned history_seconds; /* how far back in the past to go */ volatile long done; /* initialize to 0, set to 1 to stop thread */ unsigned long errors, queries_nr, queried_metrics_nr; /* statistics */ uint8_t delete_old_data; /* if non zero then data are deleted when disk space is exhausted */ struct dbengine_chart_thread *chart_threads[]; /* dset_charts elements */ }; static void query_dbengine_chart(void *arg) { fprintf(stderr, "%s() running...\n", __FUNCTION__ ); struct dbengine_query_thread *thread_info = (struct dbengine_query_thread *)arg; const int DSET_CHARTS = thread_info->dset_charts; const int DSET_DIMS = thread_info->dset_dims; time_t time_after, time_before, time_min, time_approx_min, time_max, duration; int i, j, update_every = 1; RRDSET *st; RRDDIM *rd; uint8_t same; time_t time_now, time_retrieved, end_time; collected_number generatedv; NETDATA_DOUBLE value, expected; struct storage_engine_query_handle handle; size_t value_errors = 0, time_errors = 0; do { // pick a chart and dimension i = random() % DSET_CHARTS; st = thread_info->chart_threads[i]->st; j = random() % DSET_DIMS; rd = thread_info->chart_threads[i]->rd[j]; time_min = thread_info->time_present - thread_info->history_seconds + 1; time_max = thread_info->chart_threads[i]->time_max; if (thread_info->delete_old_data) { /* A time window of twice the disk space is sufficient for compression space savings of up to 50% */ time_approx_min = time_max - (default_rrdeng_disk_quota_mb * 2 * 1024 * 1024) / (((uint64_t) DSET_DIMS * DSET_CHARTS) * sizeof(storage_number)); time_min = MAX(time_min, time_approx_min); } if (!time_max) { time_before = time_after = time_min; } else { time_after = time_min + random() % (MAX(time_max - time_min, 1)); duration = random() % 3600; time_before = MIN(time_after + duration, time_max); /* up to 1 hour queries */ } storage_engine_query_init(rd->tiers[0].backend, rd->tiers[0].db_metric_handle, &handle, time_after, time_before, STORAGE_PRIORITY_NORMAL); ++thread_info->queries_nr; for (time_now = time_after ; time_now <= time_before ; time_now += update_every) { generatedv = generate_dbengine_chart_value(i, j, time_now); expected = unpack_storage_number(pack_storage_number((NETDATA_DOUBLE) generatedv, SN_DEFAULT_FLAGS)); if (unlikely(storage_engine_query_is_finished(&handle))) { if (!thread_info->delete_old_data) { /* data validation only when we don't delete */ fprintf(stderr, " DB-engine stresstest %s/%s: at %lu secs, expecting value " NETDATA_DOUBLE_FORMAT ", found data gap, ### E R R O R ###\n", rrdset_name(st), rrddim_name(rd), (unsigned long) time_now, expected); ++thread_info->errors; } break; } STORAGE_POINT sp = storage_engine_query_next_metric(&handle); value = sp.sum; time_retrieved = sp.start_time_s; end_time = sp.end_time_s; if (!netdata_double_isnumber(value)) { if (!thread_info->delete_old_data) { /* data validation only when we don't delete */ fprintf(stderr, " DB-engine stresstest %s/%s: at %lu secs, expecting value " NETDATA_DOUBLE_FORMAT ", found data gap, ### E R R O R ###\n", rrdset_name(st), rrddim_name(rd), (unsigned long) time_now, expected); ++thread_info->errors; } break; } ++thread_info->queried_metrics_nr; same = (roundndd(value) == roundndd(expected)) ? 1 : 0; if (!same) { if (!thread_info->delete_old_data) { /* data validation only when we don't delete */ if(!value_errors) fprintf(stderr, " DB-engine stresstest %s/%s: at %lu secs, expecting value " NETDATA_DOUBLE_FORMAT ", found " NETDATA_DOUBLE_FORMAT ", ### E R R O R ###\n", rrdset_name(st), rrddim_name(rd), (unsigned long) time_now, expected, value); value_errors++; thread_info->errors++; } } if (end_time != time_now) { if (!thread_info->delete_old_data) { /* data validation only when we don't delete */ if(!time_errors) fprintf(stderr, " DB-engine stresstest %s/%s: at %lu secs, found timestamp %lu ### E R R O R ###\n", rrdset_name(st), rrddim_name(rd), (unsigned long) time_now, (unsigned long) time_retrieved); time_errors++; thread_info->errors++; } } } storage_engine_query_finalize(&handle); } while(!thread_info->done); if(value_errors) fprintf(stderr, "%zu value errors encountered\n", value_errors); if(time_errors) fprintf(stderr, "%zu time errors encountered\n", time_errors); } void dbengine_stress_test(unsigned TEST_DURATION_SEC, unsigned DSET_CHARTS, unsigned QUERY_THREADS, unsigned RAMP_UP_SECONDS, unsigned PAGE_CACHE_MB, unsigned DISK_SPACE_MB) { fprintf(stderr, "%s() running...\n", __FUNCTION__ ); const unsigned DSET_DIMS = 128; const uint64_t EXPECTED_COMPRESSION_RATIO = 20; const unsigned HISTORY_SECONDS = 3600 * 24 * 365 * 50; /* 50 year of history */ RRDHOST *host = NULL; struct dbengine_chart_thread **chart_threads; struct dbengine_query_thread **query_threads; unsigned i, j; time_t time_start, test_duration; nd_log_limits_unlimited(); if (!TEST_DURATION_SEC) TEST_DURATION_SEC = 10; if (!DSET_CHARTS) DSET_CHARTS = 1; if (!QUERY_THREADS) QUERY_THREADS = 1; if (PAGE_CACHE_MB < RRDENG_MIN_PAGE_CACHE_SIZE_MB) PAGE_CACHE_MB = RRDENG_MIN_PAGE_CACHE_SIZE_MB; default_rrd_memory_mode = RRD_MEMORY_MODE_DBENGINE; default_rrdeng_page_cache_mb = PAGE_CACHE_MB; if (DISK_SPACE_MB) { fprintf(stderr, "By setting disk space limit data are allowed to be deleted. " "Data validation is turned off for this run.\n"); default_rrdeng_disk_quota_mb = DISK_SPACE_MB; } else { // Worst case for uncompressible data default_rrdeng_disk_quota_mb = (((uint64_t) DSET_DIMS * DSET_CHARTS) * sizeof(storage_number) * HISTORY_SECONDS) / (1024 * 1024); default_rrdeng_disk_quota_mb -= default_rrdeng_disk_quota_mb * EXPECTED_COMPRESSION_RATIO / 100; } fprintf(stderr, "Initializing localhost with hostname 'dbengine-stress-test'\n"); (void) sql_init_database(DB_CHECK_NONE, 1); host = dbengine_rrdhost_find_or_create("dbengine-stress-test"); if (NULL == host) return; chart_threads = mallocz(sizeof(*chart_threads) * DSET_CHARTS); for (i = 0 ; i < DSET_CHARTS ; ++i) { chart_threads[i] = mallocz(sizeof(*chart_threads[i]) + sizeof(RRDDIM *) * DSET_DIMS); } query_threads = mallocz(sizeof(*query_threads) * QUERY_THREADS); for (i = 0 ; i < QUERY_THREADS ; ++i) { query_threads[i] = mallocz(sizeof(*query_threads[i]) + sizeof(struct dbengine_chart_thread *) * DSET_CHARTS); } fprintf(stderr, "\nRunning DB-engine stress test, %u seconds writers ramp-up time,\n" "%u seconds of concurrent readers and writers, %u writer threads, %u reader threads,\n" "%u MiB of page cache.\n", RAMP_UP_SECONDS, TEST_DURATION_SEC, DSET_CHARTS, QUERY_THREADS, PAGE_CACHE_MB); time_start = now_realtime_sec() + HISTORY_SECONDS; /* move history to the future */ for (i = 0 ; i < DSET_CHARTS ; ++i) { chart_threads[i]->host = host; chart_threads[i]->chartname = "random"; chart_threads[i]->dset_charts = DSET_CHARTS; chart_threads[i]->chart_i = i; chart_threads[i]->dset_dims = DSET_DIMS; chart_threads[i]->history_seconds = HISTORY_SECONDS; chart_threads[i]->time_present = time_start; chart_threads[i]->time_max = 0; chart_threads[i]->done = 0; chart_threads[i]->errors = chart_threads[i]->stored_metrics_nr = 0; completion_init(&chart_threads[i]->charts_initialized); fatal_assert(0 == uv_thread_create(&chart_threads[i]->thread, generate_dbengine_chart, chart_threads[i])); } /* barrier so that subsequent queries can access valid chart data */ for (i = 0 ; i < DSET_CHARTS ; ++i) { completion_wait_for(&chart_threads[i]->charts_initialized); completion_destroy(&chart_threads[i]->charts_initialized); } sleep(RAMP_UP_SECONDS); /* at this point data have already began being written to the database */ for (i = 0 ; i < QUERY_THREADS ; ++i) { query_threads[i]->host = host; query_threads[i]->chartname = "random"; query_threads[i]->dset_charts = DSET_CHARTS; query_threads[i]->dset_dims = DSET_DIMS; query_threads[i]->history_seconds = HISTORY_SECONDS; query_threads[i]->time_present = time_start; query_threads[i]->done = 0; query_threads[i]->errors = query_threads[i]->queries_nr = query_threads[i]->queried_metrics_nr = 0; for (j = 0 ; j < DSET_CHARTS ; ++j) { query_threads[i]->chart_threads[j] = chart_threads[j]; } query_threads[i]->delete_old_data = DISK_SPACE_MB ? 1 : 0; fatal_assert(0 == uv_thread_create(&query_threads[i]->thread, query_dbengine_chart, query_threads[i])); } sleep(TEST_DURATION_SEC); /* stop workload */ for (i = 0 ; i < DSET_CHARTS ; ++i) { chart_threads[i]->done = 1; } for (i = 0 ; i < QUERY_THREADS ; ++i) { query_threads[i]->done = 1; } for (i = 0 ; i < DSET_CHARTS ; ++i) { assert(0 == uv_thread_join(&chart_threads[i]->thread)); } for (i = 0 ; i < QUERY_THREADS ; ++i) { assert(0 == uv_thread_join(&query_threads[i]->thread)); } test_duration = now_realtime_sec() - (time_start - HISTORY_SECONDS); if (!test_duration) test_duration = 1; fprintf(stderr, "\nDB-engine stress test finished in %lld seconds.\n", (long long)test_duration); unsigned long stored_metrics_nr = 0; for (i = 0 ; i < DSET_CHARTS ; ++i) { stored_metrics_nr += chart_threads[i]->stored_metrics_nr; } unsigned long queried_metrics_nr = 0; for (i = 0 ; i < QUERY_THREADS ; ++i) { queried_metrics_nr += query_threads[i]->queried_metrics_nr; } fprintf(stderr, "%u metrics were stored (dataset size of %lu MiB) in %u charts by 1 writer thread per chart.\n", DSET_CHARTS * DSET_DIMS, stored_metrics_nr * sizeof(storage_number) / (1024 * 1024), DSET_CHARTS); fprintf(stderr, "Metrics were being generated per 1 emulated second and time was accelerated.\n"); fprintf(stderr, "%lu metric data points were queried by %u reader threads.\n", queried_metrics_nr, QUERY_THREADS); fprintf(stderr, "Query starting time is randomly chosen from the beginning of the time-series up to the time of\n" "the latest data point, and ending time from 1 second up to 1 hour after the starting time.\n"); fprintf(stderr, "Performance is %lld written data points/sec and %lld read data points/sec.\n", (long long)(stored_metrics_nr / test_duration), (long long)(queried_metrics_nr / test_duration)); for (i = 0 ; i < DSET_CHARTS ; ++i) { freez(chart_threads[i]); } freez(chart_threads); for (i = 0 ; i < QUERY_THREADS ; ++i) { freez(query_threads[i]); } freez(query_threads); rrd_wrlock(); rrdeng_prepare_exit((struct rrdengine_instance *)host->db[0].instance); rrdhost_delete_charts(host); rrdeng_exit((struct rrdengine_instance *)host->db[0].instance); rrdeng_enq_cmd(NULL, RRDENG_OPCODE_SHUTDOWN_EVLOOP, NULL, NULL, STORAGE_PRIORITY_BEST_EFFORT, NULL, NULL); rrd_unlock(); } #endif