// SPDX-License-Identifier: GPL-3.0-or-later /** @file circular_buffer.c * @brief This is the implementation of a circular buffer to be used * for saving collected logs in memory, until they are stored * into the database. */ #include "circular_buffer.h" #include "helper.h" #include "parser.h" struct qsort_item { Circ_buff_item_t *cbi; struct File_info *pfi; }; static int qsort_timestamp (const void *item_a, const void *item_b) { return ( (int64_t)((struct qsort_item*)item_a)->cbi->timestamp - (int64_t)((struct qsort_item*)item_b)->cbi->timestamp); } static int reverse_qsort_timestamp (const void * item_a, const void * item_b) { return -qsort_timestamp(item_a, item_b); } /** * @brief Search circular buffers according to the query_params. * @details If multiple buffers are to be searched, the results will be sorted * according to timestamps. * * Note that buff->tail can only be changed through circ_buff_read_done(), and * circ_buff_search() and circ_buff_read_done() are mutually exclusive due * to uv_mutex_lock() and uv_mutex_unlock() in queries and when writing to DB. * * @param p_query_params Query parameters to search according to. * @param p_file_infos File_info structs to be searched. */ void circ_buff_search(logs_query_params_t *const p_query_params, struct File_info *const p_file_infos[]) { for(int pfi_off = 0; p_file_infos[pfi_off]; pfi_off++) uv_rwlock_rdlock(&p_file_infos[pfi_off]->circ_buff->buff_realloc_rwlock); int buffs_size = 0, buff_max_num_of_items = 0; while(p_file_infos[buffs_size]){ if(p_file_infos[buffs_size]->circ_buff->num_of_items > buff_max_num_of_items) buff_max_num_of_items = p_file_infos[buffs_size]->circ_buff->num_of_items; buffs_size++; } struct qsort_item items[buffs_size * buff_max_num_of_items + 1]; // worst case allocation int items_off = 0; for(int buff_off = 0; p_file_infos[buff_off]; buff_off++){ Circ_buff_t *buff = p_file_infos[buff_off]->circ_buff; /* TODO: The following 3 operations need to be replaced with a struct * to gurantee atomicity. */ int head = __atomic_load_n(&buff->head, __ATOMIC_SEQ_CST) % buff->num_of_items; int tail = __atomic_load_n(&buff->tail, __ATOMIC_SEQ_CST) % buff->num_of_items; int full = __atomic_load_n(&buff->full, __ATOMIC_SEQ_CST); if ((head == tail) && !full) continue; // Nothing to do if buff is empty for (int i = tail; i != head; i = (i + 1) % buff->num_of_items){ items[items_off].cbi = &buff->items[i]; items[items_off++].pfi = p_file_infos[buff_off]; } } items[items_off].cbi = NULL; items[items_off].pfi = NULL; if(items[0].cbi) qsort(items, items_off, sizeof(items[0]), p_query_params->order_by_asc ? qsort_timestamp : reverse_qsort_timestamp); BUFFER *const res_buff = p_query_params->results_buff; logs_query_res_hdr_t res_hdr = { // result header .timestamp = p_query_params->act_to_ts, .text_size = 0, .matches = 0, .log_source = "", .log_type = "" }; for (int i = 0; items[i].cbi; i++) { /* If exceeding quota or timeout is reached and new timestamp is different than previous, * terminate query but inform caller about act_to_ts to continue from (its next value) in next call. */ if( (res_buff->len >= p_query_params->quota || terminate_logs_manag_query(p_query_params)) && items[i].cbi->timestamp != res_hdr.timestamp){ p_query_params->act_to_ts = res_hdr.timestamp; break; } res_hdr.timestamp = items[i].cbi->timestamp; res_hdr.text_size = items[i].cbi->text_size; strncpyz(res_hdr.log_source, log_src_t_str[items[i].pfi->log_source], sizeof(res_hdr.log_source) - 1); strncpyz(res_hdr.log_type, log_src_type_t_str[items[i].pfi->log_type], sizeof(res_hdr.log_type) - 1); strncpyz(res_hdr.basename, items[i].pfi->file_basename, sizeof(res_hdr.basename) - 1); strncpyz(res_hdr.filename, items[i].pfi->filename, sizeof(res_hdr.filename) - 1); strncpyz(res_hdr.chartname, items[i].pfi->chartname, sizeof(res_hdr.chartname) - 1); if (p_query_params->order_by_asc ? ( res_hdr.timestamp >= p_query_params->req_from_ts && res_hdr.timestamp <= p_query_params->req_to_ts ) : ( res_hdr.timestamp >= p_query_params->req_to_ts && res_hdr.timestamp <= p_query_params->req_from_ts) ){ /* In case of search_keyword, less than sizeof(res_hdr) + temp_msg.text_size * space is required, but go for worst case scenario for now */ buffer_increase(res_buff, sizeof(res_hdr) + res_hdr.text_size); if(!p_query_params->keyword || !*p_query_params->keyword || !strcmp(p_query_params->keyword, " ")){ /* NOTE: relying on items[i]->cbi->num_lines to get number of log lines * might not be 100% correct, since parsing must have taken place * already to return correct count. Maybe an issue under heavy load. */ res_hdr.matches = items[i].cbi->num_lines; memcpy(&res_buff->buffer[res_buff->len + sizeof(res_hdr)], items[i].cbi->data, res_hdr.text_size); } else { res_hdr.matches = search_keyword( items[i].cbi->data, res_hdr.text_size, &res_buff->buffer[res_buff->len + sizeof(res_hdr)], &res_hdr.text_size, p_query_params->keyword, NULL, p_query_params->ignore_case); m_assert( (res_hdr.matches > 0 && res_hdr.text_size > 0) || (res_hdr.matches == 0 && res_hdr.text_size == 0), "res_hdr.matches and res_hdr.text_size must both be > 0 or == 0."); if(unlikely(res_hdr.matches < 0)) break; /* res_hdr.matches < 0 - error during keyword search */ } if(res_hdr.text_size){ res_buff->buffer[res_buff->len + sizeof(res_hdr) + res_hdr.text_size - 1] = '\n'; // replace '\0' with '\n' memcpy(&res_buff->buffer[res_buff->len], &res_hdr, sizeof(res_hdr)); res_buff->len += sizeof(res_hdr) + res_hdr.text_size; p_query_params->num_lines += res_hdr.matches; } m_assert(TEST_MS_TIMESTAMP_VALID(res_hdr.timestamp), "res_hdr.timestamp is invalid"); } } for(int pfi_off = 0; p_file_infos[pfi_off]; pfi_off++) uv_rwlock_rdunlock(&p_file_infos[pfi_off]->circ_buff->buff_realloc_rwlock); } /** * @brief Query circular buffer if there is space for item insertion. * @param buff Circular buffer to query for available space. * @param requested_text_space Size of raw (uncompressed) space needed. * @note If buff->allow_dropped_logs is 0, then this function will block and * it will only return once there is available space as requested. In this * case, it will never return 0. * @return \p requested_text_space if there is enough space, else 0. */ size_t circ_buff_prepare_write(Circ_buff_t *const buff, size_t const requested_text_space){ /* Calculate how much is the maximum compressed space that will * be required on top of the requested space for the raw data. */ buff->in->text_compressed_size = (size_t) LZ4_compressBound(requested_text_space); m_assert(buff->in->text_compressed_size != 0, "requested text compressed space is zero"); size_t const required_space = requested_text_space + buff->in->text_compressed_size; size_t available_text_space = 0; size_t total_cached_mem_ex_in; try_to_acquire_space: total_cached_mem_ex_in = 0; for (int i = 0; i < buff->num_of_items; i++){ total_cached_mem_ex_in += buff->items[i].data_max_size; } /* If the required space is more than the allocated space of the input * buffer, then we need to check if the input buffer can be reallocated: * * a) If the total memory consumption of the circular buffer plus the * required space is less than the limit set by "circular buffer max size" * for this log source, then the input buffer can be reallocated. * * b) If the total memory consumption of the circular buffer plus the * required space is more than the limit set by "circular buffer max size" * for this log source, we will attempt to reclaim some of the circular * buffer allocated memory from any empty items. * * c) If after reclaiming the total memory consumption is still beyond the * configuration limit, either 0 will be returned as the available space * for raw logs in the input buffer, or the function will block and repeat * the same process, until there is available space to be returned, depending * of the configuration value of buff->allow_dropped_logs. * */ if(required_space > buff->in->data_max_size) { if(likely(total_cached_mem_ex_in + required_space <= buff->total_cached_mem_max)){ buff->in->data_max_size = required_space; buff->in->data = reallocz(buff->in->data, buff->in->data_max_size); available_text_space = requested_text_space; } else if(likely(__atomic_load_n(&buff->full, __ATOMIC_SEQ_CST) == 0)){ int head = __atomic_load_n(&buff->head, __ATOMIC_SEQ_CST) % buff->num_of_items; int tail = __atomic_load_n(&buff->tail, __ATOMIC_SEQ_CST) % buff->num_of_items; for (int i = (head == tail ? (head + 1) % buff->num_of_items : head); i != tail; i = (i + 1) % buff->num_of_items) { m_assert(i <= buff->num_of_items, "i > buff->num_of_items"); buff->items[i].data_max_size = 1; buff->items[i].data = reallocz(buff->items[i].data, buff->items[i].data_max_size); } total_cached_mem_ex_in = 0; for (int i = 0; i < buff->num_of_items; i++){ total_cached_mem_ex_in += buff->items[i].data_max_size; } if(total_cached_mem_ex_in + required_space <= buff->total_cached_mem_max){ buff->in->data_max_size = required_space; buff->in->data = reallocz(buff->in->data, buff->in->data_max_size); available_text_space = requested_text_space; } else available_text_space = 0; } } else available_text_space = requested_text_space; __atomic_store_n(&buff->total_cached_mem, total_cached_mem_ex_in + buff->in->data_max_size, __ATOMIC_RELAXED); if(unlikely(!buff->allow_dropped_logs && !available_text_space)){ sleep_usec(CIRC_BUFF_PREP_WR_RETRY_AFTER_MS * USEC_PER_MS); goto try_to_acquire_space; } m_assert(available_text_space || buff->allow_dropped_logs, "!available_text_space == 0 && !buff->allow_dropped_logs"); return available_text_space; } /** * @brief Insert item from temporary input buffer to circular buffer. * @param buff Circular buffer to insert the item into * @return 0 in case of success or -1 in case there was an error (e.g. buff * is out of space). */ int circ_buff_insert(Circ_buff_t *const buff){ // TODO: Probably can be changed to __ATOMIC_RELAXED, but ideally a mutex should be used here. int head = __atomic_load_n(&buff->head, __ATOMIC_SEQ_CST) % buff->num_of_items; int tail = __atomic_load_n(&buff->tail, __ATOMIC_SEQ_CST) % buff->num_of_items; int full = __atomic_load_n(&buff->full, __ATOMIC_SEQ_CST); /* If circular buffer does not have any free items, it will be expanded * by reallocating the `items` array and adding one more item. */ if (unlikely(( head == tail ) && full )) { debug_log( "buff out of space! will be expanded."); uv_rwlock_wrlock(&buff->buff_realloc_rwlock); Circ_buff_item_t *items_new = callocz(buff->num_of_items + 1, sizeof(Circ_buff_item_t)); for(int i = 0; i < buff->num_of_items; i++){ Circ_buff_item_t *item_old = &buff->items[head++ % buff->num_of_items]; items_new[i] = *item_old; } freez(buff->items); buff->items = items_new; buff->parse = buff->parse - buff->tail; head = buff->head = buff->num_of_items++; buff->tail = buff->read = 0; buff->full = 0; __atomic_add_fetch(&buff->buff_realloc_cnt, 1, __ATOMIC_RELAXED); uv_rwlock_wrunlock(&buff->buff_realloc_rwlock); } Circ_buff_item_t *cur_item = &buff->items[head]; char *tmp_data = cur_item->data; size_t tmp_data_max_size = cur_item->data_max_size; cur_item->status = buff->in->status; cur_item->timestamp = buff->in->timestamp; cur_item->data = buff->in->data; cur_item->text_size = buff->in->text_size; cur_item->text_compressed = buff->in->text_compressed; cur_item->text_compressed_size = buff->in->text_compressed_size; cur_item->data_max_size = buff->in->data_max_size; cur_item->num_lines = buff->in->num_lines; buff->in->status = CIRC_BUFF_ITEM_STATUS_UNPROCESSED; buff->in->timestamp = 0; buff->in->data = tmp_data; buff->in->text_size = 0; // buff->in->text_compressed = tmp_data; buff->in->text_compressed_size = 0; buff->in->data_max_size = tmp_data_max_size; buff->in->num_lines = 0; __atomic_add_fetch(&buff->text_size_total, cur_item->text_size, __ATOMIC_SEQ_CST); if( __atomic_add_fetch(&buff->text_compressed_size_total, cur_item->text_compressed_size, __ATOMIC_SEQ_CST)){ __atomic_store_n(&buff->compression_ratio, __atomic_load_n(&buff->text_size_total, __ATOMIC_SEQ_CST) / __atomic_load_n(&buff->text_compressed_size_total, __ATOMIC_SEQ_CST), __ATOMIC_SEQ_CST); } else __atomic_store_n( &buff->compression_ratio, 0, __ATOMIC_SEQ_CST); if(unlikely(__atomic_add_fetch(&buff->head, 1, __ATOMIC_SEQ_CST) % buff->num_of_items == __atomic_load_n(&buff->tail, __ATOMIC_SEQ_CST) % buff->num_of_items)){ __atomic_store_n(&buff->full, 1, __ATOMIC_SEQ_CST); } __atomic_or_fetch(&cur_item->status, CIRC_BUFF_ITEM_STATUS_PARSED | CIRC_BUFF_ITEM_STATUS_STREAMED, __ATOMIC_SEQ_CST); return 0; } /** * @brief Return pointer to next item to be read from the circular buffer. * @param buff Circular buffer to get next item from. * @return Pointer to the next circular buffer item to be read, or NULL * if there are no more items to be read. */ Circ_buff_item_t *circ_buff_read_item(Circ_buff_t *const buff) { Circ_buff_item_t *item = &buff->items[buff->read % buff->num_of_items]; m_assert(__atomic_load_n(&item->status, __ATOMIC_RELAXED) <= CIRC_BUFF_ITEM_STATUS_DONE, "Invalid status"); if( /* No more records to be retrieved from the buffer - pay attention that * there is no `% buff->num_of_items` operation, as we need to check * the case where buff->read is exactly equal to buff->head. */ (buff->read == (__atomic_load_n(&buff->head, __ATOMIC_SEQ_CST))) || /* Current item either not parsed or streamed */ (__atomic_load_n(&item->status, __ATOMIC_RELAXED) != CIRC_BUFF_ITEM_STATUS_DONE) ){ return NULL; } __atomic_sub_fetch(&buff->text_size_total, item->text_size, __ATOMIC_SEQ_CST); if( __atomic_sub_fetch(&buff->text_compressed_size_total, item->text_compressed_size, __ATOMIC_SEQ_CST)){ __atomic_store_n(&buff->compression_ratio, __atomic_load_n(&buff->text_size_total, __ATOMIC_SEQ_CST) / __atomic_load_n(&buff->text_compressed_size_total, __ATOMIC_SEQ_CST), __ATOMIC_SEQ_CST); } else __atomic_store_n( &buff->compression_ratio, 0, __ATOMIC_SEQ_CST); buff->read++; return item; } /** * @brief Complete buffer read process. * @param buff Circular buffer to complete read process on. */ void circ_buff_read_done(Circ_buff_t *const buff){ /* Even if one item was read, it means buffer cannot be full anymore */ if(__atomic_load_n(&buff->tail, __ATOMIC_RELAXED) != buff->read) __atomic_store_n(&buff->full, 0, __ATOMIC_SEQ_CST); __atomic_store_n(&buff->tail, buff->read, __ATOMIC_SEQ_CST); } /** * @brief Create a new circular buffer. * @param num_of_items Number of Circ_buff_item_t items in the buffer. * @param max_size Maximum memory the circular buffer can occupy. * @param allow_dropped_logs Maximum memory the circular buffer can occupy. * @return Pointer to the new circular buffer structure. */ Circ_buff_t *circ_buff_init(const int num_of_items, const size_t max_size, const int allow_dropped_logs ) { Circ_buff_t *buff = callocz(1, sizeof(Circ_buff_t)); buff->num_of_items = num_of_items; buff->items = callocz(buff->num_of_items, sizeof(Circ_buff_item_t)); buff->in = callocz(1, sizeof(Circ_buff_item_t)); uv_rwlock_init(&buff->buff_realloc_rwlock); buff->total_cached_mem_max = max_size; buff->allow_dropped_logs = allow_dropped_logs; return buff; } /** * @brief Destroy a circular buffer. * @param buff Circular buffer to be destroyed. */ void circ_buff_destroy(Circ_buff_t *buff){ for (int i = 0; i < buff->num_of_items; i++) freez(buff->items[i].data); freez(buff->items); freez(buff->in->data); freez(buff->in); freez(buff); };