// SPDX-License-Identifier: GPL-3.0-or-later #include "compression.h" #include "compression_gzip.h" #ifdef ENABLE_LZ4 #include "compression_lz4.h" #endif #ifdef ENABLE_ZSTD #include "compression_zstd.h" #endif #ifdef ENABLE_BROTLI #include "compression_brotli.h" #endif int rrdpush_compression_levels[COMPRESSION_ALGORITHM_MAX] = { [COMPRESSION_ALGORITHM_NONE] = 0, [COMPRESSION_ALGORITHM_ZSTD] = 3, // 1 (faster) - 22 (smaller) [COMPRESSION_ALGORITHM_LZ4] = 1, // 1 (smaller) - 9 (faster) [COMPRESSION_ALGORITHM_BROTLI] = 3, // 0 (faster) - 11 (smaller) [COMPRESSION_ALGORITHM_GZIP] = 1, // 1 (faster) - 9 (smaller) }; void rrdpush_parse_compression_order(struct receiver_state *rpt, const char *order) { // empty all slots for(size_t i = 0; i < COMPRESSION_ALGORITHM_MAX ;i++) rpt->config.compression_priorities[i] = STREAM_CAP_NONE; char *s = strdupz(order); char *words[COMPRESSION_ALGORITHM_MAX + 100] = { NULL }; size_t num_words = quoted_strings_splitter_pluginsd(s, words, COMPRESSION_ALGORITHM_MAX + 100); size_t slot = 0; STREAM_CAPABILITIES added = STREAM_CAP_NONE; for(size_t i = 0; i < num_words && slot < COMPRESSION_ALGORITHM_MAX ;i++) { if((STREAM_CAP_ZSTD_AVAILABLE) && strcasecmp(words[i], "zstd") == 0 && !(added & STREAM_CAP_ZSTD)) { rpt->config.compression_priorities[slot++] = STREAM_CAP_ZSTD; added |= STREAM_CAP_ZSTD; } else if((STREAM_CAP_LZ4_AVAILABLE) && strcasecmp(words[i], "lz4") == 0 && !(added & STREAM_CAP_LZ4)) { rpt->config.compression_priorities[slot++] = STREAM_CAP_LZ4; added |= STREAM_CAP_LZ4; } else if((STREAM_CAP_BROTLI_AVAILABLE) && strcasecmp(words[i], "brotli") == 0 && !(added & STREAM_CAP_BROTLI)) { rpt->config.compression_priorities[slot++] = STREAM_CAP_BROTLI; added |= STREAM_CAP_BROTLI; } else if(strcasecmp(words[i], "gzip") == 0 && !(added & STREAM_CAP_GZIP)) { rpt->config.compression_priorities[slot++] = STREAM_CAP_GZIP; added |= STREAM_CAP_GZIP; } } freez(s); // make sure all participate if((STREAM_CAP_ZSTD_AVAILABLE) && slot < COMPRESSION_ALGORITHM_MAX && !(added & STREAM_CAP_ZSTD)) rpt->config.compression_priorities[slot++] = STREAM_CAP_ZSTD; if((STREAM_CAP_LZ4_AVAILABLE) && slot < COMPRESSION_ALGORITHM_MAX && !(added & STREAM_CAP_LZ4)) rpt->config.compression_priorities[slot++] = STREAM_CAP_LZ4; if((STREAM_CAP_BROTLI_AVAILABLE) && slot < COMPRESSION_ALGORITHM_MAX && !(added & STREAM_CAP_BROTLI)) rpt->config.compression_priorities[slot++] = STREAM_CAP_BROTLI; if(slot < COMPRESSION_ALGORITHM_MAX && !(added & STREAM_CAP_GZIP)) rpt->config.compression_priorities[slot++] = STREAM_CAP_GZIP; } void rrdpush_select_receiver_compression_algorithm(struct receiver_state *rpt) { if (!rpt->config.rrdpush_compression) rpt->capabilities &= ~STREAM_CAP_COMPRESSIONS_AVAILABLE; // select the right compression before sending our capabilities to the child if(stream_has_more_than_one_capability_of(rpt->capabilities, STREAM_CAP_COMPRESSIONS_AVAILABLE)) { STREAM_CAPABILITIES compressions = rpt->capabilities & STREAM_CAP_COMPRESSIONS_AVAILABLE; for(int i = 0; i < COMPRESSION_ALGORITHM_MAX; i++) { STREAM_CAPABILITIES c = rpt->config.compression_priorities[i]; if(!(c & STREAM_CAP_COMPRESSIONS_AVAILABLE)) continue; if(compressions & c) { STREAM_CAPABILITIES exclude = compressions; exclude &= ~c; rpt->capabilities &= ~exclude; break; } } } } bool rrdpush_compression_initialize(struct sender_state *s) { rrdpush_compressor_destroy(&s->compressor); // IMPORTANT // KEEP THE SAME ORDER IN DECOMPRESSION if(stream_has_capability(s, STREAM_CAP_ZSTD)) s->compressor.algorithm = COMPRESSION_ALGORITHM_ZSTD; else if(stream_has_capability(s, STREAM_CAP_LZ4)) s->compressor.algorithm = COMPRESSION_ALGORITHM_LZ4; else if(stream_has_capability(s, STREAM_CAP_BROTLI)) s->compressor.algorithm = COMPRESSION_ALGORITHM_BROTLI; else if(stream_has_capability(s, STREAM_CAP_GZIP)) s->compressor.algorithm = COMPRESSION_ALGORITHM_GZIP; else s->compressor.algorithm = COMPRESSION_ALGORITHM_NONE; if(s->compressor.algorithm != COMPRESSION_ALGORITHM_NONE) { s->compressor.level = rrdpush_compression_levels[s->compressor.algorithm]; rrdpush_compressor_init(&s->compressor); return true; } return false; } bool rrdpush_decompression_initialize(struct receiver_state *rpt) { rrdpush_decompressor_destroy(&rpt->decompressor); // IMPORTANT // KEEP THE SAME ORDER IN COMPRESSION if(stream_has_capability(rpt, STREAM_CAP_ZSTD)) rpt->decompressor.algorithm = COMPRESSION_ALGORITHM_ZSTD; else if(stream_has_capability(rpt, STREAM_CAP_LZ4)) rpt->decompressor.algorithm = COMPRESSION_ALGORITHM_LZ4; else if(stream_has_capability(rpt, STREAM_CAP_BROTLI)) rpt->decompressor.algorithm = COMPRESSION_ALGORITHM_BROTLI; else if(stream_has_capability(rpt, STREAM_CAP_GZIP)) rpt->decompressor.algorithm = COMPRESSION_ALGORITHM_GZIP; else rpt->decompressor.algorithm = COMPRESSION_ALGORITHM_NONE; if(rpt->decompressor.algorithm != COMPRESSION_ALGORITHM_NONE) { rrdpush_decompressor_init(&rpt->decompressor); return true; } return false; } /* * In case of stream compression buffer overflow * Inform the user through the error log file and * deactivate compression by downgrading the stream protocol. */ void rrdpush_compression_deactivate(struct sender_state *s) { switch(s->compressor.algorithm) { case COMPRESSION_ALGORITHM_MAX: case COMPRESSION_ALGORITHM_NONE: netdata_log_error("STREAM_COMPRESSION: compression error on 'host:%s' without any compression enabled. Ignoring error.", rrdhost_hostname(s->host)); break; case COMPRESSION_ALGORITHM_GZIP: netdata_log_error("STREAM_COMPRESSION: GZIP compression error on 'host:%s'. Disabling GZIP for this node.", rrdhost_hostname(s->host)); s->disabled_capabilities |= STREAM_CAP_GZIP; break; case COMPRESSION_ALGORITHM_LZ4: netdata_log_error("STREAM_COMPRESSION: LZ4 compression error on 'host:%s'. Disabling ZSTD for this node.", rrdhost_hostname(s->host)); s->disabled_capabilities |= STREAM_CAP_LZ4; break; case COMPRESSION_ALGORITHM_ZSTD: netdata_log_error("STREAM_COMPRESSION: ZSTD compression error on 'host:%s'. Disabling ZSTD for this node.", rrdhost_hostname(s->host)); s->disabled_capabilities |= STREAM_CAP_ZSTD; break; case COMPRESSION_ALGORITHM_BROTLI: netdata_log_error("STREAM_COMPRESSION: BROTLI compression error on 'host:%s'. Disabling BROTLI for this node.", rrdhost_hostname(s->host)); s->disabled_capabilities |= STREAM_CAP_BROTLI; break; } } // ---------------------------------------------------------------------------- // compressor public API void rrdpush_compressor_init(struct compressor_state *state) { switch(state->algorithm) { #ifdef ENABLE_ZSTD case COMPRESSION_ALGORITHM_ZSTD: rrdpush_compressor_init_zstd(state); break; #endif #ifdef ENABLE_LZ4 case COMPRESSION_ALGORITHM_LZ4: rrdpush_compressor_init_lz4(state); break; #endif #ifdef ENABLE_BROTLI case COMPRESSION_ALGORITHM_BROTLI: rrdpush_compressor_init_brotli(state); break; #endif default: case COMPRESSION_ALGORITHM_GZIP: rrdpush_compressor_init_gzip(state); break; } simple_ring_buffer_reset(&state->input); simple_ring_buffer_reset(&state->output); } void rrdpush_compressor_destroy(struct compressor_state *state) { switch(state->algorithm) { #ifdef ENABLE_ZSTD case COMPRESSION_ALGORITHM_ZSTD: rrdpush_compressor_destroy_zstd(state); break; #endif #ifdef ENABLE_LZ4 case COMPRESSION_ALGORITHM_LZ4: rrdpush_compressor_destroy_lz4(state); break; #endif #ifdef ENABLE_BROTLI case COMPRESSION_ALGORITHM_BROTLI: rrdpush_compressor_destroy_brotli(state); break; #endif default: case COMPRESSION_ALGORITHM_GZIP: rrdpush_compressor_destroy_gzip(state); break; } state->initialized = false; simple_ring_buffer_destroy(&state->input); simple_ring_buffer_destroy(&state->output); } size_t rrdpush_compress(struct compressor_state *state, const char *data, size_t size, const char **out) { size_t ret = 0; switch(state->algorithm) { #ifdef ENABLE_ZSTD case COMPRESSION_ALGORITHM_ZSTD: ret = rrdpush_compress_zstd(state, data, size, out); break; #endif #ifdef ENABLE_LZ4 case COMPRESSION_ALGORITHM_LZ4: ret = rrdpush_compress_lz4(state, data, size, out); break; #endif #ifdef ENABLE_BROTLI case COMPRESSION_ALGORITHM_BROTLI: ret = rrdpush_compress_brotli(state, data, size, out); break; #endif default: case COMPRESSION_ALGORITHM_GZIP: ret = rrdpush_compress_gzip(state, data, size, out); break; } if(unlikely(ret >= COMPRESSION_MAX_CHUNK)) { netdata_log_error("RRDPUSH_COMPRESS: compressed data is %zu bytes, which is >= than the max chunk size %d", ret, COMPRESSION_MAX_CHUNK); return 0; } return ret; } // ---------------------------------------------------------------------------- // decompressor public API void rrdpush_decompressor_destroy(struct decompressor_state *state) { if(unlikely(!state->initialized)) return; switch(state->algorithm) { #ifdef ENABLE_ZSTD case COMPRESSION_ALGORITHM_ZSTD: rrdpush_decompressor_destroy_zstd(state); break; #endif #ifdef ENABLE_LZ4 case COMPRESSION_ALGORITHM_LZ4: rrdpush_decompressor_destroy_lz4(state); break; #endif #ifdef ENABLE_BROTLI case COMPRESSION_ALGORITHM_BROTLI: rrdpush_decompressor_destroy_brotli(state); break; #endif default: case COMPRESSION_ALGORITHM_GZIP: rrdpush_decompressor_destroy_gzip(state); break; } simple_ring_buffer_destroy(&state->output); state->initialized = false; } void rrdpush_decompressor_init(struct decompressor_state *state) { switch(state->algorithm) { #ifdef ENABLE_ZSTD case COMPRESSION_ALGORITHM_ZSTD: rrdpush_decompressor_init_zstd(state); break; #endif #ifdef ENABLE_LZ4 case COMPRESSION_ALGORITHM_LZ4: rrdpush_decompressor_init_lz4(state); break; #endif #ifdef ENABLE_BROTLI case COMPRESSION_ALGORITHM_BROTLI: rrdpush_decompressor_init_brotli(state); break; #endif default: case COMPRESSION_ALGORITHM_GZIP: rrdpush_decompressor_init_gzip(state); break; } state->signature_size = RRDPUSH_COMPRESSION_SIGNATURE_SIZE; simple_ring_buffer_reset(&state->output); } size_t rrdpush_decompress(struct decompressor_state *state, const char *compressed_data, size_t compressed_size) { if (unlikely(state->output.read_pos != state->output.write_pos)) fatal("RRDPUSH_DECOMPRESS: asked to decompress new data, while there are unread data in the decompression buffer!"); size_t ret = 0; switch(state->algorithm) { #ifdef ENABLE_ZSTD case COMPRESSION_ALGORITHM_ZSTD: ret = rrdpush_decompress_zstd(state, compressed_data, compressed_size); break; #endif #ifdef ENABLE_LZ4 case COMPRESSION_ALGORITHM_LZ4: ret = rrdpush_decompress_lz4(state, compressed_data, compressed_size); break; #endif #ifdef ENABLE_BROTLI case COMPRESSION_ALGORITHM_BROTLI: ret = rrdpush_decompress_brotli(state, compressed_data, compressed_size); break; #endif default: case COMPRESSION_ALGORITHM_GZIP: ret = rrdpush_decompress_gzip(state, compressed_data, compressed_size); break; } // for backwards compatibility we cannot check for COMPRESSION_MAX_MSG_SIZE, // because old children may send this big payloads. if(unlikely(ret > COMPRESSION_MAX_CHUNK)) { netdata_log_error("RRDPUSH_DECOMPRESS: decompressed data is %zu bytes, which is bigger than the max msg size %d", ret, COMPRESSION_MAX_CHUNK); return 0; } return ret; } // ---------------------------------------------------------------------------- // unit test static inline long int my_random (void) { return random(); } void unittest_generate_random_name(char *dst, size_t size) { if(size < 7) size = 7; size_t len = 5 + my_random() % (size - 6); for(size_t i = 0; i < len ; i++) { if(my_random() % 2 == 0) dst[i] = 'A' + my_random() % 26; else dst[i] = 'a' + my_random() % 26; } dst[len] = '\0'; } void unittest_generate_message(BUFFER *wb, time_t now_s, size_t counter) { bool with_slots = true; NUMBER_ENCODING integer_encoding = NUMBER_ENCODING_BASE64; NUMBER_ENCODING doubles_encoding = NUMBER_ENCODING_BASE64; time_t update_every = 1; time_t point_end_time_s = now_s; time_t wall_clock_time_s = now_s; size_t chart_slot = counter + 1; size_t dimensions = 2 + my_random() % 5; char chart[RRD_ID_LENGTH_MAX + 1] = "name"; unittest_generate_random_name(chart, 5 + my_random() % 30); buffer_fast_strcat(wb, PLUGINSD_KEYWORD_BEGIN_V2, sizeof(PLUGINSD_KEYWORD_BEGIN_V2) - 1); if(with_slots) { buffer_fast_strcat(wb, " "PLUGINSD_KEYWORD_SLOT":", sizeof(PLUGINSD_KEYWORD_SLOT) - 1 + 2); buffer_print_uint64_encoded(wb, integer_encoding, chart_slot); } buffer_fast_strcat(wb, " '", 2); buffer_strcat(wb, chart); buffer_fast_strcat(wb, "' ", 2); buffer_print_uint64_encoded(wb, integer_encoding, update_every); buffer_fast_strcat(wb, " ", 1); buffer_print_uint64_encoded(wb, integer_encoding, point_end_time_s); buffer_fast_strcat(wb, " ", 1); if(point_end_time_s == wall_clock_time_s) buffer_fast_strcat(wb, "#", 1); else buffer_print_uint64_encoded(wb, integer_encoding, wall_clock_time_s); buffer_fast_strcat(wb, "\n", 1); for(size_t d = 0; d < dimensions ;d++) { size_t dim_slot = d + 1; char dim_id[RRD_ID_LENGTH_MAX + 1] = "dimension"; unittest_generate_random_name(dim_id, 10 + my_random() % 20); int64_t last_collected_value = (my_random() % 2 == 0) ? (int64_t)(counter + d) : (int64_t)my_random(); NETDATA_DOUBLE value = (my_random() % 2 == 0) ? (NETDATA_DOUBLE)my_random() / ((NETDATA_DOUBLE)my_random() + 1) : (NETDATA_DOUBLE)last_collected_value; SN_FLAGS flags = (my_random() % 1000 == 0) ? SN_FLAG_NONE : SN_FLAG_NOT_ANOMALOUS; buffer_fast_strcat(wb, PLUGINSD_KEYWORD_SET_V2, sizeof(PLUGINSD_KEYWORD_SET_V2) - 1); if(with_slots) { buffer_fast_strcat(wb, " "PLUGINSD_KEYWORD_SLOT":", sizeof(PLUGINSD_KEYWORD_SLOT) - 1 + 2); buffer_print_uint64_encoded(wb, integer_encoding, dim_slot); } buffer_fast_strcat(wb, " '", 2); buffer_strcat(wb, dim_id); buffer_fast_strcat(wb, "' ", 2); buffer_print_int64_encoded(wb, integer_encoding, last_collected_value); buffer_fast_strcat(wb, " ", 1); if((NETDATA_DOUBLE)last_collected_value == value) buffer_fast_strcat(wb, "#", 1); else buffer_print_netdata_double_encoded(wb, doubles_encoding, value); buffer_fast_strcat(wb, " ", 1); buffer_print_sn_flags(wb, flags, true); buffer_fast_strcat(wb, "\n", 1); } buffer_fast_strcat(wb, PLUGINSD_KEYWORD_END_V2 "\n", sizeof(PLUGINSD_KEYWORD_END_V2) - 1 + 1); } int unittest_rrdpush_compression_speed(compression_algorithm_t algorithm, const char *name) { fprintf(stderr, "\nTesting streaming compression speed with %s\n", name); struct compressor_state cctx = { .initialized = false, .algorithm = algorithm, }; struct decompressor_state dctx = { .initialized = false, .algorithm = algorithm, }; rrdpush_compressor_init(&cctx); rrdpush_decompressor_init(&dctx); int errors = 0; BUFFER *wb = buffer_create(COMPRESSION_MAX_MSG_SIZE, NULL); time_t now_s = now_realtime_sec(); usec_t compression_ut = 0; usec_t decompression_ut = 0; size_t bytes_compressed = 0; size_t bytes_uncompressed = 0; usec_t compression_started_ut = now_monotonic_usec(); usec_t decompression_started_ut = compression_started_ut; for(int i = 0; i < 10000 ;i++) { compression_started_ut = now_monotonic_usec(); decompression_ut += compression_started_ut - decompression_started_ut; buffer_flush(wb); while(buffer_strlen(wb) < COMPRESSION_MAX_MSG_SIZE - 1024) unittest_generate_message(wb, now_s, i); const char *txt = buffer_tostring(wb); size_t txt_len = buffer_strlen(wb); bytes_uncompressed += txt_len; const char *out; size_t size = rrdpush_compress(&cctx, txt, txt_len, &out); bytes_compressed += size; decompression_started_ut = now_monotonic_usec(); compression_ut += decompression_started_ut - compression_started_ut; if(size == 0) { fprintf(stderr, "iteration %d: compressed size %zu is zero\n", i, size); errors++; goto cleanup; } else if(size >= COMPRESSION_MAX_CHUNK) { fprintf(stderr, "iteration %d: compressed size %zu exceeds max allowed size\n", i, size); errors++; goto cleanup; } else { size_t dtxt_len = rrdpush_decompress(&dctx, out, size); char *dtxt = (char *) &dctx.output.data[dctx.output.read_pos]; if(rrdpush_decompressed_bytes_in_buffer(&dctx) != dtxt_len) { fprintf(stderr, "iteration %d: decompressed size %zu does not rrdpush_decompressed_bytes_in_buffer() %zu\n", i, dtxt_len, rrdpush_decompressed_bytes_in_buffer(&dctx) ); errors++; goto cleanup; } if(!dtxt_len) { fprintf(stderr, "iteration %d: decompressed size is zero\n", i); errors++; goto cleanup; } else if(dtxt_len != txt_len) { fprintf(stderr, "iteration %d: decompressed size %zu does not match original size %zu\n", i, dtxt_len, txt_len ); errors++; goto cleanup; } else { if(memcmp(txt, dtxt, txt_len) != 0) { fprintf(stderr, "iteration %d: decompressed data '%s' do not match original data length %zu\n", i, dtxt, txt_len); errors++; goto cleanup; } } } // here we are supposed to copy the data and advance the position dctx.output.read_pos += rrdpush_decompressed_bytes_in_buffer(&dctx); } cleanup: rrdpush_compressor_destroy(&cctx); rrdpush_decompressor_destroy(&dctx); if(errors) fprintf(stderr, "Compression with %s: FAILED (%d errors)\n", name, errors); else fprintf(stderr, "Compression with %s: OK " "(compression %zu usec, decompression %zu usec, bytes raw %zu, compressed %zu, savings ratio %0.2f%%)\n", name, compression_ut, decompression_ut, bytes_uncompressed, bytes_compressed, 100.0 - (double)bytes_compressed * 100.0 / (double)bytes_uncompressed); return errors; } int unittest_rrdpush_compression(compression_algorithm_t algorithm, const char *name) { fprintf(stderr, "\nTesting streaming compression with %s\n", name); struct compressor_state cctx = { .initialized = false, .algorithm = algorithm, }; struct decompressor_state dctx = { .initialized = false, .algorithm = algorithm, }; char txt[COMPRESSION_MAX_MSG_SIZE]; rrdpush_compressor_init(&cctx); rrdpush_decompressor_init(&dctx); int errors = 0; memset(txt, '=', COMPRESSION_MAX_MSG_SIZE); for(int i = 0; i < COMPRESSION_MAX_MSG_SIZE ;i++) { txt[i] = 'A' + (i % 26); size_t txt_len = i + 1; const char *out; size_t size = rrdpush_compress(&cctx, txt, txt_len, &out); if(size == 0) { fprintf(stderr, "iteration %d: compressed size %zu is zero\n", i, size); errors++; goto cleanup; } else if(size >= COMPRESSION_MAX_CHUNK) { fprintf(stderr, "iteration %d: compressed size %zu exceeds max allowed size\n", i, size); errors++; goto cleanup; } else { size_t dtxt_len = rrdpush_decompress(&dctx, out, size); char *dtxt = (char *) &dctx.output.data[dctx.output.read_pos]; if(rrdpush_decompressed_bytes_in_buffer(&dctx) != dtxt_len) { fprintf(stderr, "iteration %d: decompressed size %zu does not rrdpush_decompressed_bytes_in_buffer() %zu\n", i, dtxt_len, rrdpush_decompressed_bytes_in_buffer(&dctx) ); errors++; goto cleanup; } if(!dtxt_len) { fprintf(stderr, "iteration %d: decompressed size is zero\n", i); errors++; goto cleanup; } else if(dtxt_len != txt_len) { fprintf(stderr, "iteration %d: decompressed size %zu does not match original size %zu\n", i, dtxt_len, txt_len ); errors++; goto cleanup; } else { if(memcmp(txt, dtxt, txt_len) != 0) { txt[txt_len] = '\0'; dtxt[txt_len + 5] = '\0'; fprintf(stderr, "iteration %d: decompressed data '%s' do not match original data '%s' of length %zu\n", i, dtxt, txt, txt_len); errors++; goto cleanup; } } } // fill the compressed buffer with garbage memset((void *)out, 'x', size); // here we are supposed to copy the data and advance the position dctx.output.read_pos += rrdpush_decompressed_bytes_in_buffer(&dctx); } cleanup: rrdpush_compressor_destroy(&cctx); rrdpush_decompressor_destroy(&dctx); if(errors) fprintf(stderr, "Compression with %s: FAILED (%d errors)\n", name, errors); else fprintf(stderr, "Compression with %s: OK\n", name); return errors; } int unittest_rrdpush_compressions(void) { int ret = 0; ret += unittest_rrdpush_compression(COMPRESSION_ALGORITHM_ZSTD, "ZSTD"); ret += unittest_rrdpush_compression(COMPRESSION_ALGORITHM_LZ4, "LZ4"); ret += unittest_rrdpush_compression(COMPRESSION_ALGORITHM_BROTLI, "BROTLI"); ret += unittest_rrdpush_compression(COMPRESSION_ALGORITHM_GZIP, "GZIP"); ret += unittest_rrdpush_compression_speed(COMPRESSION_ALGORITHM_ZSTD, "ZSTD"); ret += unittest_rrdpush_compression_speed(COMPRESSION_ALGORITHM_LZ4, "LZ4"); ret += unittest_rrdpush_compression_speed(COMPRESSION_ALGORITHM_BROTLI, "BROTLI"); ret += unittest_rrdpush_compression_speed(COMPRESSION_ALGORITHM_GZIP, "GZIP"); return ret; }