// SPDX-License-Identifier: GPL-3.0-or-later #include "rrdpush.h" #include "web/server/h2o/http_server.h" extern struct config stream_config; void receiver_state_free(struct receiver_state *rpt) { freez(rpt->key); freez(rpt->hostname); freez(rpt->registry_hostname); freez(rpt->machine_guid); freez(rpt->os); freez(rpt->timezone); freez(rpt->abbrev_timezone); freez(rpt->tags); freez(rpt->client_ip); freez(rpt->client_port); freez(rpt->program_name); freez(rpt->program_version); #ifdef ENABLE_HTTPS netdata_ssl_close(&rpt->ssl); #endif if(rpt->fd != -1) { internal_error(true, "closing socket..."); close(rpt->fd); } rrdpush_decompressor_destroy(&rpt->decompressor); if(rpt->system_info) rrdhost_system_info_free(rpt->system_info); __atomic_sub_fetch(&netdata_buffers_statistics.rrdhost_receivers, sizeof(*rpt), __ATOMIC_RELAXED); freez(rpt); } #include "collectors/plugins.d/pluginsd_parser.h" // IMPORTANT: to add workers, you have to edit WORKER_PARSER_FIRST_JOB accordingly #define WORKER_RECEIVER_JOB_BYTES_READ (WORKER_PARSER_FIRST_JOB - 1) #define WORKER_RECEIVER_JOB_BYTES_UNCOMPRESSED (WORKER_PARSER_FIRST_JOB - 2) // this has to be the same at parser.h #define WORKER_RECEIVER_JOB_REPLICATION_COMPLETION (WORKER_PARSER_FIRST_JOB - 3) #if WORKER_PARSER_FIRST_JOB < 1 #error The define WORKER_PARSER_FIRST_JOB needs to be at least 1 #endif static inline int read_stream(struct receiver_state *r, char* buffer, size_t size) { if(unlikely(!size)) { internal_error(true, "%s() asked to read zero bytes", __FUNCTION__); return 0; } #ifdef ENABLE_H2O if (is_h2o_rrdpush(r)) return (int)h2o_stream_read(r->h2o_ctx, buffer, size); #endif int tries = 100; ssize_t bytes_read; do { errno = 0; #ifdef ENABLE_HTTPS if (SSL_connection(&r->ssl)) bytes_read = netdata_ssl_read(&r->ssl, buffer, size); else bytes_read = read(r->fd, buffer, size); #else bytes_read = read(r->fd, buffer, size); #endif } while(bytes_read < 0 && errno == EINTR && tries--); if((bytes_read == 0 || bytes_read == -1) && (errno == EAGAIN || errno == EWOULDBLOCK || errno == EINPROGRESS)) { netdata_log_error("STREAM: %s(): timeout while waiting for data on socket!", __FUNCTION__); bytes_read = -3; } else if (bytes_read == 0) { netdata_log_error("STREAM: %s(): EOF while reading data from socket!", __FUNCTION__); bytes_read = -1; } else if (bytes_read < 0) { netdata_log_error("STREAM: %s() failed to read from socket!", __FUNCTION__); bytes_read = -2; } return (int)bytes_read; } static inline STREAM_HANDSHAKE read_stream_error_to_reason(int code) { if(code > 0) return 0; switch(code) { case 0: // asked to read zero bytes return STREAM_HANDSHAKE_DISCONNECT_NOT_SUFFICIENT_READ_BUFFER; case -1: // EOF return STREAM_HANDSHAKE_DISCONNECT_SOCKET_EOF; case -2: // failed to read return STREAM_HANDSHAKE_DISCONNECT_SOCKET_READ_FAILED; case -3: // timeout return STREAM_HANDSHAKE_DISCONNECT_SOCKET_READ_TIMEOUT; default: // anything else return STREAM_HANDSHAKE_DISCONNECT_UNKNOWN_SOCKET_READ_ERROR; } } static inline bool receiver_read_uncompressed(struct receiver_state *r, STREAM_HANDSHAKE *reason) { #ifdef NETDATA_INTERNAL_CHECKS if(r->reader.read_buffer[r->reader.read_len] != '\0') fatal("%s(): read_buffer does not start with zero", __FUNCTION__ ); #endif int bytes_read = read_stream(r, r->reader.read_buffer + r->reader.read_len, sizeof(r->reader.read_buffer) - r->reader.read_len - 1); if(unlikely(bytes_read <= 0)) { *reason = read_stream_error_to_reason(bytes_read); return false; } worker_set_metric(WORKER_RECEIVER_JOB_BYTES_READ, (NETDATA_DOUBLE)bytes_read); worker_set_metric(WORKER_RECEIVER_JOB_BYTES_UNCOMPRESSED, (NETDATA_DOUBLE)bytes_read); r->reader.read_len += bytes_read; r->reader.read_buffer[r->reader.read_len] = '\0'; return true; } static inline bool receiver_read_compressed(struct receiver_state *r, STREAM_HANDSHAKE *reason) { internal_fatal(r->reader.read_buffer[r->reader.read_len] != '\0', "%s: read_buffer does not start with zero #2", __FUNCTION__ ); // first use any available uncompressed data if (likely(rrdpush_decompressed_bytes_in_buffer(&r->decompressor))) { size_t available = sizeof(r->reader.read_buffer) - r->reader.read_len - 1; if (likely(available)) { size_t len = rrdpush_decompressor_get(&r->decompressor, r->reader.read_buffer + r->reader.read_len, available); if (unlikely(!len)) { internal_error(true, "decompressor returned zero length #1"); return false; } r->reader.read_len += (int)len; r->reader.read_buffer[r->reader.read_len] = '\0'; } else internal_fatal(true, "The line to read is too big! Already have %zd bytes in read_buffer.", r->reader.read_len); return true; } // no decompressed data available // read the compression signature of the next block if(unlikely(r->reader.read_len + r->decompressor.signature_size > sizeof(r->reader.read_buffer) - 1)) { internal_error(true, "The last incomplete line does not leave enough room for the next compression header! " "Already have %zd bytes in read_buffer.", r->reader.read_len); return false; } // read the compression signature from the stream // we have to do a loop here, because read_stream() may return less than the data we need int bytes_read = 0; do { int ret = read_stream(r, r->reader.read_buffer + r->reader.read_len + bytes_read, r->decompressor.signature_size - bytes_read); if (unlikely(ret <= 0)) { *reason = read_stream_error_to_reason(ret); return false; } bytes_read += ret; } while(unlikely(bytes_read < (int)r->decompressor.signature_size)); worker_set_metric(WORKER_RECEIVER_JOB_BYTES_READ, (NETDATA_DOUBLE)bytes_read); if(unlikely(bytes_read != (int)r->decompressor.signature_size)) fatal("read %d bytes, but expected compression signature of size %zu", bytes_read, r->decompressor.signature_size); size_t compressed_message_size = rrdpush_decompressor_start(&r->decompressor, r->reader.read_buffer + r->reader.read_len, bytes_read); if (unlikely(!compressed_message_size)) { internal_error(true, "multiplexed uncompressed data in compressed stream!"); r->reader.read_len += bytes_read; r->reader.read_buffer[r->reader.read_len] = '\0'; return true; } if(unlikely(compressed_message_size > COMPRESSION_MAX_MSG_SIZE)) { netdata_log_error("received a compressed message of %zu bytes, which is bigger than the max compressed message size supported of %zu. Ignoring message.", compressed_message_size, (size_t)COMPRESSION_MAX_MSG_SIZE); return false; } // delete compression header from our read buffer r->reader.read_buffer[r->reader.read_len] = '\0'; // Read the entire compressed block of compressed data char compressed[compressed_message_size]; size_t compressed_bytes_read = 0; do { size_t start = compressed_bytes_read; size_t remaining = compressed_message_size - start; int last_read_bytes = read_stream(r, &compressed[start], remaining); if (unlikely(last_read_bytes <= 0)) { *reason = read_stream_error_to_reason(last_read_bytes); return false; } compressed_bytes_read += last_read_bytes; } while(unlikely(compressed_message_size > compressed_bytes_read)); worker_set_metric(WORKER_RECEIVER_JOB_BYTES_READ, (NETDATA_DOUBLE)compressed_bytes_read); // decompress the compressed block size_t bytes_to_parse = rrdpush_decompress(&r->decompressor, compressed, compressed_bytes_read); if (unlikely(!bytes_to_parse)) { internal_error(true, "no bytes to parse."); return false; } worker_set_metric(WORKER_RECEIVER_JOB_BYTES_UNCOMPRESSED, (NETDATA_DOUBLE)bytes_to_parse); // fill read buffer with decompressed data size_t len = (int) rrdpush_decompressor_get(&r->decompressor, r->reader.read_buffer + r->reader.read_len, sizeof(r->reader.read_buffer) - r->reader.read_len - 1); if (unlikely(!len)) { internal_error(true, "decompressor returned zero length #2"); return false; } r->reader.read_len += (int)len; r->reader.read_buffer[r->reader.read_len] = '\0'; return true; } bool plugin_is_enabled(struct plugind *cd); static void receiver_set_exit_reason(struct receiver_state *rpt, STREAM_HANDSHAKE reason, bool force) { if(force || !rpt->exit.reason) rpt->exit.reason = reason; } static inline bool receiver_should_stop(struct receiver_state *rpt) { static __thread size_t counter = 0; if(unlikely(rpt->exit.shutdown)) { receiver_set_exit_reason(rpt, STREAM_HANDSHAKE_DISCONNECT_SHUTDOWN, false); return true; } if(unlikely(!service_running(SERVICE_STREAMING))) { receiver_set_exit_reason(rpt, STREAM_HANDSHAKE_DISCONNECT_NETDATA_EXIT, false); return true; } if(unlikely((counter++ % 1000) == 0)) { // check every 1000 lines read netdata_thread_testcancel(); rpt->last_msg_t = now_monotonic_sec(); } return false; } static size_t streaming_parser(struct receiver_state *rpt, struct plugind *cd, int fd, void *ssl) { size_t result = 0; PARSER *parser = NULL; { PARSER_USER_OBJECT user = { .enabled = plugin_is_enabled(cd), .host = rpt->host, .opaque = rpt, .cd = cd, .trust_durations = 1, .capabilities = rpt->capabilities, }; parser = parser_init(&user, NULL, NULL, fd, PARSER_INPUT_SPLIT, ssl); } #ifdef ENABLE_H2O parser->h2o_ctx = rpt->h2o_ctx; #endif pluginsd_keywords_init(parser, PARSER_INIT_STREAMING); rrd_collector_started(); // this keeps the parser with its current value // so, parser needs to be allocated before pushing it netdata_thread_cleanup_push(pluginsd_process_thread_cleanup, parser); { bool compressed_connection = rrdpush_decompression_initialize(rpt); buffered_reader_init(&rpt->reader); #ifdef NETDATA_LOG_STREAM_RECEIVE { char filename[FILENAME_MAX + 1]; snprintfz(filename, FILENAME_MAX, "/tmp/stream-receiver-%s.txt", rpt->host ? rrdhost_hostname( rpt->host) : "unknown" ); parser->user.stream_log_fp = fopen(filename, "w"); parser->user.stream_log_repertoire = PARSER_REP_METADATA; } #endif CLEAN_BUFFER *buffer = buffer_create(sizeof(rpt->reader.read_buffer), NULL); ND_LOG_STACK lgs[] = { ND_LOG_FIELD_CB(NDF_REQUEST, line_splitter_reconstruct_line, &parser->line), ND_LOG_FIELD_CB(NDF_NIDL_NODE, parser_reconstruct_node, parser), ND_LOG_FIELD_CB(NDF_NIDL_INSTANCE, parser_reconstruct_instance, parser), ND_LOG_FIELD_CB(NDF_NIDL_CONTEXT, parser_reconstruct_context, parser), ND_LOG_FIELD_END(), }; ND_LOG_STACK_PUSH(lgs); while(!receiver_should_stop(rpt)) { if(!buffered_reader_next_line(&rpt->reader, buffer)) { STREAM_HANDSHAKE reason = STREAM_HANDSHAKE_DISCONNECT_UNKNOWN_SOCKET_READ_ERROR; bool have_new_data = compressed_connection ? receiver_read_compressed(rpt, &reason) : receiver_read_uncompressed(rpt, &reason); if(unlikely(!have_new_data)) { receiver_set_exit_reason(rpt, reason, false); break; } continue; } if(unlikely(parser_action(parser, buffer->buffer))) { receiver_set_exit_reason(rpt, STREAM_HANDSHAKE_DISCONNECT_PARSER_FAILED, false); break; } buffer->len = 0; buffer->buffer[0] = '\0'; } result = parser->user.data_collections_count; } // free parser with the pop function netdata_thread_cleanup_pop(1); return result; } static void rrdpush_receiver_replication_reset(RRDHOST *host) { RRDSET *st; rrdset_foreach_read(st, host) { rrdset_flag_clear(st, RRDSET_FLAG_RECEIVER_REPLICATION_IN_PROGRESS); rrdset_flag_set(st, RRDSET_FLAG_RECEIVER_REPLICATION_FINISHED); } rrdset_foreach_done(st); rrdhost_receiver_replicating_charts_zero(host); } static bool rrdhost_set_receiver(RRDHOST *host, struct receiver_state *rpt) { bool signal_rrdcontext = false; bool set_this = false; netdata_mutex_lock(&host->receiver_lock); if (!host->receiver) { rrdhost_flag_clear(host, RRDHOST_FLAG_ORPHAN); host->rrdpush_receiver_connection_counter++; __atomic_add_fetch(&localhost->connected_children_count, 1, __ATOMIC_RELAXED); host->receiver = rpt; rpt->host = host; host->child_connect_time = now_realtime_sec(); host->child_disconnected_time = 0; host->child_last_chart_command = 0; host->trigger_chart_obsoletion_check = 1; if (rpt->config.health_enabled != CONFIG_BOOLEAN_NO) { if (rpt->config.alarms_delay > 0) { host->health.health_delay_up_to = now_realtime_sec() + rpt->config.alarms_delay; nd_log(NDLS_DAEMON, NDLP_DEBUG, "[%s]: Postponing health checks for %" PRId64 " seconds, because it was just connected.", rrdhost_hostname(host), (int64_t) rpt->config.alarms_delay); } } host->health_log.health_log_history = rpt->config.alarms_history; // this is a test // if(rpt->hops <= host->sender->hops) // rrdpush_sender_thread_stop(host, "HOPS MISMATCH", false); signal_rrdcontext = true; rrdpush_receiver_replication_reset(host); rrdhost_flag_clear(rpt->host, RRDHOST_FLAG_RRDPUSH_RECEIVER_DISCONNECTED); aclk_queue_node_info(rpt->host, true); rrdpush_reset_destinations_postpone_time(host); set_this = true; } netdata_mutex_unlock(&host->receiver_lock); if(signal_rrdcontext) rrdcontext_host_child_connected(host); return set_this; } static void rrdhost_clear_receiver(struct receiver_state *rpt) { bool signal_rrdcontext = false; RRDHOST *host = rpt->host; if(host) { netdata_mutex_lock(&host->receiver_lock); // Make sure that we detach this thread and don't kill a freshly arriving receiver if(host->receiver == rpt) { __atomic_sub_fetch(&localhost->connected_children_count, 1, __ATOMIC_RELAXED); rrdhost_flag_set(rpt->host, RRDHOST_FLAG_RRDPUSH_RECEIVER_DISCONNECTED); host->trigger_chart_obsoletion_check = 0; host->child_connect_time = 0; host->child_disconnected_time = now_realtime_sec(); if (rpt->config.health_enabled == CONFIG_BOOLEAN_AUTO) host->health.health_enabled = 0; rrdpush_sender_thread_stop(host, STREAM_HANDSHAKE_DISCONNECT_RECEIVER_LEFT, false); signal_rrdcontext = true; rrdpush_receiver_replication_reset(host); rrdhost_flag_set(host, RRDHOST_FLAG_ORPHAN); host->receiver = NULL; host->rrdpush_last_receiver_exit_reason = rpt->exit.reason; } netdata_mutex_unlock(&host->receiver_lock); if(signal_rrdcontext) rrdcontext_host_child_disconnected(host); rrdpush_reset_destinations_postpone_time(host); } } bool stop_streaming_receiver(RRDHOST *host, STREAM_HANDSHAKE reason) { bool ret = false; netdata_mutex_lock(&host->receiver_lock); if(host->receiver) { if(!host->receiver->exit.shutdown) { host->receiver->exit.shutdown = true; receiver_set_exit_reason(host->receiver, reason, true); shutdown(host->receiver->fd, SHUT_RDWR); } netdata_thread_cancel(host->receiver->thread); } int count = 2000; while (host->receiver && count-- > 0) { netdata_mutex_unlock(&host->receiver_lock); // let the lock for the receiver thread to exit sleep_usec(1 * USEC_PER_MS); netdata_mutex_lock(&host->receiver_lock); } if(host->receiver) netdata_log_error("STREAM '%s' [receive from [%s]:%s]: " "thread %d takes too long to stop, giving up..." , rrdhost_hostname(host) , host->receiver->client_ip, host->receiver->client_port , host->receiver->tid); else ret = true; netdata_mutex_unlock(&host->receiver_lock); return ret; } static void rrdpush_send_error_on_taken_over_connection(struct receiver_state *rpt, const char *msg) { (void) send_timeout( #ifdef ENABLE_HTTPS &rpt->ssl, #endif rpt->fd, (char *)msg, strlen(msg), 0, 5); } void rrdpush_receive_log_status(struct receiver_state *rpt, const char *msg, const char *status, ND_LOG_FIELD_PRIORITY priority) { // this function may be called BEFORE we spawn the receiver thread // so, we need to add the fields again (it does not harm) ND_LOG_STACK lgs[] = { ND_LOG_FIELD_TXT(NDF_SRC_IP, rpt->client_ip), ND_LOG_FIELD_TXT(NDF_SRC_PORT, rpt->client_port), ND_LOG_FIELD_TXT(NDF_NIDL_NODE, (rpt->hostname && *rpt->hostname) ? rpt->hostname : ""), ND_LOG_FIELD_TXT(NDF_RESPONSE_CODE, status), ND_LOG_FIELD_UUID(NDF_MESSAGE_ID, &streaming_from_child_msgid), ND_LOG_FIELD_END(), }; ND_LOG_STACK_PUSH(lgs); nd_log(NDLS_ACCESS, priority, "api_key:'%s' machine_guid:'%s' msg:'%s'" , (rpt->key && *rpt->key)? rpt->key : "" , (rpt->machine_guid && *rpt->machine_guid) ? rpt->machine_guid : "" , msg); nd_log(NDLS_DAEMON, priority, "STREAM_RECEIVER for '%s': %s %s%s%s" , (rpt->hostname && *rpt->hostname) ? rpt->hostname : "" , msg , rpt->exit.reason != STREAM_HANDSHAKE_NEVER?" (":"" , stream_handshake_error_to_string(rpt->exit.reason) , rpt->exit.reason != STREAM_HANDSHAKE_NEVER?")":"" ); } static void rrdpush_receive(struct receiver_state *rpt) { rpt->config.mode = default_rrd_memory_mode; rpt->config.history = default_rrd_history_entries; rpt->config.health_enabled = (int)default_health_enabled; rpt->config.alarms_delay = 60; rpt->config.alarms_history = HEALTH_LOG_DEFAULT_HISTORY; rpt->config.rrdpush_enabled = (int)default_rrdpush_enabled; rpt->config.rrdpush_destination = default_rrdpush_destination; rpt->config.rrdpush_api_key = default_rrdpush_api_key; rpt->config.rrdpush_send_charts_matching = default_rrdpush_send_charts_matching; rpt->config.rrdpush_enable_replication = default_rrdpush_enable_replication; rpt->config.rrdpush_seconds_to_replicate = default_rrdpush_seconds_to_replicate; rpt->config.rrdpush_replication_step = default_rrdpush_replication_step; rpt->config.update_every = (int)appconfig_get_number(&stream_config, rpt->machine_guid, "update every", rpt->config.update_every); if(rpt->config.update_every < 0) rpt->config.update_every = 1; rpt->config.history = (int)appconfig_get_number(&stream_config, rpt->key, "default history", rpt->config.history); rpt->config.history = (int)appconfig_get_number(&stream_config, rpt->machine_guid, "history", rpt->config.history); if(rpt->config.history < 5) rpt->config.history = 5; rpt->config.mode = rrd_memory_mode_id(appconfig_get(&stream_config, rpt->key, "default memory mode", rrd_memory_mode_name(rpt->config.mode))); rpt->config.mode = rrd_memory_mode_id(appconfig_get(&stream_config, rpt->machine_guid, "memory mode", rrd_memory_mode_name(rpt->config.mode))); if (unlikely(rpt->config.mode == RRD_MEMORY_MODE_DBENGINE && !dbengine_enabled)) { netdata_log_error("STREAM '%s' [receive from %s:%s]: " "dbengine is not enabled, falling back to default." , rpt->hostname , rpt->client_ip, rpt->client_port ); rpt->config.mode = default_rrd_memory_mode; } rpt->config.health_enabled = appconfig_get_boolean_ondemand(&stream_config, rpt->key, "health enabled by default", rpt->config.health_enabled); rpt->config.health_enabled = appconfig_get_boolean_ondemand(&stream_config, rpt->machine_guid, "health enabled", rpt->config.health_enabled); rpt->config.alarms_delay = appconfig_get_number(&stream_config, rpt->key, "default postpone alarms on connect seconds", rpt->config.alarms_delay); rpt->config.alarms_delay = appconfig_get_number(&stream_config, rpt->machine_guid, "postpone alarms on connect seconds", rpt->config.alarms_delay); rpt->config.alarms_history = appconfig_get_number(&stream_config, rpt->key, "default health log history", rpt->config.alarms_history); rpt->config.alarms_history = appconfig_get_number(&stream_config, rpt->machine_guid, "health log history", rpt->config.alarms_history); rpt->config.rrdpush_enabled = appconfig_get_boolean(&stream_config, rpt->key, "default proxy enabled", rpt->config.rrdpush_enabled); rpt->config.rrdpush_enabled = appconfig_get_boolean(&stream_config, rpt->machine_guid, "proxy enabled", rpt->config.rrdpush_enabled); rpt->config.rrdpush_destination = appconfig_get(&stream_config, rpt->key, "default proxy destination", rpt->config.rrdpush_destination); rpt->config.rrdpush_destination = appconfig_get(&stream_config, rpt->machine_guid, "proxy destination", rpt->config.rrdpush_destination); rpt->config.rrdpush_api_key = appconfig_get(&stream_config, rpt->key, "default proxy api key", rpt->config.rrdpush_api_key); rpt->config.rrdpush_api_key = appconfig_get(&stream_config, rpt->machine_guid, "proxy api key", rpt->config.rrdpush_api_key); rpt->config.rrdpush_send_charts_matching = appconfig_get(&stream_config, rpt->key, "default proxy send charts matching", rpt->config.rrdpush_send_charts_matching); rpt->config.rrdpush_send_charts_matching = appconfig_get(&stream_config, rpt->machine_guid, "proxy send charts matching", rpt->config.rrdpush_send_charts_matching); rpt->config.rrdpush_enable_replication = appconfig_get_boolean(&stream_config, rpt->key, "enable replication", rpt->config.rrdpush_enable_replication); rpt->config.rrdpush_enable_replication = appconfig_get_boolean(&stream_config, rpt->machine_guid, "enable replication", rpt->config.rrdpush_enable_replication); rpt->config.rrdpush_seconds_to_replicate = appconfig_get_number(&stream_config, rpt->key, "seconds to replicate", rpt->config.rrdpush_seconds_to_replicate); rpt->config.rrdpush_seconds_to_replicate = appconfig_get_number(&stream_config, rpt->machine_guid, "seconds to replicate", rpt->config.rrdpush_seconds_to_replicate); rpt->config.rrdpush_replication_step = appconfig_get_number(&stream_config, rpt->key, "seconds per replication step", rpt->config.rrdpush_replication_step); rpt->config.rrdpush_replication_step = appconfig_get_number(&stream_config, rpt->machine_guid, "seconds per replication step", rpt->config.rrdpush_replication_step); rpt->config.rrdpush_compression = default_rrdpush_compression_enabled; rpt->config.rrdpush_compression = appconfig_get_boolean(&stream_config, rpt->key, "enable compression", rpt->config.rrdpush_compression); rpt->config.rrdpush_compression = appconfig_get_boolean(&stream_config, rpt->machine_guid, "enable compression", rpt->config.rrdpush_compression); bool is_ephemeral = false; is_ephemeral = appconfig_get_boolean(&stream_config, rpt->key, "is ephemeral node", CONFIG_BOOLEAN_NO); is_ephemeral = appconfig_get_boolean(&stream_config, rpt->machine_guid, "is ephemeral node", is_ephemeral); if(rpt->config.rrdpush_compression) { char *order = appconfig_get(&stream_config, rpt->key, "compression algorithms order", RRDPUSH_COMPRESSION_ALGORITHMS_ORDER); order = appconfig_get(&stream_config, rpt->machine_guid, "compression algorithms order", order); rrdpush_parse_compression_order(rpt, order); } (void)appconfig_set_default(&stream_config, rpt->machine_guid, "host tags", (rpt->tags)?rpt->tags:""); // find the host for this receiver { // this will also update the host with our system_info RRDHOST *host = rrdhost_find_or_create( rpt->hostname, rpt->registry_hostname, rpt->machine_guid, rpt->os, rpt->timezone, rpt->abbrev_timezone, rpt->utc_offset, rpt->tags, rpt->program_name, rpt->program_version, rpt->config.update_every, rpt->config.history, rpt->config.mode, (unsigned int)(rpt->config.health_enabled != CONFIG_BOOLEAN_NO), (unsigned int)(rpt->config.rrdpush_enabled && rpt->config.rrdpush_destination && *rpt->config.rrdpush_destination && rpt->config.rrdpush_api_key && *rpt->config.rrdpush_api_key), rpt->config.rrdpush_destination, rpt->config.rrdpush_api_key, rpt->config.rrdpush_send_charts_matching, rpt->config.rrdpush_enable_replication, rpt->config.rrdpush_seconds_to_replicate, rpt->config.rrdpush_replication_step, rpt->system_info, 0); if(!host) { rrdpush_receive_log_status( rpt,"failed to find/create host structure, rejecting connection", RRDPUSH_STATUS_INTERNAL_SERVER_ERROR, NDLP_ERR); rrdpush_send_error_on_taken_over_connection(rpt, START_STREAMING_ERROR_INTERNAL_ERROR); goto cleanup; } if (unlikely(rrdhost_flag_check(host, RRDHOST_FLAG_PENDING_CONTEXT_LOAD))) { rrdpush_receive_log_status( rpt, "host is initializing, retry later", RRDPUSH_STATUS_INITIALIZATION_IN_PROGRESS, NDLP_NOTICE); rrdpush_send_error_on_taken_over_connection(rpt, START_STREAMING_ERROR_INITIALIZATION); goto cleanup; } // system_info has been consumed by the host structure rpt->system_info = NULL; if(!rrdhost_set_receiver(host, rpt)) { rrdpush_receive_log_status( rpt, "host is already served by another receiver", RRDPUSH_STATUS_DUPLICATE_RECEIVER, NDLP_INFO); rrdpush_send_error_on_taken_over_connection(rpt, START_STREAMING_ERROR_ALREADY_STREAMING); goto cleanup; } } #ifdef NETDATA_INTERNAL_CHECKS netdata_log_info("STREAM '%s' [receive from [%s]:%s]: " "client willing to stream metrics for host '%s' with machine_guid '%s': " "update every = %d, history = %d, memory mode = %s, health %s,%s tags '%s'" , rpt->hostname , rpt->client_ip , rpt->client_port , rrdhost_hostname(rpt->host) , rpt->host->machine_guid , rpt->host->rrd_update_every , rpt->host->rrd_history_entries , rrd_memory_mode_name(rpt->host->rrd_memory_mode) , (rpt->config.health_enabled == CONFIG_BOOLEAN_NO)?"disabled":((rpt->config.health_enabled == CONFIG_BOOLEAN_YES)?"enabled":"auto") #ifdef ENABLE_HTTPS , (rpt->ssl.conn != NULL) ? " SSL," : "" #else , "" #endif , rrdhost_tags(rpt->host) ); #endif // NETDATA_INTERNAL_CHECKS struct plugind cd = { .update_every = default_rrd_update_every, .unsafe = { .spinlock = NETDATA_SPINLOCK_INITIALIZER, .running = true, .enabled = true, }, .started_t = now_realtime_sec(), }; // put the client IP and port into the buffers used by plugins.d snprintfz(cd.id, CONFIG_MAX_NAME, "%s:%s", rpt->client_ip, rpt->client_port); snprintfz(cd.filename, FILENAME_MAX, "%s:%s", rpt->client_ip, rpt->client_port); snprintfz(cd.fullfilename, FILENAME_MAX, "%s:%s", rpt->client_ip, rpt->client_port); snprintfz(cd.cmd, PLUGINSD_CMD_MAX, "%s:%s", rpt->client_ip, rpt->client_port); rrdpush_select_receiver_compression_algorithm(rpt); { // netdata_log_info("STREAM %s [receive from [%s]:%s]: initializing communication...", rrdhost_hostname(rpt->host), rpt->client_ip, rpt->client_port); char initial_response[HTTP_HEADER_SIZE]; if (stream_has_capability(rpt, STREAM_CAP_VCAPS)) { log_receiver_capabilities(rpt); sprintf(initial_response, "%s%u", START_STREAMING_PROMPT_VN, rpt->capabilities); } else if (stream_has_capability(rpt, STREAM_CAP_VN)) { log_receiver_capabilities(rpt); sprintf(initial_response, "%s%d", START_STREAMING_PROMPT_VN, stream_capabilities_to_vn(rpt->capabilities)); } else if (stream_has_capability(rpt, STREAM_CAP_V2)) { log_receiver_capabilities(rpt); sprintf(initial_response, "%s", START_STREAMING_PROMPT_V2); } else { // stream_has_capability(rpt, STREAM_CAP_V1) log_receiver_capabilities(rpt); sprintf(initial_response, "%s", START_STREAMING_PROMPT_V1); } netdata_log_debug(D_STREAM, "Initial response to %s: %s", rpt->client_ip, initial_response); #ifdef ENABLE_H2O if (is_h2o_rrdpush(rpt)) { h2o_stream_write(rpt->h2o_ctx, initial_response, strlen(initial_response)); } else { #endif ssize_t bytes_sent = send_timeout( #ifdef ENABLE_HTTPS &rpt->ssl, #endif rpt->fd, initial_response, strlen(initial_response), 0, 60); if(bytes_sent != (ssize_t)strlen(initial_response)) { internal_error(true, "Cannot send response, got %zd bytes, expecting %zu bytes", bytes_sent, strlen(initial_response)); rrdpush_receive_log_status( rpt, "cannot reply back, dropping connection", RRDPUSH_STATUS_CANT_REPLY, NDLP_ERR); goto cleanup; } #ifdef ENABLE_H2O } #endif } #ifdef ENABLE_H2O unless_h2o_rrdpush(rpt) #endif { // remove the non-blocking flag from the socket if(sock_delnonblock(rpt->fd) < 0) netdata_log_error("STREAM '%s' [receive from [%s]:%s]: " "cannot remove the non-blocking flag from socket %d" , rrdhost_hostname(rpt->host) , rpt->client_ip, rpt->client_port , rpt->fd); struct timeval timeout; timeout.tv_sec = 600; timeout.tv_usec = 0; if (unlikely(setsockopt(rpt->fd, SOL_SOCKET, SO_RCVTIMEO, &timeout, sizeof timeout) != 0)) netdata_log_error("STREAM '%s' [receive from [%s]:%s]: " "cannot set timeout for socket %d" , rrdhost_hostname(rpt->host) , rpt->client_ip, rpt->client_port , rpt->fd); } rrdpush_receive_log_status( rpt, "connected and ready to receive data", RRDPUSH_STATUS_CONNECTED, NDLP_INFO); #ifdef ENABLE_ACLK // in case we have cloud connection we inform cloud // new child connected if (netdata_cloud_enabled) aclk_host_state_update(rpt->host, 1, 1); #endif rrdhost_set_is_parent_label(); if (is_ephemeral) rrdhost_option_set(rpt->host, RRDHOST_OPTION_EPHEMERAL_HOST); // let it reconnect to parent immediately rrdpush_reset_destinations_postpone_time(rpt->host); size_t count = streaming_parser(rpt, &cd, rpt->fd, #ifdef ENABLE_HTTPS (rpt->ssl.conn) ? &rpt->ssl : NULL #else NULL #endif ); receiver_set_exit_reason(rpt, STREAM_HANDSHAKE_DISCONNECT_PARSER_EXIT, false); { char msg[100 + 1]; snprintfz(msg, sizeof(msg) - 1, "disconnected (completed %zu updates)", count); rrdpush_receive_log_status( rpt, msg, RRDPUSH_STATUS_DISCONNECTED, NDLP_WARNING); } #ifdef ENABLE_ACLK // in case we have cloud connection we inform cloud // a child disconnected if (netdata_cloud_enabled) aclk_host_state_update(rpt->host, 0, 1); #endif cleanup: ; } static void rrdpush_receiver_thread_cleanup(void *ptr) { struct receiver_state *rpt = (struct receiver_state *) ptr; worker_unregister(); rrdhost_clear_receiver(rpt); netdata_log_info("STREAM '%s' [receive from [%s]:%s]: " "receive thread ended (task id %d)" , rpt->hostname ? rpt->hostname : "-" , rpt->client_ip ? rpt->client_ip : "-", rpt->client_port ? rpt->client_port : "-" , gettid()); receiver_state_free(rpt); rrdhost_set_is_parent_label(); } static bool stream_receiver_log_capabilities(BUFFER *wb, void *ptr) { struct receiver_state *rpt = ptr; if(!rpt) return false; stream_capabilities_to_string(wb, rpt->capabilities); return true; } static bool stream_receiver_log_transport(BUFFER *wb, void *ptr) { struct receiver_state *rpt = ptr; if(!rpt) return false; #ifdef ENABLE_HTTPS buffer_strcat(wb, SSL_connection(&rpt->ssl) ? "https" : "http"); #else buffer_strcat(wb, "http"); #endif return true; } void *rrdpush_receiver_thread(void *ptr) { netdata_thread_cleanup_push(rrdpush_receiver_thread_cleanup, ptr); { worker_register("STREAMRCV"); worker_register_job_custom_metric(WORKER_RECEIVER_JOB_BYTES_READ, "received bytes", "bytes/s", WORKER_METRIC_INCREMENT); worker_register_job_custom_metric(WORKER_RECEIVER_JOB_BYTES_UNCOMPRESSED, "uncompressed bytes", "bytes/s", WORKER_METRIC_INCREMENT); worker_register_job_custom_metric(WORKER_RECEIVER_JOB_REPLICATION_COMPLETION, "replication completion", "%", WORKER_METRIC_ABSOLUTE); struct receiver_state *rpt = (struct receiver_state *) ptr; rpt->tid = gettid(); ND_LOG_STACK lgs[] = { ND_LOG_FIELD_TXT(NDF_SRC_IP, rpt->client_ip), ND_LOG_FIELD_TXT(NDF_SRC_PORT, rpt->client_port), ND_LOG_FIELD_TXT(NDF_NIDL_NODE, rpt->hostname), ND_LOG_FIELD_CB(NDF_SRC_TRANSPORT, stream_receiver_log_transport, rpt), ND_LOG_FIELD_CB(NDF_SRC_CAPABILITIES, stream_receiver_log_capabilities, rpt), ND_LOG_FIELD_END(), }; ND_LOG_STACK_PUSH(lgs); netdata_log_info("STREAM %s [%s]:%s: receive thread started", rpt->hostname, rpt->client_ip , rpt->client_port); rrdpush_receive(rpt); } netdata_thread_cleanup_pop(1); return NULL; }