/* Copyright 2014 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ // Brotli bit stream functions to support the low level format. There are no // compression algorithms here, just the right ordering of bits to match the // specs. #include "./brotli_bit_stream.h" #include #include #include #include #include #include "./bit_cost.h" #include "./context.h" #include "./entropy_encode.h" #include "./entropy_encode_static.h" #include "./fast_log.h" #include "./prefix.h" #include "./write_bits.h" namespace brotli { namespace { // nibblesbits represents the 2 bits to encode MNIBBLES (0-3) // REQUIRES: length > 0 // REQUIRES: length <= (1 << 24) void EncodeMlen(size_t length, uint64_t* bits, size_t* numbits, uint64_t* nibblesbits) { assert(length > 0); assert(length <= (1 << 24)); length--; // MLEN - 1 is encoded size_t lg = length == 0 ? 1 : Log2FloorNonZero( static_cast(length)) + 1; assert(lg <= 24); size_t mnibbles = (lg < 16 ? 16 : (lg + 3)) / 4; *nibblesbits = mnibbles - 4; *numbits = mnibbles * 4; *bits = length; } } // namespace void StoreVarLenUint8(size_t n, size_t* storage_ix, uint8_t* storage) { if (n == 0) { WriteBits(1, 0, storage_ix, storage); } else { WriteBits(1, 1, storage_ix, storage); size_t nbits = Log2FloorNonZero(n); WriteBits(3, nbits, storage_ix, storage); WriteBits(nbits, n - (1 << nbits), storage_ix, storage); } } void StoreCompressedMetaBlockHeader(bool final_block, size_t length, size_t* storage_ix, uint8_t* storage) { // Write ISLAST bit. WriteBits(1, final_block, storage_ix, storage); // Write ISEMPTY bit. if (final_block) { WriteBits(1, 0, storage_ix, storage); } uint64_t lenbits; size_t nlenbits; uint64_t nibblesbits; EncodeMlen(length, &lenbits, &nlenbits, &nibblesbits); WriteBits(2, nibblesbits, storage_ix, storage); WriteBits(nlenbits, lenbits, storage_ix, storage); if (!final_block) { // Write ISUNCOMPRESSED bit. WriteBits(1, 0, storage_ix, storage); } } void StoreUncompressedMetaBlockHeader(size_t length, size_t* storage_ix, uint8_t* storage) { // Write ISLAST bit. Uncompressed block cannot be the last one, so set to 0. WriteBits(1, 0, storage_ix, storage); uint64_t lenbits; size_t nlenbits; uint64_t nibblesbits; EncodeMlen(length, &lenbits, &nlenbits, &nibblesbits); WriteBits(2, nibblesbits, storage_ix, storage); WriteBits(nlenbits, lenbits, storage_ix, storage); // Write ISUNCOMPRESSED bit. WriteBits(1, 1, storage_ix, storage); } void StoreHuffmanTreeOfHuffmanTreeToBitMask( const int num_codes, const uint8_t *code_length_bitdepth, size_t *storage_ix, uint8_t *storage) { static const uint8_t kStorageOrder[kCodeLengthCodes] = { 1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; // The bit lengths of the Huffman code over the code length alphabet // are compressed with the following static Huffman code: // Symbol Code // ------ ---- // 0 00 // 1 1110 // 2 110 // 3 01 // 4 10 // 5 1111 static const uint8_t kHuffmanBitLengthHuffmanCodeSymbols[6] = { 0, 7, 3, 2, 1, 15 }; static const uint8_t kHuffmanBitLengthHuffmanCodeBitLengths[6] = { 2, 4, 3, 2, 2, 4 }; // Throw away trailing zeros: size_t codes_to_store = kCodeLengthCodes; if (num_codes > 1) { for (; codes_to_store > 0; --codes_to_store) { if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) { break; } } } size_t skip_some = 0; // skips none. if (code_length_bitdepth[kStorageOrder[0]] == 0 && code_length_bitdepth[kStorageOrder[1]] == 0) { skip_some = 2; // skips two. if (code_length_bitdepth[kStorageOrder[2]] == 0) { skip_some = 3; // skips three. } } WriteBits(2, skip_some, storage_ix, storage); for (size_t i = skip_some; i < codes_to_store; ++i) { size_t l = code_length_bitdepth[kStorageOrder[i]]; WriteBits(kHuffmanBitLengthHuffmanCodeBitLengths[l], kHuffmanBitLengthHuffmanCodeSymbols[l], storage_ix, storage); } } void StoreHuffmanTreeToBitMask( const std::vector &huffman_tree, const std::vector &huffman_tree_extra_bits, const uint8_t *code_length_bitdepth, const std::vector &code_length_bitdepth_symbols, size_t * __restrict storage_ix, uint8_t * __restrict storage) { for (size_t i = 0; i < huffman_tree.size(); ++i) { size_t ix = huffman_tree[i]; WriteBits(code_length_bitdepth[ix], code_length_bitdepth_symbols[ix], storage_ix, storage); // Extra bits switch (ix) { case 16: WriteBits(2, huffman_tree_extra_bits[i], storage_ix, storage); break; case 17: WriteBits(3, huffman_tree_extra_bits[i], storage_ix, storage); break; } } } void StoreSimpleHuffmanTree(const uint8_t* depths, size_t symbols[4], size_t num_symbols, size_t max_bits, size_t *storage_ix, uint8_t *storage) { // value of 1 indicates a simple Huffman code WriteBits(2, 1, storage_ix, storage); WriteBits(2, num_symbols - 1, storage_ix, storage); // NSYM - 1 // Sort for (size_t i = 0; i < num_symbols; i++) { for (size_t j = i + 1; j < num_symbols; j++) { if (depths[symbols[j]] < depths[symbols[i]]) { std::swap(symbols[j], symbols[i]); } } } if (num_symbols == 2) { WriteBits(max_bits, symbols[0], storage_ix, storage); WriteBits(max_bits, symbols[1], storage_ix, storage); } else if (num_symbols == 3) { WriteBits(max_bits, symbols[0], storage_ix, storage); WriteBits(max_bits, symbols[1], storage_ix, storage); WriteBits(max_bits, symbols[2], storage_ix, storage); } else { WriteBits(max_bits, symbols[0], storage_ix, storage); WriteBits(max_bits, symbols[1], storage_ix, storage); WriteBits(max_bits, symbols[2], storage_ix, storage); WriteBits(max_bits, symbols[3], storage_ix, storage); // tree-select WriteBits(1, depths[symbols[0]] == 1 ? 1 : 0, storage_ix, storage); } } // num = alphabet size // depths = symbol depths void StoreHuffmanTree(const uint8_t* depths, size_t num, size_t *storage_ix, uint8_t *storage) { // Write the Huffman tree into the brotli-representation. std::vector huffman_tree; std::vector huffman_tree_extra_bits; // TODO: Consider allocating these from stack. huffman_tree.reserve(256); huffman_tree_extra_bits.reserve(256); WriteHuffmanTree(depths, num, &huffman_tree, &huffman_tree_extra_bits); // Calculate the statistics of the Huffman tree in brotli-representation. uint32_t huffman_tree_histogram[kCodeLengthCodes] = { 0 }; for (size_t i = 0; i < huffman_tree.size(); ++i) { ++huffman_tree_histogram[huffman_tree[i]]; } int num_codes = 0; int code = 0; for (int i = 0; i < kCodeLengthCodes; ++i) { if (huffman_tree_histogram[i]) { if (num_codes == 0) { code = i; num_codes = 1; } else if (num_codes == 1) { num_codes = 2; break; } } } // Calculate another Huffman tree to use for compressing both the // earlier Huffman tree with. // TODO: Consider allocating these from stack. uint8_t code_length_bitdepth[kCodeLengthCodes] = { 0 }; std::vector code_length_bitdepth_symbols(kCodeLengthCodes); CreateHuffmanTree(&huffman_tree_histogram[0], kCodeLengthCodes, 5, &code_length_bitdepth[0]); ConvertBitDepthsToSymbols(code_length_bitdepth, kCodeLengthCodes, &code_length_bitdepth_symbols[0]); // Now, we have all the data, let's start storing it StoreHuffmanTreeOfHuffmanTreeToBitMask(num_codes, code_length_bitdepth, storage_ix, storage); if (num_codes == 1) { code_length_bitdepth[code] = 0; } // Store the real huffman tree now. StoreHuffmanTreeToBitMask(huffman_tree, huffman_tree_extra_bits, &code_length_bitdepth[0], code_length_bitdepth_symbols, storage_ix, storage); } void BuildAndStoreHuffmanTree(const uint32_t *histogram, const size_t length, uint8_t* depth, uint16_t* bits, size_t* storage_ix, uint8_t* storage) { size_t count = 0; size_t s4[4] = { 0 }; for (size_t i = 0; i < length; i++) { if (histogram[i]) { if (count < 4) { s4[count] = i; } else if (count > 4) { break; } count++; } } size_t max_bits_counter = length - 1; size_t max_bits = 0; while (max_bits_counter) { max_bits_counter >>= 1; ++max_bits; } if (count <= 1) { WriteBits(4, 1, storage_ix, storage); WriteBits(max_bits, s4[0], storage_ix, storage); return; } CreateHuffmanTree(histogram, length, 15, depth); ConvertBitDepthsToSymbols(depth, length, bits); if (count <= 4) { StoreSimpleHuffmanTree(depth, s4, count, max_bits, storage_ix, storage); } else { StoreHuffmanTree(depth, length, storage_ix, storage); } } void BuildAndStoreHuffmanTreeFast(const uint32_t *histogram, const size_t histogram_total, const size_t max_bits, uint8_t* depth, uint16_t* bits, size_t* storage_ix, uint8_t* storage) { size_t count = 0; size_t symbols[4] = { 0 }; size_t length = 0; size_t total = histogram_total; while (total != 0) { if (histogram[length]) { if (count < 4) { symbols[count] = length; } ++count; total -= histogram[length]; } ++length; } if (count <= 1) { WriteBits(4, 1, storage_ix, storage); WriteBits(max_bits, symbols[0], storage_ix, storage); return; } const size_t max_tree_size = 2 * length + 1; HuffmanTree* const tree = static_cast(malloc(max_tree_size * sizeof(HuffmanTree))); for (uint32_t count_limit = 1; ; count_limit *= 2) { HuffmanTree* node = tree; for (size_t i = length; i != 0;) { --i; if (histogram[i]) { if (PREDICT_TRUE(histogram[i] >= count_limit)) { *node = HuffmanTree(histogram[i], -1, static_cast(i)); } else { *node = HuffmanTree(count_limit, -1, static_cast(i)); } ++node; } } const int n = static_cast(node - tree); std::sort(tree, node, SortHuffmanTree); // The nodes are: // [0, n): the sorted leaf nodes that we start with. // [n]: we add a sentinel here. // [n + 1, 2n): new parent nodes are added here, starting from // (n+1). These are naturally in ascending order. // [2n]: we add a sentinel at the end as well. // There will be (2n+1) elements at the end. const HuffmanTree sentinel(std::numeric_limits::max(), -1, -1); *node++ = sentinel; *node++ = sentinel; int i = 0; // Points to the next leaf node. int j = n + 1; // Points to the next non-leaf node. for (int k = n - 1; k > 0; --k) { int left, right; if (tree[i].total_count_ <= tree[j].total_count_) { left = i; ++i; } else { left = j; ++j; } if (tree[i].total_count_ <= tree[j].total_count_) { right = i; ++i; } else { right = j; ++j; } // The sentinel node becomes the parent node. node[-1].total_count_ = tree[left].total_count_ + tree[right].total_count_; node[-1].index_left_ = static_cast(left); node[-1].index_right_or_value_ = static_cast(right); // Add back the last sentinel node. *node++ = sentinel; } SetDepth(tree[2 * n - 1], &tree[0], depth, 0); // We need to pack the Huffman tree in 14 bits. // If this was not successful, add fake entities to the lowest values // and retry. if (PREDICT_TRUE(*std::max_element(&depth[0], &depth[length]) <= 14)) { break; } } free(tree); ConvertBitDepthsToSymbols(depth, length, bits); if (count <= 4) { // value of 1 indicates a simple Huffman code WriteBits(2, 1, storage_ix, storage); WriteBits(2, count - 1, storage_ix, storage); // NSYM - 1 // Sort for (size_t i = 0; i < count; i++) { for (size_t j = i + 1; j < count; j++) { if (depth[symbols[j]] < depth[symbols[i]]) { std::swap(symbols[j], symbols[i]); } } } if (count == 2) { WriteBits(max_bits, symbols[0], storage_ix, storage); WriteBits(max_bits, symbols[1], storage_ix, storage); } else if (count == 3) { WriteBits(max_bits, symbols[0], storage_ix, storage); WriteBits(max_bits, symbols[1], storage_ix, storage); WriteBits(max_bits, symbols[2], storage_ix, storage); } else { WriteBits(max_bits, symbols[0], storage_ix, storage); WriteBits(max_bits, symbols[1], storage_ix, storage); WriteBits(max_bits, symbols[2], storage_ix, storage); WriteBits(max_bits, symbols[3], storage_ix, storage); // tree-select WriteBits(1, depth[symbols[0]] == 1 ? 1 : 0, storage_ix, storage); } } else { // Complex Huffman Tree StoreStaticCodeLengthCode(storage_ix, storage); // Actual rle coding. uint8_t previous_value = 8; for (size_t i = 0; i < length;) { const uint8_t value = depth[i]; size_t reps = 1; for (size_t k = i + 1; k < length && depth[k] == value; ++k) { ++reps; } i += reps; if (value == 0) { WriteBits(kZeroRepsDepth[reps], kZeroRepsBits[reps], storage_ix, storage); } else { if (previous_value != value) { WriteBits(kCodeLengthDepth[value], kCodeLengthBits[value], storage_ix, storage); --reps; } if (reps < 3) { while (reps != 0) { reps--; WriteBits(kCodeLengthDepth[value], kCodeLengthBits[value], storage_ix, storage); } } else { reps -= 3; WriteBits(kNonZeroRepsDepth[reps], kNonZeroRepsBits[reps], storage_ix, storage); } previous_value = value; } } } } size_t IndexOf(const std::vector& v, uint32_t value) { size_t i = 0; for (; i < v.size(); ++i) { if (v[i] == value) return i; } return i; } void MoveToFront(std::vector* v, size_t index) { uint32_t value = (*v)[index]; for (size_t i = index; i != 0; --i) { (*v)[i] = (*v)[i - 1]; } (*v)[0] = value; } std::vector MoveToFrontTransform(const std::vector& v) { if (v.empty()) return v; uint32_t max_value = *std::max_element(v.begin(), v.end()); std::vector mtf(max_value + 1); for (uint32_t i = 0; i <= max_value; ++i) mtf[i] = i; std::vector result(v.size()); for (size_t i = 0; i < v.size(); ++i) { size_t index = IndexOf(mtf, v[i]); assert(index < mtf.size()); result[i] = static_cast(index); MoveToFront(&mtf, index); } return result; } // Finds runs of zeros in v_in and replaces them with a prefix code of the run // length plus extra bits in *v_out and *extra_bits. Non-zero values in v_in are // shifted by *max_length_prefix. Will not create prefix codes bigger than the // initial value of *max_run_length_prefix. The prefix code of run length L is // simply Log2Floor(L) and the number of extra bits is the same as the prefix // code. void RunLengthCodeZeros(const std::vector& v_in, uint32_t* max_run_length_prefix, std::vector* v_out, std::vector* extra_bits) { uint32_t max_reps = 0; for (size_t i = 0; i < v_in.size();) { for (; i < v_in.size() && v_in[i] != 0; ++i) ; uint32_t reps = 0; for (; i < v_in.size() && v_in[i] == 0; ++i) { ++reps; } max_reps = std::max(reps, max_reps); } uint32_t max_prefix = max_reps > 0 ? Log2FloorNonZero(max_reps) : 0; max_prefix = std::min(max_prefix, *max_run_length_prefix); *max_run_length_prefix = max_prefix; for (size_t i = 0; i < v_in.size();) { if (v_in[i] != 0) { v_out->push_back(v_in[i] + *max_run_length_prefix); extra_bits->push_back(0); ++i; } else { uint32_t reps = 1; for (size_t k = i + 1; k < v_in.size() && v_in[k] == 0; ++k) { ++reps; } i += reps; while (reps != 0) { if (reps < (2u << max_prefix)) { uint32_t run_length_prefix = Log2FloorNonZero(reps); v_out->push_back(run_length_prefix); extra_bits->push_back(reps - (1u << run_length_prefix)); break; } else { v_out->push_back(max_prefix); extra_bits->push_back((1u << max_prefix) - 1u); reps -= (2u << max_prefix) - 1u; } } } } } void EncodeContextMap(const std::vector& context_map, size_t num_clusters, size_t* storage_ix, uint8_t* storage) { StoreVarLenUint8(num_clusters - 1, storage_ix, storage); if (num_clusters == 1) { return; } std::vector transformed_symbols = MoveToFrontTransform(context_map); std::vector rle_symbols; std::vector extra_bits; uint32_t max_run_length_prefix = 6; RunLengthCodeZeros(transformed_symbols, &max_run_length_prefix, &rle_symbols, &extra_bits); HistogramContextMap symbol_histogram; for (size_t i = 0; i < rle_symbols.size(); ++i) { symbol_histogram.Add(rle_symbols[i]); } bool use_rle = max_run_length_prefix > 0; WriteBits(1, use_rle, storage_ix, storage); if (use_rle) { WriteBits(4, max_run_length_prefix - 1, storage_ix, storage); } EntropyCodeContextMap symbol_code; memset(symbol_code.depth_, 0, sizeof(symbol_code.depth_)); memset(symbol_code.bits_, 0, sizeof(symbol_code.bits_)); BuildAndStoreHuffmanTree(symbol_histogram.data_, num_clusters + max_run_length_prefix, symbol_code.depth_, symbol_code.bits_, storage_ix, storage); for (size_t i = 0; i < rle_symbols.size(); ++i) { WriteBits(symbol_code.depth_[rle_symbols[i]], symbol_code.bits_[rle_symbols[i]], storage_ix, storage); if (rle_symbols[i] > 0 && rle_symbols[i] <= max_run_length_prefix) { WriteBits(rle_symbols[i], extra_bits[i], storage_ix, storage); } } WriteBits(1, 1, storage_ix, storage); // use move-to-front } void StoreBlockSwitch(const BlockSplitCode& code, const size_t block_ix, size_t* storage_ix, uint8_t* storage) { if (block_ix > 0) { size_t typecode = code.type_code[block_ix]; WriteBits(code.type_depths[typecode], code.type_bits[typecode], storage_ix, storage); } size_t lencode = code.length_prefix[block_ix]; WriteBits(code.length_depths[lencode], code.length_bits[lencode], storage_ix, storage); WriteBits(code.length_nextra[block_ix], code.length_extra[block_ix], storage_ix, storage); } void BuildAndStoreBlockSplitCode(const std::vector& types, const std::vector& lengths, const size_t num_types, BlockSplitCode* code, size_t* storage_ix, uint8_t* storage) { const size_t num_blocks = types.size(); std::vector type_histo(num_types + 2); std::vector length_histo(26); size_t last_type = 1; size_t second_last_type = 0; code->type_code.resize(num_blocks); code->length_prefix.resize(num_blocks); code->length_nextra.resize(num_blocks); code->length_extra.resize(num_blocks); code->type_depths.resize(num_types + 2); code->type_bits.resize(num_types + 2); code->length_depths.resize(26); code->length_bits.resize(26); for (size_t i = 0; i < num_blocks; ++i) { size_t type = types[i]; size_t type_code = (type == last_type + 1 ? 1 : type == second_last_type ? 0 : type + 2); second_last_type = last_type; last_type = type; code->type_code[i] = static_cast(type_code); if (i != 0) ++type_histo[type_code]; GetBlockLengthPrefixCode(lengths[i], &code->length_prefix[i], &code->length_nextra[i], &code->length_extra[i]); ++length_histo[code->length_prefix[i]]; } StoreVarLenUint8(num_types - 1, storage_ix, storage); if (num_types > 1) { BuildAndStoreHuffmanTree(&type_histo[0], num_types + 2, &code->type_depths[0], &code->type_bits[0], storage_ix, storage); BuildAndStoreHuffmanTree(&length_histo[0], 26, &code->length_depths[0], &code->length_bits[0], storage_ix, storage); StoreBlockSwitch(*code, 0, storage_ix, storage); } } void StoreTrivialContextMap(size_t num_types, size_t context_bits, size_t* storage_ix, uint8_t* storage) { StoreVarLenUint8(num_types - 1, storage_ix, storage); if (num_types > 1) { size_t repeat_code = context_bits - 1u; size_t repeat_bits = (1u << repeat_code) - 1u; size_t alphabet_size = num_types + repeat_code; std::vector histogram(alphabet_size); std::vector depths(alphabet_size); std::vector bits(alphabet_size); // Write RLEMAX. WriteBits(1, 1, storage_ix, storage); WriteBits(4, repeat_code - 1, storage_ix, storage); histogram[repeat_code] = static_cast(num_types); histogram[0] = 1; for (size_t i = context_bits; i < alphabet_size; ++i) { histogram[i] = 1; } BuildAndStoreHuffmanTree(&histogram[0], alphabet_size, &depths[0], &bits[0], storage_ix, storage); for (size_t i = 0; i < num_types; ++i) { size_t code = (i == 0 ? 0 : i + context_bits - 1); WriteBits(depths[code], bits[code], storage_ix, storage); WriteBits(depths[repeat_code], bits[repeat_code], storage_ix, storage); WriteBits(repeat_code, repeat_bits, storage_ix, storage); } // Write IMTF (inverse-move-to-front) bit. WriteBits(1, 1, storage_ix, storage); } } // Manages the encoding of one block category (literal, command or distance). class BlockEncoder { public: BlockEncoder(size_t alphabet_size, size_t num_block_types, const std::vector& block_types, const std::vector& block_lengths) : alphabet_size_(alphabet_size), num_block_types_(num_block_types), block_types_(block_types), block_lengths_(block_lengths), block_ix_(0), block_len_(block_lengths.empty() ? 0 : block_lengths[0]), entropy_ix_(0) {} // Creates entropy codes of block lengths and block types and stores them // to the bit stream. void BuildAndStoreBlockSwitchEntropyCodes(size_t* storage_ix, uint8_t* storage) { BuildAndStoreBlockSplitCode( block_types_, block_lengths_, num_block_types_, &block_split_code_, storage_ix, storage); } // Creates entropy codes for all block types and stores them to the bit // stream. template void BuildAndStoreEntropyCodes( const std::vector >& histograms, size_t* storage_ix, uint8_t* storage) { depths_.resize(histograms.size() * alphabet_size_); bits_.resize(histograms.size() * alphabet_size_); for (size_t i = 0; i < histograms.size(); ++i) { size_t ix = i * alphabet_size_; BuildAndStoreHuffmanTree(&histograms[i].data_[0], alphabet_size_, &depths_[ix], &bits_[ix], storage_ix, storage); } } // Stores the next symbol with the entropy code of the current block type. // Updates the block type and block length at block boundaries. void StoreSymbol(size_t symbol, size_t* storage_ix, uint8_t* storage) { if (block_len_ == 0) { ++block_ix_; block_len_ = block_lengths_[block_ix_]; entropy_ix_ = block_types_[block_ix_] * alphabet_size_; StoreBlockSwitch(block_split_code_, block_ix_, storage_ix, storage); } --block_len_; size_t ix = entropy_ix_ + symbol; WriteBits(depths_[ix], bits_[ix], storage_ix, storage); } // Stores the next symbol with the entropy code of the current block type and // context value. // Updates the block type and block length at block boundaries. template void StoreSymbolWithContext(size_t symbol, size_t context, const std::vector& context_map, size_t* storage_ix, uint8_t* storage) { if (block_len_ == 0) { ++block_ix_; block_len_ = block_lengths_[block_ix_]; size_t block_type = block_types_[block_ix_]; entropy_ix_ = block_type << kContextBits; StoreBlockSwitch(block_split_code_, block_ix_, storage_ix, storage); } --block_len_; size_t histo_ix = context_map[entropy_ix_ + context]; size_t ix = histo_ix * alphabet_size_ + symbol; WriteBits(depths_[ix], bits_[ix], storage_ix, storage); } private: const size_t alphabet_size_; const size_t num_block_types_; const std::vector& block_types_; const std::vector& block_lengths_; BlockSplitCode block_split_code_; size_t block_ix_; size_t block_len_; size_t entropy_ix_; std::vector depths_; std::vector bits_; }; void JumpToByteBoundary(size_t* storage_ix, uint8_t* storage) { *storage_ix = (*storage_ix + 7u) & ~7u; storage[*storage_ix >> 3] = 0; } void StoreMetaBlock(const uint8_t* input, size_t start_pos, size_t length, size_t mask, uint8_t prev_byte, uint8_t prev_byte2, bool is_last, uint32_t num_direct_distance_codes, uint32_t distance_postfix_bits, ContextType literal_context_mode, const brotli::Command *commands, size_t n_commands, const MetaBlockSplit& mb, size_t *storage_ix, uint8_t *storage) { StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage); size_t num_distance_codes = kNumDistanceShortCodes + num_direct_distance_codes + (48u << distance_postfix_bits); BlockEncoder literal_enc(256, mb.literal_split.num_types, mb.literal_split.types, mb.literal_split.lengths); BlockEncoder command_enc(kNumCommandPrefixes, mb.command_split.num_types, mb.command_split.types, mb.command_split.lengths); BlockEncoder distance_enc(num_distance_codes, mb.distance_split.num_types, mb.distance_split.types, mb.distance_split.lengths); literal_enc.BuildAndStoreBlockSwitchEntropyCodes(storage_ix, storage); command_enc.BuildAndStoreBlockSwitchEntropyCodes(storage_ix, storage); distance_enc.BuildAndStoreBlockSwitchEntropyCodes(storage_ix, storage); WriteBits(2, distance_postfix_bits, storage_ix, storage); WriteBits(4, num_direct_distance_codes >> distance_postfix_bits, storage_ix, storage); for (size_t i = 0; i < mb.literal_split.num_types; ++i) { WriteBits(2, literal_context_mode, storage_ix, storage); } size_t num_literal_histograms = mb.literal_histograms.size(); if (mb.literal_context_map.empty()) { StoreTrivialContextMap(num_literal_histograms, kLiteralContextBits, storage_ix, storage); } else { EncodeContextMap(mb.literal_context_map, num_literal_histograms, storage_ix, storage); } size_t num_dist_histograms = mb.distance_histograms.size(); if (mb.distance_context_map.empty()) { StoreTrivialContextMap(num_dist_histograms, kDistanceContextBits, storage_ix, storage); } else { EncodeContextMap(mb.distance_context_map, num_dist_histograms, storage_ix, storage); } literal_enc.BuildAndStoreEntropyCodes(mb.literal_histograms, storage_ix, storage); command_enc.BuildAndStoreEntropyCodes(mb.command_histograms, storage_ix, storage); distance_enc.BuildAndStoreEntropyCodes(mb.distance_histograms, storage_ix, storage); size_t pos = start_pos; for (size_t i = 0; i < n_commands; ++i) { const Command cmd = commands[i]; size_t cmd_code = cmd.cmd_prefix_; uint32_t lennumextra = static_cast(cmd.cmd_extra_ >> 48); uint64_t lenextra = cmd.cmd_extra_ & 0xffffffffffffUL; command_enc.StoreSymbol(cmd_code, storage_ix, storage); WriteBits(lennumextra, lenextra, storage_ix, storage); if (mb.literal_context_map.empty()) { for (size_t j = cmd.insert_len_; j != 0; --j) { literal_enc.StoreSymbol(input[pos & mask], storage_ix, storage); ++pos; } } else { for (size_t j = cmd.insert_len_; j != 0; --j) { size_t context = Context(prev_byte, prev_byte2, literal_context_mode); uint8_t literal = input[pos & mask]; literal_enc.StoreSymbolWithContext( literal, context, mb.literal_context_map, storage_ix, storage); prev_byte2 = prev_byte; prev_byte = literal; ++pos; } } pos += cmd.copy_len_; if (cmd.copy_len_ > 0) { prev_byte2 = input[(pos - 2) & mask]; prev_byte = input[(pos - 1) & mask]; if (cmd.cmd_prefix_ >= 128) { size_t dist_code = cmd.dist_prefix_; uint32_t distnumextra = cmd.dist_extra_ >> 24; uint64_t distextra = cmd.dist_extra_ & 0xffffff; if (mb.distance_context_map.empty()) { distance_enc.StoreSymbol(dist_code, storage_ix, storage); } else { size_t context = cmd.DistanceContext(); distance_enc.StoreSymbolWithContext( dist_code, context, mb.distance_context_map, storage_ix, storage); } brotli::WriteBits(distnumextra, distextra, storage_ix, storage); } } } if (is_last) { JumpToByteBoundary(storage_ix, storage); } } void BuildHistograms(const uint8_t* input, size_t start_pos, size_t mask, const brotli::Command *commands, size_t n_commands, HistogramLiteral* lit_histo, HistogramCommand* cmd_histo, HistogramDistance* dist_histo) { size_t pos = start_pos; for (size_t i = 0; i < n_commands; ++i) { const Command cmd = commands[i]; cmd_histo->Add(cmd.cmd_prefix_); for (size_t j = cmd.insert_len_; j != 0; --j) { lit_histo->Add(input[pos & mask]); ++pos; } pos += cmd.copy_len_; if (cmd.copy_len_ > 0 && cmd.cmd_prefix_ >= 128) { dist_histo->Add(cmd.dist_prefix_); } } } void StoreDataWithHuffmanCodes(const uint8_t* input, size_t start_pos, size_t mask, const brotli::Command *commands, size_t n_commands, const uint8_t* lit_depth, const uint16_t* lit_bits, const uint8_t* cmd_depth, const uint16_t* cmd_bits, const uint8_t* dist_depth, const uint16_t* dist_bits, size_t* storage_ix, uint8_t* storage) { size_t pos = start_pos; for (size_t i = 0; i < n_commands; ++i) { const Command cmd = commands[i]; const size_t cmd_code = cmd.cmd_prefix_; const uint32_t lennumextra = static_cast(cmd.cmd_extra_ >> 48); const uint64_t lenextra = cmd.cmd_extra_ & 0xffffffffffffUL; WriteBits(cmd_depth[cmd_code], cmd_bits[cmd_code], storage_ix, storage); WriteBits(lennumextra, lenextra, storage_ix, storage); for (size_t j = cmd.insert_len_; j != 0; --j) { const uint8_t literal = input[pos & mask]; WriteBits(lit_depth[literal], lit_bits[literal], storage_ix, storage); ++pos; } pos += cmd.copy_len_; if (cmd.copy_len_ > 0 && cmd.cmd_prefix_ >= 128) { const size_t dist_code = cmd.dist_prefix_; const uint32_t distnumextra = cmd.dist_extra_ >> 24; const uint32_t distextra = cmd.dist_extra_ & 0xffffff; WriteBits(dist_depth[dist_code], dist_bits[dist_code], storage_ix, storage); WriteBits(distnumextra, distextra, storage_ix, storage); } } } void StoreMetaBlockTrivial(const uint8_t* input, size_t start_pos, size_t length, size_t mask, bool is_last, const brotli::Command *commands, size_t n_commands, size_t *storage_ix, uint8_t *storage) { StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage); HistogramLiteral lit_histo; HistogramCommand cmd_histo; HistogramDistance dist_histo; BuildHistograms(input, start_pos, mask, commands, n_commands, &lit_histo, &cmd_histo, &dist_histo); WriteBits(13, 0, storage_ix, storage); std::vector lit_depth(256); std::vector lit_bits(256); std::vector cmd_depth(kNumCommandPrefixes); std::vector cmd_bits(kNumCommandPrefixes); std::vector dist_depth(64); std::vector dist_bits(64); BuildAndStoreHuffmanTree(&lit_histo.data_[0], 256, &lit_depth[0], &lit_bits[0], storage_ix, storage); BuildAndStoreHuffmanTree(&cmd_histo.data_[0], kNumCommandPrefixes, &cmd_depth[0], &cmd_bits[0], storage_ix, storage); BuildAndStoreHuffmanTree(&dist_histo.data_[0], 64, &dist_depth[0], &dist_bits[0], storage_ix, storage); StoreDataWithHuffmanCodes(input, start_pos, mask, commands, n_commands, &lit_depth[0], &lit_bits[0], &cmd_depth[0], &cmd_bits[0], &dist_depth[0], &dist_bits[0], storage_ix, storage); if (is_last) { JumpToByteBoundary(storage_ix, storage); } } void StoreMetaBlockFast(const uint8_t* input, size_t start_pos, size_t length, size_t mask, bool is_last, const brotli::Command *commands, size_t n_commands, size_t *storage_ix, uint8_t *storage) { StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage); WriteBits(13, 0, storage_ix, storage); if (n_commands <= 128) { uint32_t histogram[256] = { 0 }; size_t pos = start_pos; size_t num_literals = 0; for (size_t i = 0; i < n_commands; ++i) { const Command cmd = commands[i]; for (size_t j = cmd.insert_len_; j != 0; --j) { ++histogram[input[pos & mask]]; ++pos; } num_literals += cmd.insert_len_; pos += cmd.copy_len_; } uint8_t lit_depth[256] = { 0 }; uint16_t lit_bits[256] = { 0 }; BuildAndStoreHuffmanTreeFast(histogram, num_literals, /* max_bits = */ 8, lit_depth, lit_bits, storage_ix, storage); StoreStaticCommandHuffmanTree(storage_ix, storage); StoreStaticDistanceHuffmanTree(storage_ix, storage); StoreDataWithHuffmanCodes(input, start_pos, mask, commands, n_commands, &lit_depth[0], &lit_bits[0], kStaticCommandCodeDepth, kStaticCommandCodeBits, kStaticDistanceCodeDepth, kStaticDistanceCodeBits, storage_ix, storage); } else { HistogramLiteral lit_histo; HistogramCommand cmd_histo; HistogramDistance dist_histo; BuildHistograms(input, start_pos, mask, commands, n_commands, &lit_histo, &cmd_histo, &dist_histo); std::vector lit_depth(256); std::vector lit_bits(256); std::vector cmd_depth(kNumCommandPrefixes); std::vector cmd_bits(kNumCommandPrefixes); std::vector dist_depth(64); std::vector dist_bits(64); BuildAndStoreHuffmanTreeFast(&lit_histo.data_[0], lit_histo.total_count_, /* max_bits = */ 8, &lit_depth[0], &lit_bits[0], storage_ix, storage); BuildAndStoreHuffmanTreeFast(&cmd_histo.data_[0], cmd_histo.total_count_, /* max_bits = */ 10, &cmd_depth[0], &cmd_bits[0], storage_ix, storage); BuildAndStoreHuffmanTreeFast(&dist_histo.data_[0], dist_histo.total_count_, /* max_bits = */ 6, &dist_depth[0], &dist_bits[0], storage_ix, storage); StoreDataWithHuffmanCodes(input, start_pos, mask, commands, n_commands, &lit_depth[0], &lit_bits[0], &cmd_depth[0], &cmd_bits[0], &dist_depth[0], &dist_bits[0], storage_ix, storage); } if (is_last) { JumpToByteBoundary(storage_ix, storage); } } // This is for storing uncompressed blocks (simple raw storage of // bytes-as-bytes). void StoreUncompressedMetaBlock(bool final_block, const uint8_t * __restrict input, size_t position, size_t mask, size_t len, size_t * __restrict storage_ix, uint8_t * __restrict storage) { StoreUncompressedMetaBlockHeader(len, storage_ix, storage); JumpToByteBoundary(storage_ix, storage); size_t masked_pos = position & mask; if (masked_pos + len > mask + 1) { size_t len1 = mask + 1 - masked_pos; memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len1); *storage_ix += len1 << 3; len -= len1; masked_pos = 0; } memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len); *storage_ix += len << 3; // We need to clear the next 4 bytes to continue to be // compatible with WriteBits. brotli::WriteBitsPrepareStorage(*storage_ix, storage); // Since the uncompressed block itself may not be the final block, add an // empty one after this. if (final_block) { brotli::WriteBits(1, 1, storage_ix, storage); // islast brotli::WriteBits(1, 1, storage_ix, storage); // isempty JumpToByteBoundary(storage_ix, storage); } } void StoreSyncMetaBlock(size_t * __restrict storage_ix, uint8_t * __restrict storage) { // Empty metadata meta-block bit pattern: // 1 bit: is_last (0) // 2 bits: num nibbles (3) // 1 bit: reserved (0) // 2 bits: metadata length bytes (0) WriteBits(6, 6, storage_ix, storage); JumpToByteBoundary(storage_ix, storage); } } // namespace brotli