/* Copyright 2015 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ // Function for fast encoding of an input fragment, independently from the input // history. This function uses one-pass processing: when we find a backward // match, we immediately emit the corresponding command and literal codes to // the bit stream. // // Adapted from the CompressFragment() function in // https://github.com/google/snappy/blob/master/snappy.cc #include "./compress_fragment.h" #include #include #include "./brotli_bit_stream.h" #include "./entropy_encode.h" #include "./fast_log.h" #include "./find_match_length.h" #include "./port.h" #include "./write_bits.h" namespace brotli { // kHashMul32 multiplier has these properties: // * The multiplier must be odd. Otherwise we may lose the highest bit. // * No long streaks of 1s or 0s. // * There is no effort to ensure that it is a prime, the oddity is enough // for this use. // * The number has been tuned heuristically against compression benchmarks. static const uint32_t kHashMul32 = 0x1e35a7bd; static inline uint32_t Hash(const uint8_t* p, size_t shift) { const uint64_t h = (BROTLI_UNALIGNED_LOAD64(p) << 24) * kHashMul32; return static_cast(h >> shift); } static inline uint32_t HashBytesAtOffset(uint64_t v, int offset, size_t shift) { assert(offset >= 0); assert(offset <= 3); const uint64_t h = ((v >> (8 * offset)) << 24) * kHashMul32; return static_cast(h >> shift); } static inline int IsMatch(const uint8_t* p1, const uint8_t* p2) { return (BROTLI_UNALIGNED_LOAD32(p1) == BROTLI_UNALIGNED_LOAD32(p2) && p1[4] == p2[4]); } // Builds a literal prefix code into "depths" and "bits" based on the statistics // of the "input" string and stores it into the bit stream. // Note that the prefix code here is built from the pre-LZ77 input, therefore // we can only approximate the statistics of the actual literal stream. // Moreover, for long inputs we build a histogram from a sample of the input // and thus have to assign a non-zero depth for each literal. void BuildAndStoreLiteralPrefixCode(const uint8_t* input, const size_t input_size, uint8_t depths[256], uint16_t bits[256], size_t* storage_ix, uint8_t* storage) { uint32_t histogram[256] = { 0 }; size_t histogram_total; if (input_size < (1 << 15)) { for (size_t i = 0; i < input_size; ++i) { ++histogram[input[i]]; } histogram_total = input_size; for (size_t i = 0; i < 256; ++i) { // We weigh the first 11 samples with weight 3 to account for the // balancing effect of the LZ77 phase on the histogram. const uint32_t adjust = 2 * std::min(histogram[i], 11u); histogram[i] += adjust; histogram_total += adjust; } } else { static const size_t kSampleRate = 29; for (size_t i = 0; i < input_size; i += kSampleRate) { ++histogram[input[i]]; } histogram_total = (input_size + kSampleRate - 1) / kSampleRate; for (size_t i = 0; i < 256; ++i) { // We add 1 to each population count to avoid 0 bit depths (since this is // only a sample and we don't know if the symbol appears or not), and we // weigh the first 11 samples with weight 3 to account for the balancing // effect of the LZ77 phase on the histogram (more frequent symbols are // more likely to be in backward references instead as literals). const uint32_t adjust = 1 + 2 * std::min(histogram[i], 11u); histogram[i] += adjust; histogram_total += adjust; } } BuildAndStoreHuffmanTreeFast(histogram, histogram_total, /* max_bits = */ 8, depths, bits, storage_ix, storage); } // Builds a command and distance prefix code (each 64 symbols) into "depth" and // "bits" based on "histogram" and stores it into the bit stream. void BuildAndStoreCommandPrefixCode(const uint32_t histogram[128], uint8_t depth[128], uint16_t bits[128], size_t* storage_ix, uint8_t* storage) { CreateHuffmanTree(histogram, 64, 15, depth); CreateHuffmanTree(&histogram[64], 64, 14, &depth[64]); // We have to jump through a few hoopes here in order to compute // the command bits because the symbols are in a different order than in // the full alphabet. This looks complicated, but having the symbols // in this order in the command bits saves a few branches in the Emit* // functions. uint8_t cmd_depth[64]; uint16_t cmd_bits[64]; memcpy(cmd_depth, depth, 24); memcpy(cmd_depth + 24, depth + 40, 8); memcpy(cmd_depth + 32, depth + 24, 8); memcpy(cmd_depth + 40, depth + 48, 8); memcpy(cmd_depth + 48, depth + 32, 8); memcpy(cmd_depth + 56, depth + 56, 8); ConvertBitDepthsToSymbols(cmd_depth, 64, cmd_bits); memcpy(bits, cmd_bits, 48); memcpy(bits + 24, cmd_bits + 32, 16); memcpy(bits + 32, cmd_bits + 48, 16); memcpy(bits + 40, cmd_bits + 24, 16); memcpy(bits + 48, cmd_bits + 40, 16); memcpy(bits + 56, cmd_bits + 56, 16); ConvertBitDepthsToSymbols(&depth[64], 64, &bits[64]); { // Create the bit length array for the full command alphabet. uint8_t cmd_depth[704] = { 0 }; memcpy(cmd_depth, depth, 8); memcpy(cmd_depth + 64, depth + 8, 8); memcpy(cmd_depth + 128, depth + 16, 8); memcpy(cmd_depth + 192, depth + 24, 8); memcpy(cmd_depth + 384, depth + 32, 8); for (size_t i = 0; i < 8; ++i) { cmd_depth[128 + 8 * i] = depth[40 + i]; cmd_depth[256 + 8 * i] = depth[48 + i]; cmd_depth[448 + 8 * i] = depth[56 + i]; } StoreHuffmanTree(cmd_depth, 704, storage_ix, storage); } StoreHuffmanTree(&depth[64], 64, storage_ix, storage); } // REQUIRES: insertlen < 6210 inline void EmitInsertLen(size_t insertlen, const uint8_t depth[128], const uint16_t bits[128], uint32_t histo[128], size_t* storage_ix, uint8_t* storage) { if (insertlen < 6) { const size_t code = insertlen + 40; WriteBits(depth[code], bits[code], storage_ix, storage); ++histo[code]; } else if (insertlen < 130) { insertlen -= 2; const uint32_t nbits = Log2FloorNonZero(insertlen) - 1u; const size_t prefix = insertlen >> nbits; const size_t inscode = (nbits << 1) + prefix + 42; WriteBits(depth[inscode], bits[inscode], storage_ix, storage); WriteBits(nbits, insertlen - (prefix << nbits), storage_ix, storage); ++histo[inscode]; } else if (insertlen < 2114) { insertlen -= 66; const uint32_t nbits = Log2FloorNonZero(insertlen); const size_t code = nbits + 50; WriteBits(depth[code], bits[code], storage_ix, storage); WriteBits(nbits, insertlen - (1 << nbits), storage_ix, storage); ++histo[code]; } else { WriteBits(depth[61], bits[61], storage_ix, storage); WriteBits(12, insertlen - 2114, storage_ix, storage); ++histo[21]; } } inline void EmitLongInsertLen(size_t insertlen, const uint8_t depth[128], const uint16_t bits[128], uint32_t histo[128], size_t* storage_ix, uint8_t* storage) { if (insertlen < 22594) { WriteBits(depth[62], bits[62], storage_ix, storage); WriteBits(14, insertlen - 6210, storage_ix, storage); ++histo[22]; } else { WriteBits(depth[63], bits[63], storage_ix, storage); WriteBits(24, insertlen - 22594, storage_ix, storage); ++histo[23]; } } inline void EmitCopyLen(size_t copylen, const uint8_t depth[128], const uint16_t bits[128], uint32_t histo[128], size_t* storage_ix, uint8_t* storage) { if (copylen < 10) { WriteBits(depth[copylen + 14], bits[copylen + 14], storage_ix, storage); ++histo[copylen + 14]; } else if (copylen < 134) { copylen -= 6; const uint32_t nbits = Log2FloorNonZero(copylen) - 1u; const size_t prefix = copylen >> nbits; const size_t code = (nbits << 1) + prefix + 20; WriteBits(depth[code], bits[code], storage_ix, storage); WriteBits(nbits, copylen - (prefix << nbits), storage_ix, storage); ++histo[code]; } else if (copylen < 2118) { copylen -= 70; const uint32_t nbits = Log2FloorNonZero(copylen); const size_t code = nbits + 28; WriteBits(depth[code], bits[code], storage_ix, storage); WriteBits(nbits, copylen - (1 << nbits), storage_ix, storage); ++histo[code]; } else { WriteBits(depth[39], bits[39], storage_ix, storage); WriteBits(24, copylen - 2118, storage_ix, storage); ++histo[47]; } } inline void EmitCopyLenLastDistance(size_t copylen, const uint8_t depth[128], const uint16_t bits[128], uint32_t histo[128], size_t* storage_ix, uint8_t* storage) { if (copylen < 12) { WriteBits(depth[copylen - 4], bits[copylen - 4], storage_ix, storage); ++histo[copylen - 4]; } else if (copylen < 72) { copylen -= 8; const uint32_t nbits = Log2FloorNonZero(copylen) - 1; const size_t prefix = copylen >> nbits; const size_t code = (nbits << 1) + prefix + 4; WriteBits(depth[code], bits[code], storage_ix, storage); WriteBits(nbits, copylen - (prefix << nbits), storage_ix, storage); ++histo[code]; } else if (copylen < 136) { copylen -= 8; const size_t code = (copylen >> 5) + 30; WriteBits(depth[code], bits[code], storage_ix, storage); WriteBits(5, copylen & 31, storage_ix, storage); WriteBits(depth[64], bits[64], storage_ix, storage); ++histo[code]; ++histo[64]; } else if (copylen < 2120) { copylen -= 72; const uint32_t nbits = Log2FloorNonZero(copylen); const size_t code = nbits + 28; WriteBits(depth[code], bits[code], storage_ix, storage); WriteBits(nbits, copylen - (1 << nbits), storage_ix, storage); WriteBits(depth[64], bits[64], storage_ix, storage); ++histo[code]; ++histo[64]; } else { WriteBits(depth[39], bits[39], storage_ix, storage); WriteBits(24, copylen - 2120, storage_ix, storage); WriteBits(depth[64], bits[64], storage_ix, storage); ++histo[47]; ++histo[64]; } } inline void EmitDistance(size_t distance, const uint8_t depth[128], const uint16_t bits[128], uint32_t histo[128], size_t* storage_ix, uint8_t* storage) { distance += 3; const uint32_t nbits = Log2FloorNonZero(distance) - 1u; const size_t prefix = (distance >> nbits) & 1; const size_t offset = (2 + prefix) << nbits; const size_t distcode = 2 * (nbits - 1) + prefix + 80; WriteBits(depth[distcode], bits[distcode], storage_ix, storage); WriteBits(nbits, distance - offset, storage_ix, storage); ++histo[distcode]; } inline void EmitLiterals(const uint8_t* input, const size_t len, const uint8_t depth[256], const uint16_t bits[256], size_t* storage_ix, uint8_t* storage) { for (size_t j = 0; j < len; j++) { const uint8_t lit = input[j]; WriteBits(depth[lit], bits[lit], storage_ix, storage); } } // REQUIRES: len <= 1 << 20. static void StoreMetaBlockHeader( size_t len, bool is_uncompressed, size_t* storage_ix, uint8_t* storage) { // ISLAST WriteBits(1, 0, storage_ix, storage); if (len <= (1U << 16)) { // MNIBBLES is 4 WriteBits(2, 0, storage_ix, storage); WriteBits(16, len - 1, storage_ix, storage); } else { // MNIBBLES is 5 WriteBits(2, 1, storage_ix, storage); WriteBits(20, len - 1, storage_ix, storage); } // ISUNCOMPRESSED WriteBits(1, is_uncompressed, storage_ix, storage); } void UpdateBits(size_t n_bits, uint32_t bits, size_t pos, uint8_t *array) { while (n_bits > 0) { size_t byte_pos = pos >> 3; size_t n_unchanged_bits = pos & 7; size_t n_changed_bits = std::min(n_bits, 8 - n_unchanged_bits); size_t total_bits = n_unchanged_bits + n_changed_bits; uint32_t mask = (~((1 << total_bits) - 1)) | ((1 << n_unchanged_bits) - 1); uint32_t unchanged_bits = array[byte_pos] & mask; uint32_t changed_bits = bits & ((1 << n_changed_bits) - 1); array[byte_pos] = static_cast((changed_bits << n_unchanged_bits) | unchanged_bits); n_bits -= n_changed_bits; bits >>= n_changed_bits; pos += n_changed_bits; } } void RewindBitPosition(const size_t new_storage_ix, size_t* storage_ix, uint8_t* storage) { const size_t bitpos = new_storage_ix & 7; const size_t mask = (1u << bitpos) - 1; storage[new_storage_ix >> 3] &= static_cast(mask); *storage_ix = new_storage_ix; } bool ShouldMergeBlock(const uint8_t* data, size_t len, const uint8_t* depths) { size_t histo[256] = { 0 }; static const size_t kSampleRate = 43; for (size_t i = 0; i < len; i += kSampleRate) { ++histo[data[i]]; } const size_t total = (len + kSampleRate - 1) / kSampleRate; double r = (FastLog2(total) + 0.5) * static_cast(total) + 200; for (size_t i = 0; i < 256; ++i) { r -= static_cast(histo[i]) * (depths[i] + FastLog2(histo[i])); } return r >= 0.0; } inline bool ShouldUseUncompressedMode(const uint8_t* metablock_start, const uint8_t* next_emit, const size_t insertlen, const uint8_t literal_depths[256]) { const size_t compressed = static_cast(next_emit - metablock_start); if (compressed * 50 > insertlen) { return false; } static const double kAcceptableLossForUncompressibleSpeedup = 0.02; static const double kMinEntropy = 8 * (1.0 - kAcceptableLossForUncompressibleSpeedup); uint32_t sum = 0; for (int i = 0; i < 256; ++i) { const uint32_t n = literal_depths[i]; sum += n << (15 - n); } return sum > static_cast((1 << 15) * kMinEntropy); } void EmitUncompressedMetaBlock(const uint8_t* begin, const uint8_t* end, const size_t storage_ix_start, size_t* storage_ix, uint8_t* storage) { const size_t len = static_cast(end - begin); RewindBitPosition(storage_ix_start, storage_ix, storage); StoreMetaBlockHeader(len, 1, storage_ix, storage); *storage_ix = (*storage_ix + 7u) & ~7u; memcpy(&storage[*storage_ix >> 3], begin, len); *storage_ix += len << 3; storage[*storage_ix >> 3] = 0; } void BrotliCompressFragmentFast(const uint8_t* input, size_t input_size, bool is_last, int* table, size_t table_size, uint8_t cmd_depth[128], uint16_t cmd_bits[128], size_t* cmd_code_numbits, uint8_t* cmd_code, size_t* storage_ix, uint8_t* storage) { if (input_size == 0) { assert(is_last); WriteBits(1, 1, storage_ix, storage); // islast WriteBits(1, 1, storage_ix, storage); // isempty *storage_ix = (*storage_ix + 7u) & ~7u; return; } // "next_emit" is a pointer to the first byte that is not covered by a // previous copy. Bytes between "next_emit" and the start of the next copy or // the end of the input will be emitted as literal bytes. const uint8_t* next_emit = input; // Save the start of the first block for position and distance computations. const uint8_t* base_ip = input; static const size_t kFirstBlockSize = 3 << 15; static const size_t kMergeBlockSize = 1 << 16; const uint8_t* metablock_start = input; size_t block_size = std::min(input_size, kFirstBlockSize); size_t total_block_size = block_size; // Save the bit position of the MLEN field of the meta-block header, so that // we can update it later if we decide to extend this meta-block. size_t mlen_storage_ix = *storage_ix + 3; StoreMetaBlockHeader(block_size, 0, storage_ix, storage); // No block splits, no contexts. WriteBits(13, 0, storage_ix, storage); uint8_t lit_depth[256] = { 0 }; uint16_t lit_bits[256] = { 0 }; BuildAndStoreLiteralPrefixCode(input, block_size, lit_depth, lit_bits, storage_ix, storage); // Store the pre-compressed command and distance prefix codes. for (size_t i = 0; i + 7 < *cmd_code_numbits; i += 8) { WriteBits(8, cmd_code[i >> 3], storage_ix, storage); } WriteBits(*cmd_code_numbits & 7, cmd_code[*cmd_code_numbits >> 3], storage_ix, storage); emit_commands: // Initialize the command and distance histograms. We will gather // statistics of command and distance codes during the processing // of this block and use it to update the command and distance // prefix codes for the next block. uint32_t cmd_histo[128] = { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, }; // "ip" is the input pointer. const uint8_t* ip = input; assert(table_size); assert(table_size <= (1u << 31)); assert((table_size & (table_size - 1)) == 0); // table must be power of two const size_t shift = 64u - Log2FloorNonZero(table_size); assert(static_cast(0xffffffffffffffffU >> shift) == table_size - 1); const uint8_t* ip_end = input + block_size; int last_distance = -1; const size_t kInputMarginBytes = 16; const size_t kMinMatchLen = 5; if (PREDICT_TRUE(block_size >= kInputMarginBytes)) { // For the last block, we need to keep a 16 bytes margin so that we can be // sure that all distances are at most window size - 16. // For all other blocks, we only need to keep a margin of 5 bytes so that // we don't go over the block size with a copy. const size_t len_limit = std::min(block_size - kMinMatchLen, input_size - kInputMarginBytes); const uint8_t* ip_limit = input + len_limit; for (uint32_t next_hash = Hash(++ip, shift); ; ) { assert(next_emit < ip); // Step 1: Scan forward in the input looking for a 5-byte-long match. // If we get close to exhausting the input then goto emit_remainder. // // Heuristic match skipping: If 32 bytes are scanned with no matches // found, start looking only at every other byte. If 32 more bytes are // scanned, look at every third byte, etc.. When a match is found, // immediately go back to looking at every byte. This is a small loss // (~5% performance, ~0.1% density) for compressible data due to more // bookkeeping, but for non-compressible data (such as JPEG) it's a huge // win since the compressor quickly "realizes" the data is incompressible // and doesn't bother looking for matches everywhere. // // The "skip" variable keeps track of how many bytes there are since the // last match; dividing it by 32 (ie. right-shifting by five) gives the // number of bytes to move ahead for each iteration. uint32_t skip = 32; const uint8_t* next_ip = ip; const uint8_t* candidate; do { ip = next_ip; uint32_t hash = next_hash; assert(hash == Hash(ip, shift)); uint32_t bytes_between_hash_lookups = skip++ >> 5; next_ip = ip + bytes_between_hash_lookups; if (PREDICT_FALSE(next_ip > ip_limit)) { goto emit_remainder; } next_hash = Hash(next_ip, shift); candidate = ip - last_distance; if (IsMatch(ip, candidate)) { if (PREDICT_TRUE(candidate < ip)) { table[hash] = static_cast(ip - base_ip); break; } } candidate = base_ip + table[hash]; assert(candidate >= base_ip); assert(candidate < ip); table[hash] = static_cast(ip - base_ip); } while (PREDICT_TRUE(!IsMatch(ip, candidate))); // Step 2: Emit the found match together with the literal bytes from // "next_emit" to the bit stream, and then see if we can find a next macth // immediately afterwards. Repeat until we find no match for the input // without emitting some literal bytes. uint64_t input_bytes; { // We have a 5-byte match at ip, and we need to emit bytes in // [next_emit, ip). const uint8_t* base = ip; size_t matched = 5 + FindMatchLengthWithLimit( candidate + 5, ip + 5, static_cast(ip_end - ip) - 5); ip += matched; int distance = static_cast(base - candidate); /* > 0 */ size_t insert = static_cast(base - next_emit); assert(0 == memcmp(base, candidate, matched)); if (PREDICT_TRUE(insert < 6210)) { EmitInsertLen(insert, cmd_depth, cmd_bits, cmd_histo, storage_ix, storage); } else if (ShouldUseUncompressedMode(metablock_start, next_emit, insert, lit_depth)) { EmitUncompressedMetaBlock(metablock_start, base, mlen_storage_ix - 3, storage_ix, storage); input_size -= static_cast(base - input); input = base; next_emit = input; goto next_block; } else { EmitLongInsertLen(insert, cmd_depth, cmd_bits, cmd_histo, storage_ix, storage); } EmitLiterals(next_emit, insert, lit_depth, lit_bits, storage_ix, storage); if (distance == last_distance) { WriteBits(cmd_depth[64], cmd_bits[64], storage_ix, storage); ++cmd_histo[64]; } else { EmitDistance(static_cast(distance), cmd_depth, cmd_bits, cmd_histo, storage_ix, storage); last_distance = distance; } EmitCopyLenLastDistance(matched, cmd_depth, cmd_bits, cmd_histo, storage_ix, storage); next_emit = ip; if (PREDICT_FALSE(ip >= ip_limit)) { goto emit_remainder; } // We could immediately start working at ip now, but to improve // compression we first update "table" with the hashes of some positions // within the last copy. input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 3); uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift); table[prev_hash] = static_cast(ip - base_ip - 3); prev_hash = HashBytesAtOffset(input_bytes, 1, shift); table[prev_hash] = static_cast(ip - base_ip - 2); prev_hash = HashBytesAtOffset(input_bytes, 2, shift); table[prev_hash] = static_cast(ip - base_ip - 1); uint32_t cur_hash = HashBytesAtOffset(input_bytes, 3, shift); candidate = base_ip + table[cur_hash]; table[cur_hash] = static_cast(ip - base_ip); } while (IsMatch(ip, candidate)) { // We have a 5-byte match at ip, and no need to emit any literal bytes // prior to ip. const uint8_t* base = ip; size_t matched = 5 + FindMatchLengthWithLimit( candidate + 5, ip + 5, static_cast(ip_end - ip) - 5); ip += matched; last_distance = static_cast(base - candidate); /* > 0 */ assert(0 == memcmp(base, candidate, matched)); EmitCopyLen(matched, cmd_depth, cmd_bits, cmd_histo, storage_ix, storage); EmitDistance(static_cast(last_distance), cmd_depth, cmd_bits, cmd_histo, storage_ix, storage); next_emit = ip; if (PREDICT_FALSE(ip >= ip_limit)) { goto emit_remainder; } // We could immediately start working at ip now, but to improve // compression we first update "table" with the hashes of some positions // within the last copy. input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 3); uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift); table[prev_hash] = static_cast(ip - base_ip - 3); prev_hash = HashBytesAtOffset(input_bytes, 1, shift); table[prev_hash] = static_cast(ip - base_ip - 2); prev_hash = HashBytesAtOffset(input_bytes, 2, shift); table[prev_hash] = static_cast(ip - base_ip - 1); uint32_t cur_hash = HashBytesAtOffset(input_bytes, 3, shift); candidate = base_ip + table[cur_hash]; table[cur_hash] = static_cast(ip - base_ip); } next_hash = Hash(++ip, shift); } } emit_remainder: assert(next_emit <= ip_end); input += block_size; input_size -= block_size; block_size = std::min(input_size, kMergeBlockSize); // Decide if we want to continue this meta-block instead of emitting the // last insert-only command. if (input_size > 0 && total_block_size + block_size <= (1 << 20) && ShouldMergeBlock(input, block_size, lit_depth)) { assert(total_block_size > (1 << 16)); // Update the size of the current meta-block and continue emitting commands. // We can do this because the current size and the new size both have 5 // nibbles. total_block_size += block_size; UpdateBits(20, static_cast(total_block_size - 1), mlen_storage_ix, storage); goto emit_commands; } // Emit the remaining bytes as literals. if (next_emit < ip_end) { const size_t insert = static_cast(ip_end - next_emit); if (PREDICT_TRUE(insert < 6210)) { EmitInsertLen(insert, cmd_depth, cmd_bits, cmd_histo, storage_ix, storage); EmitLiterals(next_emit, insert, lit_depth, lit_bits, storage_ix, storage); } else if (ShouldUseUncompressedMode(metablock_start, next_emit, insert, lit_depth)) { EmitUncompressedMetaBlock(metablock_start, ip_end, mlen_storage_ix - 3, storage_ix, storage); } else { EmitLongInsertLen(insert, cmd_depth, cmd_bits, cmd_histo, storage_ix, storage); EmitLiterals(next_emit, insert, lit_depth, lit_bits, storage_ix, storage); } } next_emit = ip_end; next_block: // If we have more data, write a new meta-block header and prefix codes and // then continue emitting commands. if (input_size > 0) { metablock_start = input; block_size = std::min(input_size, kFirstBlockSize); total_block_size = block_size; // Save the bit position of the MLEN field of the meta-block header, so that // we can update it later if we decide to extend this meta-block. mlen_storage_ix = *storage_ix + 3; StoreMetaBlockHeader(block_size, 0, storage_ix, storage); // No block splits, no contexts. WriteBits(13, 0, storage_ix, storage); memset(lit_depth, 0, sizeof(lit_depth)); memset(lit_bits, 0, sizeof(lit_bits)); BuildAndStoreLiteralPrefixCode(input, block_size, lit_depth, lit_bits, storage_ix, storage); BuildAndStoreCommandPrefixCode(cmd_histo, cmd_depth, cmd_bits, storage_ix, storage); goto emit_commands; } if (is_last) { WriteBits(1, 1, storage_ix, storage); // islast WriteBits(1, 1, storage_ix, storage); // isempty *storage_ix = (*storage_ix + 7u) & ~7u; } else { // If this is not the last block, update the command and distance prefix // codes for the next block and store the compressed forms. cmd_code[0] = 0; *cmd_code_numbits = 0; BuildAndStoreCommandPrefixCode(cmd_histo, cmd_depth, cmd_bits, cmd_code_numbits, cmd_code); } } } // namespace brotli