/* Copyright 2015 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ // Function for fast encoding of an input fragment, independently from the input // history. This function uses two-pass processing: in the first pass we save // the found backward matches and literal bytes into a buffer, and in the // second pass we emit them into the bit stream using prefix codes built based // on the actual command and literal byte histograms. #include "./compress_fragment_two_pass.h" #include #include "./brotli_bit_stream.h" #include "./bit_cost.h" #include "./entropy_encode.h" #include "./fast_log.h" #include "./find_match_length.h" #include "./port.h" #include "./write_bits.h" namespace brotli { // kHashMul32 multiplier has these properties: // * The multiplier must be odd. Otherwise we may lose the highest bit. // * No long streaks of 1s or 0s. // * There is no effort to ensure that it is a prime, the oddity is enough // for this use. // * The number has been tuned heuristically against compression benchmarks. static const uint32_t kHashMul32 = 0x1e35a7bd; static inline uint32_t Hash(const uint8_t* p, size_t shift) { const uint64_t h = (BROTLI_UNALIGNED_LOAD64(p) << 16) * kHashMul32; return static_cast(h >> shift); } static inline uint32_t HashBytesAtOffset(uint64_t v, int offset, size_t shift) { assert(offset >= 0); assert(offset <= 2); const uint64_t h = ((v >> (8 * offset)) << 16) * kHashMul32; return static_cast(h >> shift); } static inline int IsMatch(const uint8_t* p1, const uint8_t* p2) { return (BROTLI_UNALIGNED_LOAD32(p1) == BROTLI_UNALIGNED_LOAD32(p2) && p1[4] == p2[4] && p1[5] == p2[5]); } // Builds a command and distance prefix code (each 64 symbols) into "depth" and // "bits" based on "histogram" and stores it into the bit stream. static void BuildAndStoreCommandPrefixCode( const uint32_t histogram[128], uint8_t depth[128], uint16_t bits[128], size_t* storage_ix, uint8_t* storage) { CreateHuffmanTree(histogram, 64, 15, depth); CreateHuffmanTree(&histogram[64], 64, 14, &depth[64]); // We have to jump through a few hoopes here in order to compute // the command bits because the symbols are in a different order than in // the full alphabet. This looks complicated, but having the symbols // in this order in the command bits saves a few branches in the Emit* // functions. uint8_t cmd_depth[64]; uint16_t cmd_bits[64]; memcpy(cmd_depth, depth + 24, 24); memcpy(cmd_depth + 24, depth, 8); memcpy(cmd_depth + 32, depth + 48, 8); memcpy(cmd_depth + 40, depth + 8, 8); memcpy(cmd_depth + 48, depth + 56, 8); memcpy(cmd_depth + 56, depth + 16, 8); ConvertBitDepthsToSymbols(cmd_depth, 64, cmd_bits); memcpy(bits, cmd_bits + 24, 16); memcpy(bits + 8, cmd_bits + 40, 16); memcpy(bits + 16, cmd_bits + 56, 16); memcpy(bits + 24, cmd_bits, 48); memcpy(bits + 48, cmd_bits + 32, 16); memcpy(bits + 56, cmd_bits + 48, 16); ConvertBitDepthsToSymbols(&depth[64], 64, &bits[64]); { // Create the bit length array for the full command alphabet. uint8_t cmd_depth[704] = { 0 }; memcpy(cmd_depth, depth + 24, 8); memcpy(cmd_depth + 64, depth + 32, 8); memcpy(cmd_depth + 128, depth + 40, 8); memcpy(cmd_depth + 192, depth + 48, 8); memcpy(cmd_depth + 384, depth + 56, 8); for (size_t i = 0; i < 8; ++i) { cmd_depth[128 + 8 * i] = depth[i]; cmd_depth[256 + 8 * i] = depth[8 + i]; cmd_depth[448 + 8 * i] = depth[16 + i]; } StoreHuffmanTree(cmd_depth, 704, storage_ix, storage); } StoreHuffmanTree(&depth[64], 64, storage_ix, storage); } inline void EmitInsertLen(uint32_t insertlen, uint32_t** commands) { if (insertlen < 6) { **commands = insertlen; } else if (insertlen < 130) { insertlen -= 2; const uint32_t nbits = Log2FloorNonZero(insertlen) - 1u; const uint32_t prefix = insertlen >> nbits; const uint32_t inscode = (nbits << 1) + prefix + 2; const uint32_t extra = insertlen - (prefix << nbits); **commands = inscode | (extra << 8); } else if (insertlen < 2114) { insertlen -= 66; const uint32_t nbits = Log2FloorNonZero(insertlen); const uint32_t code = nbits + 10; const uint32_t extra = insertlen - (1 << nbits); **commands = code | (extra << 8); } else if (insertlen < 6210) { const uint32_t extra = insertlen - 2114; **commands = 21 | (extra << 8); } else if (insertlen < 22594) { const uint32_t extra = insertlen - 6210; **commands = 22 | (extra << 8); } else { const uint32_t extra = insertlen - 22594; **commands = 23 | (extra << 8); } ++(*commands); } inline void EmitCopyLen(size_t copylen, uint32_t** commands) { if (copylen < 10) { **commands = static_cast(copylen + 38); } else if (copylen < 134) { copylen -= 6; const size_t nbits = Log2FloorNonZero(copylen) - 1; const size_t prefix = copylen >> nbits; const size_t code = (nbits << 1) + prefix + 44; const size_t extra = copylen - (prefix << nbits); **commands = static_cast(code | (extra << 8)); } else if (copylen < 2118) { copylen -= 70; const size_t nbits = Log2FloorNonZero(copylen); const size_t code = nbits + 52; const size_t extra = copylen - (1 << nbits); **commands = static_cast(code | (extra << 8)); } else { const size_t extra = copylen - 2118; **commands = static_cast(63 | (extra << 8)); } ++(*commands); } inline void EmitCopyLenLastDistance(size_t copylen, uint32_t** commands) { if (copylen < 12) { **commands = static_cast(copylen + 20); ++(*commands); } else if (copylen < 72) { copylen -= 8; const size_t nbits = Log2FloorNonZero(copylen) - 1; const size_t prefix = copylen >> nbits; const size_t code = (nbits << 1) + prefix + 28; const size_t extra = copylen - (prefix << nbits); **commands = static_cast(code | (extra << 8)); ++(*commands); } else if (copylen < 136) { copylen -= 8; const size_t code = (copylen >> 5) + 54; const size_t extra = copylen & 31; **commands = static_cast(code | (extra << 8)); ++(*commands); **commands = 64; ++(*commands); } else if (copylen < 2120) { copylen -= 72; const size_t nbits = Log2FloorNonZero(copylen); const size_t code = nbits + 52; const size_t extra = copylen - (1 << nbits); **commands = static_cast(code | (extra << 8)); ++(*commands); **commands = 64; ++(*commands); } else { const size_t extra = copylen - 2120; **commands = static_cast(63 | (extra << 8)); ++(*commands); **commands = 64; ++(*commands); } } inline void EmitDistance(uint32_t distance, uint32_t** commands) { distance += 3; uint32_t nbits = Log2FloorNonZero(distance) - 1; const uint32_t prefix = (distance >> nbits) & 1; const uint32_t offset = (2 + prefix) << nbits; const uint32_t distcode = 2 * (nbits - 1) + prefix + 80; uint32_t extra = distance - offset; **commands = distcode | (extra << 8); ++(*commands); } // REQUIRES: len <= 1 << 20. static void StoreMetaBlockHeader( size_t len, bool is_uncompressed, size_t* storage_ix, uint8_t* storage) { // ISLAST WriteBits(1, 0, storage_ix, storage); if (len <= (1U << 16)) { // MNIBBLES is 4 WriteBits(2, 0, storage_ix, storage); WriteBits(16, len - 1, storage_ix, storage); } else { // MNIBBLES is 5 WriteBits(2, 1, storage_ix, storage); WriteBits(20, len - 1, storage_ix, storage); } // ISUNCOMPRESSED WriteBits(1, is_uncompressed, storage_ix, storage); } void CreateCommands(const uint8_t* input, size_t block_size, size_t input_size, const uint8_t* base_ip, int* table, size_t table_size, uint8_t** literals, uint32_t** commands) { // "ip" is the input pointer. const uint8_t* ip = input; assert(table_size); assert(table_size <= (1u << 31)); assert((table_size & (table_size - 1)) == 0); // table must be power of two const size_t shift = 64u - Log2FloorNonZero(table_size); assert(static_cast(0xffffffffffffffffU >> shift) == table_size - 1); const uint8_t* ip_end = input + block_size; // "next_emit" is a pointer to the first byte that is not covered by a // previous copy. Bytes between "next_emit" and the start of the next copy or // the end of the input will be emitted as literal bytes. const uint8_t* next_emit = input; int last_distance = -1; const size_t kInputMarginBytes = 16; const size_t kMinMatchLen = 6; if (PREDICT_TRUE(block_size >= kInputMarginBytes)) { // For the last block, we need to keep a 16 bytes margin so that we can be // sure that all distances are at most window size - 16. // For all other blocks, we only need to keep a margin of 5 bytes so that // we don't go over the block size with a copy. const size_t len_limit = std::min(block_size - kMinMatchLen, input_size - kInputMarginBytes); const uint8_t* ip_limit = input + len_limit; for (uint32_t next_hash = Hash(++ip, shift); ; ) { assert(next_emit < ip); // Step 1: Scan forward in the input looking for a 6-byte-long match. // If we get close to exhausting the input then goto emit_remainder. // // Heuristic match skipping: If 32 bytes are scanned with no matches // found, start looking only at every other byte. If 32 more bytes are // scanned, look at every third byte, etc.. When a match is found, // immediately go back to looking at every byte. This is a small loss // (~5% performance, ~0.1% density) for compressible data due to more // bookkeeping, but for non-compressible data (such as JPEG) it's a huge // win since the compressor quickly "realizes" the data is incompressible // and doesn't bother looking for matches everywhere. // // The "skip" variable keeps track of how many bytes there are since the // last match; dividing it by 32 (ie. right-shifting by five) gives the // number of bytes to move ahead for each iteration. uint32_t skip = 32; const uint8_t* next_ip = ip; const uint8_t* candidate; do { ip = next_ip; uint32_t hash = next_hash; assert(hash == Hash(ip, shift)); uint32_t bytes_between_hash_lookups = skip++ >> 5; next_ip = ip + bytes_between_hash_lookups; if (PREDICT_FALSE(next_ip > ip_limit)) { goto emit_remainder; } next_hash = Hash(next_ip, shift); candidate = ip - last_distance; if (IsMatch(ip, candidate)) { if (PREDICT_TRUE(candidate < ip)) { table[hash] = static_cast(ip - base_ip); break; } } candidate = base_ip + table[hash]; assert(candidate >= base_ip); assert(candidate < ip); table[hash] = static_cast(ip - base_ip); } while (PREDICT_TRUE(!IsMatch(ip, candidate))); // Step 2: Emit the found match together with the literal bytes from // "next_emit", and then see if we can find a next macth immediately // afterwards. Repeat until we find no match for the input // without emitting some literal bytes. uint64_t input_bytes; { // We have a 6-byte match at ip, and we need to emit bytes in // [next_emit, ip). const uint8_t* base = ip; size_t matched = 6 + FindMatchLengthWithLimit( candidate + 6, ip + 6, static_cast(ip_end - ip) - 6); ip += matched; int distance = static_cast(base - candidate); /* > 0 */ int insert = static_cast(base - next_emit); assert(0 == memcmp(base, candidate, matched)); EmitInsertLen(static_cast(insert), commands); memcpy(*literals, next_emit, static_cast(insert)); *literals += insert; if (distance == last_distance) { **commands = 64; ++(*commands); } else { EmitDistance(static_cast(distance), commands); last_distance = distance; } EmitCopyLenLastDistance(matched, commands); next_emit = ip; if (PREDICT_FALSE(ip >= ip_limit)) { goto emit_remainder; } // We could immediately start working at ip now, but to improve // compression we first update "table" with the hashes of some positions // within the last copy. input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 5); uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift); table[prev_hash] = static_cast(ip - base_ip - 5); prev_hash = HashBytesAtOffset(input_bytes, 1, shift); table[prev_hash] = static_cast(ip - base_ip - 4); prev_hash = HashBytesAtOffset(input_bytes, 2, shift); table[prev_hash] = static_cast(ip - base_ip - 3); input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 2); prev_hash = HashBytesAtOffset(input_bytes, 0, shift); table[prev_hash] = static_cast(ip - base_ip - 2); prev_hash = HashBytesAtOffset(input_bytes, 1, shift); table[prev_hash] = static_cast(ip - base_ip - 1); uint32_t cur_hash = HashBytesAtOffset(input_bytes, 2, shift); candidate = base_ip + table[cur_hash]; table[cur_hash] = static_cast(ip - base_ip); } while (IsMatch(ip, candidate)) { // We have a 6-byte match at ip, and no need to emit any // literal bytes prior to ip. const uint8_t* base = ip; size_t matched = 6 + FindMatchLengthWithLimit( candidate + 6, ip + 6, static_cast(ip_end - ip) - 6); ip += matched; last_distance = static_cast(base - candidate); /* > 0 */ assert(0 == memcmp(base, candidate, matched)); EmitCopyLen(matched, commands); EmitDistance(static_cast(last_distance), commands); next_emit = ip; if (PREDICT_FALSE(ip >= ip_limit)) { goto emit_remainder; } // We could immediately start working at ip now, but to improve // compression we first update "table" with the hashes of some positions // within the last copy. input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 5); uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift); table[prev_hash] = static_cast(ip - base_ip - 5); prev_hash = HashBytesAtOffset(input_bytes, 1, shift); table[prev_hash] = static_cast(ip - base_ip - 4); prev_hash = HashBytesAtOffset(input_bytes, 2, shift); table[prev_hash] = static_cast(ip - base_ip - 3); input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 2); prev_hash = HashBytesAtOffset(input_bytes, 0, shift); table[prev_hash] = static_cast(ip - base_ip - 2); prev_hash = HashBytesAtOffset(input_bytes, 1, shift); table[prev_hash] = static_cast(ip - base_ip - 1); uint32_t cur_hash = HashBytesAtOffset(input_bytes, 2, shift); candidate = base_ip + table[cur_hash]; table[cur_hash] = static_cast(ip - base_ip); } next_hash = Hash(++ip, shift); } } emit_remainder: assert(next_emit <= ip_end); // Emit the remaining bytes as literals. if (next_emit < ip_end) { const uint32_t insert = static_cast(ip_end - next_emit); EmitInsertLen(insert, commands); memcpy(*literals, next_emit, insert); *literals += insert; } } void StoreCommands(const uint8_t* literals, const size_t num_literals, const uint32_t* commands, const size_t num_commands, size_t* storage_ix, uint8_t* storage) { uint8_t lit_depths[256] = { 0 }; uint16_t lit_bits[256] = { 0 }; uint32_t lit_histo[256] = { 0 }; for (size_t i = 0; i < num_literals; ++i) { ++lit_histo[literals[i]]; } BuildAndStoreHuffmanTreeFast(lit_histo, num_literals, /* max_bits = */ 8, lit_depths, lit_bits, storage_ix, storage); uint8_t cmd_depths[128] = { 0 }; uint16_t cmd_bits[128] = { 0 }; uint32_t cmd_histo[128] = { 0 }; for (size_t i = 0; i < num_commands; ++i) { ++cmd_histo[commands[i] & 0xff]; } cmd_histo[1] += 1; cmd_histo[2] += 1; cmd_histo[64] += 1; cmd_histo[84] += 1; BuildAndStoreCommandPrefixCode(cmd_histo, cmd_depths, cmd_bits, storage_ix, storage); static const uint32_t kNumExtraBits[128] = { 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 12, 14, 24, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, }; static const uint32_t kInsertOffset[24] = { 0, 1, 2, 3, 4, 5, 6, 8, 10, 14, 18, 26, 34, 50, 66, 98, 130, 194, 322, 578, 1090, 2114, 6210, 22594, }; for (size_t i = 0; i < num_commands; ++i) { const uint32_t cmd = commands[i]; const uint32_t code = cmd & 0xff; const uint32_t extra = cmd >> 8; WriteBits(cmd_depths[code], cmd_bits[code], storage_ix, storage); WriteBits(kNumExtraBits[code], extra, storage_ix, storage); if (code < 24) { const uint32_t insert = kInsertOffset[code] + extra; for (uint32_t j = 0; j < insert; ++j) { const uint8_t lit = *literals; WriteBits(lit_depths[lit], lit_bits[lit], storage_ix, storage); ++literals; } } } } bool ShouldCompress(const uint8_t* input, size_t input_size, size_t num_literals) { static const double kAcceptableLossForUncompressibleSpeedup = 0.02; static const double kMaxRatioOfLiterals = 1.0 - kAcceptableLossForUncompressibleSpeedup; if (num_literals < kMaxRatioOfLiterals * static_cast(input_size)) { return true; } uint32_t literal_histo[256] = { 0 }; static const uint32_t kSampleRate = 43; static const double kMaxEntropy = 8 * (1.0 - kAcceptableLossForUncompressibleSpeedup); const double max_total_bit_cost = static_cast(input_size) * kMaxEntropy / kSampleRate; for (size_t i = 0; i < input_size; i += kSampleRate) { ++literal_histo[input[i]]; } return BitsEntropy(literal_histo, 256) < max_total_bit_cost; } void BrotliCompressFragmentTwoPass(const uint8_t* input, size_t input_size, bool is_last, uint32_t* command_buf, uint8_t* literal_buf, int* table, size_t table_size, size_t* storage_ix, uint8_t* storage) { // Save the start of the first block for position and distance computations. const uint8_t* base_ip = input; while (input_size > 0) { size_t block_size = std::min(input_size, kCompressFragmentTwoPassBlockSize); uint32_t* commands = command_buf; uint8_t* literals = literal_buf; CreateCommands(input, block_size, input_size, base_ip, table, table_size, &literals, &commands); const size_t num_literals = static_cast(literals - literal_buf); const size_t num_commands = static_cast(commands - command_buf); if (ShouldCompress(input, block_size, num_literals)) { StoreMetaBlockHeader(block_size, 0, storage_ix, storage); // No block splits, no contexts. WriteBits(13, 0, storage_ix, storage); StoreCommands(literal_buf, num_literals, command_buf, num_commands, storage_ix, storage); } else { // Since we did not find many backward references and the entropy of // the data is close to 8 bits, we can simply emit an uncompressed block. // This makes compression speed of uncompressible data about 3x faster. StoreMetaBlockHeader(block_size, 1, storage_ix, storage); *storage_ix = (*storage_ix + 7u) & ~7u; memcpy(&storage[*storage_ix >> 3], input, block_size); *storage_ix += block_size << 3; storage[*storage_ix >> 3] = 0; } input += block_size; input_size -= block_size; } if (is_last) { WriteBits(1, 1, storage_ix, storage); // islast WriteBits(1, 1, storage_ix, storage); // isempty *storage_ix = (*storage_ix + 7u) & ~7u; } } } // namespace brotli