/* Copyright 2013 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ // Sliding window over the input data. #ifndef BROTLI_ENC_RINGBUFFER_H_ #define BROTLI_ENC_RINGBUFFER_H_ #include "./port.h" #include "./types.h" namespace brotli { // A RingBuffer(window_bits, tail_bits) contains `1 << window_bits' bytes of // data in a circular manner: writing a byte writes it to: // `position() % (1 << window_bits)'. // For convenience, the RingBuffer array contains another copy of the // first `1 << tail_bits' bytes: // buffer_[i] == buffer_[i + (1 << window_bits)], if i < (1 << tail_bits), // and another copy of the last two bytes: // buffer_[-1] == buffer_[(1 << window_bits) - 1] and // buffer_[-2] == buffer_[(1 << window_bits) - 2]. class RingBuffer { public: RingBuffer(int window_bits, int tail_bits) : size_(1u << window_bits), mask_((1u << window_bits) - 1), tail_size_(1u << tail_bits), pos_(0) { static const size_t kSlackForEightByteHashingEverywhere = 7; const size_t buflen = size_ + tail_size_; data_ = new uint8_t[2 + buflen + kSlackForEightByteHashingEverywhere]; buffer_ = data_ + 2; for (size_t i = 0; i < kSlackForEightByteHashingEverywhere; ++i) { buffer_[buflen + i] = 0; } // Initialize the last two bytes and their copy to zero. buffer_[-2] = buffer_[size_ - 2] = 0; buffer_[-1] = buffer_[size_ - 1] = 0; } ~RingBuffer() { delete [] data_; } // Push bytes into the ring buffer. void Write(const uint8_t *bytes, size_t n) { const size_t masked_pos = pos_ & mask_; // The length of the writes is limited so that we do not need to worry // about a write WriteTail(bytes, n); if (PREDICT_TRUE(masked_pos + n <= size_)) { // A single write fits. memcpy(&buffer_[masked_pos], bytes, n); } else { // Split into two writes. // Copy into the end of the buffer, including the tail buffer. memcpy(&buffer_[masked_pos], bytes, std::min(n, (size_ + tail_size_) - masked_pos)); // Copy into the beginning of the buffer memcpy(&buffer_[0], bytes + (size_ - masked_pos), n - (size_ - masked_pos)); } buffer_[-2] = buffer_[size_ - 2]; buffer_[-1] = buffer_[size_ - 1]; pos_ += static_cast(n); if (pos_ > (1u << 30)) { /* Wrap, but preserve not-a-first-lap feature. */ pos_ = (pos_ & ((1u << 30) - 1)) | (1u << 30); } } void Reset() { pos_ = 0; } // Logical cursor position in the ring buffer. uint32_t position() const { return pos_; } // Bit mask for getting the physical position for a logical position. uint32_t mask() const { return mask_; } uint8_t *start() { return &buffer_[0]; } const uint8_t *start() const { return &buffer_[0]; } private: void WriteTail(const uint8_t *bytes, size_t n) { const size_t masked_pos = pos_ & mask_; if (PREDICT_FALSE(masked_pos < tail_size_)) { // Just fill the tail buffer with the beginning data. const size_t p = size_ + masked_pos; memcpy(&buffer_[p], bytes, std::min(n, tail_size_ - masked_pos)); } } // Size of the ringbuffer is (1 << window_bits) + tail_size_. const uint32_t size_; const uint32_t mask_; const uint32_t tail_size_; // Position to write in the ring buffer. uint32_t pos_; // The actual ring buffer containing the copy of the last two bytes, the data, // and the copy of the beginning as a tail. uint8_t *data_; // The start of the ringbuffer. uint8_t *buffer_; }; } // namespace brotli #endif // BROTLI_ENC_RINGBUFFER_H_