1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
|
// SPDX-License-Identifier: GPL-3.0-or-later
#include "gorilla.h"
#include <cassert>
#include <climits>
#include <cstdio>
#include <cstring>
using std::size_t;
template <typename T>
static constexpr size_t bit_size() noexcept
{
static_assert((sizeof(T) * CHAR_BIT) == 32 || (sizeof(T) * CHAR_BIT) == 64,
"Word size should be 32 or 64 bits.");
return (sizeof(T) * CHAR_BIT);
}
static void bit_buffer_write(uint32_t *buf, size_t pos, uint32_t v, size_t nbits)
{
assert(nbits > 0 && nbits <= bit_size<uint32_t>());
const size_t index = pos / bit_size<uint32_t>();
const size_t offset = pos % bit_size<uint32_t>();
pos += nbits;
if (offset == 0) {
buf[index] = v;
} else {
const size_t remaining_bits = bit_size<uint32_t>() - offset;
// write the lower part of the value
const uint32_t low_bits_mask = ((uint32_t) 1 << remaining_bits) - 1;
const uint32_t lowest_bits_in_value = v & low_bits_mask;
buf[index] |= (lowest_bits_in_value << offset);
if (nbits > remaining_bits) {
// write the upper part of the value
const uint32_t high_bits_mask = ~low_bits_mask;
const uint32_t highest_bits_in_value = (v & high_bits_mask) >> (remaining_bits);
buf[index + 1] = highest_bits_in_value;
}
}
}
static void bit_buffer_read(const uint32_t *buf, size_t pos, uint32_t *v, size_t nbits)
{
assert(nbits > 0 && nbits <= bit_size<uint32_t>());
const size_t index = pos / bit_size<uint32_t>();
const size_t offset = pos % bit_size<uint32_t>();
pos += nbits;
if (offset == 0) {
*v = (nbits == bit_size<uint32_t>()) ?
buf[index] :
buf[index] & (((uint32_t) 1 << nbits) - 1);
} else {
const size_t remaining_bits = bit_size<uint32_t>() - offset;
// extract the lower part of the value
if (nbits < remaining_bits) {
*v = (buf[index] >> offset) & (((uint32_t) 1 << nbits) - 1);
} else {
*v = (buf[index] >> offset) & (((uint32_t) 1 << remaining_bits) - 1);
nbits -= remaining_bits;
*v |= (buf[index + 1] & (((uint32_t) 1 << nbits) - 1)) << remaining_bits;
}
}
}
gorilla_writer_t gorilla_writer_init(gorilla_buffer_t *gbuf, size_t n)
{
gorilla_writer_t gw = gorilla_writer_t {
.head_buffer = gbuf,
.last_buffer = NULL,
.prev_number = 0,
.prev_xor_lzc = 0,
.capacity = 0
};
gorilla_writer_add_buffer(&gw, gbuf, n);
return gw;
}
void gorilla_writer_add_buffer(gorilla_writer_t *gw, gorilla_buffer_t *gbuf, size_t n)
{
gbuf->header.next = NULL;
gbuf->header.entries = 0;
gbuf->header.nbits = 0;
uint32_t capacity = (n * bit_size<uint32_t>()) - (sizeof(gorilla_header_t) * CHAR_BIT);
gw->prev_number = 0;
gw->prev_xor_lzc = 0;
gw->capacity = capacity;
if (gw->last_buffer)
gw->last_buffer->header.next = gbuf;
__atomic_store_n(&gw->last_buffer, gbuf, __ATOMIC_RELAXED);
}
uint32_t gorilla_writer_entries(const gorilla_writer_t *gw) {
uint32_t entries = 0;
const gorilla_buffer_t *curr_gbuf = __atomic_load_n(&gw->head_buffer, __ATOMIC_SEQ_CST);
do {
const gorilla_buffer_t *next_gbuf = __atomic_load_n(&curr_gbuf->header.next, __ATOMIC_SEQ_CST);
entries += __atomic_load_n(&curr_gbuf->header.entries, __ATOMIC_SEQ_CST);
curr_gbuf = next_gbuf;
} while (curr_gbuf);
return entries;
}
bool gorilla_writer_write(gorilla_writer_t *gw, uint32_t number)
{
gorilla_header_t *hdr = &gw->last_buffer->header;
uint32_t *data = gw->last_buffer->data;
// this is the first number we are writing
if (hdr->entries == 0) {
if (hdr->nbits + bit_size<uint32_t>() >= gw->capacity)
return false;
bit_buffer_write(data, hdr->nbits, number, bit_size<uint32_t>());
__atomic_fetch_add(&hdr->nbits, bit_size<uint32_t>(), __ATOMIC_RELAXED);
__atomic_fetch_add(&hdr->entries, 1, __ATOMIC_RELAXED);
gw->prev_number = number;
return true;
}
// write true/false based on whether we got the same number or not.
if (number == gw->prev_number) {
if (hdr->nbits + 1 >= gw->capacity)
return false;
bit_buffer_write(data, hdr->nbits, static_cast<uint32_t>(1), 1);
__atomic_fetch_add(&hdr->nbits, 1, __ATOMIC_RELAXED);
__atomic_fetch_add(&hdr->entries, 1, __ATOMIC_RELAXED);
return true;
}
if (hdr->nbits + 1 >= gw->capacity)
return false;
bit_buffer_write(data, hdr->nbits, static_cast<uint32_t>(0), 1);
__atomic_fetch_add(&hdr->nbits, 1, __ATOMIC_RELAXED);
uint32_t xor_value = gw->prev_number ^ number;
uint32_t xor_lzc = (bit_size<uint32_t>() == 32) ? __builtin_clz(xor_value) : __builtin_clzll(xor_value);
uint32_t is_xor_lzc_same = (xor_lzc == gw->prev_xor_lzc) ? 1 : 0;
if (hdr->nbits + 1 >= gw->capacity)
return false;
bit_buffer_write(data, hdr->nbits, is_xor_lzc_same, 1);
__atomic_fetch_add(&hdr->nbits, 1, __ATOMIC_RELAXED);
if (!is_xor_lzc_same) {
if (hdr->nbits + 1 >= gw->capacity)
return false;
bit_buffer_write(data, hdr->nbits, xor_lzc, (bit_size<uint32_t>() == 32) ? 5 : 6);
__atomic_fetch_add(&hdr->nbits, (bit_size<uint32_t>() == 32) ? 5 : 6, __ATOMIC_RELAXED);
}
// write the bits of the XOR'd value without the LZC prefix
if (hdr->nbits + (bit_size<uint32_t>() - xor_lzc) >= gw->capacity)
return false;
bit_buffer_write(data, hdr->nbits, xor_value, bit_size<uint32_t>() - xor_lzc);
__atomic_fetch_add(&hdr->nbits, bit_size<uint32_t>() - xor_lzc, __ATOMIC_RELAXED);
__atomic_fetch_add(&hdr->entries, 1, __ATOMIC_RELAXED);
gw->prev_number = number;
gw->prev_xor_lzc = xor_lzc;
return true;
}
gorilla_buffer_t *gorilla_writer_drop_head_buffer(gorilla_writer_t *gw) {
if (!gw->head_buffer)
return NULL;
gorilla_buffer_t *curr_head = gw->head_buffer;
gorilla_buffer_t *next_head = gw->head_buffer->header.next;
__atomic_store_n(&gw->head_buffer, next_head, __ATOMIC_RELAXED);
return curr_head;
}
uint32_t gorilla_writer_nbytes(const gorilla_writer_t *gw)
{
uint32_t nbits = 0;
const gorilla_buffer_t *curr_gbuf = __atomic_load_n(&gw->head_buffer, __ATOMIC_SEQ_CST);
do {
const gorilla_buffer_t *next_gbuf = __atomic_load_n(&curr_gbuf->header.next, __ATOMIC_SEQ_CST);
nbits += __atomic_load_n(&curr_gbuf->header.nbits, __ATOMIC_SEQ_CST);
curr_gbuf = next_gbuf;
} while (curr_gbuf);
return (nbits + (CHAR_BIT - 1)) / CHAR_BIT;
}
bool gorilla_writer_serialize(const gorilla_writer_t *gw, uint8_t *dst, uint32_t dst_size) {
const gorilla_buffer_t *curr_gbuf = gw->head_buffer;
do {
const gorilla_buffer_t *next_gbuf = curr_gbuf->header.next;
size_t bytes = GORILLA_BUFFER_SIZE;
if (bytes > dst_size)
return false;
memcpy(dst, curr_gbuf, bytes);
dst += bytes;
dst_size -= bytes;
curr_gbuf = next_gbuf;
} while (curr_gbuf);
return true;
}
uint32_t gorilla_buffer_patch(gorilla_buffer_t *gbuf) {
gorilla_buffer_t *curr_gbuf = gbuf;
uint32_t n = curr_gbuf->header.entries;
while (curr_gbuf->header.next) {
uint32_t *buf = reinterpret_cast<uint32_t *>(gbuf);
gbuf = reinterpret_cast<gorilla_buffer_t *>(&buf[GORILLA_BUFFER_SLOTS]);
assert(((uintptr_t) (gbuf) % sizeof(uintptr_t)) == 0 &&
"Gorilla buffer not aligned to uintptr_t");
curr_gbuf->header.next = gbuf;
curr_gbuf = curr_gbuf->header.next;
n += curr_gbuf->header.entries;
}
return n;
}
gorilla_reader_t gorilla_writer_get_reader(const gorilla_writer_t *gw)
{
const gorilla_buffer_t *buffer = __atomic_load_n(&gw->head_buffer, __ATOMIC_SEQ_CST);
uint32_t entries = __atomic_load_n(&buffer->header.entries, __ATOMIC_SEQ_CST);
uint32_t capacity = __atomic_load_n(&buffer->header.nbits, __ATOMIC_SEQ_CST);
return gorilla_reader_t {
.buffer = buffer,
.entries = entries,
.index = 0,
.capacity = capacity,
.position = 0,
.prev_number = 0,
.prev_xor_lzc = 0,
.prev_xor = 0,
};
}
gorilla_reader_t gorilla_reader_init(gorilla_buffer_t *gbuf)
{
uint32_t entries = __atomic_load_n(&gbuf->header.entries, __ATOMIC_SEQ_CST);
uint32_t capacity = __atomic_load_n(&gbuf->header.nbits, __ATOMIC_SEQ_CST);
return gorilla_reader_t {
.buffer = gbuf,
.entries = entries,
.index = 0,
.capacity = capacity,
.position = 0,
.prev_number = 0,
.prev_xor_lzc = 0,
.prev_xor = 0,
};
}
bool gorilla_reader_read(gorilla_reader_t *gr, uint32_t *number)
{
const uint32_t *data = gr->buffer->data;
if (gr->index + 1 > gr->entries) {
// We don't have any more entries to return. However, the writer
// might have updated the buffer's entries. We need to check once
// more in case more elements were added.
gr->entries = __atomic_load_n(&gr->buffer->header.entries, __ATOMIC_SEQ_CST);
gr->capacity = __atomic_load_n(&gr->buffer->header.nbits, __ATOMIC_SEQ_CST);
// if the reader's current buffer has not been updated, we need to
// check if it has a pointer to a next buffer.
if (gr->index + 1 > gr->entries) {
gorilla_buffer_t *next_buffer = __atomic_load_n(&gr->buffer->header.next, __ATOMIC_SEQ_CST);
if (!next_buffer) {
// fprintf(stderr, "Consumed reader with %zu entries from buffer %p\n (No more buffers to read from)", gr->length, gr->buffer);
return false;
}
// fprintf(stderr, "Consumed reader with %zu entries from buffer %p\n", gr->length, gr->buffer);
*gr = gorilla_reader_init(next_buffer);
return gorilla_reader_read(gr, number);
}
}
// read the first number
if (gr->index == 0) {
bit_buffer_read(data, gr->position, number, bit_size<uint32_t>());
gr->index++;
gr->position += bit_size<uint32_t>();
gr->prev_number = *number;
return true;
}
// process same-number bit
uint32_t is_same_number;
bit_buffer_read(data, gr->position, &is_same_number, 1);
gr->position++;
if (is_same_number) {
*number = gr->prev_number;
gr->index++;
return true;
}
// proceess same-xor-lzc bit
uint32_t xor_lzc = gr->prev_xor_lzc;
uint32_t same_xor_lzc;
bit_buffer_read(data, gr->position, &same_xor_lzc, 1);
gr->position++;
if (!same_xor_lzc) {
bit_buffer_read(data, gr->position, &xor_lzc, (bit_size<uint32_t>() == 32) ? 5 : 6);
gr->position += (bit_size<uint32_t>() == 32) ? 5 : 6;
}
// process the non-lzc suffix
uint32_t xor_value = 0;
bit_buffer_read(data, gr->position, &xor_value, bit_size<uint32_t>() - xor_lzc);
gr->position += bit_size<uint32_t>() - xor_lzc;
*number = (gr->prev_number ^ xor_value);
gr->index++;
gr->prev_number = *number;
gr->prev_xor_lzc = xor_lzc;
gr->prev_xor = xor_value;
return true;
}
/*
* Internal code used for fuzzing the library
*/
#ifdef ENABLE_FUZZER
#include <vector>
template<typename Word>
static std::vector<Word> random_vector(const uint8_t *data, size_t size) {
std::vector<Word> V;
V.reserve(1024);
while (size >= sizeof(Word)) {
size -= sizeof(Word);
Word w;
memcpy(&w, &data[size], sizeof(Word));
V.push_back(w);
}
return V;
}
class Storage {
public:
gorilla_buffer_t *alloc_buffer(size_t words) {
uint32_t *new_buffer = new uint32_t[words]();
assert(((((uintptr_t) new_buffer) % 8u) == 0) && "Unaligned buffer...");
Buffers.push_back(new_buffer);
return reinterpret_cast<gorilla_buffer_t *>(new_buffer);
}
void free_buffers() {
for (uint32_t *buffer : Buffers) {
delete[] buffer;
}
}
private:
std::vector<uint32_t *> Buffers;
};
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
if (Size < 4)
return 0;
std::vector<uint32_t> RandomData = random_vector<uint32_t>(Data, Size);
Storage S;
size_t words_per_buffer = 8;
/*
* write data
*/
gorilla_buffer_t *first_buffer = S.alloc_buffer(words_per_buffer);
gorilla_writer_t gw = gorilla_writer_init(first_buffer, words_per_buffer);
for (size_t i = 0; i != RandomData.size(); i++) {
bool ok = gorilla_writer_write(&gw, RandomData[i]);
if (ok)
continue;
// add new buffer
gorilla_buffer_t *buffer = S.alloc_buffer(words_per_buffer);
gorilla_writer_add_buffer(&gw, buffer, words_per_buffer);
ok = gorilla_writer_write(&gw, RandomData[i]);
assert(ok && "Could not write data to new buffer!!!");
}
/*
* read data
*/
gorilla_reader_t gr = gorilla_writer_get_reader(&gw);
for (size_t i = 0; i != RandomData.size(); i++) {
uint32_t number = 0;
bool ok = gorilla_reader_read(&gr, &number);
assert(ok && "Failed to read number from gorilla buffer");
assert((number == RandomData[i])
&& "Read wrong number from gorilla buffer");
}
S.free_buffers();
return 0;
}
#endif /* ENABLE_FUZZER */
#ifdef ENABLE_BENCHMARK
#include <benchmark/benchmark.h>
#include <random>
static size_t NumItems = 1024;
static void BM_EncodeU32Numbers(benchmark::State& state) {
std::random_device rd;
std::mt19937 mt(rd());
std::uniform_int_distribution<uint32_t> dist(0x0, 0x0000FFFF);
std::vector<uint32_t> RandomData;
for (size_t idx = 0; idx != NumItems; idx++) {
RandomData.push_back(dist(mt));
}
std::vector<uint32_t> EncodedData(10 * RandomData.capacity(), 0);
for (auto _ : state) {
gorilla_writer_t gw = gorilla_writer_init(
reinterpret_cast<gorilla_buffer_t *>(EncodedData.data()),
EncodedData.size());
for (size_t i = 0; i != RandomData.size(); i++)
benchmark::DoNotOptimize(gorilla_writer_write(&gw, RandomData[i]));
benchmark::ClobberMemory();
}
state.SetItemsProcessed(NumItems * state.iterations());
state.SetBytesProcessed(NumItems * state.iterations() * sizeof(uint32_t));
}
BENCHMARK(BM_EncodeU32Numbers)->ThreadRange(1, 16)->UseRealTime();
static void BM_DecodeU32Numbers(benchmark::State& state) {
std::random_device rd;
std::mt19937 mt(rd());
std::uniform_int_distribution<uint32_t> dist(0x0, 0xFFFFFFFF);
std::vector<uint32_t> RandomData;
for (size_t idx = 0; idx != NumItems; idx++) {
RandomData.push_back(dist(mt));
}
std::vector<uint32_t> EncodedData(10 * RandomData.capacity(), 0);
std::vector<uint32_t> DecodedData(10 * RandomData.capacity(), 0);
gorilla_writer_t gw = gorilla_writer_init(
reinterpret_cast<gorilla_buffer_t *>(EncodedData.data()),
EncodedData.size());
for (size_t i = 0; i != RandomData.size(); i++)
gorilla_writer_write(&gw, RandomData[i]);
for (auto _ : state) {
gorilla_reader_t gr = gorilla_reader_init(reinterpret_cast<gorilla_buffer_t *>(EncodedData.data()));
for (size_t i = 0; i != RandomData.size(); i++) {
uint32_t number = 0;
benchmark::DoNotOptimize(gorilla_reader_read(&gr, &number));
}
benchmark::ClobberMemory();
}
state.SetItemsProcessed(NumItems * state.iterations());
state.SetBytesProcessed(NumItems * state.iterations() * sizeof(uint32_t));
}
BENCHMARK(BM_DecodeU32Numbers)->ThreadRange(1, 16)->UseRealTime();
#endif /* ENABLE_BENCHMARK */
|