summaryrefslogtreecommitdiffstats
path: root/nping/ProbeMode.cc
blob: b8887a8d96ecee4b45cf4cf38797ad6c0ab33305 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
/***************************************************************************
 * ProbeMode.cc -- Probe Mode is nping's default working mode. Basically,  *
 * it involves sending the packets that the user requested at regular      *
 * intervals and capturing responses from the wire.                        *
 *                                                                         *
 ***********************IMPORTANT NMAP LICENSE TERMS************************
 *
 * The Nmap Security Scanner is (C) 1996-2023 Nmap Software LLC ("The Nmap
 * Project"). Nmap is also a registered trademark of the Nmap Project.
 *
 * This program is distributed under the terms of the Nmap Public Source
 * License (NPSL). The exact license text applying to a particular Nmap
 * release or source code control revision is contained in the LICENSE
 * file distributed with that version of Nmap or source code control
 * revision. More Nmap copyright/legal information is available from
 * https://nmap.org/book/man-legal.html, and further information on the
 * NPSL license itself can be found at https://nmap.org/npsl/ . This
 * header summarizes some key points from the Nmap license, but is no
 * substitute for the actual license text.
 *
 * Nmap is generally free for end users to download and use themselves,
 * including commercial use. It is available from https://nmap.org.
 *
 * The Nmap license generally prohibits companies from using and
 * redistributing Nmap in commercial products, but we sell a special Nmap
 * OEM Edition with a more permissive license and special features for
 * this purpose. See https://nmap.org/oem/
 *
 * If you have received a written Nmap license agreement or contract
 * stating terms other than these (such as an Nmap OEM license), you may
 * choose to use and redistribute Nmap under those terms instead.
 *
 * The official Nmap Windows builds include the Npcap software
 * (https://npcap.com) for packet capture and transmission. It is under
 * separate license terms which forbid redistribution without special
 * permission. So the official Nmap Windows builds may not be redistributed
 * without special permission (such as an Nmap OEM license).
 *
 * Source is provided to this software because we believe users have a
 * right to know exactly what a program is going to do before they run it.
 * This also allows you to audit the software for security holes.
 *
 * Source code also allows you to port Nmap to new platforms, fix bugs, and add
 * new features. You are highly encouraged to submit your changes as a Github PR
 * or by email to the dev@nmap.org mailing list for possible incorporation into
 * the main distribution. Unless you specify otherwise, it is understood that
 * you are offering us very broad rights to use your submissions as described in
 * the Nmap Public Source License Contributor Agreement. This is important
 * because we fund the project by selling licenses with various terms, and also
 * because the inability to relicense code has caused devastating problems for
 * other Free Software projects (such as KDE and NASM).
 *
 * The free version of Nmap is distributed in the hope that it will be
 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Warranties,
 * indemnification and commercial support are all available through the
 * Npcap OEM program--see https://nmap.org/oem/
 *
 ***************************************************************************/

#include "nping.h"
#include "ProbeMode.h"
#include <vector>
#include "nsock.h"
#include "output.h"
#include "NpingOps.h"

#ifdef WIN32
/* Need DnetName2PcapName */
#include "libnetutil/netutil.h"
#endif

extern NpingOps o;


ProbeMode::ProbeMode() {
  this->reset();
} /* End of ProbeMode constructor */


ProbeMode::~ProbeMode() {
} /* End of ProbeMode destructor */


/** Sets every attribute to its default value- */
void ProbeMode::reset() {
  this->nsock_init=false;
} /* End of reset() */


/** Sets up the internal nsock pool and the nsock trace level */
int ProbeMode::init_nsock(){
  struct timeval now;
  if( nsock_init==false ){
      /* Create a new nsock pool */
      if ((nsp = nsock_pool_new(NULL)) == NULL)
        nping_fatal(QT_3, "Failed to create new pool.  QUITTING.\n");
      nsock_pool_set_device(nsp, o.getDevice());

      /* Allow broadcast addresses */
      nsock_pool_set_broadcast(nsp, 1);

      /* Set nsock trace level */
      gettimeofday(&now, NULL);
      if( o.getDebugging() == DBG_5)
        nsock_set_loglevel(NSOCK_LOG_INFO);
      else if( o.getDebugging() > DBG_5 )
        nsock_set_loglevel(NSOCK_LOG_DBG_ALL);
      /* Flag it as already initialized so we don't do it again */
      nsock_init=true;
  }
  return OP_SUCCESS;
} /* End of init() */


/** Cleans up the internal nsock pool and any other internal data that
  * needs to be taken care of before destroying the object. */
int ProbeMode::cleanup(){
  nsock_pool_delete(this->nsp);
  return OP_SUCCESS;
} /* End of cleanup() */


/** Returns the internal nsock pool.
  * @warning the caller must ensure that init_nsock() has been called before
  * calling this method; otherwise, it will fatal() */
nsock_pool ProbeMode::getNsockPool(){
  if( this->nsock_init==false)
    nping_fatal(QT_3, "getNsockPool() called before init_nsock(). Please report a bug.");
  return this->nsp;
} /* End of getNsockPool() */


/** This function handles regular ping mode. Basically it handles both
  * unprivileged modes (TCP_CONNECT and UDP_UNPRIV) and raw packet modes
  * (TCP, UDP, ICMP, ARP). This function is where the loops that iterate
  * over target hosts and target ports are located. It uses the nsock lib
  * to schedule transmissions. The actual Tx and Rx is done inside the nsock
  * event handlers, here we just schedule them, take care of the timers,
  * set up pcap and the bpf filter, etc. */
int ProbeMode::start(){
  int rc;
  int p=0, pc=-1;                  /**< Indexes for ports count              */
  u32 c=0;                         /**< Index for packet count               */
  u32 zero=0;                      /**< Empty payload                        */
  u8 pktinfobuffer[512+1];         /**< Used in ippackethdrinfo() calls      */
  u8 pkt[MAX_IP_PACKET_LEN];       /**< Holds packets returned by fillpacket */
  int pktLen=0;                    /**< Length of current packet             */
  NpingTarget *target=NULL;        /**< Current target                       */
  u16 *targetPorts=NULL;           /**< Pointer to array of target ports     */
  int numTargetPorts=0;            /**< Total number of target ports         */
  u16 currentPort=0;               /**< Current target port                  */
  char *filterstring;              /**< Stores BFP filter spec string        */
  int rawipsd=-1;                  /**< Descriptor for raw IP socket         */
  enum nsock_loopstatus loopret;   /**< Stores nsock_loop returned status    */
  nsock_iod pcap_nsi;              /**< Stores Pcap IOD                      */
  u32 packetno=0;                  /**< Total packet count                   */
  bool first_time=true;            /**< First time we run the loop?          */
  char pcapdev[128];               /**< Device name passed to pcap_open_live */
  #define MX_PKT 1024              /**< Packet structs we keep simultaneously*/
  sendpkt_t pkts2send[MX_PKT];     /**< We have a race condition here but the
  * problem is not trivial to solve because we cannot create a sendpkt_t
  * struct for every probe we send. That could be alright in most cases but
  * not when targeting large networks or when doing flooding. The problem here
  * is that we may need access to specific sendpkt_t vars inside the nsock
  * event handlers but as some operations are asynchronous, we may exhaust
  * the current array of sendpkt_t structs and overwrite some positions
  * that contain data that has not been read yet. Anyway, this bug should not
  * happen when using Nping for normal purposes. As long as you don't choose
  * to ping a 100 million hosts with an inter-probe delay of 1ms, you should be
  * fine. For more info, write to luis.mgarc@gmail.com or post a message to the
  * nmap-dev mailing list. */


  /* Some safe zero initializations */
  memset(pktinfobuffer, 0, 512+1);
  memset(pkt, 0, MAX_IP_PACKET_LEN);
  memset(&pcap_nsi, 0, sizeof(pcap_nsi));
  memset(pkts2send, 0, MX_PKT * sizeof(sendpkt_t));

  /* Get array of target ports */
  targetPorts = o.getTargetPorts( &numTargetPorts );

  /* Set up nsock */
  this->init_nsock();

 switch( o.getMode() ){

  /***************************************************************************/
  /** TCP CONNECT MODE                                                      **/
  /***************************************************************************/
  case TCP_CONNECT:
    o.stats.startClocks();
    for( c=0; c < o.getPacketCount(); c++){ /* Do requested times */
        o.targets.rewind();
        for (p=0; p < numTargetPorts; p++){   /* Iterate through all destination ports */
            o.targets.rewind();
            while( (target=o.targets.getNextTarget()) != NULL ){

                /* Store relevant info so we can pass it to the handler */
                pc=(pc+1)%MX_PKT;
                pkts2send[pc].type=PKT_TYPE_TCP_CONNECT;
                pkts2send[pc].target=target;
                pkts2send[pc].dstport=targetPorts[p];

                /* Schedule a TCP Connect attempt */
                if( first_time ){
                    nsock_timer_create(nsp, tcpconnect_event_handler, 1, &pkts2send[pc]);
                    first_time=false;
                    loopret=nsock_loop(nsp, 2);
                    if (loopret == NSOCK_LOOP_ERROR)
                        nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
                }else{
                    nsock_timer_create(nsp, tcpconnect_event_handler, o.getDelay()+1, &pkts2send[pc]);
                    loopret=nsock_loop(nsp, o.getDelay()+1);
                    if (loopret == NSOCK_LOOP_ERROR)
                        nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
                }
            }
        }
    }
    o.stats.stopTxClock();
    /* If there are some events pending, we'll wait for DEFAULT_WAIT_AFTER_PROBES ms,
     * otherwise nsock_loop() will return immediately */
    loopret=nsock_loop(nsp, DEFAULT_WAIT_AFTER_PROBES);
    if (loopret == NSOCK_LOOP_ERROR)
        nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
    o.stats.stopRxClock();
    return OP_SUCCESS;
  break; /* case TCP_CONNECT */


  /***************************************************************************/
  /** UDP UNPRIVILEGED MODE                                                 **/
  /***************************************************************************/
  case UDP_UNPRIV:
    o.stats.startClocks();
    for( c=0; c < o.getPacketCount(); c++){ /* Do requested times */
        o.targets.rewind();
        for (p=0; p < numTargetPorts; p++){   /* Iterate through all destination ports */
            o.targets.rewind();
            while( (target=o.targets.getNextTarget()) != NULL ){

                /* Store relevant info so we can pass it to the handler */
                pc=(pc+1)%MX_PKT;
                pkts2send[pc].type=PKT_TYPE_UDP_NORMAL;
                pkts2send[pc].target=target;
                pkts2send[pc].dstport=targetPorts[p];

                if(o.issetPayloadBuffer() ){
                    pkts2send[pc].pkt=o.getPayloadBuffer();
                    pkts2send[pc].pktLen=o.getPayloadLen();
                }else{
                    /* We send 4 bytes of value 0 because nsock does not let us send empty UDP packets */
                    pkts2send[pc].pkt=(u8*)&zero;
                    pkts2send[pc].pktLen=4;
                    /* TODO: At some point we want to support David's custom UDP payloads here*/
                }

                /* Schedule a UDP attempt */
                if( first_time ){
                    nsock_timer_create(nsp, udpunpriv_event_handler, 1, &pkts2send[pc]);
                    first_time=false;
                    loopret=nsock_loop(nsp, 2);
                    if (loopret == NSOCK_LOOP_ERROR)
                        nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
                }else{
                    nsock_timer_create(nsp, udpunpriv_event_handler, o.getDelay(), &pkts2send[pc]);
                    loopret=nsock_loop(nsp, o.getDelay());
                    if (loopret == NSOCK_LOOP_ERROR)
                        nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
                }
            }
        }
    }
    o.stats.stopTxClock();
    /* If there are some events pending, we'll wait for DEFAULT_WAIT_AFTER_PROBES ms,
     * otherwise nsock_loop() will return immediately */
    if(!o.disablePacketCapture()){
        loopret=nsock_loop(nsp, DEFAULT_WAIT_AFTER_PROBES);
        if (loopret == NSOCK_LOOP_ERROR)
            nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
    }
    o.stats.stopRxClock();
    return OP_SUCCESS;
  break; /* case UDP_UNPRIV */



  /***************************************************************************/
  /** TCP/UDP/ICMP/ARP MODES                                                **/
  /***************************************************************************/
  case  TCP:
  case  UDP:
  case  ICMP:
  case  ARP:

    if( o.getMode()!=ARP && o.sendEth()==false ){
        /* Get socket descriptor. No need for it in ARP since we send at eth level */
        if ((rawipsd = obtainRawSocket()) < 0 )
            nping_fatal(QT_3,"Couldn't acquire raw socket. Are you root?");
    }

    /* Check if we have enough information to get the party started */
    if((o.getMode()==TCP || o.getMode()==UDP) && targetPorts==NULL)
        nping_fatal(QT_3, "normalProbeMode(): NpingOps does not contain correct target ports\n");

    /* Set up libpcap */
    if(!o.disablePacketCapture()){
        /* Create new IOD for pcap */
        if ((pcap_nsi = nsock_iod_new(nsp, NULL)) == NULL)
            nping_fatal(QT_3, "Failed to create new nsock_iod.  QUITTING.\n");

        /* Open pcap */
        filterstring=getBPFFilterString();
        nping_print(DBG_2,"Opening pcap device %s", o.getDevice() );
        #ifdef WIN32
        /* Nping normally uses device names obtained through dnet for interfaces,
         * but Pcap has its own naming system.  So the conversion is done here */
          if (!DnetName2PcapName(o.getDevice(), pcapdev, sizeof(pcapdev))) {
               /* Oh crap -- couldn't find the corresponding dev apparently.
                * Let's just go with what we have then ... */
               Strncpy(pcapdev, o.getDevice(), sizeof(pcapdev));
          }
        #else
          Strncpy(pcapdev, o.getDevice(), sizeof(pcapdev));
        #endif

        rc = nsock_pcap_open(nsp, pcap_nsi, pcapdev, 8192,
                             (o.spoofSource()) ? 1 : 0, filterstring);
        if (rc)
            nping_fatal(QT_3, "Error opening capture device %s\n", o.getDevice());
        nping_print(DBG_2,"Pcap device %s open successfully", o.getDevice());
    }

    /* Ready? Go! */
    o.stats.startClocks();

    switch ( o.getMode() ){

        /* Modes in which we need to iterate over target ports */
        case TCP:
        case UDP:
            /* Do user requested times */
            for( c=0; c < o.getPacketCount(); c++){
                o.targets.rewind();
                o.setCurrentRound( o.issetTTL() ?  ((c%(256-o.getTTL()))+o.getTTL()) : ((c%255)+1 ) ); /* Used in traceroute mode */
                /* Iterate through all destination ports */
                for (p=0; p < numTargetPorts; p++){
                    o.targets.rewind();
                    /* Iterate trough all target IP addresses */
                    while( (target=o.targets.getNextTarget()) != NULL ){

                        currentPort=targetPorts[p];

                        if ( fillPacket( target, currentPort, pkt, MAX_IP_PACKET_LEN, &pktLen, rawipsd ) != OP_SUCCESS ){
                            nping_fatal(QT_3, "normalProbeMode(): Error in packet creation");
                        }
                        /* Safe checks */
                        if (pktLen <=0)
                            nping_fatal(QT_3, "normalProbeMode(): Invalid packet returned by fillPacket() ");

                        /* Store relevant info so we can pass it to the handler */
                        pc=(pc+1)%MX_PKT;
                        pkts2send[pc].type = (o.getMode()==TCP) ? PKT_TYPE_TCP_RAW : PKT_TYPE_UDP_RAW;
                        pkts2send[pc].pkt = pkt;
                        pkts2send[pc].target=target;
                        pkts2send[pc].pktLen = pktLen;
                        pkts2send[pc].rawfd = rawipsd;
                        pkts2send[pc].seq = ++packetno;
                        pkts2send[pc].dstport=currentPort;

                        /* Tell nsock we expect one reply. Actually we schedule 2 pcap events just in case
                         * we get more than one response. */
                        if(!o.disablePacketCapture()){
                            nsock_pcap_read_packet(nsp, pcap_nsi, nping_event_handler, o.getDelay(), NULL);
                            nsock_pcap_read_packet(nsp, pcap_nsi, nping_event_handler, o.getDelay(), NULL);
                        }

                          /* Let nsock handle probe transmission and inter-probe delay */
                        if( first_time ){
                            nsock_timer_create(nsp, nping_event_handler, 1, &pkts2send[pc]);
                            first_time=false;
                            loopret=nsock_loop(nsp, 2);
                            if (loopret == NSOCK_LOOP_ERROR)
                                nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
                        }else{
                            nsock_timer_create(nsp, nping_event_handler, o.getDelay(), &pkts2send[pc]);
                            loopret=nsock_loop(nsp, o.getDelay()+1);
                            if (loopret == NSOCK_LOOP_ERROR)
                                nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
                        }
                    }
                }
            }
        break; /* Nested case UDP/TCP */


        /* Modes in which we DO NOT need to iterate over target ports */
        case ICMP:
        case ARP:
            /* Do user requested times */
            for( c=0; c < o.getPacketCount(); c++){
                o.targets.rewind();
                o.setCurrentRound( o.issetTTL() ?  ((c%(256-o.getTTL()))+o.getTTL()) : ((c%255)+1 ) ); /* Used in traceroute mode */
                /* Iterate trough all target IP addresses */
                while( (target=o.targets.getNextTarget()) != NULL ){

                    if ( fillPacket( target, 0, pkt, MAX_IP_PACKET_LEN, &pktLen, rawipsd ) != OP_SUCCESS )
                        nping_fatal(QT_3, "normalProbeMode(): Error in packet creation");
                    if (pktLen <=0)
                        nping_fatal(QT_3, "normalProbeMode(): Error packet returned by createPacket() ");

                    /* Store relevant info so we can pass it to the handler */
                    pc=(pc+1)%MX_PKT;
                    pkts2send[pc].type =  (o.getMode()==ICMP) ? PKT_TYPE_ICMP_RAW : PKT_TYPE_ARP_RAW;
                    pkts2send[pc].pkt = pkt;
                    pkts2send[pc].pktLen = pktLen;
                    pkts2send[pc].target=target;
                    pkts2send[pc].rawfd = rawipsd;
                    pkts2send[pc].seq = ++packetno;

                    /* Tell nsock we expect one reply. Actually we schedule 2 pcap events just in case
                     * we get more than one response. */
                    if(!o.disablePacketCapture()){
                        nsock_pcap_read_packet(nsp, pcap_nsi, nping_event_handler, o.getDelay(), NULL);
                        nsock_pcap_read_packet(nsp, pcap_nsi, nping_event_handler, o.getDelay(), NULL);
                    }

                    /* Let nsock handle probe transmission and inter-probe delay */
                    if( first_time ){
                        nsock_timer_create(nsp, nping_event_handler, 1, &pkts2send[pc]);
                        first_time=false;
                        loopret=nsock_loop(nsp, 2);
                        if (loopret == NSOCK_LOOP_ERROR)
                            nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
                    }else{
                        nsock_timer_create(nsp, nping_event_handler, o.getDelay(), &pkts2send[pc]);
                        loopret=nsock_loop(nsp, o.getDelay()+1);
                        if (loopret == NSOCK_LOOP_ERROR)
                            nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
                    }
                }
            }
        break; /* Nested case ICMP/ARP */

    } /* End of nested switch */

    o.stats.stopTxClock();
    if(!o.disablePacketCapture()){
        nsock_pcap_read_packet(nsp, pcap_nsi, nping_event_handler, DEFAULT_WAIT_AFTER_PROBES, NULL);
        loopret=nsock_loop(nsp, DEFAULT_WAIT_AFTER_PROBES);
        if (loopret == NSOCK_LOOP_ERROR)
           nping_fatal(QT_3, "Unexpected nsock_loop error.\n");
        o.stats.stopRxClock();
    }
   /* Close opened descriptors */
   if(rawipsd>=0)
     close(rawipsd);
  break; /* case TCP || case UDP || case ICMP || case ARP */

  default:
    nping_fatal(QT_3, "normalProbeMode(): Wrong mode. Please report this bug.");
  break;
 } /* End of main switch */
 return OP_SUCCESS;
} /* End of start() */





/** Creates buffer suitable to be passed to a sendto() call. The buffer
 * represents a raw network packet. The specific protocols are obtained from
 * the information stored in "NpingOps o" object. For example, if o.getMode()
 * returns TCP and o.ipv4() is true, then an IPv4-TCP packet will be generated
 * and stored in the supplied buffer.
 * @param target should contain a valid target with an IP that matches
 * NpingOps::af() returned value.
 * @param port is the destination port number. It is only necessary in TCP and
 * UDP modes. You can safely pass a dummy value in ICMP and ARP modes.
 * @param buff should point to a buffer where the generated packet can be stored.
 * @param bufflen should be the size of the supplied buffer. This function will
 * never write more than "bufflen" bytes to the buffer.
 * @param filledlen will be set to the amount of bytes actually written into
 * the buffer.
 * @param rawfd is the raw socket descriptor that will be used to send the
 * packet. This is only necessary when sending IPv6 packets at raw TCP level
 * because some IPv6 options like hop limit are tuned using calls to
 * setsockopt() */
int ProbeMode::fillPacket(NpingTarget *target, u16 port, u8 *buff, int bufflen, int *filledlen, int rawfd){
  EthernetHeader e;   /* Used when sending at raw Ethernet level.           */
  u8 *pnt=buff;       /* Aux pointer to keep track of user supplied "buff". */
  int pntlen=bufflen; /* Aux counter to store how many bytes we have left.  */
  int final_len=0;
  bool eth_included=false;

  if(target==NULL || buff==NULL || bufflen<=0 || filledlen==NULL)
    return OP_FAILURE;
  else
    nping_print(DBG_4, "fillPacket(target=%p, port=%d, buff=%p, bufflen=%d, filledlen=%p rawfd=%d)", target, port, buff, bufflen, filledlen, rawfd);

/* If o.sendEth() is true that means we need to send packets at raw Ethernet
 * level (we are probably running on windows or user requested that explicitly.
 * Ethernet frames that carry ARP packets have special requirements (e.g. some
 * of them are sent to a FF:FF:FF:FF:FF:FF broadcast address). That's why we
 * don't create Ethernet frames here when ARP is used. Function fillPacketARP()
 * takes care of that already. */
  if(o.sendEth() && o.getMode()!=ARP){
    e.setNextElement( NULL );
    if( buff==NULL || filledlen==NULL)
        nping_fatal(QT_3,"fillPacketARP(): NULL pointer supplied.");
    /* Source MAC Address */
    if( o.issetSourceMAC() )
        e.setSrcMAC( o.getSourceMAC() );
    else{
        if( target->getSrcMACAddress() )
            e.setSrcMAC( (u8 *)target->getSrcMACAddress() );
        else
            nping_fatal(QT_3, "fillPacket(): Cannot determine Source MAC address.");
    }

    /* Destination MAC Address */
    if( o.issetDestMAC() )
        e.setDstMAC( o.getDestMAC() );
    else{
        if( target->getNextHopMACAddress() )
            e.setDstMAC( (u8 *)target->getNextHopMACAddress() );
        else
            nping_fatal(QT_3, "fillPacket(): Cannot determine Next Hop MAC address.");
    }

    /* Ethertype value */
    if( o.issetEtherType() )
        e.setEtherType( o.getEtherType() );
    else{
        if( o.getIPVersion() == IP_VERSION_4 )
            e.setEtherType(ETHTYPE_IPV4);
        else if ( o.getIPVersion() == IP_VERSION_6 )
            e.setEtherType(ETHTYPE_IPV6);
        else
            nping_fatal(QT_3, "Bug in fillPacket() and NpingOps::ipversion");
    }

    /* Write the ethernet header to the beginning of the original buffer */
    e.dumpToBinaryBuffer(buff, 14);

    /* Move this pointer so the fillPacketXXXX() functions start from the
     * right byte. */
    pnt+=14;
    pntlen-=14;
    eth_included=true;
  }

  switch( o.getMode() ){
    case  TCP:
        fillPacketTCP(target, port, pnt, pntlen, &final_len, rawfd);
    break;
    case  UDP:
        fillPacketUDP(target, port, pnt, pntlen, &final_len, rawfd);
    break;
    case  ICMP:
         fillPacketICMP(target, pnt, pntlen, &final_len, rawfd);
    break;
    case  ARP: /* ARP builds its own Ethernet header inside fillPacketARP() */
         fillPacketARP(target, pnt, pntlen, &final_len, rawfd);
    break;
    default:
        nping_fatal(QT_3, "Bug in fillPacket() and NpingOps::getMode()");
    break;
  }

  if( eth_included )
    final_len+=14;
  *filledlen=final_len;
  return OP_SUCCESS;
} /* End of createPacket() */



/** Fills an IPv4Header object with information obtained from the NpingOps
 * class.
 * @return OP_SUCCESS on success and fatal()s in case of failure. */
int ProbeMode::createIPv4(IPv4Header *i, PacketElement *next_element, const char *next_proto, NpingTarget *target){
  if( i==NULL || next_proto==NULL || target==NULL)
    nping_fatal(QT_3,"createIPv4(): NULL pointer supplied.");

  i->setNextElement( next_element );   /* Set datagram payload */
  i->setDestinationAddress( target->getIPv4Address() );   /* Destination IP */
  i->setSourceAddress( o.spoofSource() ? o.getIPv4SourceAddress() : target->getIPv4SourceAddress());   /* Source IP */
  i->setTOS( o.getTOS() ); /* Type of service */
  i->setIdentification( o.getIdentification() );   /* Identification */
  i->setNextProto(next_proto);

  /* Time to live */
  if(o.issetTraceroute()){
      i->setTTL( o.getCurrentRound() );
  }else{
    i->setTTL( o.getTTL() );
  }

  /* Flags */
  if( o.issetMF() && o.getMF() == true )
    i->setMF();
  if( o.issetDF() && o.getDF() == true )
    i->setDF();
  if( o.issetRF() && o.getRF() == true )
    i->setRF();

  /* IP Options */
  if( o.issetIPOptions() == true )
    i->setOpts( o.getIPOptions() );

  i->setTotalLength();

  /* Checksum */
  if( o.getBadsumIP() == true )
    i->setSumRandom();
  else
    i->setSum();

  return OP_SUCCESS;
} /* End of createIPv4() */





/** Fills an IPv6Header object with information obtained from the NpingOps
 * class.
 * @return OP_SUCCESS on success and fatal()s in case of failure. */
int ProbeMode::createIPv6(IPv6Header *i, PacketElement *next_element, const char *next_proto, NpingTarget *target){
  if( i==NULL || next_proto==NULL || target==NULL)
    nping_fatal(QT_3,"createIPv6(): NULL pointer supplied.");

  /* Set datagram payload */
  i->setNextElement( next_element );

  i->setVersion();
  i->setTrafficClass( o.getTrafficClass() );
  i->setFlowLabel( o.getFlowLabel() );
  i->setNextHeader(next_proto);
  i->setPayloadLength();
  i->setDestinationAddress( target->getIPv6Address_u8() );

  /* Hop Limit */
  if ( o.issetTraceroute() ){
    i->setHopLimit( o.getCurrentRound() );
  }else{
    i->setHopLimit( o.getHopLimit() );
  }

  /* Source IP */
  if( o.issetIPv6SourceAddress() ){
    i->setSourceAddress( o.getIPv6SourceAddress() );
  }else{
    if ( target->getIPv6SourceAddress_u8() != NULL )
      i->setSourceAddress( target->getIPv6SourceAddress_u8() );
    else
      nping_fatal(QT_3, "createIPv6(): Cannot determine Source IPv6 Address");
  }
  return OP_SUCCESS;
} /* End of createIPv6() */


/** This function is a bit tricky. The thing is that some engineer had
 * the brilliant idea to remove IP_HDRINCL support in IPv6. As a result, it's
 * a big pain in the ass to create raw IPv6 headers because we can only do it
 * if we are sending packets at raw Ethernet level. So if we want our own IPv6
 * header (for source IP spoofing, etc) we have to do things like determine
 * source and dest MAC addresses (this is even more complicated in IPv6 than
 * in IPv4 because we don't have ARP anymore, we have to use something new, the
 * NDP, Neighbor Discovery Protocol.)
 * So the thing is that, if the user does not want to play with the IPv6 header,
 * why bother with all that link layer work? So what we do is create raw
 * transport layer packets and then send them through a raw IPv6 socket. The
 * socket will encapsulate our packets into a nice clean IPv6 header
 * automatically so we don't have to worry about low level details anymore.
 *
 * So this function basically takes a raw IPv6 socket descriptor and then tries
 * to set some basic parameters (like Hop Limit) using setsockopt() calls.
 * It always returns OP_SUCCESS. However, if errors are found, they are printed
 * (QT_2 level) using nping_warning();
 * */
int ProbeMode::doIPv6ThroughSocket(int rawfd){

    /* Hop Limit */
    int hoplimit=0;
    if( o.issetHopLimit() )
       hoplimit= o.getHopLimit();
    else if ( o.issetTraceroute() ){
         hoplimit= (o.getCurrentRound()<255)? o.getCurrentRound() : (o.getCurrentRound()%255)+1;
    }else{
       hoplimit=DEFAULT_IPv6_TTL;
    }
    if( setsockopt(rawfd, IPPROTO_IPV6, IPV6_UNICAST_HOPS, (char *)&hoplimit, sizeof(hoplimit)) != 0 )
        nping_warning(QT_2, "doIPv6ThroughSocket(): setsockopt() for Unicast Hop Limit on IPv6 socket failed");
    if( setsockopt(rawfd, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, (char *)&hoplimit, sizeof(hoplimit)) != 0 )
        nping_warning(QT_2, "doIPv6ThroughSocket(): setsockopt() for Multicast Hop Limit on IPv6 socket failed");

#ifdef IPV6_CHECKSUM  /* This is not available in when compiling with MinGW */
    /* Transport layer checksum */
    /* This is totally crazy. We have to tell the kernel EXPLICITLY that we
     * want it to set the TCP/UDP checksum for us. Why the hell is this the
     * default behavior if it's so incredibly difficult to get the IPv6 source
     * address?
     * Additionally, we have to be very careful not to set this option when
     * dealing with ICMPv6 because in that case the kernel computes the
     * checksum automatically and Nping can actually crash if we've set
     * this option manually, can you believe it? */
    if( o.getMode()==TCP || o.getMode()==UDP){
        /* We don't request valid TCP checksums if the user requested bogus sums */
        if( o.getBadsum()==false ){
            int offset = 16;
            if( setsockopt (rawfd, IPPROTO_IPV6, IPV6_CHECKSUM, (char *)&offset, sizeof(offset)) != 0 )
                nping_warning(QT_2, "doIPv6ThroughSocket(): failed to set IPV6_CHECKSUM option on IPv6 socket. ");
        }
    }
#endif

    /* Bind IPv6 socket to a specific network interface */
    if ( o.issetDevice() )  {
        /* It seems that SO_BINDTODEVICE only work on Linux */
        #ifdef LINUX
        if (setsockopt(rawfd, SOL_SOCKET, SO_BINDTODEVICE, o.getDevice(), strlen(o.getDevice())+1) == -1) {
            nping_warning(QT_2, "Error binding IPv6 socket to device %s", o.getDevice() );
        }
        #endif
    }

    return OP_SUCCESS;

} /* End of doIPv6ThroughSocket() */





/** This function handles TCP packet creation. However, the final packet that
  * it produces also includes an IP header.
  * There is one exception. When we are sending IPv6 packet at raw TCP level,
  * the returned packet does not contain an IPv6 header but the supplied
  * rawfd socket descriptor is ready to go because some options have been
  * set on it by doIPv6ThroughSocket(). */
int ProbeMode::fillPacketTCP(NpingTarget *target, u16 port, u8 *buff, int bufflen, int *filledlen, int rawfd){

 IPv4Header i;
 IPv6Header i6;
 TCPHeader t;
 RawData p;
 struct in_addr tip, sip;

  if( buff==NULL || filledlen==NULL || target==NULL)
    nping_fatal(QT_3,"fillPacketTCP(): NULL pointer supplied.");

  /* Add Payload if necessary */
  if ( o.issetPayloadType() ){
    switch( o.getPayloadType() ){
        case PL_RAND: case PL_HEX: case PL_STRING:
            p.store(o.getPayloadBuffer(), o.getPayloadLen());
        break;

        case PL_FILE:
        break;

        default:
        break;
    }
    t.setNextElement( &p );
  }

  /* Craft TCP Header */
  t.setSourcePort( o.getSourcePort() );
  t.setDestinationPort( port );
  t.setSeq( o.getTCPSequence() );
  t.setAck( o.getTCPAck() );
  t.setOffset();
  t.setWindow( o.getTCPWindow() );
  t.setUrgPointer(0);
  t.setFlags(0);

  /* Flags */
  if( o.getFlagTCP(FLAG_CWR) == 1 )  t.setCWR();
  if( o.getFlagTCP(FLAG_ECN) == 1 )  t.setECN();
  if( o.getFlagTCP(FLAG_URG) == 1 )  t.setURG();
  if( o.getFlagTCP(FLAG_ACK) == 1 )  t.setACK();
  if( o.getFlagTCP(FLAG_PSH) == 1 )  t.setPSH();
  if( o.getFlagTCP(FLAG_RST) == 1 )  t.setRST();
  if( o.getFlagTCP(FLAG_SYN) == 1 )  t.setSYN();
  if( o.getFlagTCP(FLAG_FIN) == 1 )  t.setFIN();


 /* Now let's encapsulate the TCP packet into an IP packet */
 switch( o.getIPVersion() ){

    case IP_VERSION_4:

        /* Fill the IPv4Header object with the info from NpingOps */
        createIPv4(&i, &t, "TCP", target);

        tip=target->getIPv4Address();
        i.getSourceAddress(&sip);
        if( o.getBadsum() == true ){
            t.setSumRandom(tip, sip);
        }else{
            t.setSum();
        }
        /* Store result in user supplied buffer */
        *filledlen = i.dumpToBinaryBuffer(buff, bufflen);

    break;

    case IP_VERSION_6:
        if( o.sendEth() ){
            /* Fill the IPv6Header object with the info from NpingOps */
            createIPv6(&i6, &t, "TCP", target);

            if( o.getBadsum() == true )
                t.setSumRandom();
            else{
                *filledlen = i6.dumpToBinaryBuffer(buff, bufflen);
                ip6_checksum(buff, *filledlen); /* Provided by dnet */
                return OP_SUCCESS;
            }

            /* Store result in user supplied buffer */
            *filledlen = i6.dumpToBinaryBuffer(buff, bufflen);
        }else{
            doIPv6ThroughSocket(rawfd);

             /* Set some bogus checksum */
             if( o.getBadsum()==true )
                t.setSumRandom();
            /* Set checksum to zero and pray for the kernel to set it to
             * the right value. Brothers and sisters:
             *
             * Our TCP/IP stack, Who is in the kernel,
             * Holy is Your Name;
             * Your kingdom come,
             * Your will be done,
             * on userland as it is in kernel space.
             * Give us this day our TCP checksum,
             * and forgive us for our raw sockets,
             * as we forgive you for your kernel panics;
             * and lead us not into /dev/null,
             * but deliver our packet to the next hop. Amen.
             * */
            else
                t.setSum(0);

            /* Since we cannot include our own header like we do in IPv4, the
             * buffer we return is the TCP one. */
            *filledlen = t.dumpToBinaryBuffer(buff, bufflen);
        }
    break;

    default:
        nping_fatal(QT_3, "fillPacketTCP(): Wrong IP version in NpingOps\n");
    break;

 }

 return OP_SUCCESS;

} /* End of fillPacketTCP() */






/** This function handles UDP packet creation. However, the final packet that
  * it produces also includes an IP header.
  * There is one exception. When we are sending IPv6 packet at raw TCP level,
  * the returned packet does not contain an IPv6 header but the supplied
  * rawfd socket descriptor is ready to go because some options have been
  * set on it by doIPv6ThroughSocket(). */
int ProbeMode::fillPacketUDP(NpingTarget *target, u16 port, u8 *buff, int bufflen, int *filledlen, int rawfd){

 IPv4Header i;
 IPv6Header i6;
 UDPHeader u;
 RawData p;
 struct in_addr tip, sip;

  if( buff==NULL || filledlen==NULL || target==NULL)
    nping_fatal(QT_3,"fillPacketUDP(): NULL pointer supplied.");


  /* Add Payload if necessary */
  if ( o.issetPayloadType() ){
    switch( o.getPayloadType() ){
        case PL_RAND: case PL_HEX:  case PL_STRING:
            p.store(o.getPayloadBuffer(), o.getPayloadLen());
        break;

        case PL_FILE:
        break;

        default:
        break;
    }
    u.setNextElement( &p );
  }

  /* Craft UDP Header */
  u.setSourcePort( o.getSourcePort() );
  u.setDestinationPort( port );
  u.setTotalLength();

 /* Now let's encapsulate the TCP packet into an IP packet */
 switch( o.getIPVersion() ){

    case IP_VERSION_4:

        /* Fill the IPv4Header object with the info from NpingOps */
        createIPv4(&i, &u, "UDP", target);

        /* Set checksum */
        tip=target->getIPv4Address();
        i.getSourceAddress(&sip);
        if( o.getBadsum() == true ){
            u.setSumRandom(tip, sip);
        }else{
            u.setSum();
        }
        /* Store result in user supplied buffer */
        *filledlen = i.dumpToBinaryBuffer(buff, bufflen);

    break;

    case IP_VERSION_6:

       if( o.sendEth() ){
            /* Fill the IPv6Header object with the info from NpingOps */
            createIPv6(&i6, &u, "UDP", target);

            if( o.getBadsum() == true ){
                u.setSumRandom();
                /* Store result in user supplied buffer */
                *filledlen = i6.dumpToBinaryBuffer(buff, bufflen);
            }
            else{
                *filledlen = i6.dumpToBinaryBuffer(buff, bufflen);
                ip6_checksum(buff, *filledlen); /* Provided by dnet */
                return OP_SUCCESS;
            }
        }else{
            doIPv6ThroughSocket(rawfd);

             /* Set some bogus checksum */
             if( o.getBadsum()==true )
                u.setSumRandom();
            /* Set checksum to zero and assume the kernel is gonna set the
             * right value. If it doesn't, it's not that important since
             * UDP checksum is optional and can safely be set to zero */
            else
                u.setSum(0);

            /* Since we cannot include our own header like we do in IPv4, the
             * buffer we return is the UDP one. */
            *filledlen = u.dumpToBinaryBuffer(buff, bufflen);
        }
    break;

    default:
        nping_fatal(QT_3, "fillPacketUDP(): Wrong IP version in NpingOps\n");
    break;

 }

 return OP_SUCCESS;

} /* End of fillPacketUDP() */



/** This function handles ICMP packet creation. However, the final packet that
  * it produces also includes an IP header.
  *
  * Currently this function only supports ICMPv4 packet creation. ICMPv6 will
  * be added in the future.*/
int ProbeMode::fillPacketICMP(NpingTarget *target, u8 *buff, int bufflen, int *filledlen, int rawfd){
  IPv4Header i;
  IPv6Header i6;
  ICMPv4Header c4;
  ICMPv6Header c6;
  RawData p;

  if( buff==NULL || filledlen==NULL || target==NULL)
    nping_fatal(QT_3,"fillPacketICMP(): NULL pointer supplied.");
  nping_print(DBG_4, "fillPacketICMP(target=%p, buff=%p, bufflen=%d, filledlen=%p)", target, buff, bufflen, filledlen);

  /* Add Payload if necessary */
  if ( o.issetPayloadType() ){
    switch( o.getPayloadType() ){
        case PL_RAND: case PL_HEX: case PL_STRING:
            p.store(o.getPayloadBuffer(), o.getPayloadLen());
        break;

        case PL_FILE:
        break;

        default:
        break;
    }
    c4.setNextElement( &p );
    c6.setNextElement( &p );
  }

  if( o.ipv4() ){

    c4.setType( o.getICMPType() );
    c4.setCode( o.getICMPCode() );

    /* Lets go for type specific options */
    switch ( c4.getType() ){

        case ICMP_REDIRECT:
            c4.setGatewayAddress( o.getICMPRedirectAddress() );
        break;

        case ICMP_ECHO:
        case ICMP_ECHOREPLY:
            if( o.issetICMPIdentifier() )
                c4.setIdentifier( o.getICMPIdentifier() );
            else
                c4.setIdentifier( target->getICMPIdentifier() );

            if( o.issetICMPSequence() )
                c4.setSequence( o.getICMPSequence() );
            else
                c4.setSequence( target->obtainICMPSequence() );
        break;

        case ICMP_ROUTERADVERT:
               c4.setAddrEntrySize( 2 );
               c4.setLifetime( o.getICMPRouterAdvLifetime() );

               if( o.issetICMPAdvertEntry() )
                    for (int z=0; z<o.getICMPAdvertEntryCount(); z++){
                        struct in_addr entryaddr;
                        u32 entrypref;
                        o.getICMPAdvertEntry(z, &entryaddr, &entrypref );
                        c4.addRouterAdvEntry(entryaddr, entrypref);
                    }
        break;

        case ICMP_PARAMPROB:
            c4.setParameterPointer( o.getICMPParamProblemPointer() );
        break;

        case ICMP_TSTAMP:
        case ICMP_TSTAMPREPLY:
            if( o.issetICMPIdentifier() )
                c4.setIdentifier( o.getICMPIdentifier() );
            else
                c4.setIdentifier( target->getICMPIdentifier() );

            if( o.issetICMPSequence() )
                c4.setSequence( o.getICMPSequence() );
            else
                c4.setSequence( target->obtainICMPSequence() );
            c4.setOriginateTimestamp( o.getICMPOriginateTimestamp() );
            c4.setReceiveTimestamp( o.getICMPReceiveTimestamp() );
            c4.setTransmitTimestamp( o.getICMPTransmitTimestamp() );
        break;

        case ICMP_INFO:
        case ICMP_INFOREPLY:
        case ICMP_MASK:
        case ICMP_MASKREPLY:
        case ICMP_TRACEROUTE:
        case ICMP_UNREACH:
        case ICMP_SOURCEQUENCH:
        case ICMP_ROUTERSOLICIT:
        case ICMP_TIMXCEED:
        break;

        default:
          /* TODO: What do we do here if user specified a non standard type? */
        break;

    }
    /* Compute checksum */
    c4.setSum(); /* TODO: Do we want to implement --badsum-icmp? */

    /* Fill the IPv4Header object with the info from NpingOps */
    createIPv4(&i, &c4, "ICMP", target);

    /* Store result in user supplied buffer */
    *filledlen = i.dumpToBinaryBuffer(buff, bufflen);

  }else{

    c6.setType( o.getICMPType() );
    c6.setCode( o.getICMPCode() );

    switch( c6.getType() ){

        case ICMPv6_ECHO:
        case ICMPv6_ECHOREPLY:
            c6.setIdentifier(o.issetICMPIdentifier() ?  o.getICMPIdentifier() : target->getICMPIdentifier());
            c6.setSequence(o.issetICMPSequence() ? o.getICMPSequence() : target->obtainICMPSequence());
        break;

        case ICMPv6_UNREACH:
        case ICMPv6_PKTTOOBIG:
        case ICMPv6_TIMXCEED:
        case ICMPv6_PARAMPROB:

        case ICMPv6_ROUTERSOLICIT:
        case ICMPv6_ROUTERADVERT:
        case ICMPv6_NGHBRSOLICIT:
        case ICMPv6_NGHBRADVERT:
        case ICMPv6_REDIRECT:
        case ICMPv6_RTRRENUM:
        default:
        break;
    }

    /* Fill the IPv4Header object with the info from NpingOps */
    createIPv6(&i6, &c6, "ICMPv6", target);

    /* Compute checksum */
    c6.setSum();

    /* Store result in user supplied buffer */
    *filledlen = i6.dumpToBinaryBuffer(buff, bufflen);

  }

 return OP_SUCCESS;

} /* End of fillPacketICMP() */




/** This function handles ARP packet creation. However, the final packet that
  * it produces also includes an Ethernet header. */
int ProbeMode::fillPacketARP(NpingTarget *target, u8 *buff, int bufflen, int *filledlen, int rawfd){

    EthernetHeader e;
    ARPHeader a;

    u8 bcastmac[6]={0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
    u8 nullmac[6]={0x00,0x00,0x00,0x00,0x00,0x00};

    if(target==NULL || buff==NULL || filledlen==NULL)
        nping_fatal(QT_3,"fillPacketARP(): NULL pointer supplied.");

    nping_print(DBG_4, "fillPacketARP(target=%p, buff=%p, bufflen=%d, filledlen=%p)", target, buff, bufflen, filledlen);

    /* Source MAC Address */
    if( o.issetSourceMAC() )
        e.setSrcMAC( o.getSourceMAC() );
    else if( target->getSrcMACAddress()!=NULL )
        e.setSrcMAC(target->getSrcMACAddress());
    else
        e.setSrcMAC( nullmac ); /* Defaults to 00:00:00:00:00:00 */

    /* Destination MAC Address */
    if( o.issetDestMAC() )
        e.setDstMAC( o.getDestMAC() );
    else
        e.setDstMAC( bcastmac ); /* Defaults to FF:FF:FF:FF:FF:FF */

    /* Ethertype value */
    if( o.issetEtherType() )
        e.setEtherType( o.getEtherType() );
    else
        e.setEtherType(ETHTYPE_ARP);

    /* Link Ethernet header to ARP packet. */
    e.setNextElement(&a);

    /* Hardware type */
    if( o.issetARPHardwareType() )
        a.setHardwareType( o.getARPHardwareType() );
    else
        a.setHardwareType();

    /* Protocol type */
    if( o.issetARPProtocolType() )
        a.setProtocolType( o.getARPProtocolType() );
    else
        a.setProtocolType();

    /* Length of HW Address */
    if( o.issetARPHwAddrLen() )
        a.setHwAddrLen( o.getARPHwAddrLen() );
    else
        a.setHwAddrLen();  /* Defaults to length of a MAC address */

    /* Length of Protocol Address */
    if( o.issetARPProtoAddrLen() )
        a.setProtoAddrLen( o.getARPProtoAddrLen() );
    else
        a.setProtoAddrLen();   /* Defaults to length of IPv4 */

    /* ARP Operation code. */
    a.setOpCode( o.getARPOpCode() );

    /* Sender HW Address */
    if( o.issetARPSenderHwAddr() )
        a.setSenderMAC( o.getARPSenderHwAddr() );
    else
        a.setSenderMAC( e.getSrcMAC() );  /* Get Ethernet's source MAC */

    /* Sender Protocol Address */
    if( o.issetARPSenderProtoAddr() )
        a.setSenderIP( o.getARPSenderProtoAddr() );
    else if ( o.issetIPv4SourceAddress() )
        a.setSenderIP( o.getIPv4SourceAddress() );
    else
        a.setSenderIP(  target->getIPv4SourceAddress() );

    /* Target HW Address */
    if( o.issetARPTargetProtoAddr() )
        a.setTargetIP( o.getARPTargetProtoAddr() );
    else
        a.setTargetIP( target->getIPv4Address() );

    /* Target Protocol Address */
    if( o.issetARPTargetHwAddr() )
        a.setTargetMAC( o.getARPTargetHwAddr() );
    else
        a.setTargetMAC( nullmac );  /* Get Ethernet's target MAC */

    /* Store result in user supplied buffer */
    *filledlen = e.dumpToBinaryBuffer(buff, bufflen);

     return OP_SUCCESS;
}



/** This function creates a BPF filter specification, suitable to be passed to
  * pcap_compile() or nsock_pcap_open(). It reads info from "NpingOps o" and
  * creates the right BPF filter for the current operation mode. However, if
  * user has supplied a custom BPF filter through option --bpf-filter, the
  * same string stored in o.getBPFFilterSpec() is returned (so the caller
  * should not even bother to check o.issetBPFFilterSpec() because that check
  * is done here already.
  * @warning Returned pointer is a statically allocated buffer that subsequent
  *  calls will overwrite. */
char *ProbeMode::getBPFFilterString(){

 char ipstring[128];
 static char filterstring[1024];
 char *buffer=filterstring;
 u8 icmp_send_type=0;
 u8 icmp_recv_type=0;
 u16 arp_send_type=0;
 u16 arp_recv_type=0;
 bool skip_icmp_matching=false;
 bool skip_arp_matching=false;
 bool src_equals_target=false;
 NpingTarget *t=NULL;
 struct sockaddr_storage srcss;
 struct sockaddr_in  *s4=(struct sockaddr_in *)&srcss;
 struct sockaddr_in6 *s6=(struct sockaddr_in6 *)&srcss;
 struct sockaddr_storage dstss;
 struct sockaddr_in  *d4=(struct sockaddr_in *)&dstss;
 struct sockaddr_in6 *d6=(struct sockaddr_in6 *)&dstss;
 size_t dstlen, srclen;
 memset(&srcss, 0, sizeof(struct sockaddr_storage));
 memset(&dstss, 0, sizeof(struct sockaddr_storage));
 memset(buffer, 0, 1024);
 memset(ipstring, 0, 128);

 /* If user supplied a BPF from the cmd line, use it */
 if( o.issetBPFFilterSpec() ){
    buffer=o.getBPFFilterSpec();
    /* We copy it to our internal static buffer just in case... */
    if(buffer!=NULL)
        strncpy(filterstring, buffer, sizeof(filterstring)-1);
    else
        strncpy(filterstring, "", 2);
    nping_print(DBG_1, "BPF-filter: %s", filterstring);
    return filterstring;
 }

 /* For the server in Echo mode we need a special filter */
 if( o.getRole()==ROLE_SERVER ){
    /* Capture all IP packets but the ones that belong to the side-channel */
    sprintf(filterstring, "ip and ( not (tcp and (dst port %d or src port %d) ) )", o.getEchoPort(), o.getEchoPort() );
    nping_print(DBG_1, "BPF-filter: %s", filterstring);
    return filterstring;
 }

 /* Obtain source IP address */
  if( o.spoofSource() )
    memcpy( &srcss, o.getSourceSockAddr(), sizeof(struct sockaddr_storage) );
  else  if( (t=o.targets.getNextTarget())!= NULL ){
    t->getSourceSockAddr(&srcss, &srclen);
  }else{
   /* This should never happen but if for some reason we cannot obtain
    * the target, set localhost address. */
    if ( o.ipv6() ){
        s4->sin_family=AF_INET;
        inet_pton(AF_INET, "::1", &s6->sin6_addr);
    }else{
        s4->sin_family=AF_INET;
        inet_pton(AF_INET, "127.0.0.1", &s4->sin_addr);
    }
    nping_print(DBG_2, "Couldn't determine source address. Using address %s in BFP filter", IPtoa(&srcss) );
  }
  o.targets.rewind();

  /* Obtain the first target address */
  if(t!=NULL)
    t->getTargetSockAddr(&dstss, &dstlen);

  /* Determine if source address and target address are the same. This is a
   * special case that occurs when nping-ing localhost */
  if(s6->sin6_family==AF_INET6){
    if(memcmp(&s6->sin6_addr, &d6->sin6_addr, sizeof(d6->sin6_addr))==0)
        src_equals_target=true;
  }else if( s4->sin_family == AF_INET ){
    if(s4->sin_addr.s_addr == d4->sin_addr.s_addr)
        src_equals_target=true;
  }

 /* Convert src address to an ascii string so it can be copied to the BPF string */
 if(s6->sin6_family==AF_INET6){
    inet_ntop(AF_INET6, &s6->sin6_addr, ipstring, sizeof(ipstring));
 }else if( s4->sin_family == AF_INET ) {
    inet_ntop(AF_INET, &s4->sin_addr, ipstring, sizeof(ipstring));
 }else{
    nping_warning(QT_2, "Warning: Wrong address family (%d) in getBPFFilterString(). Please report a bug", srcss.ss_family);
    sprintf(ipstring,"127.0.0.1");
 }

 /* Tell the filter that we only want incoming packets, destined to our source IP */
 if(o.getMode()!=ARP){
     if(src_equals_target)
         Snprintf(buffer, 1024, "(src host %s and dst host %s) and (", ipstring, ipstring);
     else
         Snprintf(buffer, 1024, "(not src host %s and dst host %s) and (", ipstring, ipstring);
    buffer=filterstring+strlen(filterstring);
 }

 /* Time for protocol specific constraints */
 switch( o.getMode() ){
    case  TCP: /* Restrict to packets targeting our TCP source port */
        Snprintf(buffer, 1024-strlen(filterstring), "(tcp and dst port %d) ", o.getSourcePort());
    break;

    case  UDP: /* Restrict to packets targeting our UDP source port */
        Snprintf(buffer, 1024-strlen(filterstring), "(udp and dst port %d) ", o.getSourcePort());
    break;

    case  ICMP: /* Restrict to packets that are replies to our ICMP packets */
        icmp_send_type= o.issetICMPType() ? o.getICMPType() : DEFAULT_ICMP_TYPE;
        switch( icmp_send_type ){
            case ICMP_TSTAMP:
                icmp_recv_type=ICMP_TSTAMPREPLY;
            break;
            case ICMP_TSTAMPREPLY:          /* If we are sending replies we probably want to see */
                icmp_recv_type=ICMP_TSTAMP; /* the requests that are being put into the network  */
            break;
            case ICMP_INFO:
                icmp_recv_type=ICMP_INFOREPLY;
            break;
            case ICMP_INFOREPLY:
                icmp_recv_type=ICMP_INFO;
            break;
            case ICMP_MASK:
                icmp_recv_type=ICMP_MASKREPLY;
            break;
            case ICMP_MASKREPLY:
                icmp_recv_type=ICMP_MASK;
            break;
            case ICMP_ECHO:
                icmp_recv_type=ICMP_ECHOREPLY;
            break;
            case ICMP_ECHOREPLY:
                icmp_recv_type=ICMP_ECHO;
            break;

            /* These don't generate any response so we behave different */
            case ICMP_UNREACH:
            case ICMP_SOURCEQUENCH:
            case ICMP_REDIRECT:
            case ICMP_ROUTERADVERT:
            case ICMP_ROUTERSOLICIT:
            case ICMP_TIMXCEED:
            case ICMP_PARAMPROB:
            case ICMP_TRACEROUTE:
            default:
                skip_icmp_matching=true;
            break;
        }
        /* We have an specific ICMP type to look for */
        if(!skip_icmp_matching){
            Snprintf(buffer, 1024-strlen(filterstring), "(icmp and icmp[icmptype] = %d) ", icmp_recv_type);
        }else{
            /* If we are sending messages that don't generate responses, receive anything but the type we send.
             * This conflicts in some cases with the conditions added at the end of this functions where we
             * allow ICMP error messages to be received. However, this is not a problem since we are already
             * filtering out our own outgoing packets and the packets that are not for us. */
            Snprintf(buffer, 1024-strlen(filterstring), "(icmp and icmp[icmptype] != %d) ", icmp_send_type);
        }
    break;

    case  ARP:
        arp_send_type= o.issetARPOpCode() ? o.getARPOpCode() : DEFAULT_ARP_OP;
        switch(arp_send_type){
            case OP_ARP_REQUEST:
                arp_recv_type=OP_ARP_REPLY;
            break;
            case OP_ARP_REPLY:                 /* If we are sending replies we probably want to see */
                arp_recv_type=OP_ARP_REQUEST;  /* the requests that are being put into the network  */
            break;
            case OP_RARP_REQUEST:
                arp_recv_type=OP_RARP_REPLY;
            break;
            case OP_RARP_REPLY:
                arp_recv_type=OP_RARP_REQUEST;
            break;
            case OP_DRARP_REQUEST:
                arp_recv_type=OP_DRARP_REPLY;
            break;
            case OP_DRARP_REPLY:
                arp_recv_type=OP_DRARP_REQUEST;
            break;
            case OP_DRARP_ERROR:
                arp_recv_type=OP_DRARP_REQUEST;
            break;
            case OP_INARP_REQUEST:
                arp_recv_type=OP_INARP_REPLY;
            break;
            case OP_INARP_REPLY:
                arp_recv_type=OP_INARP_REQUEST;
            break;
            default:
                skip_arp_matching=true;
            break;
        }
        if(!skip_arp_matching){
            /* If we are doing DRARP we also want to receive DRARP errors */
            if(arp_send_type==OP_DRARP_REQUEST || arp_send_type==OP_DRARP_REPLY)
                Snprintf(buffer, 1024-strlen(filterstring),  "arp and arp[6]==0x00 and (arp[7]==0x%02X or arp[7]==0x%02X)", (u8)arp_recv_type, (u8)OP_DRARP_ERROR);
            else
                Snprintf(buffer, 1024-strlen(filterstring),  "arp and arp[6]==0x00 and arp[7]==0x%02X", (u8)arp_recv_type);
        }else{
            /* If we are sending things like ATMARP's ARP_NAK, we just skip the type we send and receive all others */
            Snprintf(buffer, 1024-strlen(filterstring),  "arp and arp[6]==0x00 and arp[7]!=0x%02X", (u8)arp_send_type);
        }
    break;
  }

  /* We also want to get all ICMP error messages */
  if(o.getMode()!=ARP){
    buffer=filterstring+strlen(filterstring);
    Snprintf(buffer, 1024-strlen(filterstring), "or (icmp and (icmp[icmptype] = %d or icmp[icmptype] = %d or icmp[icmptype] = %d or icmp[icmptype] = %d or icmp[icmptype] = %d)) )" ,
                                 ICMP_UNREACH, ICMP_SOURCEQUENCH, ICMP_REDIRECT, ICMP_TIMXCEED, ICMP_PARAMPROB);
  }
  nping_print(DBG_1, "BPF-filter: %s", filterstring);
  return filterstring;
} /* End of getBPFFilterString() */



/** Helper to check whether a received ICMP-in-IPv4 packet is related to a probe
  * we might have sent. Returns non-NULL target pointer if found. Otherwise
  * returns NULL. */
static NpingTarget *is_response_icmp(const unsigned char *packet, unsigned int packetlen) {
    const void *data;
    unsigned int datalen;
    struct abstract_ip_hdr packethdr;
    NpingTarget *trg;

    /* Parse the outermost IP header (for its source address). */
    datalen = packetlen;
    data = ip_get_data(packet, &datalen, &packethdr);
    if (data == NULL)
        return NULL;

    trg = o.targets.findTarget(&packethdr.src);
    if (trg != NULL) {
        if (packethdr.proto == IPPROTO_ICMP) {
            struct icmp_hdr *icmp;
            struct icmp_msg_echo *echo;

            if (datalen < 4)
                return NULL;
            icmp = (struct icmp_hdr *) data;
            /* In case of echo reply, make sure the ICMP ID is the same as we
               are sending. */
            if (icmp->icmp_type == ICMP_ECHOREPLY) {
                u16 expected_id;

                if (o.issetICMPIdentifier())
                    expected_id = o.getICMPIdentifier();
                else
                    expected_id = trg->getICMPIdentifier();

                if (datalen < 8)
                    return NULL;
                echo = (struct icmp_msg_echo *) ((char *) icmp + 4);
                if (ntohs(echo->icmp_id) != expected_id)
                    return NULL;
            }
        }
        return trg;
    }

    /* If that didn't work, check if this is ICMP with an encapsulated IP
       header. */
    if (packethdr.proto == IPPROTO_ICMP) {
        struct ip *ip;
        unsigned int iplen;
        struct sockaddr_storage ss;
        struct sockaddr_in *sin = (struct sockaddr_in *) &ss;

        if (datalen < 8)
            return NULL;
        ip = (struct ip *) ((char *) data + 8);
        iplen = datalen - 8;
        /* Make sure there is enough header to have a dest address. */
        if (iplen < 20)
            return NULL;
        if (ip->ip_v != 4)
            return NULL;
        sin->sin_family = AF_INET;
        sin->sin_addr = ip->ip_dst;
        trg = o.targets.findTarget(&ss);

        return trg;
    }

    return NULL;
}


/** This function handles nsock events related to raw packet modes
  * TCP, UDP, ICMP and ARP (TCP_CONNEC and UDP_UNPRIV are handled by their
  * own even handlers).
  * Basically the handler receives nsock events and takes the appropriate
  * action based on event type.  This is basically what it does for each event:
  *
  * TIMERS: start() schedules probe transmissions through timers.
  * That's how we manage to send probes at a given rate. When the alarm goes
  * off, nsock generates a timer event so, in this function, we take the
  * supplied "mydata" pointer, convert it to a sendpkt_t pointer and, from
  * the info stored there, we send the packet though a raw socket.
  *
  * PCAP READS: start() also schedules pcap read operations so,
  * whenever pcap has capture a packet, nsock generates a pcap read event so
  * we just read the capture data, update the statistics and print the packet
  * to stdout.
  * */
void ProbeMode::probe_nping_event_handler(nsock_pool nsp, nsock_event nse, void *mydata) {

 nsock_iod nsi = nse_iod(nse);
 enum nse_status status = nse_status(nse);
 enum nse_type type = nse_type(nse);
 sendpkt_t *mypacket = (sendpkt_t *)mydata;
 u8 pktinfobuffer[512+1];
 char *hex=NULL;
 char final_output[65535];
 nsock_event_id ev_id;
 struct timeval *t = (struct timeval *)nsock_gettimeofday();
 const unsigned char *packet=NULL;
 const unsigned char *link=NULL;
 size_t linklen=0;
 size_t packetlen=0;
 u16 *ethtype=NULL;
 u8 buffer[512+1];
 size_t link_offset=0;
 static struct timeval pcaptime;
 static struct timeval prevtime;
 NpingTarget *trg=NULL;
 u16 *prt=NULL;
 u8 proto=0;
 bool ip=false;
 memset(final_output, 0, sizeof(final_output));

 nping_print(DBG_4, "nping_event_handler(): Received callback of type %s with status %s",
                  nse_type2str(type), nse_status2str(status));

 if (status == NSE_STATUS_SUCCESS ) {

   switch(type) {

       /* This is actually for our raw packet probe transmissions */
       case NSE_TYPE_TIMER:
            if( mypacket!=NULL){

                /* Send the packet */
                send_packet(mypacket->target, mypacket->rawfd, mypacket->pkt, mypacket->pktLen);
                o.setLastPacketSentTime(*t);

                /* Print packet contents */
                if( o.sendEth() )
                    link_offset=14;

                if( mypacket->type==PKT_TYPE_ARP_RAW )
                    getPacketStrInfo("ARP",mypacket->pkt+14, mypacket->pktLen-14, pktinfobuffer, 512);
                else if ( o.ipv6UsingSocket() ){
                    size_t sslen;
                    struct sockaddr_storage ss_src;
                    struct sockaddr_storage ss_dst;
                    mypacket->target->getSourceSockAddr(&ss_src, &sslen);
                    mypacket->target->getTargetSockAddr(&ss_dst, &sslen);
                    getPacketStrInfo("IPv6_NO_HEADER", mypacket->pkt, mypacket->pktLen, pktinfobuffer, 512, &ss_src, &ss_dst );
                }
                else
                    getPacketStrInfo("IP", mypacket->pkt+link_offset, mypacket->pktLen-link_offset, pktinfobuffer, 512);

                o.stats.addSentPacket(mypacket->pktLen);
                if( o.getMode()==TCP || o.getMode()==UDP){
                    mypacket->target->setProbeSentTCP(0, mypacket->dstport);
                }else if (o.getMode()==ICMP){
                    mypacket->target->setProbeSentICMP(0,0);
                }
                if( o.showSentPackets() ){
                    nping_print(VB_0,"SENT (%.4fs) %s", o.stats.elapsedRuntime(t), pktinfobuffer );
                    if( o.getVerbosity() >= VB_3 )
                        luis_hdump((char*)mypacket->pkt, mypacket->pktLen);
                }
            }
       break;



       case NSE_TYPE_PCAP_READ:

            /* Read a packet */
            nse_readpcap(nse, &link, &linklen, &packet, &packetlen, NULL, &pcaptime);

            /* If we are on a Ethernet network, extract the next packet protocol
             * from the Ethernet frame. */
            if( nsock_iod_linktype(nsi) == DLT_EN10MB ){
                ethtype=(u16*)(link+12);
                *ethtype=ntohs(*ethtype);
                switch(*ethtype){
                    case ETHTYPE_IPV4:
                    case ETHTYPE_IPV6:
                        ip=true;
                    break;
                    case ETHTYPE_ARP:
                    case ETHTYPE_RARP:
                        ip=false;
                    break;
                    default:
                        nping_warning(QT_1, "RCVD (%.4fs) Unsupported protocol (Ethernet type %02X)", o.stats.elapsedRuntime(t), *ethtype);
                        print_hexdump(VB_3, packet, packetlen);
                        return;
                    break;
                }
            /* If link layer is not Ethernet, check if the first bits of the
             * packets are 4 (IPv4) or 6 (IPv6). This is not exact science but
             * it should be OK for the moment since we should never get non
             * IP packets (the BPF filter prevents that) */
            }else{
                IPv4Header iphdr;
                if( iphdr.storeRecvData(packet, packetlen)!=OP_SUCCESS )
                    nping_warning(QT_1, "RCVD (%.4fs) Bogus packet received.", o.stats.elapsedRuntime(t));
                if( iphdr.getVersion()==4 || iphdr.getVersion()==6){
                    ip=true;
                }else{
                    nping_warning(QT_1, "RCVD (%.4fs) Unsupported protocol.", o.stats.elapsedRuntime(t));
                    print_hexdump(VB_3, packet, packetlen);
                    return;
                }
            }

            /* Packet is IP */
            if(ip){
                getPacketStrInfo("IP",(const u8*)packet, packetlen, buffer, 512);
                proto = getProtoFromIPPacket((u8*)packet, packetlen);
                if (proto == IPPROTO_UDP || proto == IPPROTO_TCP){
                    /* for UDP/TCP we print out and update the global total straight away
                    since we know that pcap only found packets from connections that we
                    opened */
                    snprintf(final_output, sizeof(final_output), "RCVD (%.4fs) %s\n", o.stats.elapsedRuntime(t), buffer);
                    if( o.getVerbosity() >= VB_3 ){
                        hex=hexdump(packet, packetlen);
                        strncat(final_output, hex, sizeof(final_output)-1);
                        free(hex);
                    }
                    prevtime=pcaptime;

                    /* Statistics */
                    o.stats.addRecvPacket(packetlen);

                    /* Then we check for a target and a port and do the individual statistics */
                    trg=o.targets.findTarget( getSrcSockAddrFromIPPacket((u8*)packet, packetlen) );

                    if(trg != NULL){
                        prt=getSrcPortFromIPPacket((u8*)packet, packetlen);
                        if( prt!=NULL )
                            trg->setProbeRecvTCP(*prt, 0);
                    }
                }else if (proto==IPPROTO_ICMP || proto==IPPROTO_ICMPV6){
                    /* we look for a target based on first src addr and second the dest addr of
                    the packet header which is returned in the ICMP packet */
                    trg = is_response_icmp(packet, packetlen);

                    /* In the case of ICMP we only do any printing and statistics if we
                    found a target - otherwise it could be a packet that is nothing
                    to do with us */
                    if(trg!=NULL){
                        snprintf(final_output, sizeof(final_output), "RCVD (%.4fs) %s\n", o.stats.elapsedRuntime(t), buffer);
                        if( o.getVerbosity() >= VB_3 ){
                            hex=hexdump(packet, packetlen);
                            strncat(final_output, hex, sizeof(final_output)-1);
                            free(hex);
                        }
                        prevtime=pcaptime;
                        o.stats.addRecvPacket(packetlen);
                        trg->setProbeRecvICMP(0, 0);
                    }
                }

            /* Packet is ARP */
            }else{
                getPacketStrInfo("ARP",(const u8*)packet, packetlen, buffer, 512);
                nping_print(VB_0, "RCVD (%.4fs) %s", o.stats.elapsedRuntime(t), buffer );
                o.stats.addRecvPacket(packetlen);
                print_hexdump(VB_3 | NO_NEWLINE, packet, packetlen);
                /* TODO: find target and call setProbeRecvARP() */
            }

            if( o.getRole() == ROLE_CLIENT ){
                int delay=(int)MIN(o.getDelay()*0.33, 333);
                ev_id=nsock_timer_create(nsp, probe_delayed_output_handler, delay, NULL);
                o.setDelayedRcvd(final_output, ev_id);
            }
            else
                nping_print(VB_0|NO_NEWLINE, "%s", final_output);
        break;

       /* In theory we should never get these kind of events in this handler
        * because no code schedules them */
       case NSE_TYPE_CONNECT:
       case NSE_TYPE_CONNECT_SSL:
       case NSE_TYPE_READ:
       case NSE_TYPE_WRITE:
            nping_fatal(QT_3, "Bug in nping_event_handler(). Received %s event.", nse_type2str(type));
       break;

       default:
         nping_fatal(QT_3, "nping_event_handler(): Bogus event type.");
       break;

   } /* switch(type) */


 } else if (status == NSE_STATUS_EOF) {
    nping_print(DBG_4, "nping_event_handler(): Unexpected behaviour: Got EOF. Please report this bug.\n");
 } else if (status == NSE_STATUS_ERROR) {
     nping_warning(QT_2, "nping_event_handler(): %s failed: %s", nse_type2str(type), strerror(socket_errno()));
 } else if (status == NSE_STATUS_TIMEOUT) {
    nping_print(DBG_4,"nping_event_handler(): %s timeout: %s\n", nse_type2str(type), strerror(socket_errno()));
 } else if (status == NSE_STATUS_CANCELLED) {
    nping_warning(QT_2, "nping_event_handler(): %s canceled: %s", nse_type2str(type), strerror(socket_errno()));
 } else if (status == NSE_STATUS_KILL) {
    nping_warning(QT_2, "nping_event_handler(): %s killed: %s", nse_type2str(type), strerror(socket_errno()));
 } else{
    nping_warning(QT_2, "nping_event_handler(): Unknown status code %d\n", status);
 }
 return;

} /* End of nping_event_handler() */


/** Prints the supplied string when the nsock timer event goes off. This is used
  * by the echo client to delay output of received packets for a bit, so we
  * receive the echoed packet and print it (CAPT) before the RCVD one. */
void ProbeMode::probe_delayed_output_handler(nsock_pool nsp, nsock_event nse, void *mydata){
  char *str=NULL;
  if((str=o.getDelayedRcvd(NULL))!=NULL){
    printf("%s", str);
    free(str);
  }
  return;
} /* End of probe_delayed_output_handler() */


/* DEFAULT_MAX__DESCRIPTORS. is a hardcoded value for the maximum number of
 * opened descriptors in the current system. Nping tries to determine that
 * limit at run time, but sometimes it can't and the limit defaults to
 * DEFAULT_MAX_DESCRIPTORS. */
#ifndef MACOSX
    #define DEFAULT_MAX_DESCRIPTORS 1024
#else
    #define DEFAULT_MAX_DESCRIPTORS 256
#endif

/* When requesting a large number of descriptors from the system (TCP-connect
 * mode and UDP unprivileged mode), this is the number of descriptors that need
 * to be reserved for things like stdin, stdout, echo mode sockets, data files,
 * etc. */
#define RESERVED_DESCRIPTORS 8

/* Default timeout for UDP socket nsock_read() operations */
#define DEFAULT_UDP_READ_TIMEOUT_MS  1000 

/** This function handles nsock events related to TCP_CONNECT mode
  * Basically the handler receives nsock events and takes the appropriate
  * action based on event type.  This is basically what it does for each event:
  *
  * TIMERS: normalProbeMode() schedules TCP connections through timers, that's
  * how we manage to start the TCP handshakes at a given rate. When the alarm
  * goes off, nsock generates a timer event so, in this function, we take the
  * supplied "mydata" pointer, convert it to a sendpkt_t pointer and, from
  * the info stored there, we schedule a nsock_connect_tcp() event. This means
  * that nsock will initiate a TCP handshake and return. Whenever the handshake
  * is completed, nsock will generate a CONNECT event to indicate it so we
  * know the other peer was alive and willing to TCP-handshake with us.
  *
  * CONNECTS: These events are scheduled by the code that handles timer events.
  * As described above, nsock generates a connect event when handshakes have
  * completed. When we get a connect event we just tell the user the handshake
  * was successful and update the stats.
  * */
/* This is the callback function for the nsock events produced in TCP-Connect
 * mode. */
void ProbeMode::probe_tcpconnect_event_handler(nsock_pool nsp, nsock_event nse, void *mydata) {

 nsock_iod nsi;                   /**< Current nsock IO descriptor.          */
 enum nse_status status;          /**< Current nsock event status.           */
 enum nse_type type;              /**< Current nsock event type.             */
 sendpkt_t *mypacket=NULL;        /**< Info about the current probe.         */
 struct timeval *t=NULL;          /**< Current time obtained through nsock.  */
 struct sockaddr_storage to;      /**< Stores destination address for Tx.    */
 struct sockaddr_in *to4=NULL;    /**<   |_ Sockaddr for IPv4.               */
 struct sockaddr_in6 *to6=NULL;   /**<   |_ Sockaddr for IPv6.               */
 struct sockaddr_storage peer;    /**< Stores source address for Rx.         */
 struct sockaddr_in *peer4=NULL;  /**<   |_ Sockaddr for IPv4.               */
 struct sockaddr_in6 *peer6=NULL; /**<   |_ Sockaddr for IPv6.               */
 int family=0;                    /**< Hill hold Rx address family.          */
 char ipstring[128];              /**< To print IP Addresses.                */
 u16 peerport=0;                  /**< To hold peer's port number.           */
 size_t sslen=0;                  /**< To store length of sockaddr structs.  */
 static nsock_iod *fds=NULL;      /**< IODs for multiple parallel connections*/
 static int max_iods=0;           /**< Number of IODS in "fds"               */
 static u32 packetno=0;           /**< Packets sent from this handler.       */
 NpingTarget *trg=NULL;           /**< Target we look up in NpingTargets::   */

 /* Initializations */
 nsi = nse_iod(nse);
 status = nse_status(nse);
 type = nse_type(nse);
 mypacket = (sendpkt_t *)mydata;
 t = (struct timeval *)nsock_gettimeofday();
 to6=(struct sockaddr_in6 *)&to;
 to4=(struct sockaddr_in *)&to;
 peer4=(struct sockaddr_in *)&peer;
 peer6=(struct sockaddr_in6 *)&peer;
 memset(&to, 0, sizeof(struct sockaddr_storage));
 memset(&peer, 0, sizeof(struct sockaddr_storage));

  /* Try to determine the max number of opened descriptors. If the limit is
   * less than than we need, try to increase it. */
  if(fds==NULL){
    max_iods=get_max_open_descriptors()-RESERVED_DESCRIPTORS;
    if( o.getTotalProbes() > max_iods ){
        max_iods=set_max_open_descriptors( o.getTotalProbes() )-RESERVED_DESCRIPTORS;
    }
    /* If we couldn't determine the limit, just use a predefined value */
    if(max_iods<=0)
        max_iods=DEFAULT_MAX_DESCRIPTORS-RESERVED_DESCRIPTORS;
    /* Allocate space for nsock_iods */
    if( (fds=(nsock_iod *)calloc(max_iods, sizeof(nsock_iod)))==NULL ){
        /* If we can't allocate for that many descriptors, reduce our requirements */
        max_iods=DEFAULT_MAX_DESCRIPTORS-RESERVED_DESCRIPTORS;
        if( (fds=(nsock_iod *)calloc(max_iods, sizeof(nsock_iod)))==NULL ){
            nping_fatal(QT_3, "ProbeMode::probe_tcpconnect_event_handler(): Not enough memory");
        }
    }
    nping_print(DBG_7, "%d descriptors needed, %d available", o.getTotalProbes(), max_iods);
  }

 nping_print(DBG_4, "tcpconnect_event_handler(): Received callback of type %s with status %s", nse_type2str(type), nse_status2str(status));

 if (status == NSE_STATUS_SUCCESS ) {

  switch(type) {

    /* TCP Handshake was completed successfully */
    case NSE_TYPE_CONNECT:
        if( mypacket==NULL )
            nping_fatal(QT_3, "tcpconnect_event_handler(): NULL value supplied.");
        /* Determine which target are we dealing with */
        nsock_iod_get_communication_info(nsi, NULL, &family, NULL,
                                         (struct sockaddr*)&peer,
                                         sizeof(struct sockaddr_storage) );
        if(family==AF_INET6){
            inet_ntop(AF_INET6, &peer6->sin6_addr, ipstring, sizeof(ipstring));
            peerport=ntohs(peer6->sin6_port);
        }else{
            inet_ntop(AF_INET, &peer4->sin_addr, ipstring, sizeof(ipstring));
            peerport=ntohs(peer4->sin_port);
        }

        /* We cannot trust "mydata" pointer because it's contents may have
         * been overwritten by the time we get the CONNECT event, so we have
         * to look up the target by its IP address. */
        trg=o.targets.findTarget( &peer );
        if(trg!=NULL){
            if ( trg->getSuppliedHostName() )
                nping_print(VB_0,"RCVD (%.4fs) Handshake with %s:%d (%s:%d) completed",
                         o.stats.elapsedRuntime(t), trg->getSuppliedHostName(), peerport, ipstring, peerport );
            else
                nping_print(VB_0,"RCVD (%.4fs) Handshake with %s:%d completed", o.stats.elapsedRuntime(t), ipstring, peerport );
            trg->setProbeRecvTCP( peerport , 0);
        }else{
            nping_print(VB_0,"RCVD (%.4fs) Handshake with %s:%d completed", o.stats.elapsedRuntime(t), ipstring, peerport );
        }
        o.stats.addRecvPacket(40); /* Estimation Dst>We 1 TCP SYN|ACK */
    break;


    /* We need to start an scheduled TCP Handshake. Theoretically in this
     * case we can trust the supplied "mydata" structure because all our timers
     * have the same exact time and Nsock should do FIFO with list of timer
     * events.  Additionally, even if that failed, more than MAX_PKT timer
     * events would have to overlap to "corrupt" "mydata". Even if that's
     * the case, it is only a problem when dealing with multiple targets host
     * and/or multiple target ports. */
    case NSE_TYPE_TIMER:
        if( mypacket==NULL )
            nping_fatal(QT_3, "tcpconnect_event_handler():2: NULL value supplied.");

        /* Fill the appropriate sockaddr for the connect() call */
        if( o.getIPVersion() == IP_VERSION_6 ){
            to6->sin6_addr=mypacket->target->getIPv6Address();
            to6->sin6_family = AF_INET6;
            to6->sin6_port  = htons( mypacket->dstport );
            sslen=sizeof(struct sockaddr_in6);
        }else{
            to4->sin_addr=mypacket->target->getIPv4Address();
            to4->sin_family = AF_INET;
            to4->sin_port  = htons( mypacket->dstport );
            sslen=sizeof(struct sockaddr_in);
        }

        /* We need to keep many IODs open in parallel but we don't allocate
         * millions, just as many as the OS let us (max number of open files).
         * If we run out of them, we just start overwriting the oldest one.
         * If we don't have a response by that time we probably aren't gonna
         * get any, so it shouldn't be a big problem. */
        if( packetno>(u32)max_iods ){
            nsock_iod_delete(fds[packetno%max_iods], NSOCK_PENDING_SILENT);
        }
        /* Create new IOD for connects */
        if ((fds[packetno%max_iods] = nsock_iod_new(nsp, NULL)) == NULL)
            nping_fatal(QT_3, "tcpconnect_event_handler(): Failed to create new nsock_iod.\n");

        /* Set socket source address. This allows setting things like custom source port */
        struct sockaddr_storage ss;
        nsock_iod_set_localaddr(fds[packetno%max_iods], o.getSourceSockAddr(&ss), sizeof(sockaddr_storage));
        /*Set socket options for REUSEADDR*/
        //setsockopt(nsock_iod_get_sd(fds[packetno%max_iods]),SOL_SOCKET,SO_REUSEADDR,&optval,sizeof(optval));

        nsock_connect_tcp(nsp, fds[packetno%max_iods], tcpconnect_event_handler, 100000, mypacket, (struct sockaddr *)&to, sslen, mypacket->dstport);
        if( o.showSentPackets() ){
            if ( mypacket->target->getSuppliedHostName() )
                nping_print(VB_0,"SENT (%.4fs) Starting TCP Handshake > %s:%d (%s:%d)", o.stats.elapsedRuntime(NULL), mypacket->target->getSuppliedHostName(), mypacket->dstport ,mypacket->target->getTargetIPstr(), mypacket->dstport);
            else
                nping_print(VB_0,"SENT (%.4fs) Starting TCP Handshake > %s:%d", o.stats.elapsedRuntime(NULL), mypacket->target->getTargetIPstr(), mypacket->dstport);
        }
        packetno++;
        o.stats.addSentPacket(80); /* Estimation Src>Dst 1 TCP SYN && TCP ACK */
        mypacket->target->setProbeSentTCP(0, mypacket->dstport);
    break;

    case NSE_TYPE_WRITE:
    case NSE_TYPE_READ:
    case NSE_TYPE_PCAP_READ:
    case NSE_TYPE_CONNECT_SSL:
        nping_warning(QT_2,"tcpconnect_event_handler(): Unexpected behaviour, %s event received . Please report this bug.", nse_type2str(type));
    break;

    default:
        nping_fatal(QT_3, "tcpconnect_event_handler(): Bogus event type (%d). Please report this bug.", type);
    break;

  } /* switch(type) */


 } else if (status == NSE_STATUS_EOF) {
        nping_print(DBG_4, "tcpconnect_event_handler(): Unexpected behaviour: Got EOF. Please report this bug.\n");
 } else if (status == NSE_STATUS_ERROR) {
   /** In my tests with Nping and Wireshark, I've seen that we get NSE_STATUS_ERROR
    * whenever we start a TCP handshake but our peer sends a TCP RST packet back
    * denying the connection. So in this case, we inform the user (as opposed
    * to saying nothing, that's what we do when we don't get responses, e.g:
    * when trying to connect to filtered ports). This is not 100% accurate
    * because there may be other reasons why ge get NSE_STATUS_ERROR so that's
    * why we say "Possible TCP RST received". */
    if ( type == NSE_TYPE_CONNECT ){
        nsock_iod_get_communication_info(nsi, NULL, &family, NULL, (struct sockaddr*)&peer, sizeof(struct sockaddr_storage) );
        if(family==AF_INET6){
            inet_ntop(AF_INET6, &peer6->sin6_addr, ipstring, sizeof(ipstring));
            peerport=ntohs(peer6->sin6_port);
        }else{
            inet_ntop(AF_INET, &peer4->sin_addr, ipstring, sizeof(ipstring));
            peerport=ntohs(peer4->sin_port);
        }
        nping_print(VB_0,"RCVD (%.4fs) Possible TCP RST received from %s:%d --> %s", o.stats.elapsedRuntime(t),ipstring, peerport, strerror(nse_errorcode(nse)) );
     }
     else
        nping_warning(QT_2,"ERR: (%.4fs) %s to %s:%d failed: %s", o.stats.elapsedRuntime(t), nse_type2str(type), ipstring, peerport, strerror(socket_errno()));
 } else if (status == NSE_STATUS_TIMEOUT) {
    nping_print(DBG_4, "tcpconnect_event_handler(): %s timeout: %s\n", nse_type2str(type), strerror(socket_errno()));
 } else if (status == NSE_STATUS_CANCELLED) {
    nping_print(DBG_4, "tcpconnect_event_handler(): %s canceled: %s", nse_type2str(type), strerror(socket_errno()));
 } else if (status == NSE_STATUS_KILL) {
    nping_print(DBG_4, "tcpconnect_event_handler(): %s killed: %s", nse_type2str(type), strerror(socket_errno()));
 } else{
    nping_warning(QT_2, "tcpconnect_event_handler(): Unknown status code %d. Please report this bug.", status);
 }
 return;

} /* End of tcpconnect_event_handler() */





/** This function handles nsock events related to UDP_UNPRIV mode.
  * Basically the handler receives nsock events and takes the appropriate
  * action based on event type.  This is basically what it does for each event:
  *
  * TIMERS: normalProbeMode() schedules UDP packet transmissions through timers,
  * that's how we manage to send the packets at a given rate. When the alarm
  * goes off, nsock generates a timer event so, in this function, we take the
  * supplied "mydata" pointer, convert it to a sendpkt_t pointer and, from
  * the info stored there, we schedule a nsock_connect_udp() event. This means
  * that nsock will perform the necessary system calls to obtain a UDP socket
  * suitable to transmit information to our target host. We also schedule
  * a write operation, since the connect_udp() doesn't do anything useful
  * really and what we want to do is to actually send a TCP packet.
  *
  *
  * CONNECTS: These events generated by nsock for consistency with the
  * behavior in TCP connects. They are pretty useless. They merely indicate
  * that nsock successfully obtained a UDP socket ready to allow sending
  * packets to the appropriate target. We basically don't do anything when
  * that event is received, just print a message if we are un debugging mode.
  *
  * WRITES: When we get event WRITE it means that nsock actually managed to
  * get our data sent to the target. In this case, we inform the user that
  * the packet has been sent, and we schedule a READ operation, to see
  * if our peer actually returns any data.
  *
  * READS: When we get this event it means that the other end actually sent
  * some data back to us. What we do is read that data, tell the user that
  * we received some bytes and update statistics.
  *
  * */
void ProbeMode::probe_udpunpriv_event_handler(nsock_pool nsp, nsock_event nse, void *mydata) {

 nsock_iod nsi;                   /**< Current nsock IO descriptor.          */
 enum nse_status status;          /**< Current nsock event status.           */
 enum nse_type type;              /**< Current nsock event type.             */
 sendpkt_t *mypacket=NULL;        /**< Info about the current probe.         */
 struct timeval *t=NULL;          /**< Current time obtained through nsock.  */
 struct sockaddr_storage to;      /**< Stores destination address for Tx.    */
 struct sockaddr_in *to4=NULL;    /**<   |_ Sockaddr for IPv4.               */
 struct sockaddr_in6 *to6=NULL;   /**<   |_ Sockaddr for IPv6.               */
 struct sockaddr_storage peer;    /**< Stores source address for Rx.         */
 struct sockaddr_in *peer4=NULL;  /**<   |_ Sockaddr for IPv4.               */
 struct sockaddr_in6 *peer6=NULL; /**<   |_ Sockaddr for IPv6.               */
 int family=0;                    /**< Hill hold Rx address family.          */
 char ipstring[128];              /**< To print IP Addresses.                */
 u16 peerport=0;                  /**< To hold peer's port number.           */
 size_t sslen=0;                  /**< To store length of sockaddr structs.  */
 static nsock_iod *fds=NULL;      /**< IODs for multiple parallel connections*/
 static int max_iods=0;           /**< Number of IODS in "fds"               */
 static u32 packetno=0;           /**< Packets sent from this handler.       */
 int readbytes=0;                 /**< Bytes read in total.                  */
 char *readbuff=NULL;             /**< Hill hold read data.                  */
 static size_t sentbytes=0;       /**< Payload bytes sent in each UDP packet */
 NpingTarget *trg=NULL;           /**< Target we look up in NpingTargets::   */

 /* Initializations */
 nsi = nse_iod(nse);
 status = nse_status(nse);
 type = nse_type(nse);
 mypacket = (sendpkt_t *)mydata;
 t = (struct timeval *)nsock_gettimeofday();
 to6=(struct sockaddr_in6 *)&to;
 to4=(struct sockaddr_in *)&to;
 peer4=(struct sockaddr_in *)&peer;
 peer6=(struct sockaddr_in6 *)&peer;
 memset(&to, 0, sizeof(struct sockaddr_storage));
 memset(&peer, 0, sizeof(struct sockaddr_storage));

  /* Try to determine the max number of opened descriptors. If the limit is
   * less than than we need, try to increase it. */
  if(fds==NULL){
    max_iods=get_max_open_descriptors()-RESERVED_DESCRIPTORS;
    if( o.getTotalProbes() > max_iods ){
        max_iods=set_max_open_descriptors( o.getTotalProbes() )-RESERVED_DESCRIPTORS;
    }
    /* If we couldn't determine the limit, just use a predefined value */
    if(max_iods<=0)
        max_iods=DEFAULT_MAX_DESCRIPTORS-RESERVED_DESCRIPTORS;
    /* Allocate space for nsock_iods */
    if( (fds=(nsock_iod *)calloc(max_iods, sizeof(nsock_iod)))==NULL ){
        /* If we can't allocate for that many descriptors, reduce our requirements */
        max_iods=DEFAULT_MAX_DESCRIPTORS-RESERVED_DESCRIPTORS;
        if( (fds=(nsock_iod *)calloc(max_iods, sizeof(nsock_iod)))==NULL ){
            nping_fatal(QT_3, "ProbeMode:probe_udpunpriv_event_handler(): Not enough memory");
        }
    }
    nping_print(DBG_7, "%d descriptors needed, %d available", o.getTotalProbes(), max_iods);
  }

 nping_print(DBG_4, "udpunpriv_event_handler(): Received callback of type %s with status %s", nse_type2str(type), nse_status2str(status));

 if (status == NSE_STATUS_SUCCESS ) {

  switch(type) {


    /* This is a bit stupid but, for consistency, Nsock creates an event of
     * type NSE_TYPE_CONNECT after a call to nsock_connect_udp() is made.
     * Basically this just means that nsock successfully obtained a UDP socket
     * ready to allow sending packets to the appropriate target. */
    case NSE_TYPE_CONNECT:
            nping_print(DBG_3,"Nsock UDP \"connection\" completed successfully.");
    break;



    /* We need to start an scheduled UDP packet transmission. */
    case NSE_TYPE_TIMER:
        if( mypacket==NULL )
            nping_fatal(QT_3, "udpunpriv_event_handler():: NULL value supplied.");

        /* Fill the appropriate sockaddr for the connect() call */
        if( o.getIPVersion() == IP_VERSION_6 ){
            to6->sin6_addr=mypacket->target->getIPv6Address();
            to6->sin6_family = AF_INET6;
            to6->sin6_port  = htons( mypacket->dstport );
            sslen=sizeof(struct sockaddr_in6);
        }else{
            to4->sin_addr=mypacket->target->getIPv4Address();
            to4->sin_family = AF_INET;
            to4->sin_port  = htons( mypacket->dstport );
            sslen=sizeof(struct sockaddr_in);
        }

        /* We need to keep many IODs open in parallel but we don't allocate
         * millions, just as many as the OS let us (max number of open files).
         * If we run out of them, we just start overwriting the oldest one.
         * If we don't have a response by that time we probably aren't gonna
         * get any, so it shouldn't be a big problem. */
        if( packetno>(u32)max_iods ){
            nsock_iod_delete(fds[packetno%max_iods], NSOCK_PENDING_SILENT);
        }
        /* Create new IOD for connects */
        if ((fds[packetno%max_iods] = nsock_iod_new(nsp, NULL)) == NULL)
            nping_fatal(QT_3, "Failed to create new nsock_iod.  QUITTING.\n");

        /* Set socket source address. This allows setting things like custom source port */
        struct sockaddr_storage ss;
        nsock_iod_set_localaddr(fds[packetno%max_iods], o.getSourceSockAddr(&ss), sizeof(sockaddr_storage));


        /* I dunno if it's safe to schedule an nsock_write before we
         * receive a NSE_TYPE_CONNECT event. The call to nsock_connect_udp()
         * calls inheritable_socket() before returning which should mean
         * an actual socket() call has been made before we nsock_write().
         * However, if the way nsock behaves changes in the future it may
         * break this so we may need to place nsock_write() in
         * "case NSE_TYPE_CONNECT:". We could do it right now but it may
         * be a bit complicated due to the "packetno" index.
         */
        nsock_connect_udp(nsp, fds[packetno%max_iods], udpunpriv_event_handler, mypacket, (struct sockaddr *)&to, sslen, mypacket->dstport);
        nsock_write(nsp, fds[packetno%max_iods], udpunpriv_event_handler,100000, mypacket, (const char*)mypacket->pkt, mypacket->pktLen);
        sentbytes=mypacket->pktLen;
        packetno++;
    break;




    /* We get this event as a result of the nsock_write() call performed by
     * the code in charge of dealing with the timer event. When we get this
     * even it means that nsock successfully wrote data to the UDP socket so
     * here we basically just print that we did send some data and we schedule
     * a read operation.
     */
    case NSE_TYPE_WRITE:
        /* Determine which target are we dealing with */
        nsock_iod_get_communication_info(nsi, NULL, &family, NULL, (struct sockaddr*)&peer, sizeof(struct sockaddr_storage) );
        if(family==AF_INET6){
            inet_ntop(AF_INET6, &peer6->sin6_addr, ipstring, sizeof(ipstring));
            peerport=ntohs(peer6->sin6_port);
        }else{
            inet_ntop(AF_INET, &peer4->sin_addr, ipstring, sizeof(ipstring));
            peerport=ntohs(peer4->sin_port);
        }

        /* We cannot trust "mydata" pointer because it's contents may have
         * been overwritten by the time we get the WRITE event, (this is
         * unlikely but it may happen when sending probes at a very high rate).
         * As a consequence, we have to look up the target by its IP address. */
        trg=o.targets.findTarget( &peer );
        if(trg!=NULL){
            if ( trg->getSuppliedHostName() )
                nping_print(VB_0,"SENT (%.4fs) UDP packet with %lu bytes to %s:%d (%s:%d)", o.stats.elapsedRuntime(NULL),  (unsigned long int)sentbytes, trg->getSuppliedHostName(), peerport, ipstring, peerport );
            else
                nping_print(VB_0,"SENT (%.4fs) UDP packet with %lu bytes to %s:%d", o.stats.elapsedRuntime(NULL),  (unsigned long int)sentbytes, ipstring, peerport );
            trg->setProbeSentUDP( 0, peerport);
        }else{
            nping_print(VB_0,"SENT (%.4fs) UDP packet with %lu bytes to %s:%d", o.stats.elapsedRuntime(t), (unsigned long int)sentbytes, ipstring, peerport );
        }
        o.stats.addSentPacket(sentbytes); /* Here we don't count the headers, just payload bytes */

        /* If user did not disable packet capture, schedule a read operation */
        if( !o.disablePacketCapture() )
            nsock_read(nsp, nsi, udpunpriv_event_handler, DEFAULT_UDP_READ_TIMEOUT_MS, mypacket);
    break;



    /* We get this event when we've written some data to a UDP socket and
     * the other end has sent some data back. In this case we read the data and
     * inform the user of how many bytes we got.
     */
    case NSE_TYPE_READ:
        /* Do an actual read() of the recv data */
        readbuff=nse_readbuf(nse, &readbytes);
        if(readbuff==NULL){
            nping_fatal(QT_3, "Error: nse_readbuff failed to read in the from the probe");
        }
        /* Determine which target are we dealing with */
        nsock_iod_get_communication_info(nsi, NULL, &family, NULL, (struct sockaddr*)&peer, sizeof(struct sockaddr_storage) );
        if(family==AF_INET6){
            inet_ntop(AF_INET6, &peer6->sin6_addr, ipstring, sizeof(ipstring));
            peerport=ntohs(peer6->sin6_port);
        }else{
            inet_ntop(AF_INET, &peer4->sin_addr, ipstring, sizeof(ipstring));
            peerport=ntohs(peer4->sin_port);
        }

        /* Lookup our peer's NpingTarget entry */
        trg=o.targets.findTarget( &peer );
        if(trg!=NULL){
            if ( trg->getSuppliedHostName() )
                nping_print(VB_0,"RCVD (%.4fs) UDP packet with %d bytes from %s:%d (%s:%d)", o.stats.elapsedRuntime(NULL),  readbytes, trg->getSuppliedHostName(), peerport, ipstring, peerport );
            else
                nping_print(VB_0,"RCVD (%.4fs) UDP packet with %d bytes from %s:%d", o.stats.elapsedRuntime(NULL),  readbytes, ipstring, peerport );
            trg->setProbeRecvUDP(peerport, 0);
        }else{
            nping_print(VB_0,"RCVD (%.4fs) UDP packet with %d bytes from %s:%d", o.stats.elapsedRuntime(t), readbytes, ipstring, peerport );
        }
        o.stats.addRecvPacket(readbytes);
    break;


    case NSE_TYPE_PCAP_READ:
    case NSE_TYPE_CONNECT_SSL:
        nping_warning(QT_2,"udpunpriv_event_handler(): Unexpected behavior, %s event received . Please report this bug.", nse_type2str(type));
    break;

    default:
        nping_fatal(QT_3, "udpunpriv_event_handler(): Bogus event type (%d). Please report this bug.", type);
    break;

  } /* switch(type) */


 } else if (status == NSE_STATUS_EOF) {
    nping_print(DBG_4, "udpunpriv_event_handler(): Unexpected behaviour: Got EOF. Please report this bug.\n");
 } else if (status == NSE_STATUS_ERROR) {
    nsock_iod_get_communication_info(nsi, NULL, &family, NULL, (struct sockaddr*)&peer, sizeof(struct sockaddr_storage) );
    if(family==AF_INET6){
        inet_ntop(AF_INET6, &peer6->sin6_addr, ipstring, sizeof(ipstring));
        peerport=ntohs(peer6->sin6_port);
    }else{
        inet_ntop(AF_INET, &peer4->sin_addr, ipstring, sizeof(ipstring));
        peerport=ntohs(peer4->sin_port);
    }
    nping_warning(QT_2,"ERR: (%.4fs) %s to %s:%d failed: %s", o.stats.elapsedRuntime(t), nse_type2str(type), ipstring, peerport, strerror(socket_errno()));
 } else if (status == NSE_STATUS_TIMEOUT) {
       nping_print(DBG_4, "udpunpriv_event_handler(): %s timeout: %s\n", nse_type2str(type), strerror(socket_errno()));
 } else if (status == NSE_STATUS_CANCELLED) {
       nping_print(DBG_4, "udpunpriv_event_handler(): %s canceled: %s", nse_type2str(type), strerror(socket_errno()));
 } else if (status == NSE_STATUS_KILL) {
       nping_print(DBG_4, "udpunpriv_event_handler(): %s killed: %s", nse_type2str(type), strerror(socket_errno()));
 }
 else{
       nping_warning(QT_2, "udpunpriv_event_handler(): Unknown status code %d. Please report this bug.", status);
 }
 return;

} /* End of udpunpriv_event_handler() */



/* This handler is a wrapper for the ProbeMode::probe_nping_event_handler()
 * method. We need this because C++ does not allow to use class methods as
 * callback functions for things like signal() or the Nsock lib. */
void nping_event_handler(nsock_pool nsp, nsock_event nse, void *arg){
  nping_print(DBG_4, "%s()", __func__);
  ProbeMode::probe_nping_event_handler(nsp, nse, arg);
  return;
} /* End of nping_event_handler() */


/* This handler is a wrapper for the ProbeMode::probe_tcpconnect_event_handler()
 * method. We need this because C++ does not allow to use class methods as
 * callback functions for things like signal() or the Nsock lib. */
void tcpconnect_event_handler(nsock_pool nsp, nsock_event nse, void *arg){
  nping_print(DBG_4, "%s()", __func__);
  ProbeMode::probe_tcpconnect_event_handler(nsp, nse, arg);
  return;
} /* End of tcpconnect_event_handler() */


/* This handler is a wrapper for the ProbeMode::probe_udpunpriv_event_handler()
 * method. We need this because C++ does not allow to use class methods as
 * callback functions for things like signal() or the Nsock lib. */
void udpunpriv_event_handler(nsock_pool nsp, nsock_event nse, void *arg){
  nping_print(DBG_4, "%s()", __func__);
  ProbeMode::probe_udpunpriv_event_handler(nsp, nse, arg);
  return;
} /* End of udpunpriv_event_handler() */



/* This handler is a wrapper for the ProbeMode::probe_delayed_output_handler()
 * method. We need this because C++ does not allow to use class methods as
 * callback functions for things like signal() or the Nsock lib. */
void delayed_output_handler(nsock_pool nsp, nsock_event nse, void *arg){
  nping_print(DBG_4, "%s()", __func__);
  ProbeMode::probe_delayed_output_handler(nsp, nse, arg);
  return;
} /* End of udpunpriv_event_handler() */