summaryrefslogtreecommitdiffstats
path: root/test/wpt/tests/interfaces/webnn.idl
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--test/wpt/tests/interfaces/webnn.idl544
1 files changed, 544 insertions, 0 deletions
diff --git a/test/wpt/tests/interfaces/webnn.idl b/test/wpt/tests/interfaces/webnn.idl
new file mode 100644
index 0000000..17e3080
--- /dev/null
+++ b/test/wpt/tests/interfaces/webnn.idl
@@ -0,0 +1,544 @@
+// GENERATED CONTENT - DO NOT EDIT
+// Content was automatically extracted by Reffy into webref
+// (https://github.com/w3c/webref)
+// Source: Web Neural Network API (https://webmachinelearning.github.io/webnn/)
+
+interface mixin NavigatorML {
+ [SecureContext, SameObject] readonly attribute ML ml;
+};
+Navigator includes NavigatorML;
+WorkerNavigator includes NavigatorML;
+
+enum MLDeviceType {
+ "cpu",
+ "gpu"
+};
+
+enum MLPowerPreference {
+ "default",
+ "high-performance",
+ "low-power"
+};
+
+dictionary MLContextOptions {
+ MLDeviceType deviceType = "cpu";
+ MLPowerPreference powerPreference = "default";
+};
+
+[SecureContext, Exposed=(Window, DedicatedWorker)]
+interface ML {
+ Promise<MLContext> createContext(optional MLContextOptions options = {});
+ Promise<MLContext> createContext(GPUDevice gpuDevice);
+
+ [Exposed=(DedicatedWorker)]
+ MLContext createContextSync(optional MLContextOptions options = {});
+ [Exposed=(DedicatedWorker)]
+ MLContext createContextSync(GPUDevice gpuDevice);
+};
+
+[SecureContext, Exposed=(Window, DedicatedWorker)]
+interface MLGraph {};
+
+enum MLInputOperandLayout {
+ "nchw",
+ "nhwc"
+};
+
+enum MLOperandType {
+ "float32",
+ "float16",
+ "int32",
+ "uint32",
+ "int8",
+ "uint8"
+};
+
+dictionary MLOperandDescriptor {
+ // The operand type.
+ required MLOperandType type;
+
+ // The dimensions field is only required for tensor operands.
+ sequence<unsigned long> dimensions;
+};
+
+[SecureContext, Exposed=(Window, DedicatedWorker)]
+interface MLOperand {};
+
+[SecureContext, Exposed=(Window, DedicatedWorker)]
+interface MLActivation {};
+
+typedef record<DOMString, ArrayBufferView> MLNamedArrayBufferViews;
+
+[SecureContext, Exposed=(Window, DedicatedWorker)]
+interface MLContext {};
+
+partial interface MLContext {
+ [Exposed=(DedicatedWorker)]
+ undefined computeSync(
+ MLGraph graph, MLNamedArrayBufferViews inputs, MLNamedArrayBufferViews outputs);
+};
+
+dictionary MLComputeResult {
+ MLNamedArrayBufferViews inputs;
+ MLNamedArrayBufferViews outputs;
+};
+
+partial interface MLContext {
+ Promise<MLComputeResult> compute(
+ MLGraph graph, MLNamedArrayBufferViews inputs, MLNamedArrayBufferViews outputs);
+};
+
+partial interface MLContext {
+ MLCommandEncoder createCommandEncoder();
+};
+
+typedef (GPUBuffer or GPUTexture) MLGPUResource;
+
+typedef record<DOMString, MLGPUResource> MLNamedGPUResources;
+
+[SecureContext, Exposed=(Window, DedicatedWorker)]
+interface MLCommandEncoder {};
+
+partial interface MLCommandEncoder {
+ undefined initializeGraph(MLGraph graph);
+};
+
+partial interface MLCommandEncoder {
+ undefined dispatch(MLGraph graph, MLNamedGPUResources inputs, MLNamedGPUResources outputs);
+};
+
+partial interface MLCommandEncoder {
+ GPUCommandBuffer finish(optional GPUCommandBufferDescriptor descriptor = {});
+};
+
+typedef record<DOMString, MLOperand> MLNamedOperands;
+
+dictionary MLBufferResourceView {
+ required GPUBuffer resource;
+ unsigned long long offset = 0;
+ unsigned long long size;
+};
+
+typedef (ArrayBufferView or MLBufferResourceView) MLBufferView;
+
+[SecureContext, Exposed=(Window, DedicatedWorker)]
+interface MLGraphBuilder {
+ // Construct the graph builder from the context.
+ constructor(MLContext context);
+
+ // Create an operand for a graph input.
+ MLOperand input(DOMString name, MLOperandDescriptor descriptor);
+
+ // Create an operand for a graph constant.
+ MLOperand constant(MLOperandDescriptor descriptor, MLBufferView bufferView);
+
+ // Create a single-value operand from the specified number of the specified type.
+ MLOperand constant(double value, optional MLOperandType type = "float32");
+
+ // Compile the graph up to the specified output operands asynchronously.
+ Promise<MLGraph> build(MLNamedOperands outputs);
+
+ // Compile the graph up to the specified output operands synchronously.
+ [Exposed=(DedicatedWorker)]
+ MLGraph buildSync(MLNamedOperands outputs);
+};
+
+dictionary MLBatchNormalizationOptions {
+ MLOperand scale;
+ MLOperand bias;
+ unsigned long axis = 1;
+ float epsilon = 1e-5;
+ MLActivation activation;
+};
+
+partial interface MLGraphBuilder {
+ MLOperand batchNormalization(MLOperand input, MLOperand mean, MLOperand variance,
+ optional MLBatchNormalizationOptions options = {});
+};
+
+dictionary MLClampOptions {
+ float minValue;
+ float maxValue;
+};
+
+partial interface MLGraphBuilder {
+ MLOperand clamp(MLOperand x, optional MLClampOptions options = {});
+ MLActivation clamp(optional MLClampOptions options = {});
+};
+
+partial interface MLGraphBuilder {
+ MLOperand concat(sequence<MLOperand> inputs, unsigned long axis);
+};
+
+enum MLConv2dFilterOperandLayout {
+ "oihw",
+ "hwio",
+ "ohwi",
+ "ihwo"
+};
+
+enum MLAutoPad {
+ "explicit",
+ "same-upper",
+ "same-lower"
+};
+
+dictionary MLConv2dOptions {
+ sequence<unsigned long> padding;
+ sequence<unsigned long> strides;
+ sequence<unsigned long> dilations;
+ MLAutoPad autoPad = "explicit";
+ unsigned long groups = 1;
+ MLInputOperandLayout inputLayout = "nchw";
+ MLConv2dFilterOperandLayout filterLayout = "oihw";
+ MLOperand bias;
+ MLActivation activation;
+};
+
+partial interface MLGraphBuilder {
+ MLOperand conv2d(MLOperand input, MLOperand filter, optional MLConv2dOptions options = {});
+};
+
+enum MLConvTranspose2dFilterOperandLayout {
+ "iohw",
+ "hwoi",
+ "ohwi"
+};
+
+dictionary MLConvTranspose2dOptions {
+ sequence<unsigned long> padding;
+ sequence<unsigned long> strides;
+ sequence<unsigned long> dilations;
+ sequence<unsigned long> outputPadding;
+ sequence<unsigned long> outputSizes;
+ MLAutoPad autoPad = "explicit";
+ unsigned long groups = 1;
+ MLInputOperandLayout inputLayout = "nchw";
+ MLConvTranspose2dFilterOperandLayout filterLayout = "iohw";
+ MLOperand bias;
+ MLActivation activation;
+};
+
+partial interface MLGraphBuilder {
+ MLOperand convTranspose2d(MLOperand input, MLOperand filter,
+ optional MLConvTranspose2dOptions options = {});
+};
+
+partial interface MLGraphBuilder {
+ MLOperand add(MLOperand a, MLOperand b);
+ MLOperand sub(MLOperand a, MLOperand b);
+ MLOperand mul(MLOperand a, MLOperand b);
+ MLOperand div(MLOperand a, MLOperand b);
+ MLOperand max(MLOperand a, MLOperand b);
+ MLOperand min(MLOperand a, MLOperand b);
+ MLOperand pow(MLOperand a, MLOperand b);
+};
+
+partial interface MLGraphBuilder {
+ MLOperand abs(MLOperand x);
+ MLOperand ceil(MLOperand x);
+ MLOperand cos(MLOperand x);
+ MLOperand exp(MLOperand x);
+ MLOperand floor(MLOperand x);
+ MLOperand log(MLOperand x);
+ MLOperand neg(MLOperand x);
+ MLOperand sin(MLOperand x);
+ MLOperand tan(MLOperand x);
+};
+
+dictionary MLEluOptions {
+ float alpha = 1;
+};
+
+partial interface MLGraphBuilder {
+ MLOperand elu(MLOperand x, optional MLEluOptions options = {});
+ MLActivation elu(optional MLEluOptions options = {});
+};
+
+dictionary MLGemmOptions {
+ MLOperand c;
+ float alpha = 1.0;
+ float beta = 1.0;
+ boolean aTranspose = false;
+ boolean bTranspose = false;
+};
+
+partial interface MLGraphBuilder {
+ MLOperand gemm(MLOperand a, MLOperand b, optional MLGemmOptions options = {});
+};
+
+enum MLGruWeightLayout {
+ "zrn", // update-reset-new gate ordering
+ "rzn" // reset-update-new gate ordering
+};
+
+enum MLRecurrentNetworkDirection {
+ "forward",
+ "backward",
+ "both"
+};
+
+dictionary MLGruOptions {
+ MLOperand bias;
+ MLOperand recurrentBias;
+ MLOperand initialHiddenState;
+ boolean resetAfter = true;
+ boolean returnSequence = false;
+ MLRecurrentNetworkDirection direction = "forward";
+ MLGruWeightLayout layout = "zrn";
+ sequence<MLActivation> activations;
+};
+
+partial interface MLGraphBuilder {
+ sequence<MLOperand> gru(MLOperand input, MLOperand weight, MLOperand recurrentWeight,
+ unsigned long steps, unsigned long hiddenSize,
+ optional MLGruOptions options = {});
+};
+
+dictionary MLGruCellOptions {
+ MLOperand bias;
+ MLOperand recurrentBias;
+ boolean resetAfter = true;
+ MLGruWeightLayout layout = "zrn";
+ sequence<MLActivation> activations;
+};
+
+partial interface MLGraphBuilder {
+ MLOperand gruCell(MLOperand input, MLOperand weight, MLOperand recurrentWeight,
+ MLOperand hiddenState, unsigned long hiddenSize,
+ optional MLGruCellOptions options = {});
+};
+
+dictionary MLHardSigmoidOptions {
+ float alpha = 0.2;
+ float beta = 0.5;
+};
+
+partial interface MLGraphBuilder {
+ MLOperand hardSigmoid(MLOperand x, optional MLHardSigmoidOptions options = {});
+ MLActivation hardSigmoid(optional MLHardSigmoidOptions options = {});
+};
+
+partial interface MLGraphBuilder {
+ MLOperand hardSwish(MLOperand x);
+ MLActivation hardSwish();
+};
+
+dictionary MLInstanceNormalizationOptions {
+ MLOperand scale;
+ MLOperand bias;
+ float epsilon = 1e-5;
+ MLInputOperandLayout layout = "nchw";
+};
+
+partial interface MLGraphBuilder {
+ MLOperand instanceNormalization(MLOperand input,
+ optional MLInstanceNormalizationOptions options = {});
+};
+
+dictionary MLLeakyReluOptions {
+ float alpha = 0.01;
+};
+
+partial interface MLGraphBuilder {
+ MLOperand leakyRelu(MLOperand x, optional MLLeakyReluOptions options = {});
+ MLActivation leakyRelu(optional MLLeakyReluOptions options = {});
+};
+
+dictionary MLLinearOptions {
+ float alpha = 1;
+ float beta = 0;
+};
+
+partial interface MLGraphBuilder {
+ MLOperand linear(MLOperand x, optional MLLinearOptions options = {});
+ MLActivation linear(optional MLLinearOptions options = {});
+};
+
+enum MLLstmWeightLayout {
+ "iofg", // input-output-forget-cell gate ordering
+ "ifgo" // input-forget-cell-output gate ordering
+};
+
+dictionary MLLstmOptions {
+ MLOperand bias;
+ MLOperand recurrentBias;
+ MLOperand peepholeWeight;
+ MLOperand initialHiddenState;
+ MLOperand initialCellState;
+ boolean returnSequence = false;
+ MLRecurrentNetworkDirection direction = "forward";
+ MLLstmWeightLayout layout = "iofg";
+ sequence<MLActivation> activations;
+};
+
+partial interface MLGraphBuilder {
+ sequence<MLOperand> lstm(MLOperand input, MLOperand weight, MLOperand recurrentWeight,
+ unsigned long steps, unsigned long hiddenSize,
+ optional MLLstmOptions options = {});
+};
+
+dictionary MLLstmCellOptions {
+ MLOperand bias;
+ MLOperand recurrentBias;
+ MLOperand peepholeWeight;
+ MLLstmWeightLayout layout = "iofg";
+ sequence<MLActivation> activations;
+};
+
+partial interface MLGraphBuilder {
+ sequence<MLOperand> lstmCell(MLOperand input, MLOperand weight, MLOperand recurrentWeight,
+ MLOperand hiddenState, MLOperand cellState, unsigned long hiddenSize,
+ optional MLLstmCellOptions options = {});
+};
+
+partial interface MLGraphBuilder {
+ MLOperand matmul(MLOperand a, MLOperand b);
+};
+
+enum MLPaddingMode {
+ "constant",
+ "edge",
+ "reflection",
+ "symmetric"
+};
+
+dictionary MLPadOptions {
+ MLPaddingMode mode = "constant";
+ float value = 0;
+};
+
+partial interface MLGraphBuilder {
+ MLOperand pad(MLOperand input,
+ sequence<unsigned long> beginningPadding,
+ sequence<unsigned long> endingPadding,
+ optional MLPadOptions options = {});
+};
+
+enum MLRoundingType {
+ "floor",
+ "ceil"
+};
+
+dictionary MLPool2dOptions {
+ sequence<unsigned long> windowDimensions;
+ sequence<unsigned long> padding;
+ sequence<unsigned long> strides;
+ sequence<unsigned long> dilations;
+ MLAutoPad autoPad = "explicit";
+ MLInputOperandLayout layout = "nchw";
+ MLRoundingType roundingType = "floor";
+ sequence<unsigned long> outputSizes;
+};
+
+partial interface MLGraphBuilder {
+ MLOperand averagePool2d(MLOperand input, optional MLPool2dOptions options = {});
+ MLOperand l2Pool2d(MLOperand input, optional MLPool2dOptions options = {});
+ MLOperand maxPool2d(MLOperand input, optional MLPool2dOptions options = {});
+};
+
+partial interface MLGraphBuilder {
+ MLOperand prelu(MLOperand x, MLOperand slope);
+};
+
+dictionary MLReduceOptions {
+ sequence<unsigned long> axes = null;
+ boolean keepDimensions = false;
+};
+
+partial interface MLGraphBuilder {
+ MLOperand reduceL1(MLOperand input, optional MLReduceOptions options = {});
+ MLOperand reduceL2(MLOperand input, optional MLReduceOptions options = {});
+ MLOperand reduceLogSum(MLOperand input, optional MLReduceOptions options = {});
+ MLOperand reduceLogSumExp(MLOperand input, optional MLReduceOptions options = {});
+ MLOperand reduceMax(MLOperand input, optional MLReduceOptions options = {});
+ MLOperand reduceMean(MLOperand input, optional MLReduceOptions options = {});
+ MLOperand reduceMin(MLOperand input, optional MLReduceOptions options = {});
+ MLOperand reduceProduct(MLOperand input, optional MLReduceOptions options = {});
+ MLOperand reduceSum(MLOperand input, optional MLReduceOptions options = {});
+ MLOperand reduceSumSquare(MLOperand input, optional MLReduceOptions options = {});
+};
+
+partial interface MLGraphBuilder {
+ MLOperand relu(MLOperand x);
+ MLActivation relu();
+};
+
+enum MLInterpolationMode {
+ "nearest-neighbor",
+ "linear"
+};
+
+dictionary MLResample2dOptions {
+ MLInterpolationMode mode = "nearest-neighbor";
+ sequence<float> scales;
+ sequence<unsigned long> sizes;
+ sequence<unsigned long> axes;
+};
+
+partial interface MLGraphBuilder {
+ MLOperand resample2d(MLOperand input, optional MLResample2dOptions options = {});
+};
+
+partial interface MLGraphBuilder {
+ MLOperand reshape(MLOperand input, sequence<unsigned long?> newShape);
+};
+
+partial interface MLGraphBuilder {
+ MLOperand sigmoid(MLOperand x);
+ MLActivation sigmoid();
+};
+
+partial interface MLGraphBuilder {
+ MLOperand slice(MLOperand input, sequence<unsigned long> starts, sequence<unsigned long> sizes);
+};
+
+partial interface MLGraphBuilder {
+ MLOperand softmax(MLOperand x);
+ MLActivation softmax();
+};
+
+dictionary MLSoftplusOptions {
+ float steepness = 1;
+};
+
+partial interface MLGraphBuilder {
+ MLOperand softplus(MLOperand x, optional MLSoftplusOptions options = {});
+ MLActivation softplus(optional MLSoftplusOptions options = {});
+};
+
+partial interface MLGraphBuilder {
+ MLOperand softsign(MLOperand x);
+ MLActivation softsign();
+};
+
+dictionary MLSplitOptions {
+ unsigned long axis = 0;
+};
+
+partial interface MLGraphBuilder {
+ sequence<MLOperand> split(MLOperand input,
+ (unsigned long or sequence<unsigned long>) splits,
+ optional MLSplitOptions options = {});
+};
+
+dictionary MLSqueezeOptions {
+ sequence<unsigned long> axes;
+};
+
+partial interface MLGraphBuilder {
+ MLOperand squeeze(MLOperand input, optional MLSqueezeOptions options = {});
+};
+
+partial interface MLGraphBuilder {
+ MLOperand tanh(MLOperand x);
+ MLActivation tanh();
+};
+
+dictionary MLTransposeOptions {
+ sequence<unsigned long> permutation;
+};
+
+partial interface MLGraphBuilder {
+ MLOperand transpose(MLOperand input, optional MLTransposeOptions options = {});
+};