summaryrefslogtreecommitdiffstats
path: root/debian/tests/test_modules/node-forge/lib/cipherModes.js
blob: 339915cc1d6361637df23d95c6bc58dbbde7e459 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
/**
 * Supported cipher modes.
 *
 * @author Dave Longley
 *
 * Copyright (c) 2010-2014 Digital Bazaar, Inc.
 */
var forge = require('./forge');
require('./util');

forge.cipher = forge.cipher || {};

// supported cipher modes
var modes = module.exports = forge.cipher.modes = forge.cipher.modes || {};

/** Electronic codebook (ECB) (Don't use this; it's not secure) **/

modes.ecb = function(options) {
  options = options || {};
  this.name = 'ECB';
  this.cipher = options.cipher;
  this.blockSize = options.blockSize || 16;
  this._ints = this.blockSize / 4;
  this._inBlock = new Array(this._ints);
  this._outBlock = new Array(this._ints);
};

modes.ecb.prototype.start = function(options) {};

modes.ecb.prototype.encrypt = function(input, output, finish) {
  // not enough input to encrypt
  if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
    return true;
  }

  // get next block
  for(var i = 0; i < this._ints; ++i) {
    this._inBlock[i] = input.getInt32();
  }

  // encrypt block
  this.cipher.encrypt(this._inBlock, this._outBlock);

  // write output
  for(var i = 0; i < this._ints; ++i) {
    output.putInt32(this._outBlock[i]);
  }
};

modes.ecb.prototype.decrypt = function(input, output, finish) {
  // not enough input to decrypt
  if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
    return true;
  }

  // get next block
  for(var i = 0; i < this._ints; ++i) {
    this._inBlock[i] = input.getInt32();
  }

  // decrypt block
  this.cipher.decrypt(this._inBlock, this._outBlock);

  // write output
  for(var i = 0; i < this._ints; ++i) {
    output.putInt32(this._outBlock[i]);
  }
};

modes.ecb.prototype.pad = function(input, options) {
  // add PKCS#7 padding to block (each pad byte is the
  // value of the number of pad bytes)
  var padding = (input.length() === this.blockSize ?
    this.blockSize : (this.blockSize - input.length()));
  input.fillWithByte(padding, padding);
  return true;
};

modes.ecb.prototype.unpad = function(output, options) {
  // check for error: input data not a multiple of blockSize
  if(options.overflow > 0) {
    return false;
  }

  // ensure padding byte count is valid
  var len = output.length();
  var count = output.at(len - 1);
  if(count > (this.blockSize << 2)) {
    return false;
  }

  // trim off padding bytes
  output.truncate(count);
  return true;
};

/** Cipher-block Chaining (CBC) **/

modes.cbc = function(options) {
  options = options || {};
  this.name = 'CBC';
  this.cipher = options.cipher;
  this.blockSize = options.blockSize || 16;
  this._ints = this.blockSize / 4;
  this._inBlock = new Array(this._ints);
  this._outBlock = new Array(this._ints);
};

modes.cbc.prototype.start = function(options) {
  // Note: legacy support for using IV residue (has security flaws)
  // if IV is null, reuse block from previous processing
  if(options.iv === null) {
    // must have a previous block
    if(!this._prev) {
      throw new Error('Invalid IV parameter.');
    }
    this._iv = this._prev.slice(0);
  } else if(!('iv' in options)) {
    throw new Error('Invalid IV parameter.');
  } else {
    // save IV as "previous" block
    this._iv = transformIV(options.iv, this.blockSize);
    this._prev = this._iv.slice(0);
  }
};

modes.cbc.prototype.encrypt = function(input, output, finish) {
  // not enough input to encrypt
  if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
    return true;
  }

  // get next block
  // CBC XOR's IV (or previous block) with plaintext
  for(var i = 0; i < this._ints; ++i) {
    this._inBlock[i] = this._prev[i] ^ input.getInt32();
  }

  // encrypt block
  this.cipher.encrypt(this._inBlock, this._outBlock);

  // write output, save previous block
  for(var i = 0; i < this._ints; ++i) {
    output.putInt32(this._outBlock[i]);
  }
  this._prev = this._outBlock;
};

modes.cbc.prototype.decrypt = function(input, output, finish) {
  // not enough input to decrypt
  if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
    return true;
  }

  // get next block
  for(var i = 0; i < this._ints; ++i) {
    this._inBlock[i] = input.getInt32();
  }

  // decrypt block
  this.cipher.decrypt(this._inBlock, this._outBlock);

  // write output, save previous ciphered block
  // CBC XOR's IV (or previous block) with ciphertext
  for(var i = 0; i < this._ints; ++i) {
    output.putInt32(this._prev[i] ^ this._outBlock[i]);
  }
  this._prev = this._inBlock.slice(0);
};

modes.cbc.prototype.pad = function(input, options) {
  // add PKCS#7 padding to block (each pad byte is the
  // value of the number of pad bytes)
  var padding = (input.length() === this.blockSize ?
    this.blockSize : (this.blockSize - input.length()));
  input.fillWithByte(padding, padding);
  return true;
};

modes.cbc.prototype.unpad = function(output, options) {
  // check for error: input data not a multiple of blockSize
  if(options.overflow > 0) {
    return false;
  }

  // ensure padding byte count is valid
  var len = output.length();
  var count = output.at(len - 1);
  if(count > (this.blockSize << 2)) {
    return false;
  }

  // trim off padding bytes
  output.truncate(count);
  return true;
};

/** Cipher feedback (CFB) **/

modes.cfb = function(options) {
  options = options || {};
  this.name = 'CFB';
  this.cipher = options.cipher;
  this.blockSize = options.blockSize || 16;
  this._ints = this.blockSize / 4;
  this._inBlock = null;
  this._outBlock = new Array(this._ints);
  this._partialBlock = new Array(this._ints);
  this._partialOutput = forge.util.createBuffer();
  this._partialBytes = 0;
};

modes.cfb.prototype.start = function(options) {
  if(!('iv' in options)) {
    throw new Error('Invalid IV parameter.');
  }
  // use IV as first input
  this._iv = transformIV(options.iv, this.blockSize);
  this._inBlock = this._iv.slice(0);
  this._partialBytes = 0;
};

modes.cfb.prototype.encrypt = function(input, output, finish) {
  // not enough input to encrypt
  var inputLength = input.length();
  if(inputLength === 0) {
    return true;
  }

  // encrypt block
  this.cipher.encrypt(this._inBlock, this._outBlock);

  // handle full block
  if(this._partialBytes === 0 && inputLength >= this.blockSize) {
    // XOR input with output, write input as output
    for(var i = 0; i < this._ints; ++i) {
      this._inBlock[i] = input.getInt32() ^ this._outBlock[i];
      output.putInt32(this._inBlock[i]);
    }
    return;
  }

  // handle partial block
  var partialBytes = (this.blockSize - inputLength) % this.blockSize;
  if(partialBytes > 0) {
    partialBytes = this.blockSize - partialBytes;
  }

  // XOR input with output, write input as partial output
  this._partialOutput.clear();
  for(var i = 0; i < this._ints; ++i) {
    this._partialBlock[i] = input.getInt32() ^ this._outBlock[i];
    this._partialOutput.putInt32(this._partialBlock[i]);
  }

  if(partialBytes > 0) {
    // block still incomplete, restore input buffer
    input.read -= this.blockSize;
  } else {
    // block complete, update input block
    for(var i = 0; i < this._ints; ++i) {
      this._inBlock[i] = this._partialBlock[i];
    }
  }

  // skip any previous partial bytes
  if(this._partialBytes > 0) {
    this._partialOutput.getBytes(this._partialBytes);
  }

  if(partialBytes > 0 && !finish) {
    output.putBytes(this._partialOutput.getBytes(
      partialBytes - this._partialBytes));
    this._partialBytes = partialBytes;
    return true;
  }

  output.putBytes(this._partialOutput.getBytes(
    inputLength - this._partialBytes));
  this._partialBytes = 0;
};

modes.cfb.prototype.decrypt = function(input, output, finish) {
  // not enough input to decrypt
  var inputLength = input.length();
  if(inputLength === 0) {
    return true;
  }

  // encrypt block (CFB always uses encryption mode)
  this.cipher.encrypt(this._inBlock, this._outBlock);

  // handle full block
  if(this._partialBytes === 0 && inputLength >= this.blockSize) {
    // XOR input with output, write input as output
    for(var i = 0; i < this._ints; ++i) {
      this._inBlock[i] = input.getInt32();
      output.putInt32(this._inBlock[i] ^ this._outBlock[i]);
    }
    return;
  }

  // handle partial block
  var partialBytes = (this.blockSize - inputLength) % this.blockSize;
  if(partialBytes > 0) {
    partialBytes = this.blockSize - partialBytes;
  }

  // XOR input with output, write input as partial output
  this._partialOutput.clear();
  for(var i = 0; i < this._ints; ++i) {
    this._partialBlock[i] = input.getInt32();
    this._partialOutput.putInt32(this._partialBlock[i] ^ this._outBlock[i]);
  }

  if(partialBytes > 0) {
    // block still incomplete, restore input buffer
    input.read -= this.blockSize;
  } else {
    // block complete, update input block
    for(var i = 0; i < this._ints; ++i) {
      this._inBlock[i] = this._partialBlock[i];
    }
  }

  // skip any previous partial bytes
  if(this._partialBytes > 0) {
    this._partialOutput.getBytes(this._partialBytes);
  }

  if(partialBytes > 0 && !finish) {
    output.putBytes(this._partialOutput.getBytes(
      partialBytes - this._partialBytes));
    this._partialBytes = partialBytes;
    return true;
  }

  output.putBytes(this._partialOutput.getBytes(
    inputLength - this._partialBytes));
  this._partialBytes = 0;
};

/** Output feedback (OFB) **/

modes.ofb = function(options) {
  options = options || {};
  this.name = 'OFB';
  this.cipher = options.cipher;
  this.blockSize = options.blockSize || 16;
  this._ints = this.blockSize / 4;
  this._inBlock = null;
  this._outBlock = new Array(this._ints);
  this._partialOutput = forge.util.createBuffer();
  this._partialBytes = 0;
};

modes.ofb.prototype.start = function(options) {
  if(!('iv' in options)) {
    throw new Error('Invalid IV parameter.');
  }
  // use IV as first input
  this._iv = transformIV(options.iv, this.blockSize);
  this._inBlock = this._iv.slice(0);
  this._partialBytes = 0;
};

modes.ofb.prototype.encrypt = function(input, output, finish) {
  // not enough input to encrypt
  var inputLength = input.length();
  if(input.length() === 0) {
    return true;
  }

  // encrypt block (OFB always uses encryption mode)
  this.cipher.encrypt(this._inBlock, this._outBlock);

  // handle full block
  if(this._partialBytes === 0 && inputLength >= this.blockSize) {
    // XOR input with output and update next input
    for(var i = 0; i < this._ints; ++i) {
      output.putInt32(input.getInt32() ^ this._outBlock[i]);
      this._inBlock[i] = this._outBlock[i];
    }
    return;
  }

  // handle partial block
  var partialBytes = (this.blockSize - inputLength) % this.blockSize;
  if(partialBytes > 0) {
    partialBytes = this.blockSize - partialBytes;
  }

  // XOR input with output
  this._partialOutput.clear();
  for(var i = 0; i < this._ints; ++i) {
    this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
  }

  if(partialBytes > 0) {
    // block still incomplete, restore input buffer
    input.read -= this.blockSize;
  } else {
    // block complete, update input block
    for(var i = 0; i < this._ints; ++i) {
      this._inBlock[i] = this._outBlock[i];
    }
  }

  // skip any previous partial bytes
  if(this._partialBytes > 0) {
    this._partialOutput.getBytes(this._partialBytes);
  }

  if(partialBytes > 0 && !finish) {
    output.putBytes(this._partialOutput.getBytes(
      partialBytes - this._partialBytes));
    this._partialBytes = partialBytes;
    return true;
  }

  output.putBytes(this._partialOutput.getBytes(
    inputLength - this._partialBytes));
  this._partialBytes = 0;
};

modes.ofb.prototype.decrypt = modes.ofb.prototype.encrypt;

/** Counter (CTR) **/

modes.ctr = function(options) {
  options = options || {};
  this.name = 'CTR';
  this.cipher = options.cipher;
  this.blockSize = options.blockSize || 16;
  this._ints = this.blockSize / 4;
  this._inBlock = null;
  this._outBlock = new Array(this._ints);
  this._partialOutput = forge.util.createBuffer();
  this._partialBytes = 0;
};

modes.ctr.prototype.start = function(options) {
  if(!('iv' in options)) {
    throw new Error('Invalid IV parameter.');
  }
  // use IV as first input
  this._iv = transformIV(options.iv, this.blockSize);
  this._inBlock = this._iv.slice(0);
  this._partialBytes = 0;
};

modes.ctr.prototype.encrypt = function(input, output, finish) {
  // not enough input to encrypt
  var inputLength = input.length();
  if(inputLength === 0) {
    return true;
  }

  // encrypt block (CTR always uses encryption mode)
  this.cipher.encrypt(this._inBlock, this._outBlock);

  // handle full block
  if(this._partialBytes === 0 && inputLength >= this.blockSize) {
    // XOR input with output
    for(var i = 0; i < this._ints; ++i) {
      output.putInt32(input.getInt32() ^ this._outBlock[i]);
    }
  } else {
    // handle partial block
    var partialBytes = (this.blockSize - inputLength) % this.blockSize;
    if(partialBytes > 0) {
      partialBytes = this.blockSize - partialBytes;
    }

    // XOR input with output
    this._partialOutput.clear();
    for(var i = 0; i < this._ints; ++i) {
      this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
    }

    if(partialBytes > 0) {
      // block still incomplete, restore input buffer
      input.read -= this.blockSize;
    }

    // skip any previous partial bytes
    if(this._partialBytes > 0) {
      this._partialOutput.getBytes(this._partialBytes);
    }

    if(partialBytes > 0 && !finish) {
      output.putBytes(this._partialOutput.getBytes(
        partialBytes - this._partialBytes));
      this._partialBytes = partialBytes;
      return true;
    }

    output.putBytes(this._partialOutput.getBytes(
      inputLength - this._partialBytes));
    this._partialBytes = 0;
  }

  // block complete, increment counter (input block)
  inc32(this._inBlock);
};

modes.ctr.prototype.decrypt = modes.ctr.prototype.encrypt;

/** Galois/Counter Mode (GCM) **/

modes.gcm = function(options) {
  options = options || {};
  this.name = 'GCM';
  this.cipher = options.cipher;
  this.blockSize = options.blockSize || 16;
  this._ints = this.blockSize / 4;
  this._inBlock = new Array(this._ints);
  this._outBlock = new Array(this._ints);
  this._partialOutput = forge.util.createBuffer();
  this._partialBytes = 0;

  // R is actually this value concatenated with 120 more zero bits, but
  // we only XOR against R so the other zeros have no effect -- we just
  // apply this value to the first integer in a block
  this._R = 0xE1000000;
};

modes.gcm.prototype.start = function(options) {
  if(!('iv' in options)) {
    throw new Error('Invalid IV parameter.');
  }
  // ensure IV is a byte buffer
  var iv = forge.util.createBuffer(options.iv);

  // no ciphered data processed yet
  this._cipherLength = 0;

  // default additional data is none
  var additionalData;
  if('additionalData' in options) {
    additionalData = forge.util.createBuffer(options.additionalData);
  } else {
    additionalData = forge.util.createBuffer();
  }

  // default tag length is 128 bits
  if('tagLength' in options) {
    this._tagLength = options.tagLength;
  } else {
    this._tagLength = 128;
  }

  // if tag is given, ensure tag matches tag length
  this._tag = null;
  if(options.decrypt) {
    // save tag to check later
    this._tag = forge.util.createBuffer(options.tag).getBytes();
    if(this._tag.length !== (this._tagLength / 8)) {
      throw new Error('Authentication tag does not match tag length.');
    }
  }

  // create tmp storage for hash calculation
  this._hashBlock = new Array(this._ints);

  // no tag generated yet
  this.tag = null;

  // generate hash subkey
  // (apply block cipher to "zero" block)
  this._hashSubkey = new Array(this._ints);
  this.cipher.encrypt([0, 0, 0, 0], this._hashSubkey);

  // generate table M
  // use 4-bit tables (32 component decomposition of a 16 byte value)
  // 8-bit tables take more space and are known to have security
  // vulnerabilities (in native implementations)
  this.componentBits = 4;
  this._m = this.generateHashTable(this._hashSubkey, this.componentBits);

  // Note: support IV length different from 96 bits? (only supporting
  // 96 bits is recommended by NIST SP-800-38D)
  // generate J_0
  var ivLength = iv.length();
  if(ivLength === 12) {
    // 96-bit IV
    this._j0 = [iv.getInt32(), iv.getInt32(), iv.getInt32(), 1];
  } else {
    // IV is NOT 96-bits
    this._j0 = [0, 0, 0, 0];
    while(iv.length() > 0) {
      this._j0 = this.ghash(
        this._hashSubkey, this._j0,
        [iv.getInt32(), iv.getInt32(), iv.getInt32(), iv.getInt32()]);
    }
    this._j0 = this.ghash(
      this._hashSubkey, this._j0, [0, 0].concat(from64To32(ivLength * 8)));
  }

  // generate ICB (initial counter block)
  this._inBlock = this._j0.slice(0);
  inc32(this._inBlock);
  this._partialBytes = 0;

  // consume authentication data
  additionalData = forge.util.createBuffer(additionalData);
  // save additional data length as a BE 64-bit number
  this._aDataLength = from64To32(additionalData.length() * 8);
  // pad additional data to 128 bit (16 byte) block size
  var overflow = additionalData.length() % this.blockSize;
  if(overflow) {
    additionalData.fillWithByte(0, this.blockSize - overflow);
  }
  this._s = [0, 0, 0, 0];
  while(additionalData.length() > 0) {
    this._s = this.ghash(this._hashSubkey, this._s, [
      additionalData.getInt32(),
      additionalData.getInt32(),
      additionalData.getInt32(),
      additionalData.getInt32()
    ]);
  }
};

modes.gcm.prototype.encrypt = function(input, output, finish) {
  // not enough input to encrypt
  var inputLength = input.length();
  if(inputLength === 0) {
    return true;
  }

  // encrypt block
  this.cipher.encrypt(this._inBlock, this._outBlock);

  // handle full block
  if(this._partialBytes === 0 && inputLength >= this.blockSize) {
    // XOR input with output
    for(var i = 0; i < this._ints; ++i) {
      output.putInt32(this._outBlock[i] ^= input.getInt32());
    }
    this._cipherLength += this.blockSize;
  } else {
    // handle partial block
    var partialBytes = (this.blockSize - inputLength) % this.blockSize;
    if(partialBytes > 0) {
      partialBytes = this.blockSize - partialBytes;
    }

    // XOR input with output
    this._partialOutput.clear();
    for(var i = 0; i < this._ints; ++i) {
      this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
    }

    if(partialBytes <= 0 || finish) {
      // handle overflow prior to hashing
      if(finish) {
        // get block overflow
        var overflow = inputLength % this.blockSize;
        this._cipherLength += overflow;
        // truncate for hash function
        this._partialOutput.truncate(this.blockSize - overflow);
      } else {
        this._cipherLength += this.blockSize;
      }

      // get output block for hashing
      for(var i = 0; i < this._ints; ++i) {
        this._outBlock[i] = this._partialOutput.getInt32();
      }
      this._partialOutput.read -= this.blockSize;
    }

    // skip any previous partial bytes
    if(this._partialBytes > 0) {
      this._partialOutput.getBytes(this._partialBytes);
    }

    if(partialBytes > 0 && !finish) {
      // block still incomplete, restore input buffer, get partial output,
      // and return early
      input.read -= this.blockSize;
      output.putBytes(this._partialOutput.getBytes(
        partialBytes - this._partialBytes));
      this._partialBytes = partialBytes;
      return true;
    }

    output.putBytes(this._partialOutput.getBytes(
      inputLength - this._partialBytes));
    this._partialBytes = 0;
  }

  // update hash block S
  this._s = this.ghash(this._hashSubkey, this._s, this._outBlock);

  // increment counter (input block)
  inc32(this._inBlock);
};

modes.gcm.prototype.decrypt = function(input, output, finish) {
  // not enough input to decrypt
  var inputLength = input.length();
  if(inputLength < this.blockSize && !(finish && inputLength > 0)) {
    return true;
  }

  // encrypt block (GCM always uses encryption mode)
  this.cipher.encrypt(this._inBlock, this._outBlock);

  // increment counter (input block)
  inc32(this._inBlock);

  // update hash block S
  this._hashBlock[0] = input.getInt32();
  this._hashBlock[1] = input.getInt32();
  this._hashBlock[2] = input.getInt32();
  this._hashBlock[3] = input.getInt32();
  this._s = this.ghash(this._hashSubkey, this._s, this._hashBlock);

  // XOR hash input with output
  for(var i = 0; i < this._ints; ++i) {
    output.putInt32(this._outBlock[i] ^ this._hashBlock[i]);
  }

  // increment cipher data length
  if(inputLength < this.blockSize) {
    this._cipherLength += inputLength % this.blockSize;
  } else {
    this._cipherLength += this.blockSize;
  }
};

modes.gcm.prototype.afterFinish = function(output, options) {
  var rval = true;

  // handle overflow
  if(options.decrypt && options.overflow) {
    output.truncate(this.blockSize - options.overflow);
  }

  // handle authentication tag
  this.tag = forge.util.createBuffer();

  // concatenate additional data length with cipher length
  var lengths = this._aDataLength.concat(from64To32(this._cipherLength * 8));

  // include lengths in hash
  this._s = this.ghash(this._hashSubkey, this._s, lengths);

  // do GCTR(J_0, S)
  var tag = [];
  this.cipher.encrypt(this._j0, tag);
  for(var i = 0; i < this._ints; ++i) {
    this.tag.putInt32(this._s[i] ^ tag[i]);
  }

  // trim tag to length
  this.tag.truncate(this.tag.length() % (this._tagLength / 8));

  // check authentication tag
  if(options.decrypt && this.tag.bytes() !== this._tag) {
    rval = false;
  }

  return rval;
};

/**
 * See NIST SP-800-38D 6.3 (Algorithm 1). This function performs Galois
 * field multiplication. The field, GF(2^128), is defined by the polynomial:
 *
 * x^128 + x^7 + x^2 + x + 1
 *
 * Which is represented in little-endian binary form as: 11100001 (0xe1). When
 * the value of a coefficient is 1, a bit is set. The value R, is the
 * concatenation of this value and 120 zero bits, yielding a 128-bit value
 * which matches the block size.
 *
 * This function will multiply two elements (vectors of bytes), X and Y, in
 * the field GF(2^128). The result is initialized to zero. For each bit of
 * X (out of 128), x_i, if x_i is set, then the result is multiplied (XOR'd)
 * by the current value of Y. For each bit, the value of Y will be raised by
 * a power of x (multiplied by the polynomial x). This can be achieved by
 * shifting Y once to the right. If the current value of Y, prior to being
 * multiplied by x, has 0 as its LSB, then it is a 127th degree polynomial.
 * Otherwise, we must divide by R after shifting to find the remainder.
 *
 * @param x the first block to multiply by the second.
 * @param y the second block to multiply by the first.
 *
 * @return the block result of the multiplication.
 */
modes.gcm.prototype.multiply = function(x, y) {
  var z_i = [0, 0, 0, 0];
  var v_i = y.slice(0);

  // calculate Z_128 (block has 128 bits)
  for(var i = 0; i < 128; ++i) {
    // if x_i is 0, Z_{i+1} = Z_i (unchanged)
    // else Z_{i+1} = Z_i ^ V_i
    // get x_i by finding 32-bit int position, then left shift 1 by remainder
    var x_i = x[(i / 32) | 0] & (1 << (31 - i % 32));
    if(x_i) {
      z_i[0] ^= v_i[0];
      z_i[1] ^= v_i[1];
      z_i[2] ^= v_i[2];
      z_i[3] ^= v_i[3];
    }

    // if LSB(V_i) is 1, V_i = V_i >> 1
    // else V_i = (V_i >> 1) ^ R
    this.pow(v_i, v_i);
  }

  return z_i;
};

modes.gcm.prototype.pow = function(x, out) {
  // if LSB(x) is 1, x = x >>> 1
  // else x = (x >>> 1) ^ R
  var lsb = x[3] & 1;

  // always do x >>> 1:
  // starting with the rightmost integer, shift each integer to the right
  // one bit, pulling in the bit from the integer to the left as its top
  // most bit (do this for the last 3 integers)
  for(var i = 3; i > 0; --i) {
    out[i] = (x[i] >>> 1) | ((x[i - 1] & 1) << 31);
  }
  // shift the first integer normally
  out[0] = x[0] >>> 1;

  // if lsb was not set, then polynomial had a degree of 127 and doesn't
  // need to divided; otherwise, XOR with R to find the remainder; we only
  // need to XOR the first integer since R technically ends w/120 zero bits
  if(lsb) {
    out[0] ^= this._R;
  }
};

modes.gcm.prototype.tableMultiply = function(x) {
  // assumes 4-bit tables are used
  var z = [0, 0, 0, 0];
  for(var i = 0; i < 32; ++i) {
    var idx = (i / 8) | 0;
    var x_i = (x[idx] >>> ((7 - (i % 8)) * 4)) & 0xF;
    var ah = this._m[i][x_i];
    z[0] ^= ah[0];
    z[1] ^= ah[1];
    z[2] ^= ah[2];
    z[3] ^= ah[3];
  }
  return z;
};

/**
 * A continuing version of the GHASH algorithm that operates on a single
 * block. The hash block, last hash value (Ym) and the new block to hash
 * are given.
 *
 * @param h the hash block.
 * @param y the previous value for Ym, use [0, 0, 0, 0] for a new hash.
 * @param x the block to hash.
 *
 * @return the hashed value (Ym).
 */
modes.gcm.prototype.ghash = function(h, y, x) {
  y[0] ^= x[0];
  y[1] ^= x[1];
  y[2] ^= x[2];
  y[3] ^= x[3];
  return this.tableMultiply(y);
  //return this.multiply(y, h);
};

/**
 * Precomputes a table for multiplying against the hash subkey. This
 * mechanism provides a substantial speed increase over multiplication
 * performed without a table. The table-based multiplication this table is
 * for solves X * H by multiplying each component of X by H and then
 * composing the results together using XOR.
 *
 * This function can be used to generate tables with different bit sizes
 * for the components, however, this implementation assumes there are
 * 32 components of X (which is a 16 byte vector), therefore each component
 * takes 4-bits (so the table is constructed with bits=4).
 *
 * @param h the hash subkey.
 * @param bits the bit size for a component.
 */
modes.gcm.prototype.generateHashTable = function(h, bits) {
  // TODO: There are further optimizations that would use only the
  // first table M_0 (or some variant) along with a remainder table;
  // this can be explored in the future
  var multiplier = 8 / bits;
  var perInt = 4 * multiplier;
  var size = 16 * multiplier;
  var m = new Array(size);
  for(var i = 0; i < size; ++i) {
    var tmp = [0, 0, 0, 0];
    var idx = (i / perInt) | 0;
    var shft = ((perInt - 1 - (i % perInt)) * bits);
    tmp[idx] = (1 << (bits - 1)) << shft;
    m[i] = this.generateSubHashTable(this.multiply(tmp, h), bits);
  }
  return m;
};

/**
 * Generates a table for multiplying against the hash subkey for one
 * particular component (out of all possible component values).
 *
 * @param mid the pre-multiplied value for the middle key of the table.
 * @param bits the bit size for a component.
 */
modes.gcm.prototype.generateSubHashTable = function(mid, bits) {
  // compute the table quickly by minimizing the number of
  // POW operations -- they only need to be performed for powers of 2,
  // all other entries can be composed from those powers using XOR
  var size = 1 << bits;
  var half = size >>> 1;
  var m = new Array(size);
  m[half] = mid.slice(0);
  var i = half >>> 1;
  while(i > 0) {
    // raise m0[2 * i] and store in m0[i]
    this.pow(m[2 * i], m[i] = []);
    i >>= 1;
  }
  i = 2;
  while(i < half) {
    for(var j = 1; j < i; ++j) {
      var m_i = m[i];
      var m_j = m[j];
      m[i + j] = [
        m_i[0] ^ m_j[0],
        m_i[1] ^ m_j[1],
        m_i[2] ^ m_j[2],
        m_i[3] ^ m_j[3]
      ];
    }
    i *= 2;
  }
  m[0] = [0, 0, 0, 0];
  /* Note: We could avoid storing these by doing composition during multiply
  calculate top half using composition by speed is preferred. */
  for(i = half + 1; i < size; ++i) {
    var c = m[i ^ half];
    m[i] = [mid[0] ^ c[0], mid[1] ^ c[1], mid[2] ^ c[2], mid[3] ^ c[3]];
  }
  return m;
};

/** Utility functions */

function transformIV(iv, blockSize) {
  if(typeof iv === 'string') {
    // convert iv string into byte buffer
    iv = forge.util.createBuffer(iv);
  }

  if(forge.util.isArray(iv) && iv.length > 4) {
    // convert iv byte array into byte buffer
    var tmp = iv;
    iv = forge.util.createBuffer();
    for(var i = 0; i < tmp.length; ++i) {
      iv.putByte(tmp[i]);
    }
  }

  if(iv.length() < blockSize) {
    throw new Error(
      'Invalid IV length; got ' + iv.length() +
      ' bytes and expected ' + blockSize + ' bytes.');
  }

  if(!forge.util.isArray(iv)) {
    // convert iv byte buffer into 32-bit integer array
    var ints = [];
    var blocks = blockSize / 4;
    for(var i = 0; i < blocks; ++i) {
      ints.push(iv.getInt32());
    }
    iv = ints;
  }

  return iv;
}

function inc32(block) {
  // increment last 32 bits of block only
  block[block.length - 1] = (block[block.length - 1] + 1) & 0xFFFFFFFF;
}

function from64To32(num) {
  // convert 64-bit number to two BE Int32s
  return [(num / 0x100000000) | 0, num & 0xFFFFFFFF];
}