summaryrefslogtreecommitdiffstats
path: root/test/wpt/tests/resources/chromium/webxr-test-math-helper.js
blob: 22c6c12d08fe1a739857bec0da88e89c8abffc60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
'use strict';

// Math helper - used mainly in hit test implementation done by webxr-test.js
class XRMathHelper {
  static toString(p) {
    return "[" + p.x + "," + p.y + "," + p.z + "," + p.w + "]";
  }

  static transform_by_matrix(matrix, point) {
    return {
      x : matrix[0] * point.x + matrix[4] * point.y + matrix[8] * point.z + matrix[12] * point.w,
      y : matrix[1] * point.x + matrix[5] * point.y + matrix[9] * point.z + matrix[13] * point.w,
      z : matrix[2] * point.x + matrix[6] * point.y + matrix[10] * point.z + matrix[14] * point.w,
      w : matrix[3] * point.x + matrix[7] * point.y + matrix[11] * point.z + matrix[15] * point.w,
    };
  }

  static neg(p) {
    return {x : -p.x, y : -p.y, z : -p.z, w : p.w};
  }

  static sub(lhs, rhs) {
    // .w is treated here like an entity type, 1 signifies points, 0 signifies vectors.
    // point - point, point - vector, vector - vector are ok, vector - point is not.
    if (lhs.w != rhs.w && lhs.w == 0.0) {
      throw new Error("vector - point not allowed: " + toString(lhs) + "-" + toString(rhs));
    }

    return {x : lhs.x - rhs.x, y : lhs.y - rhs.y, z : lhs.z - rhs.z, w : lhs.w - rhs.w};
  }

  static add(lhs, rhs) {
    if (lhs.w == rhs.w && lhs.w == 1.0) {
      throw new Error("point + point not allowed", p1, p2);
    }

    return {x : lhs.x + rhs.x, y : lhs.y + rhs.y, z : lhs.z + rhs.z, w : lhs.w + rhs.w};
  }

  static cross(lhs, rhs) {
    if (lhs.w != 0.0 || rhs.w != 0.0) {
      throw new Error("cross product not allowed: " + toString(lhs) + "x" + toString(rhs));
    }

    return {
      x : lhs.y * rhs.z - lhs.z * rhs.y,
      y : lhs.z * rhs.x - lhs.x * rhs.z,
      z : lhs.x * rhs.y - lhs.y * rhs.x,
      w : 0
    };
  }

  static dot(lhs, rhs) {
    if (lhs.w != 0 || rhs.w != 0) {
      throw new Error("dot product not allowed: " + toString(lhs) + "x" + toString(rhs));
    }

    return lhs.x * rhs.x + lhs.y * rhs.y + lhs.z * rhs.z;
  }

  static mul(scalar, vector) {
    if (vector.w != 0) {
      throw new Error("scalar * vector not allowed", scalar, vector);
    }

    return {x : vector.x * scalar, y : vector.y * scalar, z : vector.z * scalar, w : vector.w};
  }

  static length(vector) {
    return Math.sqrt(XRMathHelper.dot(vector, vector));
  }

  static normalize(vector) {
    const l = XRMathHelper.length(vector);
    return XRMathHelper.mul(1.0/l, vector);
  }

  // All |face|'s points and |point| must be co-planar.
  static pointInFace(point, face) {
    const normalize = XRMathHelper.normalize;
    const sub = XRMathHelper.sub;
    const length = XRMathHelper.length;
    const cross = XRMathHelper.cross;

    let onTheRight = null;
    let previous_point = face[face.length - 1];

    // |point| is in |face| if it's on the same side of all the edges.
    for (let i = 0; i < face.length; ++i) {
      const current_point = face[i];

      const edge_direction = normalize(sub(current_point, previous_point));
      const turn_direction = normalize(sub(point, current_point));

      const sin_turn_angle = length(cross(edge_direction, turn_direction));

      if (onTheRight == null) {
        onTheRight = sin_turn_angle >= 0;
      } else {
        if (onTheRight && sin_turn_angle < 0) return false;
        if (!onTheRight && sin_turn_angle > 0) return false;
      }

      previous_point = current_point;
    }

    return true;
  }

  static det2x2(m00, m01, m10, m11) {
    return m00 * m11 - m01 * m10;
  }

  static det3x3(
    m00, m01, m02,
    m10, m11, m12,
    m20, m21, m22
  ){
    const det2x2 = XRMathHelper.det2x2;

    return    m00 * det2x2(m11, m12, m21, m22)
            - m01 * det2x2(m10, m12, m20, m22)
            + m02 * det2x2(m10, m11, m20, m21);
  }

  static det4x4(
    m00, m01, m02, m03,
    m10, m11, m12, m13,
    m20, m21, m22, m23,
    m30, m31, m32, m33
  ) {
    const det3x3 = XRMathHelper.det3x3;

    return  m00 * det3x3(m11, m12, m13,
                         m21, m22, m23,
                         m31, m32, m33)
          - m01 * det3x3(m10, m12, m13,
                         m20, m22, m23,
                         m30, m32, m33)
          + m02 * det3x3(m10, m11, m13,
                         m20, m21, m23,
                         m30, m31, m33)
          - m03 * det3x3(m10, m11, m12,
                         m20, m21, m22,
                         m30, m31, m32);
  }

  static inv2(m) {
    // mij - i-th column, j-th row
    const m00 = m[0],  m01 = m[1],  m02 = m[2],  m03 = m[3];
    const m10 = m[4],  m11 = m[5],  m12 = m[6],  m13 = m[7];
    const m20 = m[8],  m21 = m[9],  m22 = m[10], m23 = m[11];
    const m30 = m[12], m31 = m[13], m32 = m[14], m33 = m[15];

    const det = det4x4(
      m00, m01, m02, m03,
      m10, m11, m12, m13,
      m20, m21, m22, m23,
      m30, m31, m32, m33
    );
  }

  static transpose(m) {
    const result = Array(16);
    for (let i = 0; i < 4; i++) {
      for (let j = 0; j < 4; j++) {
        result[i * 4 + j] = m[j * 4 + i];
      }
    }
    return result;
  }

  // Inverts the matrix, ported from transformation_matrix.cc.
  static inverse(m) {
    const det3x3 = XRMathHelper.det3x3;

    // mij - i-th column, j-th row
    const m00 = m[0],  m01 = m[1],  m02 = m[2],  m03 = m[3];
    const m10 = m[4],  m11 = m[5],  m12 = m[6],  m13 = m[7];
    const m20 = m[8],  m21 = m[9],  m22 = m[10], m23 = m[11];
    const m30 = m[12], m31 = m[13], m32 = m[14], m33 = m[15];

    const det = XRMathHelper.det4x4(
      m00, m01, m02, m03,
      m10, m11, m12, m13,
      m20, m21, m22, m23,
      m30, m31, m32, m33
    );

    if (Math.abs(det) < 0.0001) {
      return null;
    }

    const invDet = 1.0 / det;
    // Calculate `comatrix * 1/det`:
    const result2 = [
      // First column (m0r):
      invDet * det3x3(m11, m12, m13, m21, m22, m23, m32, m32, m33),
      -invDet * det3x3(m10, m12, m13, m20, m22, m23, m30, m32, m33),
      invDet * det3x3(m10, m11, m13, m20, m21, m23, m30, m31, m33),
      -invDet * det3x3(m10, m11, m12, m20, m21, m22, m30, m31, m32),
      // Second column (m1r):
      -invDet * det3x3(m01, m02, m03, m21, m22, m23, m32, m32, m33),
      invDet * det3x3(m00, m02, m03, m20, m22, m23, m30, m32, m33),
      -invDet * det3x3(m00, m01, m03, m20, m21, m23, m30, m31, m33),
      invDet * det3x3(m00, m01, m02, m20, m21, m22, m30, m31, m32),
      // Third column (m2r):
      invDet * det3x3(m01, m02, m03, m11, m12, m13, m31, m32, m33),
      -invDet * det3x3(m00, m02, m03, m10, m12, m13, m30, m32, m33),
      invDet * det3x3(m00, m01, m03, m10, m11, m13, m30, m31, m33),
      -invDet * det3x3(m00, m01, m02, m10, m11, m12, m30, m31, m32),
      // Fourth column (m3r):
      -invDet * det3x3(m01, m02, m03, m11, m12, m13, m21, m22, m23),
      invDet * det3x3(m00, m02, m03, m10, m12, m13, m20, m22, m23),
      -invDet * det3x3(m00, m01, m03, m10, m11, m13, m20, m21, m23),
      invDet * det3x3(m00, m01, m02, m10, m11, m12, m20, m21, m22),
    ];

    // Actual inverse is `1/det * transposed(comatrix)`:
    return XRMathHelper.transpose(result2);
  }

  static mul4x4(m1, m2) {
    if (m1 == null || m2 == null) {
      return null;
    }

    const result = Array(16);

    for (let row = 0; row < 4; row++) {
      for (let col = 0; col < 4; col++) {
        result[4 * col + row] = 0;
        for(let i = 0; i < 4; i++) {
          result[4 * col + row] += m1[4 * i + row] * m2[4 * col + i];
        }
      }
    }

    return result;
  }

  // Decomposes a matrix, with the assumption that the passed in matrix is
  // a rigid transformation (i.e. position and rotation *only*!).
  // The result is an object with `position` and `orientation` keys, which should
  // be compatible with FakeXRRigidTransformInit.
  // The implementation should match the behavior of gfx::Transform, but assumes
  // that scale, skew & perspective are not present in the matrix so it could be
  // simplified.
  static decomposeRigidTransform(m) {
    const m00 = m[0],  m01 = m[1],  m02 = m[2],  m03 = m[3];
    const m10 = m[4],  m11 = m[5],  m12 = m[6],  m13 = m[7];
    const m20 = m[8],  m21 = m[9],  m22 = m[10], m23 = m[11];
    const m30 = m[12], m31 = m[13], m32 = m[14], m33 = m[15];

    const position = [m30, m31, m32];
    const orientation = [0, 0, 0, 0];

    const trace = m00 + m11 + m22;
    if (trace > 0) {
      const S = Math.sqrt(trace + 1) * 2;
      orientation[3] = 0.25 * S;
      orientation[0] = (m12 - m21) / S;
      orientation[1] = (m20 - m02) / S;
      orientation[2] = (m01 - m10) / S;
    } else if (m00 > m11 && m00 > m22) {
      const S = Math.sqrt(1.0 + m00 - m11 - m22) * 2;
      orientation[3] = (m12 - m21) / S;
      orientation[0] = 0.25 * S;
      orientation[1] = (m01 + m10) / S;
      orientation[2] = (m20 + m02) / S;
    } else if (m11 > m22) {
      const S = Math.sqrt(1.0 + m11 - m00 - m22) * 2;
      orientation[3] = (m20 - m02) / S;
      orientation[0] = (m01 + m10) / S;
      orientation[1] = 0.25 * S;
      orientation[2] = (m12 + m21) / S;
    } else {
      const S = Math.sqrt(1.0 + m22 - m00 - m11) * 2;
      orientation[3] = (m01 - m10) / S;
      orientation[0] = (m20 + m02) / S;
      orientation[1] = (m12 + m21) / S;
      orientation[2] = 0.25 * S;
    }

    return { position, orientation };
  }

  static identity() {
    return [
      1, 0, 0, 0,
      0, 1, 0, 0,
      0, 0, 1, 0,
      0, 0, 0, 1
    ];
  };
}

XRMathHelper.EPSILON = 0.001;