/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifdef FREEBL_NO_DEPEND #include "stubs.h" #endif #include "rijndael.h" #include "blapi.h" #include "cmac.h" #include "secerr.h" #include "nspr.h" struct CMACContextStr { /* Information about the block cipher to use internally. The cipher should * be placed in ECB mode so that we can use it to directly encrypt blocks. * * * To add a new cipher, add an entry to CMACCipher, update CMAC_Init, * cmac_Encrypt, and CMAC_Destroy methods to handle the new cipher, and * add a new Context pointer to the cipher union with the correct type. */ CMACCipher cipherType; union { AESContext *aes; } cipher; unsigned int blockSize; /* Internal keys which are conditionally used by the algorithm. Derived * from encrypting the NULL block. We leave the storing of (and the * cleanup of) the CMAC key to the underlying block cipher. */ unsigned char k1[MAX_BLOCK_SIZE]; unsigned char k2[MAX_BLOCK_SIZE]; /* When Update is called with data which isn't a multiple of the block * size, we need a place to put it. HMAC handles this by passing it to * the underlying hash function right away; we can't do that as the * contract on the cipher object is different. */ unsigned int partialIndex; unsigned char partialBlock[MAX_BLOCK_SIZE]; /* Last encrypted block. This gets xor-ed with partialBlock prior to * encrypting it. NIST defines this to be the empty string to begin. */ unsigned char lastBlock[MAX_BLOCK_SIZE]; }; static void cmac_ShiftLeftOne(unsigned char *out, const unsigned char *in, int length) { int i = 0; for (; i < length - 1; i++) { out[i] = in[i] << 1; out[i] |= in[i + 1] >> 7; } out[i] = in[i] << 1; } static SECStatus cmac_Encrypt(CMACContext *ctx, unsigned char *output, const unsigned char *input, unsigned int inputLen) { if (ctx->cipherType == CMAC_AES) { unsigned int tmpOutputLen; SECStatus rv = AES_Encrypt(ctx->cipher.aes, output, &tmpOutputLen, ctx->blockSize, input, inputLen); /* Assumption: AES_Encrypt (when in ECB mode) always returns an * output of length equal to blockSize (what was pass as the value * of the maxOutputLen parameter). */ PORT_Assert(tmpOutputLen == ctx->blockSize); return rv; } return SECFailure; } /* NIST SP.800-38B, 6.1 Subkey Generation */ static SECStatus cmac_GenerateSubkeys(CMACContext *ctx) { unsigned char null_block[MAX_BLOCK_SIZE] = { 0 }; unsigned char L[MAX_BLOCK_SIZE]; unsigned char v; unsigned char i; /* Step 1: L = AES(key, null_block) */ if (cmac_Encrypt(ctx, L, null_block, ctx->blockSize) != SECSuccess) { return SECFailure; } /* In the following, some effort has been made to be constant time. Rather * than conditioning on the value of the MSB (of L or K1), we use the loop * to build a mask for the conditional constant. */ /* Step 2: If MSB(L) = 0, K1 = L << 1. Else, K1 = (L << 1) ^ R_b. */ cmac_ShiftLeftOne(ctx->k1, L, ctx->blockSize); v = L[0] >> 7; for (i = 1; i <= 7; i <<= 1) { v |= (v << i); } ctx->k1[ctx->blockSize - 1] ^= (0x87 & v); /* Step 3: If MSB(K1) = 0, K2 = K1 << 1. Else, K2 = (K1 <, 1) ^ R_b. */ cmac_ShiftLeftOne(ctx->k2, ctx->k1, ctx->blockSize); v = ctx->k1[0] >> 7; for (i = 1; i <= 7; i <<= 1) { v |= (v << i); } ctx->k2[ctx->blockSize - 1] ^= (0x87 & v); /* Any intermediate value in the computation of the subkey shall be * secret. */ PORT_Memset(null_block, 0, MAX_BLOCK_SIZE); PORT_Memset(L, 0, MAX_BLOCK_SIZE); /* Step 4: Return the values. */ return SECSuccess; } /* NIST SP.800-38B, 6.2 MAC Generation step 6 */ static SECStatus cmac_UpdateState(CMACContext *ctx) { if (ctx == NULL || ctx->partialIndex != ctx->blockSize) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } /* Step 6: C_i = CIPHER(key, C_{i-1} ^ M_i) for 1 <= i <= n, and * C_0 is defined as the empty string. */ for (unsigned int index = 0; index < ctx->blockSize; index++) { ctx->partialBlock[index] ^= ctx->lastBlock[index]; } return cmac_Encrypt(ctx, ctx->lastBlock, ctx->partialBlock, ctx->blockSize); } SECStatus CMAC_Init(CMACContext *ctx, CMACCipher type, const unsigned char *key, unsigned int key_len) { if (ctx == NULL) { PORT_SetError(SEC_ERROR_NO_MEMORY); return SECFailure; } /* We only currently support AES-CMAC. */ if (type != CMAC_AES) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } PORT_Memset(ctx, 0, sizeof(*ctx)); ctx->blockSize = AES_BLOCK_SIZE; ctx->cipherType = CMAC_AES; ctx->cipher.aes = AES_CreateContext(key, NULL, NSS_AES, 1, key_len, ctx->blockSize); if (ctx->cipher.aes == NULL) { return SECFailure; } return CMAC_Begin(ctx); } CMACContext * CMAC_Create(CMACCipher type, const unsigned char *key, unsigned int key_len) { CMACContext *result = PORT_New(CMACContext); if (CMAC_Init(result, type, key, key_len) != SECSuccess) { CMAC_Destroy(result, PR_TRUE); return NULL; } return result; } SECStatus CMAC_Begin(CMACContext *ctx) { if (ctx == NULL) { return SECFailure; } /* Ensure that our blockSize is less than the maximum. When this fails, * a cipher with a larger block size was added and MAX_BLOCK_SIZE needs * to be updated accordingly. */ PORT_Assert(ctx->blockSize <= MAX_BLOCK_SIZE); if (cmac_GenerateSubkeys(ctx) != SECSuccess) { return SECFailure; } /* Set the index to write partial blocks at to zero. This saves us from * having to clear ctx->partialBlock. */ ctx->partialIndex = 0; /* Step 5: Let C_0 = 0^b. */ PORT_Memset(ctx->lastBlock, 0, ctx->blockSize); return SECSuccess; } /* NIST SP.800-38B, 6.2 MAC Generation */ SECStatus CMAC_Update(CMACContext *ctx, const unsigned char *data, unsigned int data_len) { unsigned int data_index = 0; if (ctx == NULL) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } if (data == NULL || data_len == 0) { return SECSuccess; } /* Copy as many bytes from data into ctx->partialBlock as we can, up to * the maximum of the remaining data and the remaining space in * ctx->partialBlock. * * Note that we swap the order (encrypt *then* copy) because the last * block is different from the rest. If we end on an even multiple of * the block size, we have to be able to XOR it with K1. But we won't know * that it is the last until CMAC_Finish is called (and by then, CMAC_Update * has already returned). */ while (data_index < data_len) { if (ctx->partialIndex == ctx->blockSize) { if (cmac_UpdateState(ctx) != SECSuccess) { return SECFailure; } ctx->partialIndex = 0; } unsigned int copy_len = data_len - data_index; if (copy_len > (ctx->blockSize - ctx->partialIndex)) { copy_len = ctx->blockSize - ctx->partialIndex; } PORT_Memcpy(ctx->partialBlock + ctx->partialIndex, data + data_index, copy_len); data_index += copy_len; ctx->partialIndex += copy_len; } return SECSuccess; } /* NIST SP.800-38B, 6.2 MAC Generation */ SECStatus CMAC_Finish(CMACContext *ctx, unsigned char *result, unsigned int *result_len, unsigned int max_result_len) { if (ctx == NULL || result == NULL || max_result_len == 0) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } if (max_result_len > ctx->blockSize) { /* This is a weird situation. The PKCS #11 soft tokencode passes * sizeof(result) here, which is hard-coded as SFTK_MAX_MAC_LENGTH. * This later gets truncated to min(SFTK_MAX_MAC_LENGTH, requested). */ max_result_len = ctx->blockSize; } /* Step 4: If M_n* is a complete block, M_n = K1 ^ M_n*. Else, * M_n = K2 ^ (M_n* || 10^j). */ if (ctx->partialIndex == ctx->blockSize) { /* XOR in K1. */ for (unsigned int index = 0; index < ctx->blockSize; index++) { ctx->partialBlock[index] ^= ctx->k1[index]; } } else { /* Use 10* padding on the partial block. */ ctx->partialBlock[ctx->partialIndex++] = 0x80; PORT_Memset(ctx->partialBlock + ctx->partialIndex, 0, ctx->blockSize - ctx->partialIndex); ctx->partialIndex = ctx->blockSize; /* XOR in K2. */ for (unsigned int index = 0; index < ctx->blockSize; index++) { ctx->partialBlock[index] ^= ctx->k2[index]; } } /* Encrypt the block. */ if (cmac_UpdateState(ctx) != SECSuccess) { return SECFailure; } /* Step 7 & 8: T = MSB_tlen(C_n); return T. */ PORT_Memcpy(result, ctx->lastBlock, max_result_len); if (result_len != NULL) { *result_len = max_result_len; } return SECSuccess; } void CMAC_Destroy(CMACContext *ctx, PRBool free_it) { if (ctx == NULL) { return; } if (ctx->cipherType == CMAC_AES && ctx->cipher.aes != NULL) { AES_DestroyContext(ctx->cipher.aes, PR_TRUE); } /* Destroy everything in the context. This includes sensitive data in * K1, K2, and lastBlock. */ PORT_Memset(ctx, 0, sizeof(*ctx)); if (free_it == PR_TRUE) { PORT_Free(ctx); } }