/* * alg2268.c - implementation of the algorithm in RFC 2268 * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifdef FREEBL_NO_DEPEND #include "../stubs.h" #endif #include "../blapi.h" #include "../blapii.h" #include "secerr.h" #ifdef XP_UNIX_XXX #include /* for ptrdiff_t */ #endif /* ** RC2 symmetric block cypher */ typedef SECStatus(rc2Func)(RC2Context *cx, unsigned char *output, const unsigned char *input, unsigned int inputLen); /* forward declarations */ static rc2Func rc2_EncryptECB; static rc2Func rc2_DecryptECB; static rc2Func rc2_EncryptCBC; static rc2Func rc2_DecryptCBC; typedef union { PRUint32 l[2]; PRUint16 s[4]; PRUint8 b[8]; } RC2Block; struct RC2ContextStr { union { PRUint8 Kb[128]; PRUint16 Kw[64]; } u; RC2Block iv; rc2Func *enc; rc2Func *dec; }; #define B u.Kb #define K u.Kw #define BYTESWAP(x) ((x) << 8 | (x) >> 8) #define SWAPK(i) cx->K[i] = (tmpS = cx->K[i], BYTESWAP(tmpS)) #define RC2_BLOCK_SIZE 8 #define LOAD_HARD(R) \ R[0] = (PRUint16)input[1] << 8 | input[0]; \ R[1] = (PRUint16)input[3] << 8 | input[2]; \ R[2] = (PRUint16)input[5] << 8 | input[4]; \ R[3] = (PRUint16)input[7] << 8 | input[6]; #define LOAD_EASY(R) \ R[0] = ((PRUint16 *)input)[0]; \ R[1] = ((PRUint16 *)input)[1]; \ R[2] = ((PRUint16 *)input)[2]; \ R[3] = ((PRUint16 *)input)[3]; #define STORE_HARD(R) \ output[0] = (PRUint8)(R[0]); \ output[1] = (PRUint8)(R[0] >> 8); \ output[2] = (PRUint8)(R[1]); \ output[3] = (PRUint8)(R[1] >> 8); \ output[4] = (PRUint8)(R[2]); \ output[5] = (PRUint8)(R[2] >> 8); \ output[6] = (PRUint8)(R[3]); \ output[7] = (PRUint8)(R[3] >> 8); #define STORE_EASY(R) \ ((PRUint16 *)output)[0] = R[0]; \ ((PRUint16 *)output)[1] = R[1]; \ ((PRUint16 *)output)[2] = R[2]; \ ((PRUint16 *)output)[3] = R[3]; #if defined(NSS_X86_OR_X64) #define LOAD(R) LOAD_EASY(R) #define STORE(R) STORE_EASY(R) #elif !defined(IS_LITTLE_ENDIAN) #define LOAD(R) LOAD_HARD(R) #define STORE(R) STORE_HARD(R) #else #define LOAD(R) \ if ((ptrdiff_t)input & 1) { \ LOAD_HARD(R) \ } else { \ LOAD_EASY(R) \ } #define STORE(R) \ if ((ptrdiff_t)input & 1) { \ STORE_HARD(R) \ } else { \ STORE_EASY(R) \ } #endif static const PRUint8 S[256] = { 0331, 0170, 0371, 0304, 0031, 0335, 0265, 0355, 0050, 0351, 0375, 0171, 0112, 0240, 0330, 0235, 0306, 0176, 0067, 0203, 0053, 0166, 0123, 0216, 0142, 0114, 0144, 0210, 0104, 0213, 0373, 0242, 0027, 0232, 0131, 0365, 0207, 0263, 0117, 0023, 0141, 0105, 0155, 0215, 0011, 0201, 0175, 0062, 0275, 0217, 0100, 0353, 0206, 0267, 0173, 0013, 0360, 0225, 0041, 0042, 0134, 0153, 0116, 0202, 0124, 0326, 0145, 0223, 0316, 0140, 0262, 0034, 0163, 0126, 0300, 0024, 0247, 0214, 0361, 0334, 0022, 0165, 0312, 0037, 0073, 0276, 0344, 0321, 0102, 0075, 0324, 0060, 0243, 0074, 0266, 0046, 0157, 0277, 0016, 0332, 0106, 0151, 0007, 0127, 0047, 0362, 0035, 0233, 0274, 0224, 0103, 0003, 0370, 0021, 0307, 0366, 0220, 0357, 0076, 0347, 0006, 0303, 0325, 0057, 0310, 0146, 0036, 0327, 0010, 0350, 0352, 0336, 0200, 0122, 0356, 0367, 0204, 0252, 0162, 0254, 0065, 0115, 0152, 0052, 0226, 0032, 0322, 0161, 0132, 0025, 0111, 0164, 0113, 0237, 0320, 0136, 0004, 0030, 0244, 0354, 0302, 0340, 0101, 0156, 0017, 0121, 0313, 0314, 0044, 0221, 0257, 0120, 0241, 0364, 0160, 0071, 0231, 0174, 0072, 0205, 0043, 0270, 0264, 0172, 0374, 0002, 0066, 0133, 0045, 0125, 0227, 0061, 0055, 0135, 0372, 0230, 0343, 0212, 0222, 0256, 0005, 0337, 0051, 0020, 0147, 0154, 0272, 0311, 0323, 0000, 0346, 0317, 0341, 0236, 0250, 0054, 0143, 0026, 0001, 0077, 0130, 0342, 0211, 0251, 0015, 0070, 0064, 0033, 0253, 0063, 0377, 0260, 0273, 0110, 0014, 0137, 0271, 0261, 0315, 0056, 0305, 0363, 0333, 0107, 0345, 0245, 0234, 0167, 0012, 0246, 0040, 0150, 0376, 0177, 0301, 0255 }; RC2Context * RC2_AllocateContext(void) { return PORT_ZNew(RC2Context); } SECStatus RC2_InitContext(RC2Context *cx, const unsigned char *key, unsigned int len, const unsigned char *input, int mode, unsigned int efLen8, unsigned int unused) { PRUint8 *L, *L2; int i; #if !defined(IS_LITTLE_ENDIAN) PRUint16 tmpS; #endif PRUint8 tmpB; if (!key || !cx || !len || len > (sizeof cx->B) || efLen8 > (sizeof cx->B)) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } if (mode == NSS_RC2) { /* groovy */ } else if (mode == NSS_RC2_CBC) { if (!input) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } } else { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } if (mode == NSS_RC2_CBC) { cx->enc = &rc2_EncryptCBC; cx->dec = &rc2_DecryptCBC; LOAD(cx->iv.s); } else { cx->enc = &rc2_EncryptECB; cx->dec = &rc2_DecryptECB; } /* Step 0. Copy key into table. */ memcpy(cx->B, key, len); /* Step 1. Compute all values to the right of the key. */ L2 = cx->B; L = L2 + len; tmpB = L[-1]; for (i = (sizeof cx->B) - len; i > 0; --i) { *L++ = tmpB = S[(PRUint8)(tmpB + *L2++)]; } /* step 2. Adjust left most byte of effective key. */ i = (sizeof cx->B) - efLen8; L = cx->B + i; *L = tmpB = S[*L]; /* mask is always 0xff */ /* step 3. Recompute all values to the left of effective key. */ L2 = --L + efLen8; while (L >= cx->B) { *L-- = tmpB = S[tmpB ^ *L2--]; } #if !defined(IS_LITTLE_ENDIAN) for (i = 63; i >= 0; --i) { SWAPK(i); /* candidate for unrolling */ } #endif return SECSuccess; } /* ** Create a new RC2 context suitable for RC2 encryption/decryption. ** "key" raw key data ** "len" the number of bytes of key data ** "iv" is the CBC initialization vector (if mode is NSS_RC2_CBC) ** "mode" one of NSS_RC2 or NSS_RC2_CBC ** "effectiveKeyLen" in bytes, not bits. ** ** When mode is set to NSS_RC2_CBC the RC2 cipher is run in "cipher block ** chaining" mode. */ RC2Context * RC2_CreateContext(const unsigned char *key, unsigned int len, const unsigned char *iv, int mode, unsigned efLen8) { RC2Context *cx = PORT_ZNew(RC2Context); if (cx) { SECStatus rv = RC2_InitContext(cx, key, len, iv, mode, efLen8, 0); if (rv != SECSuccess) { RC2_DestroyContext(cx, PR_TRUE); cx = NULL; } } return cx; } /* ** Destroy an RC2 encryption/decryption context. ** "cx" the context ** "freeit" if PR_TRUE then free the object as well as its sub-objects */ void RC2_DestroyContext(RC2Context *cx, PRBool freeit) { if (cx) { memset(cx, 0, sizeof *cx); if (freeit) { PORT_Free(cx); } } } #define ROL(x, k) (x << k | x >> (16 - k)) #define MIX(j) \ R0 = R0 + cx->K[4 * j + 0] + (R3 & R2) + (~R3 & R1); \ R0 = ROL(R0, 1); \ R1 = R1 + cx->K[4 * j + 1] + (R0 & R3) + (~R0 & R2); \ R1 = ROL(R1, 2); \ R2 = R2 + cx->K[4 * j + 2] + (R1 & R0) + (~R1 & R3); \ R2 = ROL(R2, 3); \ R3 = R3 + cx->K[4 * j + 3] + (R2 & R1) + (~R2 & R0); \ R3 = ROL(R3, 5) #define MASH \ R0 = R0 + cx->K[R3 & 63]; \ R1 = R1 + cx->K[R0 & 63]; \ R2 = R2 + cx->K[R1 & 63]; \ R3 = R3 + cx->K[R2 & 63] /* Encrypt one block */ static void rc2_Encrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input) { register PRUint16 R0, R1, R2, R3; /* step 1. Initialize input. */ R0 = input->s[0]; R1 = input->s[1]; R2 = input->s[2]; R3 = input->s[3]; /* step 2. Expand Key (already done, in context) */ /* step 3. j = 0 */ /* step 4. Perform 5 mixing rounds. */ MIX(0); MIX(1); MIX(2); MIX(3); MIX(4); /* step 5. Perform 1 mashing round. */ MASH; /* step 6. Perform 6 mixing rounds. */ MIX(5); MIX(6); MIX(7); MIX(8); MIX(9); MIX(10); /* step 7. Perform 1 mashing round. */ MASH; /* step 8. Perform 5 mixing rounds. */ MIX(11); MIX(12); MIX(13); MIX(14); MIX(15); /* output results */ output->s[0] = R0; output->s[1] = R1; output->s[2] = R2; output->s[3] = R3; } #define ROR(x, k) (x >> k | x << (16 - k)) #define R_MIX(j) \ R3 = ROR(R3, 5); \ R3 = R3 - cx->K[4 * j + 3] - (R2 & R1) - (~R2 & R0); \ R2 = ROR(R2, 3); \ R2 = R2 - cx->K[4 * j + 2] - (R1 & R0) - (~R1 & R3); \ R1 = ROR(R1, 2); \ R1 = R1 - cx->K[4 * j + 1] - (R0 & R3) - (~R0 & R2); \ R0 = ROR(R0, 1); \ R0 = R0 - cx->K[4 * j + 0] - (R3 & R2) - (~R3 & R1) #define R_MASH \ R3 = R3 - cx->K[R2 & 63]; \ R2 = R2 - cx->K[R1 & 63]; \ R1 = R1 - cx->K[R0 & 63]; \ R0 = R0 - cx->K[R3 & 63] /* Encrypt one block */ static void rc2_Decrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input) { register PRUint16 R0, R1, R2, R3; /* step 1. Initialize input. */ R0 = input->s[0]; R1 = input->s[1]; R2 = input->s[2]; R3 = input->s[3]; /* step 2. Expand Key (already done, in context) */ /* step 3. j = 63 */ /* step 4. Perform 5 r_mixing rounds. */ R_MIX(15); R_MIX(14); R_MIX(13); R_MIX(12); R_MIX(11); /* step 5. Perform 1 r_mashing round. */ R_MASH; /* step 6. Perform 6 r_mixing rounds. */ R_MIX(10); R_MIX(9); R_MIX(8); R_MIX(7); R_MIX(6); R_MIX(5); /* step 7. Perform 1 r_mashing round. */ R_MASH; /* step 8. Perform 5 r_mixing rounds. */ R_MIX(4); R_MIX(3); R_MIX(2); R_MIX(1); R_MIX(0); /* output results */ output->s[0] = R0; output->s[1] = R1; output->s[2] = R2; output->s[3] = R3; } static SECStatus NO_SANITIZE_ALIGNMENT rc2_EncryptECB(RC2Context *cx, unsigned char *output, const unsigned char *input, unsigned int inputLen) { RC2Block iBlock; while (inputLen > 0) { LOAD(iBlock.s) rc2_Encrypt1Block(cx, &iBlock, &iBlock); STORE(iBlock.s) output += RC2_BLOCK_SIZE; input += RC2_BLOCK_SIZE; inputLen -= RC2_BLOCK_SIZE; } return SECSuccess; } static SECStatus NO_SANITIZE_ALIGNMENT rc2_DecryptECB(RC2Context *cx, unsigned char *output, const unsigned char *input, unsigned int inputLen) { RC2Block iBlock; while (inputLen > 0) { LOAD(iBlock.s) rc2_Decrypt1Block(cx, &iBlock, &iBlock); STORE(iBlock.s) output += RC2_BLOCK_SIZE; input += RC2_BLOCK_SIZE; inputLen -= RC2_BLOCK_SIZE; } return SECSuccess; } static SECStatus NO_SANITIZE_ALIGNMENT rc2_EncryptCBC(RC2Context *cx, unsigned char *output, const unsigned char *input, unsigned int inputLen) { RC2Block iBlock; while (inputLen > 0) { LOAD(iBlock.s) iBlock.l[0] ^= cx->iv.l[0]; iBlock.l[1] ^= cx->iv.l[1]; rc2_Encrypt1Block(cx, &iBlock, &iBlock); cx->iv = iBlock; STORE(iBlock.s) output += RC2_BLOCK_SIZE; input += RC2_BLOCK_SIZE; inputLen -= RC2_BLOCK_SIZE; } return SECSuccess; } static SECStatus NO_SANITIZE_ALIGNMENT rc2_DecryptCBC(RC2Context *cx, unsigned char *output, const unsigned char *input, unsigned int inputLen) { RC2Block iBlock; RC2Block oBlock; while (inputLen > 0) { LOAD(iBlock.s) rc2_Decrypt1Block(cx, &oBlock, &iBlock); oBlock.l[0] ^= cx->iv.l[0]; oBlock.l[1] ^= cx->iv.l[1]; cx->iv = iBlock; STORE(oBlock.s) output += RC2_BLOCK_SIZE; input += RC2_BLOCK_SIZE; inputLen -= RC2_BLOCK_SIZE; } return SECSuccess; } /* ** Perform RC2 encryption. ** "cx" the context ** "output" the output buffer to store the encrypted data. ** "outputLen" how much data is stored in "output". Set by the routine ** after some data is stored in output. ** "maxOutputLen" the maximum amount of data that can ever be ** stored in "output" ** "input" the input data ** "inputLen" the amount of input data */ SECStatus RC2_Encrypt(RC2Context *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { SECStatus rv = SECSuccess; if (inputLen) { if (inputLen % RC2_BLOCK_SIZE) { PORT_SetError(SEC_ERROR_INPUT_LEN); return SECFailure; } if (maxOutputLen < inputLen) { PORT_SetError(SEC_ERROR_OUTPUT_LEN); return SECFailure; } rv = (*cx->enc)(cx, output, input, inputLen); } if (rv == SECSuccess) { *outputLen = inputLen; } return rv; } /* ** Perform RC2 decryption. ** "cx" the context ** "output" the output buffer to store the decrypted data. ** "outputLen" how much data is stored in "output". Set by the routine ** after some data is stored in output. ** "maxOutputLen" the maximum amount of data that can ever be ** stored in "output" ** "input" the input data ** "inputLen" the amount of input data */ SECStatus RC2_Decrypt(RC2Context *cx, unsigned char *output, unsigned int *outputLen, unsigned int maxOutputLen, const unsigned char *input, unsigned int inputLen) { SECStatus rv = SECSuccess; if (inputLen) { if (inputLen % RC2_BLOCK_SIZE) { PORT_SetError(SEC_ERROR_INPUT_LEN); return SECFailure; } if (maxOutputLen < inputLen) { PORT_SetError(SEC_ERROR_OUTPUT_LEN); return SECFailure; } rv = (*cx->dec)(cx, output, input, inputLen); } if (rv == SECSuccess) { *outputLen = inputLen; } return rv; }