/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* Thanks to Thomas Pornin for the ideas how to implement the constat time * binary multiplication. */ #ifdef FREEBL_NO_DEPEND #include "stubs.h" #endif #include "blapii.h" #include "blapit.h" #include "blapi.h" #include "gcm.h" #include "ctr.h" #include "secerr.h" #include "prtypes.h" #include "pkcs11t.h" #include /* old gcc doesn't support some poly64x2_t intrinsic */ #if defined(__aarch64__) && defined(IS_LITTLE_ENDIAN) && \ (defined(__clang__) || defined(__GNUC__) && __GNUC__ > 6) #define USE_ARM_GCM #elif defined(__arm__) && defined(IS_LITTLE_ENDIAN) && \ !defined(NSS_DISABLE_ARM32_NEON) /* We don't test on big endian platform, so disable this on big endian. */ #define USE_ARM_GCM #endif /* Forward declarations */ SECStatus gcm_HashInit_hw(gcmHashContext *ghash); SECStatus gcm_HashWrite_hw(gcmHashContext *ghash, unsigned char *outbuf); SECStatus gcm_HashMult_hw(gcmHashContext *ghash, const unsigned char *buf, unsigned int count); SECStatus gcm_HashZeroX_hw(gcmHashContext *ghash); SECStatus gcm_HashMult_sftw(gcmHashContext *ghash, const unsigned char *buf, unsigned int count); SECStatus gcm_HashMult_sftw32(gcmHashContext *ghash, const unsigned char *buf, unsigned int count); /* Stub definitions for the above *_hw functions, which shouldn't be * used unless NSS_X86_OR_X64 is defined */ #if !defined(NSS_X86_OR_X64) && !defined(USE_ARM_GCM) && !defined(USE_PPC_CRYPTO) SECStatus gcm_HashWrite_hw(gcmHashContext *ghash, unsigned char *outbuf) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } SECStatus gcm_HashMult_hw(gcmHashContext *ghash, const unsigned char *buf, unsigned int count) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } SECStatus gcm_HashInit_hw(gcmHashContext *ghash) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } SECStatus gcm_HashZeroX_hw(gcmHashContext *ghash) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } #endif /* !NSS_X86_OR_X64 && !USE_ARM_GCM && !USE_PPC_CRYPTO */ uint64_t get64(const unsigned char *bytes) { return ((uint64_t)bytes[0]) << 56 | ((uint64_t)bytes[1]) << 48 | ((uint64_t)bytes[2]) << 40 | ((uint64_t)bytes[3]) << 32 | ((uint64_t)bytes[4]) << 24 | ((uint64_t)bytes[5]) << 16 | ((uint64_t)bytes[6]) << 8 | ((uint64_t)bytes[7]); } /* Initialize a gcmHashContext */ SECStatus gcmHash_InitContext(gcmHashContext *ghash, const unsigned char *H, PRBool sw) { SECStatus rv = SECSuccess; ghash->cLen = 0; ghash->bufLen = 0; PORT_Memset(ghash->counterBuf, 0, sizeof(ghash->counterBuf)); ghash->h_low = get64(H + 8); ghash->h_high = get64(H); #ifdef USE_ARM_GCM #if defined(__aarch64__) if (arm_pmull_support() && !sw) { #else if (arm_neon_support() && !sw) { #endif #elif defined(USE_PPC_CRYPTO) if (ppc_crypto_support() && !sw) { #else if (clmul_support() && !sw) { #endif rv = gcm_HashInit_hw(ghash); } else { /* We fall back to the software implementation if we can't use / don't * want to use pclmul. */ #ifdef HAVE_INT128_SUPPORT ghash->ghash_mul = gcm_HashMult_sftw; #else ghash->ghash_mul = gcm_HashMult_sftw32; #endif ghash->x_high = ghash->x_low = 0; ghash->hw = PR_FALSE; } return rv; } #ifdef HAVE_INT128_SUPPORT /* Binary multiplication x * y = r_high << 64 | r_low. */ void bmul(uint64_t x, uint64_t y, uint64_t *r_high, uint64_t *r_low) { uint128_t x1, x2, x3, x4, x5; uint128_t y1, y2, y3, y4, y5; uint128_t r, z; uint128_t m1 = (uint128_t)0x2108421084210842 << 64 | 0x1084210842108421; uint128_t m2 = (uint128_t)0x4210842108421084 << 64 | 0x2108421084210842; uint128_t m3 = (uint128_t)0x8421084210842108 << 64 | 0x4210842108421084; uint128_t m4 = (uint128_t)0x0842108421084210 << 64 | 0x8421084210842108; uint128_t m5 = (uint128_t)0x1084210842108421 << 64 | 0x0842108421084210; x1 = x & m1; y1 = y & m1; x2 = x & m2; y2 = y & m2; x3 = x & m3; y3 = y & m3; x4 = x & m4; y4 = y & m4; x5 = x & m5; y5 = y & m5; z = (x1 * y1) ^ (x2 * y5) ^ (x3 * y4) ^ (x4 * y3) ^ (x5 * y2); r = z & m1; z = (x1 * y2) ^ (x2 * y1) ^ (x3 * y5) ^ (x4 * y4) ^ (x5 * y3); r |= z & m2; z = (x1 * y3) ^ (x2 * y2) ^ (x3 * y1) ^ (x4 * y5) ^ (x5 * y4); r |= z & m3; z = (x1 * y4) ^ (x2 * y3) ^ (x3 * y2) ^ (x4 * y1) ^ (x5 * y5); r |= z & m4; z = (x1 * y5) ^ (x2 * y4) ^ (x3 * y3) ^ (x4 * y2) ^ (x5 * y1); r |= z & m5; *r_high = (uint64_t)(r >> 64); *r_low = (uint64_t)r; } SECStatus gcm_HashMult_sftw(gcmHashContext *ghash, const unsigned char *buf, unsigned int count) { uint64_t ci_low, ci_high; size_t i; uint64_t z2_low, z2_high, z0_low, z0_high, z1a_low, z1a_high; uint128_t z_high = 0, z_low = 0; ci_low = ghash->x_low; ci_high = ghash->x_high; for (i = 0; i < count; i++, buf += 16) { ci_low ^= get64(buf + 8); ci_high ^= get64(buf); /* Do binary mult ghash->X = C * ghash->H (Karatsuba). */ bmul(ci_high, ghash->h_high, &z2_high, &z2_low); bmul(ci_low, ghash->h_low, &z0_high, &z0_low); bmul(ci_high ^ ci_low, ghash->h_high ^ ghash->h_low, &z1a_high, &z1a_low); z1a_high ^= z2_high ^ z0_high; z1a_low ^= z2_low ^ z0_low; z_high = ((uint128_t)z2_high << 64) | (z2_low ^ z1a_high); z_low = (((uint128_t)z0_high << 64) | z0_low) ^ (((uint128_t)z1a_low) << 64); /* Shift one (multiply by x) as gcm spec is stupid. */ z_high = (z_high << 1) | (z_low >> 127); z_low <<= 1; /* Reduce */ z_low ^= (z_low << 127) ^ (z_low << 126) ^ (z_low << 121); z_high ^= z_low ^ (z_low >> 1) ^ (z_low >> 2) ^ (z_low >> 7); ci_low = (uint64_t)z_high; ci_high = (uint64_t)(z_high >> 64); } ghash->x_low = ci_low; ghash->x_high = ci_high; return SECSuccess; } #else /* Binary multiplication x * y = r_high << 32 | r_low. */ void bmul32(uint32_t x, uint32_t y, uint32_t *r_high, uint32_t *r_low) { uint32_t x0, x1, x2, x3; uint32_t y0, y1, y2, y3; uint32_t m1 = (uint32_t)0x11111111; uint32_t m2 = (uint32_t)0x22222222; uint32_t m4 = (uint32_t)0x44444444; uint32_t m8 = (uint32_t)0x88888888; uint64_t z0, z1, z2, z3; uint64_t z; x0 = x & m1; x1 = x & m2; x2 = x & m4; x3 = x & m8; y0 = y & m1; y1 = y & m2; y2 = y & m4; y3 = y & m8; z0 = ((uint64_t)x0 * y0) ^ ((uint64_t)x1 * y3) ^ ((uint64_t)x2 * y2) ^ ((uint64_t)x3 * y1); z1 = ((uint64_t)x0 * y1) ^ ((uint64_t)x1 * y0) ^ ((uint64_t)x2 * y3) ^ ((uint64_t)x3 * y2); z2 = ((uint64_t)x0 * y2) ^ ((uint64_t)x1 * y1) ^ ((uint64_t)x2 * y0) ^ ((uint64_t)x3 * y3); z3 = ((uint64_t)x0 * y3) ^ ((uint64_t)x1 * y2) ^ ((uint64_t)x2 * y1) ^ ((uint64_t)x3 * y0); z0 &= ((uint64_t)m1 << 32) | m1; z1 &= ((uint64_t)m2 << 32) | m2; z2 &= ((uint64_t)m4 << 32) | m4; z3 &= ((uint64_t)m8 << 32) | m8; z = z0 | z1 | z2 | z3; *r_high = (uint32_t)(z >> 32); *r_low = (uint32_t)z; } SECStatus gcm_HashMult_sftw32(gcmHashContext *ghash, const unsigned char *buf, unsigned int count) { size_t i; uint64_t ci_low, ci_high; uint64_t z_high_h, z_high_l, z_low_h, z_low_l; uint32_t ci_high_h, ci_high_l, ci_low_h, ci_low_l; uint32_t b_a_h, b_a_l, a_a_h, a_a_l, b_b_h, b_b_l; uint32_t a_b_h, a_b_l, b_c_h, b_c_l, a_c_h, a_c_l, c_c_h, c_c_l; uint32_t ci_highXlow_h, ci_highXlow_l, c_a_h, c_a_l, c_b_h, c_b_l; uint32_t h_high_h = (uint32_t)(ghash->h_high >> 32); uint32_t h_high_l = (uint32_t)ghash->h_high; uint32_t h_low_h = (uint32_t)(ghash->h_low >> 32); uint32_t h_low_l = (uint32_t)ghash->h_low; uint32_t h_highXlow_h = h_high_h ^ h_low_h; uint32_t h_highXlow_l = h_high_l ^ h_low_l; uint32_t h_highX_xored = h_highXlow_h ^ h_highXlow_l; for (i = 0; i < count; i++, buf += 16) { ci_low = ghash->x_low ^ get64(buf + 8); ci_high = ghash->x_high ^ get64(buf); ci_low_h = (uint32_t)(ci_low >> 32); ci_low_l = (uint32_t)ci_low; ci_high_h = (uint32_t)(ci_high >> 32); ci_high_l = (uint32_t)ci_high; ci_highXlow_h = ci_high_h ^ ci_low_h; ci_highXlow_l = ci_high_l ^ ci_low_l; /* Do binary mult ghash->X = C * ghash->H (recursive Karatsuba). */ bmul32(ci_high_h, h_high_h, &a_a_h, &a_a_l); bmul32(ci_high_l, h_high_l, &a_b_h, &a_b_l); bmul32(ci_high_h ^ ci_high_l, h_high_h ^ h_high_l, &a_c_h, &a_c_l); a_c_h ^= a_a_h ^ a_b_h; a_c_l ^= a_a_l ^ a_b_l; a_a_l ^= a_c_h; a_b_h ^= a_c_l; /* ci_high * h_high = a_a_h:a_a_l:a_b_h:a_b_l */ bmul32(ci_low_h, h_low_h, &b_a_h, &b_a_l); bmul32(ci_low_l, h_low_l, &b_b_h, &b_b_l); bmul32(ci_low_h ^ ci_low_l, h_low_h ^ h_low_l, &b_c_h, &b_c_l); b_c_h ^= b_a_h ^ b_b_h; b_c_l ^= b_a_l ^ b_b_l; b_a_l ^= b_c_h; b_b_h ^= b_c_l; /* ci_low * h_low = b_a_h:b_a_l:b_b_h:b_b_l */ bmul32(ci_highXlow_h, h_highXlow_h, &c_a_h, &c_a_l); bmul32(ci_highXlow_l, h_highXlow_l, &c_b_h, &c_b_l); bmul32(ci_highXlow_h ^ ci_highXlow_l, h_highX_xored, &c_c_h, &c_c_l); c_c_h ^= c_a_h ^ c_b_h; c_c_l ^= c_a_l ^ c_b_l; c_a_l ^= c_c_h; c_b_h ^= c_c_l; /* (ci_high ^ ci_low) * (h_high ^ h_low) = c_a_h:c_a_l:c_b_h:c_b_l */ c_a_h ^= b_a_h ^ a_a_h; c_a_l ^= b_a_l ^ a_a_l; c_b_h ^= b_b_h ^ a_b_h; c_b_l ^= b_b_l ^ a_b_l; z_high_h = ((uint64_t)a_a_h << 32) | a_a_l; z_high_l = (((uint64_t)a_b_h << 32) | a_b_l) ^ (((uint64_t)c_a_h << 32) | c_a_l); z_low_h = (((uint64_t)b_a_h << 32) | b_a_l) ^ (((uint64_t)c_b_h << 32) | c_b_l); z_low_l = ((uint64_t)b_b_h << 32) | b_b_l; /* Shift one (multiply by x) as gcm spec is stupid. */ z_high_h = z_high_h << 1 | z_high_l >> 63; z_high_l = z_high_l << 1 | z_low_h >> 63; z_low_h = z_low_h << 1 | z_low_l >> 63; z_low_l <<= 1; /* Reduce */ z_low_h ^= (z_low_l << 63) ^ (z_low_l << 62) ^ (z_low_l << 57); z_high_h ^= z_low_h ^ (z_low_h >> 1) ^ (z_low_h >> 2) ^ (z_low_h >> 7); z_high_l ^= z_low_l ^ (z_low_l >> 1) ^ (z_low_l >> 2) ^ (z_low_l >> 7) ^ (z_low_h << 63) ^ (z_low_h << 62) ^ (z_low_h << 57); ghash->x_high = z_high_h; ghash->x_low = z_high_l; } return SECSuccess; } #endif /* HAVE_INT128_SUPPORT */ static SECStatus gcm_zeroX(gcmHashContext *ghash) { SECStatus rv = SECSuccess; if (ghash->hw) { rv = gcm_HashZeroX_hw(ghash); } ghash->x_high = ghash->x_low = 0; return rv; } /* * implement GCM GHASH using the freebl GHASH function. The gcm_HashMult * function always takes AES_BLOCK_SIZE lengths of data. gcmHash_Update will * format the data properly. */ SECStatus gcmHash_Update(gcmHashContext *ghash, const unsigned char *buf, unsigned int len) { unsigned int blocks; SECStatus rv; ghash->cLen += (len * PR_BITS_PER_BYTE); /* first deal with the current buffer of data. Try to fill it out so * we can hash it */ if (ghash->bufLen) { unsigned int needed = PR_MIN(len, AES_BLOCK_SIZE - ghash->bufLen); if (needed != 0) { PORT_Memcpy(ghash->buffer + ghash->bufLen, buf, needed); } buf += needed; len -= needed; ghash->bufLen += needed; if (len == 0) { /* didn't add enough to hash the data, nothing more do do */ return SECSuccess; } PORT_Assert(ghash->bufLen == AES_BLOCK_SIZE); /* hash the buffer and clear it */ rv = ghash->ghash_mul(ghash, ghash->buffer, 1); PORT_Memset(ghash->buffer, 0, AES_BLOCK_SIZE); ghash->bufLen = 0; if (rv != SECSuccess) { return SECFailure; } } /* now hash any full blocks remaining in the data stream */ blocks = len / AES_BLOCK_SIZE; if (blocks) { rv = ghash->ghash_mul(ghash, buf, blocks); if (rv != SECSuccess) { return SECFailure; } buf += blocks * AES_BLOCK_SIZE; len -= blocks * AES_BLOCK_SIZE; } /* save any remainder in the buffer to be hashed with the next call */ if (len != 0) { PORT_Memcpy(ghash->buffer, buf, len); ghash->bufLen = len; } return SECSuccess; } /* * write out any partial blocks zero padded through the GHASH engine, * save the lengths for the final completion of the hash */ static SECStatus gcmHash_Sync(gcmHashContext *ghash) { int i; SECStatus rv; /* copy the previous counter to the upper block */ PORT_Memcpy(ghash->counterBuf, &ghash->counterBuf[GCM_HASH_LEN_LEN], GCM_HASH_LEN_LEN); /* copy the current counter in the lower block */ for (i = 0; i < GCM_HASH_LEN_LEN; i++) { ghash->counterBuf[GCM_HASH_LEN_LEN + i] = (ghash->cLen >> ((GCM_HASH_LEN_LEN - 1 - i) * PR_BITS_PER_BYTE)) & 0xff; } ghash->cLen = 0; /* now zero fill the buffer and hash the last block */ if (ghash->bufLen) { PORT_Memset(ghash->buffer + ghash->bufLen, 0, AES_BLOCK_SIZE - ghash->bufLen); rv = ghash->ghash_mul(ghash, ghash->buffer, 1); PORT_Memset(ghash->buffer, 0, AES_BLOCK_SIZE); ghash->bufLen = 0; if (rv != SECSuccess) { return SECFailure; } } return SECSuccess; } #define WRITE64(x, bytes) \ (bytes)[0] = (x) >> 56; \ (bytes)[1] = (x) >> 48; \ (bytes)[2] = (x) >> 40; \ (bytes)[3] = (x) >> 32; \ (bytes)[4] = (x) >> 24; \ (bytes)[5] = (x) >> 16; \ (bytes)[6] = (x) >> 8; \ (bytes)[7] = (x); /* * This does the final sync, hashes the lengths, then returns * "T", the hashed output. */ SECStatus gcmHash_Final(gcmHashContext *ghash, unsigned char *outbuf, unsigned int *outlen, unsigned int maxout) { unsigned char T[MAX_BLOCK_SIZE]; SECStatus rv; rv = gcmHash_Sync(ghash); if (rv != SECSuccess) { goto cleanup; } rv = ghash->ghash_mul(ghash, ghash->counterBuf, (GCM_HASH_LEN_LEN * 2) / AES_BLOCK_SIZE); if (rv != SECSuccess) { goto cleanup; } if (ghash->hw) { rv = gcm_HashWrite_hw(ghash, T); if (rv != SECSuccess) { goto cleanup; } } else { WRITE64(ghash->x_low, T + 8); WRITE64(ghash->x_high, T); } if (maxout > AES_BLOCK_SIZE) { maxout = AES_BLOCK_SIZE; } PORT_Memcpy(outbuf, T, maxout); *outlen = maxout; rv = SECSuccess; cleanup: PORT_Memset(T, 0, sizeof(T)); return rv; } SECStatus gcmHash_Reset(gcmHashContext *ghash, const unsigned char *AAD, unsigned int AADLen) { SECStatus rv; // Limit AADLen in accordance with SP800-38D if (sizeof(AADLen) >= 8) { unsigned long long AADLen_ull = AADLen; if (AADLen_ull > (1ULL << 61) - 1) { PORT_SetError(SEC_ERROR_INPUT_LEN); return SECFailure; } } ghash->cLen = 0; PORT_Memset(ghash->counterBuf, 0, GCM_HASH_LEN_LEN * 2); ghash->bufLen = 0; rv = gcm_zeroX(ghash); if (rv != SECSuccess) { return rv; } /* now kick things off by hashing the Additional Authenticated Data */ if (AADLen != 0) { rv = gcmHash_Update(ghash, AAD, AADLen); if (rv != SECSuccess) { return SECFailure; } rv = gcmHash_Sync(ghash); if (rv != SECSuccess) { return SECFailure; } } return SECSuccess; } /************************************************************************** * Now implement the GCM using gcmHash and CTR * **************************************************************************/ /* state to handle the full GCM operation (hash and counter) */ struct GCMContextStr { gcmHashContext *ghash_context; CTRContext ctr_context; freeblCipherFunc cipher; void *cipher_context; unsigned long tagBits; unsigned char tagKey[MAX_BLOCK_SIZE]; PRBool ctr_context_init; gcmIVContext gcm_iv; }; SECStatus gcm_InitCounter(GCMContext *gcm, const unsigned char *iv, unsigned int ivLen, unsigned int tagBits, const unsigned char *aad, unsigned int aadLen); GCMContext * GCM_CreateContext(void *context, freeblCipherFunc cipher, const unsigned char *params) { GCMContext *gcm = NULL; gcmHashContext *ghash = NULL; unsigned char H[MAX_BLOCK_SIZE]; unsigned int tmp; const CK_NSS_GCM_PARAMS *gcmParams = (const CK_NSS_GCM_PARAMS *)params; SECStatus rv; #ifdef DISABLE_HW_GCM const PRBool sw = PR_TRUE; #else const PRBool sw = PR_FALSE; #endif gcm = PORT_ZNew(GCMContext); if (gcm == NULL) { return NULL; } gcm->cipher = cipher; gcm->cipher_context = context; ghash = PORT_ZNewAligned(gcmHashContext, 16, mem); /* first plug in the ghash context */ gcm->ghash_context = ghash; PORT_Memset(H, 0, AES_BLOCK_SIZE); rv = (*cipher)(context, H, &tmp, AES_BLOCK_SIZE, H, AES_BLOCK_SIZE, AES_BLOCK_SIZE); if (rv != SECSuccess) { goto loser; } rv = gcmHash_InitContext(ghash, H, sw); if (rv != SECSuccess) { goto loser; } gcm_InitIVContext(&gcm->gcm_iv); gcm->ctr_context_init = PR_FALSE; /* if gcmPara/ms is NULL, then we are creating an PKCS #11 MESSAGE * style context, in which we initialize the key once, then do separate * iv/aad's for each message. In that case we only initialize the key * and ghash. We initialize the counter in each separate message */ if (gcmParams == NULL) { /* OK we are finished with init, if we are doing MESSAGE interface, * return from here */ return gcm; } rv = gcm_InitCounter(gcm, gcmParams->pIv, gcmParams->ulIvLen, gcmParams->ulTagBits, gcmParams->pAAD, gcmParams->ulAADLen); if (rv != SECSuccess) { goto loser; } PORT_Memset(H, 0, AES_BLOCK_SIZE); gcm->ctr_context_init = PR_TRUE; return gcm; loser: PORT_Memset(H, 0, AES_BLOCK_SIZE); if (ghash && ghash->mem) { void *mem = ghash->mem; PORT_Memset(ghash, 0, sizeof(gcmHashContext)); PORT_Free(mem); } if (gcm) { PORT_ZFree(gcm, sizeof(GCMContext)); } return NULL; } SECStatus gcm_InitCounter(GCMContext *gcm, const unsigned char *iv, unsigned int ivLen, unsigned int tagBits, const unsigned char *aad, unsigned int aadLen) { gcmHashContext *ghash = gcm->ghash_context; unsigned int tmp; PRBool freeCtr = PR_FALSE; CK_AES_CTR_PARAMS ctrParams; SECStatus rv; /* Verify our parameters here */ if (ivLen == 0) { PORT_SetError(SEC_ERROR_INVALID_ARGS); goto loser; } if (tagBits != 128 && tagBits != 120 && tagBits != 112 && tagBits != 104 && tagBits != 96 && tagBits != 64 && tagBits != 32) { PORT_SetError(SEC_ERROR_INVALID_ARGS); goto loser; } /* fill in the Counter context */ ctrParams.ulCounterBits = 32; PORT_Memset(ctrParams.cb, 0, sizeof(ctrParams.cb)); if (ivLen == 12) { PORT_Memcpy(ctrParams.cb, iv, ivLen); ctrParams.cb[AES_BLOCK_SIZE - 1] = 1; } else { rv = gcmHash_Reset(ghash, NULL, 0); if (rv != SECSuccess) { goto loser; } rv = gcmHash_Update(ghash, iv, ivLen); if (rv != SECSuccess) { goto loser; } rv = gcmHash_Final(ghash, ctrParams.cb, &tmp, AES_BLOCK_SIZE); if (rv != SECSuccess) { goto loser; } } rv = CTR_InitContext(&gcm->ctr_context, gcm->cipher_context, gcm->cipher, (unsigned char *)&ctrParams); if (rv != SECSuccess) { goto loser; } freeCtr = PR_TRUE; /* fill in the gcm structure */ gcm->tagBits = tagBits; /* save for final step */ /* calculate the final tag key. NOTE: gcm->tagKey is zero to start with. * if this assumption changes, we would need to explicitly clear it here */ PORT_Memset(gcm->tagKey, 0, sizeof(gcm->tagKey)); rv = CTR_Update(&gcm->ctr_context, gcm->tagKey, &tmp, AES_BLOCK_SIZE, gcm->tagKey, AES_BLOCK_SIZE, AES_BLOCK_SIZE); if (rv != SECSuccess) { goto loser; } /* finally mix in the AAD data */ rv = gcmHash_Reset(ghash, aad, aadLen); if (rv != SECSuccess) { goto loser; } PORT_Memset(&ctrParams, 0, sizeof ctrParams); return SECSuccess; loser: PORT_Memset(&ctrParams, 0, sizeof ctrParams); if (freeCtr) { CTR_DestroyContext(&gcm->ctr_context, PR_FALSE); } return SECFailure; } void GCM_DestroyContext(GCMContext *gcm, PRBool freeit) { void *mem = gcm->ghash_context->mem; /* ctr_context is statically allocated and will be freed when we free * gcm. call their destroy functions to free up any locally * allocated data (like mp_int's) */ if (gcm->ctr_context_init) { CTR_DestroyContext(&gcm->ctr_context, PR_FALSE); } PORT_Memset(gcm->ghash_context, 0, sizeof(gcmHashContext)); PORT_Free(mem); PORT_Memset(&gcm->tagBits, 0, sizeof(gcm->tagBits)); PORT_Memset(gcm->tagKey, 0, sizeof(gcm->tagKey)); if (freeit) { PORT_Free(gcm); } } static SECStatus gcm_GetTag(GCMContext *gcm, unsigned char *outbuf, unsigned int *outlen, unsigned int maxout) { unsigned int tagBytes; unsigned int extra; unsigned int i; SECStatus rv; tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE; extra = tagBytes * PR_BITS_PER_BYTE - gcm->tagBits; if (outbuf == NULL) { *outlen = tagBytes; PORT_SetError(SEC_ERROR_OUTPUT_LEN); return SECFailure; } if (maxout < tagBytes) { *outlen = tagBytes; PORT_SetError(SEC_ERROR_OUTPUT_LEN); return SECFailure; } maxout = tagBytes; rv = gcmHash_Final(gcm->ghash_context, outbuf, outlen, maxout); if (rv != SECSuccess) { return SECFailure; } for (i = 0; i < *outlen; i++) { outbuf[i] ^= gcm->tagKey[i]; } /* mask off any extra bits we got */ if (extra) { outbuf[tagBytes - 1] &= ~((1 << extra) - 1); } return SECSuccess; } /* * See The Galois/Counter Mode of Operation, McGrew and Viega. * GCM is basically counter mode with a specific initialization and * built in macing operation. */ SECStatus GCM_EncryptUpdate(GCMContext *gcm, unsigned char *outbuf, unsigned int *outlen, unsigned int maxout, const unsigned char *inbuf, unsigned int inlen, unsigned int blocksize) { SECStatus rv; unsigned int tagBytes; unsigned int len; PORT_Assert(blocksize == AES_BLOCK_SIZE); if (blocksize != AES_BLOCK_SIZE) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } if (!gcm->ctr_context_init) { PORT_SetError(SEC_ERROR_NOT_INITIALIZED); return SECFailure; } tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE; if (UINT_MAX - inlen < tagBytes) { PORT_SetError(SEC_ERROR_INPUT_LEN); return SECFailure; } if (maxout < inlen + tagBytes) { *outlen = inlen + tagBytes; PORT_SetError(SEC_ERROR_OUTPUT_LEN); return SECFailure; } rv = CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout, inbuf, inlen, AES_BLOCK_SIZE); if (rv != SECSuccess) { return SECFailure; } rv = gcmHash_Update(gcm->ghash_context, outbuf, *outlen); if (rv != SECSuccess) { PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */ *outlen = 0; return SECFailure; } rv = gcm_GetTag(gcm, outbuf + *outlen, &len, maxout - *outlen); if (rv != SECSuccess) { PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */ *outlen = 0; return SECFailure; }; *outlen += len; return SECSuccess; } /* * See The Galois/Counter Mode of Operation, McGrew and Viega. * GCM is basically counter mode with a specific initialization and * built in macing operation. NOTE: the only difference between Encrypt * and Decrypt is when we calculate the mac. That is because the mac must * always be calculated on the cipher text, not the plain text, so for * encrypt, we do the CTR update first and for decrypt we do the mac first. */ SECStatus GCM_DecryptUpdate(GCMContext *gcm, unsigned char *outbuf, unsigned int *outlen, unsigned int maxout, const unsigned char *inbuf, unsigned int inlen, unsigned int blocksize) { SECStatus rv; unsigned int tagBytes; unsigned char tag[MAX_BLOCK_SIZE]; const unsigned char *intag; unsigned int len; PORT_Assert(blocksize == AES_BLOCK_SIZE); if (blocksize != AES_BLOCK_SIZE) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } if (!gcm->ctr_context_init) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE; /* get the authentication block */ if (inlen < tagBytes) { PORT_SetError(SEC_ERROR_INPUT_LEN); return SECFailure; } inlen -= tagBytes; intag = inbuf + inlen; /* verify the block */ rv = gcmHash_Update(gcm->ghash_context, inbuf, inlen); if (rv != SECSuccess) { return SECFailure; } rv = gcm_GetTag(gcm, tag, &len, AES_BLOCK_SIZE); if (rv != SECSuccess) { return SECFailure; } /* Don't decrypt if we can't authenticate the encrypted data! * This assumes that if tagBits is not a multiple of 8, intag will * preserve the masked off missing bits. */ if (NSS_SecureMemcmp(tag, intag, tagBytes) != 0) { /* force a CKR_ENCRYPTED_DATA_INVALID error at in softoken */ PORT_SetError(SEC_ERROR_BAD_DATA); PORT_Memset(tag, 0, sizeof(tag)); return SECFailure; } PORT_Memset(tag, 0, sizeof(tag)); /* finish the decryption */ return CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout, inbuf, inlen, AES_BLOCK_SIZE); } void gcm_InitIVContext(gcmIVContext *gcmIv) { gcmIv->counter = 0; gcmIv->max_count = 0; gcmIv->ivGen = CKG_GENERATE; gcmIv->ivLen = 0; gcmIv->fixedBits = 0; } /* * generate the IV on the fly and return it to the application. * This function keeps a counter, which may be used in the IV * generation, or may be used in simply to make sure we don't * generate to many IV's from this same key. * PKCS #11 defines 4 generating values: * 1) CKG_NO_GENERATE: just use the passed in IV as it. * 2) CKG_GENERATE: the application doesn't care what generation * scheme is use (we default to counter in this code). * 3) CKG_GENERATE_COUNTER: The IV is the value of a counter. * 4) CKG_GENERATE_RANDOM: The IV is randomly generated. * We add a fifth rule: * 5) CKG_GENERATE_COUNTER_XOR: The Counter value is xor'ed with * the IV. * The value fixedBits specifies the number of bits that will be passed * on from the original IV. The counter or the random data is is loaded * in the remainder of the IV not covered by fixedBits, overwriting any * data there. In the xor case the counter is xor'ed with the data in the * IV. In all cases only bits outside of fixedBits is modified. * The number of IV's we can generate is restricted by the size of the * variable part of the IV and the generation algorithm used. Because of * this, we require subsequent calls on this context to use the same * generator, IV len, and fixed bits as the first call. */ SECStatus gcm_GenerateIV(gcmIVContext *gcmIv, unsigned char *iv, unsigned int ivLen, unsigned int fixedBits, CK_GENERATOR_FUNCTION ivGen) { unsigned int i; unsigned int flexBits; unsigned int ivOffset; unsigned int ivNewCount; unsigned char ivMask; unsigned char ivSave; SECStatus rv; if (gcmIv->counter != 0) { /* If we've already generated a message, make sure all subsequent * messages are using the same generator */ if ((gcmIv->ivGen != ivGen) || (gcmIv->fixedBits != fixedBits) || (gcmIv->ivLen != ivLen)) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } } else { /* remember these values */ gcmIv->ivGen = ivGen; gcmIv->fixedBits = fixedBits; gcmIv->ivLen = ivLen; /* now calculate how may bits of IV we have to supply */ flexBits = ivLen * PR_BITS_PER_BYTE; /* bytes->bits */ /* first make sure we aren't going to overflow */ if (flexBits < fixedBits) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } flexBits -= fixedBits; /* if we are generating a random number reduce the acceptable bits to * avoid birthday attacks */ if (ivGen == CKG_GENERATE_RANDOM) { if (flexBits <= GCMIV_RANDOM_BIRTHDAY_BITS) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } /* see freebl/blapit.h for how we calculate * GCMIV_RANDOM_BIRTHDAY_BITS */ flexBits -= GCMIV_RANDOM_BIRTHDAY_BITS; flexBits = flexBits >> 1; } if (flexBits == 0) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } /* Turn those bits into the number of IV's we can safely return */ if (flexBits >= sizeof(gcmIv->max_count) * PR_BITS_PER_BYTE) { gcmIv->max_count = PR_UINT64(0xffffffffffffffff); } else { gcmIv->max_count = PR_UINT64(1) << flexBits; } } /* no generate, accept the IV from the source */ if (ivGen == CKG_NO_GENERATE) { gcmIv->counter = 1; return SECSuccess; } /* make sure we haven't exceeded the number of IVs we can return * for this key, generator, and IV size */ if (gcmIv->counter >= gcmIv->max_count) { /* use a unique error from just bad user input */ PORT_SetError(SEC_ERROR_EXTRA_INPUT); return SECFailure; } /* build to mask to handle the first byte of the IV */ ivOffset = fixedBits / PR_BITS_PER_BYTE; ivMask = 0xff >> ((8 - (fixedBits & 7)) & 7); ivNewCount = ivLen - ivOffset; /* finally generate the IV */ switch (ivGen) { case CKG_GENERATE: /* default to counter */ case CKG_GENERATE_COUNTER: iv[ivOffset] = (iv[ivOffset] & ~ivMask) | (PORT_GET_BYTE_BE(gcmIv->counter, 0, ivNewCount) & ivMask); for (i = 1; i < ivNewCount; i++) { iv[ivOffset + i] = PORT_GET_BYTE_BE(gcmIv->counter, i, ivNewCount); } break; /* for TLS 1.3 */ case CKG_GENERATE_COUNTER_XOR: iv[ivOffset] ^= (PORT_GET_BYTE_BE(gcmIv->counter, 0, ivNewCount) & ivMask); for (i = 1; i < ivNewCount; i++) { iv[ivOffset + i] ^= PORT_GET_BYTE_BE(gcmIv->counter, i, ivNewCount); } break; case CKG_GENERATE_RANDOM: ivSave = iv[ivOffset] & ~ivMask; rv = RNG_GenerateGlobalRandomBytes(iv + ivOffset, ivNewCount); iv[ivOffset] = ivSave | (iv[ivOffset] & ivMask); if (rv != SECSuccess) { return rv; } break; } gcmIv->counter++; return SECSuccess; } SECStatus GCM_EncryptAEAD(GCMContext *gcm, unsigned char *outbuf, unsigned int *outlen, unsigned int maxout, const unsigned char *inbuf, unsigned int inlen, void *params, unsigned int paramLen, const unsigned char *aad, unsigned int aadLen, unsigned int blocksize) { SECStatus rv; unsigned int tagBytes; unsigned int len; const CK_GCM_MESSAGE_PARAMS *gcmParams = (const CK_GCM_MESSAGE_PARAMS *)params; PORT_Assert(blocksize == AES_BLOCK_SIZE); if (blocksize != AES_BLOCK_SIZE) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } /* paramLen comes all the way from the application layer, make sure * it's correct */ if (paramLen != sizeof(CK_GCM_MESSAGE_PARAMS)) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } /* if we were initialized with the C_EncryptInit, we shouldn't be in this * function */ if (gcm->ctr_context_init) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } if (maxout < inlen) { *outlen = inlen; PORT_SetError(SEC_ERROR_OUTPUT_LEN); return SECFailure; } rv = gcm_GenerateIV(&gcm->gcm_iv, gcmParams->pIv, gcmParams->ulIvLen, gcmParams->ulIvFixedBits, gcmParams->ivGenerator); if (rv != SECSuccess) { return SECFailure; } rv = gcm_InitCounter(gcm, gcmParams->pIv, gcmParams->ulIvLen, gcmParams->ulTagBits, aad, aadLen); if (rv != SECSuccess) { return SECFailure; } tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE; rv = CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout, inbuf, inlen, AES_BLOCK_SIZE); CTR_DestroyContext(&gcm->ctr_context, PR_FALSE); if (rv != SECSuccess) { return SECFailure; } rv = gcmHash_Update(gcm->ghash_context, outbuf, *outlen); if (rv != SECSuccess) { PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */ *outlen = 0; return SECFailure; } rv = gcm_GetTag(gcm, gcmParams->pTag, &len, tagBytes); if (rv != SECSuccess) { PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */ *outlen = 0; return SECFailure; }; return SECSuccess; } SECStatus GCM_DecryptAEAD(GCMContext *gcm, unsigned char *outbuf, unsigned int *outlen, unsigned int maxout, const unsigned char *inbuf, unsigned int inlen, void *params, unsigned int paramLen, const unsigned char *aad, unsigned int aadLen, unsigned int blocksize) { SECStatus rv; unsigned int tagBytes; unsigned char tag[MAX_BLOCK_SIZE]; const unsigned char *intag; unsigned int len; const CK_GCM_MESSAGE_PARAMS *gcmParams = (const CK_GCM_MESSAGE_PARAMS *)params; PORT_Assert(blocksize == AES_BLOCK_SIZE); if (blocksize != AES_BLOCK_SIZE) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } /* paramLen comes all the way from the application layer, make sure * it's correct */ if (paramLen != sizeof(CK_GCM_MESSAGE_PARAMS)) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } /* if we were initialized with the C_DecryptInit, we shouldn't be in this * function */ if (gcm->ctr_context_init) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } if (maxout < inlen) { *outlen = inlen; PORT_SetError(SEC_ERROR_OUTPUT_LEN); return SECFailure; } rv = gcm_InitCounter(gcm, gcmParams->pIv, gcmParams->ulIvLen, gcmParams->ulTagBits, aad, aadLen); if (rv != SECSuccess) { return SECFailure; } tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE; intag = gcmParams->pTag; PORT_Assert(tagBytes != 0); /* verify the block */ rv = gcmHash_Update(gcm->ghash_context, inbuf, inlen); if (rv != SECSuccess) { CTR_DestroyContext(&gcm->ctr_context, PR_FALSE); return SECFailure; } rv = gcm_GetTag(gcm, tag, &len, AES_BLOCK_SIZE); if (rv != SECSuccess) { CTR_DestroyContext(&gcm->ctr_context, PR_FALSE); return SECFailure; } /* Don't decrypt if we can't authenticate the encrypted data! * This assumes that if tagBits is may not be a multiple of 8, intag will * preserve the masked off missing bits. */ if (NSS_SecureMemcmp(tag, intag, tagBytes) != 0) { /* force a CKR_ENCRYPTED_DATA_INVALID error at in softoken */ CTR_DestroyContext(&gcm->ctr_context, PR_FALSE); PORT_SetError(SEC_ERROR_BAD_DATA); PORT_Memset(tag, 0, sizeof(tag)); return SECFailure; } PORT_Memset(tag, 0, sizeof(tag)); /* finish the decryption */ rv = CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout, inbuf, inlen, AES_BLOCK_SIZE); CTR_DestroyContext(&gcm->ctr_context, PR_FALSE); return rv; }