/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifdef FREEBL_NO_DEPEND #include "stubs.h" #endif #include "blapi.h" #include "secerr.h" #include "secitem.h" #include "secmpi.h" /* Hash an item's length and then its value. Only items smaller than 2^16 bytes * are allowed. Lengths are hashed in network byte order. This is designed * to match the OpenSSL J-PAKE implementation. */ static mp_err hashSECItem(HASHContext *hash, const SECItem *it) { unsigned char length[2]; if (it->len > 0xffff) return MP_BADARG; length[0] = (unsigned char)(it->len >> 8); length[1] = (unsigned char)(it->len); hash->hashobj->update(hash->hash_context, length, 2); hash->hashobj->update(hash->hash_context, it->data, it->len); return MP_OKAY; } /* Hash all public components of the signature, each prefixed with its length, and then convert the hash to an mp_int. */ static mp_err hashPublicParams(HASH_HashType hashType, const SECItem *g, const SECItem *gv, const SECItem *gx, const SECItem *signerID, mp_int *h) { mp_err err; unsigned char hBuf[HASH_LENGTH_MAX]; SECItem hItem; HASHContext hash; hash.hashobj = HASH_GetRawHashObject(hashType); if (hash.hashobj == NULL || hash.hashobj->length > sizeof hBuf) { return MP_BADARG; } hash.hash_context = hash.hashobj->create(); if (hash.hash_context == NULL) { return MP_MEM; } hItem.data = hBuf; hItem.len = hash.hashobj->length; hash.hashobj->begin(hash.hash_context); CHECK_MPI_OK(hashSECItem(&hash, g)); CHECK_MPI_OK(hashSECItem(&hash, gv)); CHECK_MPI_OK(hashSECItem(&hash, gx)); CHECK_MPI_OK(hashSECItem(&hash, signerID)); hash.hashobj->end(hash.hash_context, hItem.data, &hItem.len, sizeof hBuf); SECITEM_TO_MPINT(hItem, h); cleanup: if (hash.hash_context != NULL) { hash.hashobj->destroy(hash.hash_context, PR_TRUE); } return err; } /* Generate a Schnorr signature for round 1 or round 2 */ SECStatus JPAKE_Sign(PLArenaPool *arena, const PQGParams *pqg, HASH_HashType hashType, const SECItem *signerID, const SECItem *x, const SECItem *testRandom, const SECItem *gxIn, SECItem *gxOut, SECItem *gv, SECItem *r) { SECStatus rv = SECSuccess; mp_err err; mp_int p; mp_int q; mp_int g; mp_int X; mp_int GX; mp_int V; mp_int GV; mp_int h; mp_int tmp; mp_int R; SECItem v; if (!arena || !pqg || !pqg->prime.data || pqg->prime.len == 0 || !pqg->subPrime.data || pqg->subPrime.len == 0 || !pqg->base.data || pqg->base.len == 0 || !signerID || !signerID->data || signerID->len == 0 || !x || !x->data || x->len == 0 || (testRandom && (!testRandom->data || testRandom->len == 0)) || (gxIn == NULL && (!gxOut || gxOut->data != NULL)) || (gxIn != NULL && (!gxIn->data || gxIn->len == 0 || gxOut != NULL)) || !gv || gv->data != NULL || !r || r->data != NULL) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } MP_DIGITS(&p) = 0; MP_DIGITS(&q) = 0; MP_DIGITS(&g) = 0; MP_DIGITS(&X) = 0; MP_DIGITS(&GX) = 0; MP_DIGITS(&V) = 0; MP_DIGITS(&GV) = 0; MP_DIGITS(&h) = 0; MP_DIGITS(&tmp) = 0; MP_DIGITS(&R) = 0; CHECK_MPI_OK(mp_init(&p)); CHECK_MPI_OK(mp_init(&q)); CHECK_MPI_OK(mp_init(&g)); CHECK_MPI_OK(mp_init(&X)); CHECK_MPI_OK(mp_init(&GX)); CHECK_MPI_OK(mp_init(&V)); CHECK_MPI_OK(mp_init(&GV)); CHECK_MPI_OK(mp_init(&h)); CHECK_MPI_OK(mp_init(&tmp)); CHECK_MPI_OK(mp_init(&R)); SECITEM_TO_MPINT(pqg->prime, &p); SECITEM_TO_MPINT(pqg->subPrime, &q); SECITEM_TO_MPINT(pqg->base, &g); SECITEM_TO_MPINT(*x, &X); /* gx = g^x */ if (gxIn == NULL) { CHECK_MPI_OK(mp_exptmod(&g, &X, &p, &GX)); MPINT_TO_SECITEM(&GX, gxOut, arena); gxIn = gxOut; } else { SECITEM_TO_MPINT(*gxIn, &GX); } /* v is a random value in the q subgroup */ if (testRandom == NULL) { v.data = NULL; rv = DSA_NewRandom(arena, &pqg->subPrime, &v); if (rv != SECSuccess) { goto cleanup; } } else { v.data = testRandom->data; v.len = testRandom->len; } SECITEM_TO_MPINT(v, &V); /* gv = g^v (mod q), random v, 1 <= v < q */ CHECK_MPI_OK(mp_exptmod(&g, &V, &p, &GV)); MPINT_TO_SECITEM(&GV, gv, arena); /* h = H(g, gv, gx, signerID) */ CHECK_MPI_OK(hashPublicParams(hashType, &pqg->base, gv, gxIn, signerID, &h)); /* r = v - x*h (mod q) */ CHECK_MPI_OK(mp_mulmod(&X, &h, &q, &tmp)); CHECK_MPI_OK(mp_submod(&V, &tmp, &q, &R)); MPINT_TO_SECITEM(&R, r, arena); cleanup: mp_clear(&p); mp_clear(&q); mp_clear(&g); mp_clear(&X); mp_clear(&GX); mp_clear(&V); mp_clear(&GV); mp_clear(&h); mp_clear(&tmp); mp_clear(&R); if (rv == SECSuccess && err != MP_OKAY) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; } /* Verify a Schnorr signature generated by the peer in round 1 or round 2. */ SECStatus JPAKE_Verify(PLArenaPool *arena, const PQGParams *pqg, HASH_HashType hashType, const SECItem *signerID, const SECItem *peerID, const SECItem *gx, const SECItem *gv, const SECItem *r) { SECStatus rv = SECSuccess; mp_err err; mp_int p; mp_int q; mp_int g; mp_int p_minus_1; mp_int GX; mp_int h; mp_int one; mp_int R; mp_int gr; mp_int gxh; mp_int gr_gxh; SECItem calculated; if (!arena || !pqg || !pqg->prime.data || pqg->prime.len == 0 || !pqg->subPrime.data || pqg->subPrime.len == 0 || !pqg->base.data || pqg->base.len == 0 || !signerID || !signerID->data || signerID->len == 0 || !peerID || !peerID->data || peerID->len == 0 || !gx || !gx->data || gx->len == 0 || !gv || !gv->data || gv->len == 0 || !r || !r->data || r->len == 0 || SECITEM_CompareItem(signerID, peerID) == SECEqual) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } MP_DIGITS(&p) = 0; MP_DIGITS(&q) = 0; MP_DIGITS(&g) = 0; MP_DIGITS(&p_minus_1) = 0; MP_DIGITS(&GX) = 0; MP_DIGITS(&h) = 0; MP_DIGITS(&one) = 0; MP_DIGITS(&R) = 0; MP_DIGITS(&gr) = 0; MP_DIGITS(&gxh) = 0; MP_DIGITS(&gr_gxh) = 0; calculated.data = NULL; CHECK_MPI_OK(mp_init(&p)); CHECK_MPI_OK(mp_init(&q)); CHECK_MPI_OK(mp_init(&g)); CHECK_MPI_OK(mp_init(&p_minus_1)); CHECK_MPI_OK(mp_init(&GX)); CHECK_MPI_OK(mp_init(&h)); CHECK_MPI_OK(mp_init(&one)); CHECK_MPI_OK(mp_init(&R)); CHECK_MPI_OK(mp_init(&gr)); CHECK_MPI_OK(mp_init(&gxh)); CHECK_MPI_OK(mp_init(&gr_gxh)); SECITEM_TO_MPINT(pqg->prime, &p); SECITEM_TO_MPINT(pqg->subPrime, &q); SECITEM_TO_MPINT(pqg->base, &g); SECITEM_TO_MPINT(*gx, &GX); SECITEM_TO_MPINT(*r, &R); CHECK_MPI_OK(mp_sub_d(&p, 1, &p_minus_1)); CHECK_MPI_OK(mp_exptmod(&GX, &q, &p, &one)); /* Check g^x is in [1, p-2], R is in [0, q-1], and (g^x)^q mod p == 1 */ if (!(mp_cmp_z(&GX) > 0 && mp_cmp(&GX, &p_minus_1) < 0 && mp_cmp(&R, &q) < 0 && mp_cmp_d(&one, 1) == 0)) { goto badSig; } CHECK_MPI_OK(hashPublicParams(hashType, &pqg->base, gv, gx, peerID, &h)); /* Calculate g^v = g^r * g^x^h */ CHECK_MPI_OK(mp_exptmod(&g, &R, &p, &gr)); CHECK_MPI_OK(mp_exptmod(&GX, &h, &p, &gxh)); CHECK_MPI_OK(mp_mulmod(&gr, &gxh, &p, &gr_gxh)); /* Compare calculated g^v to given g^v */ MPINT_TO_SECITEM(&gr_gxh, &calculated, arena); if (calculated.len == gv->len && NSS_SecureMemcmp(calculated.data, gv->data, calculated.len) == 0) { rv = SECSuccess; } else { badSig: PORT_SetError(SEC_ERROR_BAD_SIGNATURE); rv = SECFailure; } cleanup: mp_clear(&p); mp_clear(&q); mp_clear(&g); mp_clear(&p_minus_1); mp_clear(&GX); mp_clear(&h); mp_clear(&one); mp_clear(&R); mp_clear(&gr); mp_clear(&gxh); mp_clear(&gr_gxh); if (rv == SECSuccess && err != MP_OKAY) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; } /* Calculate base = gx1*gx3*gx4 (mod p), i.e. g^(x1+x3+x4) (mod p) */ static mp_err jpake_Round2Base(const SECItem *gx1, const SECItem *gx3, const SECItem *gx4, const mp_int *p, mp_int *base) { mp_err err; mp_int GX1; mp_int GX3; mp_int GX4; mp_int tmp; MP_DIGITS(&GX1) = 0; MP_DIGITS(&GX3) = 0; MP_DIGITS(&GX4) = 0; MP_DIGITS(&tmp) = 0; CHECK_MPI_OK(mp_init(&GX1)); CHECK_MPI_OK(mp_init(&GX3)); CHECK_MPI_OK(mp_init(&GX4)); CHECK_MPI_OK(mp_init(&tmp)); SECITEM_TO_MPINT(*gx1, &GX1); SECITEM_TO_MPINT(*gx3, &GX3); SECITEM_TO_MPINT(*gx4, &GX4); /* In round 2, the peer/attacker sends us g^x3 and g^x4 and the protocol requires that these values are distinct. */ if (mp_cmp(&GX3, &GX4) == 0) { return MP_BADARG; } CHECK_MPI_OK(mp_mul(&GX1, &GX3, &tmp)); CHECK_MPI_OK(mp_mul(&tmp, &GX4, &tmp)); CHECK_MPI_OK(mp_mod(&tmp, p, base)); cleanup: mp_clear(&GX1); mp_clear(&GX3); mp_clear(&GX4); mp_clear(&tmp); return err; } SECStatus JPAKE_Round2(PLArenaPool *arena, const SECItem *p, const SECItem *q, const SECItem *gx1, const SECItem *gx3, const SECItem *gx4, SECItem *base, const SECItem *x2, const SECItem *s, SECItem *x2s) { mp_err err; mp_int P; mp_int Q; mp_int X2; mp_int S; mp_int result; if (!arena || !p || !p->data || p->len == 0 || !q || !q->data || q->len == 0 || !gx1 || !gx1->data || gx1->len == 0 || !gx3 || !gx3->data || gx3->len == 0 || !gx4 || !gx4->data || gx4->len == 0 || !base || base->data != NULL || (x2s != NULL && (x2s->data != NULL || !x2 || !x2->data || x2->len == 0 || !s || !s->data || s->len == 0))) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } MP_DIGITS(&P) = 0; MP_DIGITS(&Q) = 0; MP_DIGITS(&X2) = 0; MP_DIGITS(&S) = 0; MP_DIGITS(&result) = 0; CHECK_MPI_OK(mp_init(&P)); CHECK_MPI_OK(mp_init(&Q)); CHECK_MPI_OK(mp_init(&result)); if (x2s != NULL) { CHECK_MPI_OK(mp_init(&X2)); CHECK_MPI_OK(mp_init(&S)); SECITEM_TO_MPINT(*q, &Q); SECITEM_TO_MPINT(*x2, &X2); SECITEM_TO_MPINT(*s, &S); /* S must be in [1, Q-1] */ if (mp_cmp_z(&S) <= 0 || mp_cmp(&S, &Q) >= 0) { err = MP_BADARG; goto cleanup; } CHECK_MPI_OK(mp_mulmod(&X2, &S, &Q, &result)); MPINT_TO_SECITEM(&result, x2s, arena); } SECITEM_TO_MPINT(*p, &P); CHECK_MPI_OK(jpake_Round2Base(gx1, gx3, gx4, &P, &result)); MPINT_TO_SECITEM(&result, base, arena); cleanup: mp_clear(&P); mp_clear(&Q); mp_clear(&X2); mp_clear(&S); mp_clear(&result); if (err != MP_OKAY) { MP_TO_SEC_ERROR(err); return SECFailure; } return SECSuccess; } SECStatus JPAKE_Final(PLArenaPool *arena, const SECItem *p, const SECItem *q, const SECItem *x2, const SECItem *gx4, const SECItem *x2s, const SECItem *B, SECItem *K) { mp_err err; mp_int P; mp_int Q; mp_int tmp; mp_int exponent; mp_int divisor; mp_int base; if (!arena || !p || !p->data || p->len == 0 || !q || !q->data || q->len == 0 || !x2 || !x2->data || x2->len == 0 || !gx4 || !gx4->data || gx4->len == 0 || !x2s || !x2s->data || x2s->len == 0 || !B || !B->data || B->len == 0 || !K || K->data != NULL) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } MP_DIGITS(&P) = 0; MP_DIGITS(&Q) = 0; MP_DIGITS(&tmp) = 0; MP_DIGITS(&exponent) = 0; MP_DIGITS(&divisor) = 0; MP_DIGITS(&base) = 0; CHECK_MPI_OK(mp_init(&P)); CHECK_MPI_OK(mp_init(&Q)); CHECK_MPI_OK(mp_init(&tmp)); CHECK_MPI_OK(mp_init(&exponent)); CHECK_MPI_OK(mp_init(&divisor)); CHECK_MPI_OK(mp_init(&base)); /* exponent = -x2s (mod q) */ SECITEM_TO_MPINT(*q, &Q); SECITEM_TO_MPINT(*x2s, &tmp); /* q == 0 (mod q), so q - x2s == -x2s (mod q) */ CHECK_MPI_OK(mp_sub(&Q, &tmp, &exponent)); /* divisor = gx4^-x2s = 1/(gx4^x2s) (mod p) */ SECITEM_TO_MPINT(*p, &P); SECITEM_TO_MPINT(*gx4, &tmp); CHECK_MPI_OK(mp_exptmod(&tmp, &exponent, &P, &divisor)); /* base = B*divisor = B/(gx4^x2s) (mod p) */ SECITEM_TO_MPINT(*B, &tmp); CHECK_MPI_OK(mp_mulmod(&divisor, &tmp, &P, &base)); /* tmp = base^x2 (mod p) */ SECITEM_TO_MPINT(*x2, &exponent); CHECK_MPI_OK(mp_exptmod(&base, &exponent, &P, &tmp)); MPINT_TO_SECITEM(&tmp, K, arena); cleanup: mp_clear(&P); mp_clear(&Q); mp_clear(&tmp); mp_clear(&exponent); mp_clear(&divisor); mp_clear(&base); if (err != MP_OKAY) { MP_TO_SEC_ERROR(err); return SECFailure; } return SECSuccess; }