/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* * This file implements PKCS 11 on top of our existing security modules * * For more information about PKCS 11 See PKCS 11 Token Inteface Standard. * This implementation has two slots: * slot 1 is our generic crypto support. It does not require login. * It supports Public Key ops, and all they bulk ciphers and hashes. * It can also support Private Key ops for imported Private keys. It does * not have any token storage. * slot 2 is our private key support. It requires a login before use. It * can store Private Keys and Certs as token objects. Currently only private * keys and their associated Certificates are saved on the token. * * In this implementation, session objects are only visible to the session * that created or generated them. */ #include "seccomon.h" #include "secitem.h" #include "secport.h" #include "blapi.h" #include "pkcs11.h" #include "pkcs11i.h" #include "pkcs1sig.h" #include "lowkeyi.h" #include "secder.h" #include "secdig.h" #include "lowpbe.h" /* We do PBE below */ #include "pkcs11t.h" #include "secoid.h" #include "alghmac.h" #include "softoken.h" #include "secasn1.h" #include "secerr.h" #include "prprf.h" #include "prenv.h" /* * A common prfContext to handle both hmac and aes xcbc * hash contexts have non-null hashObj and hmac, aes * contexts have non-null aes */ typedef struct prfContextStr { HASH_HashType hashType; const SECHashObject *hashObj; HMACContext *hmac; AESContext *aes; unsigned int nextChar; unsigned char padBuf[AES_BLOCK_SIZE]; unsigned char macBuf[AES_BLOCK_SIZE]; unsigned char k1[AES_BLOCK_SIZE]; unsigned char k2[AES_BLOCK_SIZE]; unsigned char k3[AES_BLOCK_SIZE]; } prfContext; /* iv full of zeros used in several places in aes xcbc */ static const unsigned char iv_zero[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; /* * Generate AES XCBC keys from the AES MAC key. * k1 is used in the actual mac. * k2 and k3 are used in the final pad step. */ static CK_RV sftk_aes_xcbc_get_keys(const unsigned char *keyValue, unsigned int keyLen, unsigned char *k1, unsigned char *k2, unsigned char *k3) { SECStatus rv; CK_RV crv; unsigned int tmpLen; AESContext *aes_context = NULL; unsigned char newKey[AES_BLOCK_SIZE]; /* AES XCBC keys. k1, k2, and k3 are derived by encrypting * k1data, k2data, and k3data with the mac key. */ static const unsigned char k1data[] = { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01 }; static const unsigned char k2data[] = { 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02 }; static const unsigned char k3data[] = { 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 }; /* k1_0 = aes_ecb(0, k1data) */ static const unsigned char k1_0[] = { 0xe1, 0x4d, 0x5d, 0x0e, 0xe2, 0x77, 0x15, 0xdf, 0x08, 0xb4, 0x15, 0x2b, 0xa2, 0x3d, 0xa8, 0xe0 }; /* k2_0 = aes_ecb(0, k2data) */ static const unsigned char k2_0[] = { 0x5e, 0xba, 0x73, 0xf8, 0x91, 0x42, 0xc5, 0x48, 0x80, 0xf6, 0x85, 0x94, 0x37, 0x3c, 0x5c, 0x37 }; /* k3_0 = aes_ecb(0, k3data) */ static const unsigned char k3_0[] = { 0x8d, 0x34, 0xef, 0xcb, 0x3b, 0xd5, 0x45, 0xca, 0x06, 0x2a, 0xec, 0xdf, 0xef, 0x7c, 0x0b, 0xfa }; /* first make sure out input key is the correct length * rfc 4434. If key is shorter, pad with zeros to the * the right. If key is longer newKey = aes_xcbc(0, key, keyLen). */ if (keyLen < AES_BLOCK_SIZE) { PORT_Memcpy(newKey, keyValue, keyLen); PORT_Memset(&newKey[keyLen], 0, AES_BLOCK_SIZE - keyLen); keyValue = newKey; } else if (keyLen > AES_BLOCK_SIZE) { /* calculate our new key = aes_xcbc(0, key, keyLen). Because the * key above is fixed (0), we can precalculate k1, k2, and k3. * if this code ever needs to be more generic (support any xcbc * function rather than just aes, we would probably want to just * recurse here using our prf functions. This would be safe because * the recurse case would have keyLen == blocksize and thus skip * this conditional. */ aes_context = AES_CreateContext(k1_0, iv_zero, NSS_AES_CBC, PR_TRUE, AES_BLOCK_SIZE, AES_BLOCK_SIZE); /* we know the following loop will execute at least once */ while (keyLen > AES_BLOCK_SIZE) { rv = AES_Encrypt(aes_context, newKey, &tmpLen, AES_BLOCK_SIZE, keyValue, AES_BLOCK_SIZE); if (rv != SECSuccess) { goto fail; } keyValue += AES_BLOCK_SIZE; keyLen -= AES_BLOCK_SIZE; } PORT_Memcpy(newKey, keyValue, keyLen); sftk_xcbc_mac_pad(newKey, keyLen, AES_BLOCK_SIZE, k2_0, k3_0); rv = AES_Encrypt(aes_context, newKey, &tmpLen, AES_BLOCK_SIZE, newKey, AES_BLOCK_SIZE); if (rv != SECSuccess) { goto fail; } keyValue = newKey; AES_DestroyContext(aes_context, PR_TRUE); } /* the length of the key in keyValue is known to be AES_BLOCK_SIZE, * either because it was on input, or it was shorter and extended, or * because it was mac'd down using aes_xcbc_prf. */ aes_context = AES_CreateContext(keyValue, iv_zero, NSS_AES, PR_TRUE, AES_BLOCK_SIZE, AES_BLOCK_SIZE); if (aes_context == NULL) { goto fail; } rv = AES_Encrypt(aes_context, k1, &tmpLen, AES_BLOCK_SIZE, k1data, sizeof(k1data)); if (rv != SECSuccess) { goto fail; } rv = AES_Encrypt(aes_context, k2, &tmpLen, AES_BLOCK_SIZE, k2data, sizeof(k2data)); if (rv != SECSuccess) { goto fail; } rv = AES_Encrypt(aes_context, k3, &tmpLen, AES_BLOCK_SIZE, k3data, sizeof(k3data)); if (rv != SECSuccess) { goto fail; } AES_DestroyContext(aes_context, PR_TRUE); PORT_Memset(newKey, 0, AES_BLOCK_SIZE); return CKR_OK; fail: crv = sftk_MapCryptError(PORT_GetError()); if (aes_context) { AES_DestroyContext(aes_context, PR_TRUE); } PORT_Memset(k1, 0, AES_BLOCK_SIZE); PORT_Memset(k2, 0, AES_BLOCK_SIZE); PORT_Memset(k3, 0, AES_BLOCK_SIZE); PORT_Memset(newKey, 0, AES_BLOCK_SIZE); return crv; } /* encode the final pad block of aes xcbc, padBuf is modified */ CK_RV sftk_xcbc_mac_pad(unsigned char *padBuf, unsigned int bufLen, unsigned int blockSize, const unsigned char *k2, const unsigned char *k3) { unsigned int i; if (bufLen == blockSize) { for (i = 0; i < blockSize; i++) { padBuf[i] ^= k2[i]; } } else { padBuf[bufLen++] = 0x80; for (i = bufLen; i < blockSize; i++) { padBuf[i] = 0x00; } for (i = 0; i < blockSize; i++) { padBuf[i] ^= k3[i]; } } return CKR_OK; } /* Map the mechanism to the underlying hash. If the type is not a hash * or HMAC, return HASH_AlgNULL. This can happen legitimately if * we are doing AES XCBC */ static HASH_HashType sftk_map_hmac_to_hash(CK_MECHANISM_TYPE type) { switch (type) { case CKM_SHA_1_HMAC: case CKM_SHA_1: return HASH_AlgSHA1; case CKM_MD5_HMAC: case CKM_MD5: return HASH_AlgMD5; case CKM_MD2_HMAC: case CKM_MD2: return HASH_AlgMD2; case CKM_SHA224_HMAC: case CKM_SHA224: return HASH_AlgSHA224; case CKM_SHA256_HMAC: case CKM_SHA256: return HASH_AlgSHA256; case CKM_SHA384_HMAC: case CKM_SHA384: return HASH_AlgSHA384; case CKM_SHA512_HMAC: case CKM_SHA512: return HASH_AlgSHA512; } return HASH_AlgNULL; } /* * Generally setup the context based on the mechanism. * If the mech is HMAC, context->hashObj should be set * Otherwise it is assumed to be AES XCBC. prf_setup * checks these assumptions and will return an error * if they are not met. NOTE: this function does not allocate * anything, so there is no requirement to free context after * prf_setup like there is if you call prf_init. */ static CK_RV prf_setup(prfContext *context, CK_MECHANISM_TYPE mech) { context->hashType = sftk_map_hmac_to_hash(mech); context->hashObj = NULL; context->hmac = NULL; context->aes = NULL; if (context->hashType != HASH_AlgNULL) { context->hashObj = HASH_GetRawHashObject(context->hashType); if (context->hashObj == NULL) { return CKR_GENERAL_ERROR; } return CKR_OK; } else if (mech == CKM_AES_XCBC_MAC) { return CKR_OK; } return CKR_MECHANISM_PARAM_INVALID; } /* return the underlying prf length for this context. This will * function once the context is setup */ static CK_RV prf_length(prfContext *context) { if (context->hashObj) { return context->hashObj->length; } return AES_BLOCK_SIZE; /* AES */ } /* set up the key for the prf. prf_update or prf_final should not be called if * prf_init has not been called first. Once prf_init returns hmac and * aes contexts should set and valid. */ static CK_RV prf_init(prfContext *context, const unsigned char *keyValue, unsigned int keyLen) { CK_RV crv; context->hmac = NULL; if (context->hashObj) { context->hmac = HMAC_Create(context->hashObj, keyValue, keyLen, PR_FALSE); if (context->hmac == NULL) { return sftk_MapCryptError(PORT_GetError()); } HMAC_Begin(context->hmac); } else { crv = sftk_aes_xcbc_get_keys(keyValue, keyLen, context->k1, context->k2, context->k3); if (crv != CKR_OK) return crv; context->nextChar = 0; context->aes = AES_CreateContext(context->k1, iv_zero, NSS_AES_CBC, PR_TRUE, sizeof(context->k1), AES_BLOCK_SIZE); if (context->aes == NULL) { crv = sftk_MapCryptError(PORT_GetError()); PORT_Memset(context->k1, 0, sizeof(context->k1)); PORT_Memset(context->k2, 0, sizeof(context->k2)); PORT_Memset(context->k3, 0, sizeof(context->k2)); return crv; } } return CKR_OK; } /* * process input to the prf */ static CK_RV prf_update(prfContext *context, const unsigned char *buf, unsigned int len) { unsigned int tmpLen; SECStatus rv; if (context->hmac) { HMAC_Update(context->hmac, buf, len); } else { /* AES MAC XCBC*/ /* We must keep the last block back so that it can be processed in * final. This is why we only check that nextChar + len > blocksize, * rather than checking that nextChar + len >= blocksize */ while (context->nextChar + len > AES_BLOCK_SIZE) { if (context->nextChar != 0) { /* first handle fill in any partial blocks in the buffer */ unsigned int left = AES_BLOCK_SIZE - context->nextChar; /* note: left can be zero */ PORT_Memcpy(context->padBuf + context->nextChar, buf, left); /* NOTE: AES MAC XCBC xors the data with the previous block * We don't do that step here because our AES_Encrypt mode * is CBC, which does the xor automatically */ rv = AES_Encrypt(context->aes, context->macBuf, &tmpLen, sizeof(context->macBuf), context->padBuf, sizeof(context->padBuf)); if (rv != SECSuccess) { return sftk_MapCryptError(PORT_GetError()); } context->nextChar = 0; len -= left; buf += left; } else { /* optimization. if we have complete blocks to write out * (and will still have leftover blocks for padbuf in the end). * we can mac directly out of our buffer without first copying * them to padBuf */ rv = AES_Encrypt(context->aes, context->macBuf, &tmpLen, sizeof(context->macBuf), buf, AES_BLOCK_SIZE); if (rv != SECSuccess) { return sftk_MapCryptError(PORT_GetError()); } len -= AES_BLOCK_SIZE; buf += AES_BLOCK_SIZE; } } PORT_Memcpy(context->padBuf + context->nextChar, buf, len); context->nextChar += len; } return CKR_OK; } /* * free the data associated with the prf. Clear any possible CSPs * This can safely be called on any context after prf_setup. It can * also be called an an already freed context. * A free context can be reused by calling prf_init again without * the need to call prf_setup. */ static void prf_free(prfContext *context) { if (context->hmac) { HMAC_Destroy(context->hmac, PR_TRUE); context->hmac = NULL; } if (context->aes) { PORT_Memset(context->k1, 0, sizeof(context->k1)); PORT_Memset(context->k2, 0, sizeof(context->k2)); PORT_Memset(context->k3, 0, sizeof(context->k2)); PORT_Memset(context->padBuf, 0, sizeof(context->padBuf)); PORT_Memset(context->macBuf, 0, sizeof(context->macBuf)); AES_DestroyContext(context->aes, PR_TRUE); context->aes = NULL; } } /* * extract the final prf value. On success, this has the side effect of * also freeing the context data and clearing the keys */ static CK_RV prf_final(prfContext *context, unsigned char *buf, unsigned int len) { unsigned int tmpLen; SECStatus rv; if (context->hmac) { unsigned int outLen; HMAC_Finish(context->hmac, buf, &outLen, len); if (outLen != len) { return CKR_GENERAL_ERROR; } } else { /* prf_update had guarrenteed that the last full block is still in * the padBuf if the input data is a multiple of the blocksize. This * allows sftk_xcbc_mac_pad to process that pad buf accordingly */ CK_RV crv = sftk_xcbc_mac_pad(context->padBuf, context->nextChar, AES_BLOCK_SIZE, context->k2, context->k3); if (crv != CKR_OK) { return crv; } rv = AES_Encrypt(context->aes, context->macBuf, &tmpLen, sizeof(context->macBuf), context->padBuf, AES_BLOCK_SIZE); if (rv != SECSuccess) { return sftk_MapCryptError(PORT_GetError()); } PORT_Memcpy(buf, context->macBuf, len); } prf_free(context); return CKR_OK; } /* * There are four flavors of ike prf functions here. * ike_prf is used in both ikeV1 and ikeV2 to generate * an initial key that all the other keys are generated with. * * These functions are called from NSC_DeriveKey with the inKey value * already looked up, and it expects the CKA_VALUE for outKey to be set. * * Depending on usage it returns either: * 1. prf(Ni|Nr, inKey); (bDataAsKey=TRUE, bRekey=FALSE) * 2. prf(inKey, Ni|Nr); (bDataAsKkey=FALSE, bRekey=FALSE) * 3. prf(inKey, newKey | Ni | Nr); (bDataAsKey=FALSE, bRekey=TRUE) * The resulting output key is always the length of the underlying prf * (as returned by prf_length()). * The combination of bDataAsKey=TRUE and bRekey=TRUE is not allowed * * Case 1 is used in * a. ikev2 (rfc5996) inKey is called g^ir, the output is called SKEYSEED * b. ikev1 (rfc2409) inKey is called g^ir, the output is called SKEYID * Case 2 is used in ikev1 (rfc2409) inkey is called pre-shared-key, output * is called SKEYID * Case 3 is used in ikev2 (rfc5996) rekey case, inKey is SK_d, newKey is * g^ir (new), the output is called SKEYSEED */ CK_RV sftk_ike_prf(CK_SESSION_HANDLE hSession, const SFTKAttribute *inKey, const CK_NSS_IKE_PRF_DERIVE_PARAMS *params, SFTKObject *outKey) { SFTKAttribute *newKeyValue = NULL; SFTKObject *newKeyObj = NULL; unsigned char outKeyData[HASH_LENGTH_MAX]; unsigned char *newInKey = NULL; unsigned int newInKeySize = 0; unsigned int macSize; CK_RV crv = CKR_OK; prfContext context; crv = prf_setup(&context, params->prfMechanism); if (crv != CKR_OK) { return crv; } macSize = prf_length(&context); if ((params->bDataAsKey) && (params->bRekey)) { return CKR_ARGUMENTS_BAD; } if (params->bRekey) { /* lookup the value of new key from the session and key handle */ SFTKSession *session = sftk_SessionFromHandle(hSession); if (session == NULL) { return CKR_SESSION_HANDLE_INVALID; } newKeyObj = sftk_ObjectFromHandle(params->hNewKey, session); sftk_FreeSession(session); if (newKeyObj == NULL) { return CKR_KEY_HANDLE_INVALID; } newKeyValue = sftk_FindAttribute(newKeyObj, CKA_VALUE); if (newKeyValue == NULL) { crv = CKR_KEY_HANDLE_INVALID; goto fail; } } if (params->bDataAsKey) { /* The key is Ni || Np, so we need to concatenate them together first */ newInKeySize = params->ulNiLen + params->ulNrLen; newInKey = PORT_Alloc(newInKeySize); if (newInKey == NULL) { crv = CKR_HOST_MEMORY; goto fail; } PORT_Memcpy(newInKey, params->pNi, params->ulNiLen); PORT_Memcpy(newInKey + params->ulNiLen, params->pNr, params->ulNrLen); crv = prf_init(&context, newInKey, newInKeySize); if (crv != CKR_OK) { goto fail; } /* key as the data */ crv = prf_update(&context, inKey->attrib.pValue, inKey->attrib.ulValueLen); if (crv != CKR_OK) { goto fail; } } else { crv = prf_init(&context, inKey->attrib.pValue, inKey->attrib.ulValueLen); if (crv != CKR_OK) { goto fail; } if (newKeyValue) { crv = prf_update(&context, newKeyValue->attrib.pValue, newKeyValue->attrib.ulValueLen); if (crv != CKR_OK) { goto fail; } } crv = prf_update(&context, params->pNi, params->ulNiLen); if (crv != CKR_OK) { goto fail; } crv = prf_update(&context, params->pNr, params->ulNrLen); if (crv != CKR_OK) { goto fail; } } crv = prf_final(&context, outKeyData, macSize); if (crv != CKR_OK) { goto fail; } crv = sftk_forceAttribute(outKey, CKA_VALUE, outKeyData, macSize); fail: if (newInKey) { PORT_ZFree(newInKey, newInKeySize); } if (newKeyValue) { sftk_FreeAttribute(newKeyValue); } if (newKeyObj) { sftk_FreeObject(newKeyObj); } PORT_Memset(outKeyData, 0, macSize); prf_free(&context); return crv; } /* * The second flavor of ike prf is ike1_prf. * * It is used by ikeV1 to generate the various session keys used in the * connection. It uses the initial key, an optional previous key, and a one byte * key number to generate a unique key for each of the various session * functions (encryption, decryption, mac). These keys expect a key size * (as they may vary in length based on usage). If no length is provided, * it will default to the length of the prf. * * This function returns either: * prf(inKey, gxyKey || CKYi || CKYr || key_number) * or * prf(inKey, prevkey || gxyKey || CKYi || CKYr || key_number) * depending on the stats of bHasPrevKey * * This is defined in rfc2409. For each of the following keys. * inKey is SKEYID, gxyKey is g^xy * for outKey = SKEYID_d, bHasPrevKey = false, key_number = 0 * for outKey = SKEYID_a, prevKey= SKEYID_d, key_number = 1 * for outKey = SKEYID_e, prevKey= SKEYID_a, key_number = 2 */ CK_RV sftk_ike1_prf(CK_SESSION_HANDLE hSession, const SFTKAttribute *inKey, const CK_NSS_IKE1_PRF_DERIVE_PARAMS *params, SFTKObject *outKey, unsigned int keySize) { SFTKAttribute *gxyKeyValue = NULL; SFTKObject *gxyKeyObj = NULL; SFTKAttribute *prevKeyValue = NULL; SFTKObject *prevKeyObj = NULL; SFTKSession *session; unsigned char outKeyData[HASH_LENGTH_MAX]; unsigned int macSize; CK_RV crv; prfContext context; crv = prf_setup(&context, params->prfMechanism); if (crv != CKR_OK) { return crv; } macSize = prf_length(&context); if (keySize > macSize) { return CKR_KEY_SIZE_RANGE; } if (keySize == 0) { keySize = macSize; } /* lookup the two keys from their passed in handles */ session = sftk_SessionFromHandle(hSession); if (session == NULL) { return CKR_SESSION_HANDLE_INVALID; } gxyKeyObj = sftk_ObjectFromHandle(params->hKeygxy, session); if (params->bHasPrevKey) { prevKeyObj = sftk_ObjectFromHandle(params->hPrevKey, session); } sftk_FreeSession(session); if ((gxyKeyObj == NULL) || ((params->bHasPrevKey) && (prevKeyObj == NULL))) { crv = CKR_KEY_HANDLE_INVALID; goto fail; } gxyKeyValue = sftk_FindAttribute(gxyKeyObj, CKA_VALUE); if (gxyKeyValue == NULL) { crv = CKR_KEY_HANDLE_INVALID; goto fail; } if (prevKeyObj) { prevKeyValue = sftk_FindAttribute(prevKeyObj, CKA_VALUE); if (prevKeyValue == NULL) { crv = CKR_KEY_HANDLE_INVALID; goto fail; } } /* outKey = prf(inKey, [prevKey|] gxyKey | CKYi | CKYr | keyNumber) */ crv = prf_init(&context, inKey->attrib.pValue, inKey->attrib.ulValueLen); if (crv != CKR_OK) { goto fail; } if (prevKeyValue) { crv = prf_update(&context, prevKeyValue->attrib.pValue, prevKeyValue->attrib.ulValueLen); if (crv != CKR_OK) { goto fail; } } crv = prf_update(&context, gxyKeyValue->attrib.pValue, gxyKeyValue->attrib.ulValueLen); if (crv != CKR_OK) { goto fail; } crv = prf_update(&context, params->pCKYi, params->ulCKYiLen); if (crv != CKR_OK) { goto fail; } crv = prf_update(&context, params->pCKYr, params->ulCKYrLen); if (crv != CKR_OK) { goto fail; } crv = prf_update(&context, ¶ms->keyNumber, 1); if (crv != CKR_OK) { goto fail; } crv = prf_final(&context, outKeyData, macSize); if (crv != CKR_OK) { goto fail; } crv = sftk_forceAttribute(outKey, CKA_VALUE, outKeyData, keySize); fail: if (gxyKeyValue) { sftk_FreeAttribute(gxyKeyValue); } if (prevKeyValue) { sftk_FreeAttribute(prevKeyValue); } if (gxyKeyObj) { sftk_FreeObject(gxyKeyObj); } if (prevKeyObj) { sftk_FreeObject(prevKeyObj); } PORT_Memset(outKeyData, 0, macSize); prf_free(&context); return crv; } /* * The third flavor of ike prf is ike1_appendix_b. * * It is used by ikeV1 to generate longer key material from skeyid_e. * Unlike ike1_prf, if no length is provided, this function * will generate a KEY_RANGE_ERROR. * * This function returns (from rfc2409 appendix b): * Ka = K1 | K2 | K3 | K4 |... Kn * where: * K1 = prf(K, [gxyKey]|[extraData]) or prf(K, 0) if gxyKey and extraData * ar not present. * K2 = prf(K, K1|[gxyKey]|[extraData]) * K3 = prf(K, K2|[gxyKey]|[extraData]) * K4 = prf(K, K3|[gxyKey]|[extraData]) * . * Kn = prf(K, K(n-1)|[gxyKey]|[extraData]) * K = inKey */ CK_RV sftk_ike1_appendix_b_prf(CK_SESSION_HANDLE hSession, const SFTKAttribute *inKey, const CK_NSS_IKE1_APP_B_PRF_DERIVE_PARAMS *params, SFTKObject *outKey, unsigned int keySize) { SFTKAttribute *gxyKeyValue = NULL; SFTKObject *gxyKeyObj = NULL; unsigned char *outKeyData = NULL; unsigned char *thisKey = NULL; unsigned char *lastKey = NULL; unsigned int macSize; unsigned int outKeySize; unsigned int genKeySize; PRBool quickMode = PR_FALSE; CK_RV crv; prfContext context; if ((params->ulExtraDataLen != 0) && (params->pExtraData == NULL)) { return CKR_ARGUMENTS_BAD; } crv = prf_setup(&context, params->prfMechanism); if (crv != CKR_OK) { return crv; } if (params->bHasKeygxy) { SFTKSession *session; session = sftk_SessionFromHandle(hSession); if (session == NULL) { return CKR_SESSION_HANDLE_INVALID; } gxyKeyObj = sftk_ObjectFromHandle(params->hKeygxy, session); sftk_FreeSession(session); if (gxyKeyObj == NULL) { crv = CKR_KEY_HANDLE_INVALID; goto fail; } gxyKeyValue = sftk_FindAttribute(gxyKeyObj, CKA_VALUE); if (gxyKeyValue == NULL) { crv = CKR_KEY_HANDLE_INVALID; goto fail; } quickMode = PR_TRUE; } if (params->ulExtraDataLen != 0) { quickMode = PR_TRUE; } macSize = prf_length(&context); if (keySize == 0) { keySize = macSize; } /* In appendix B, we are just expanding or contracting a single key. * If the input key is less than or equal to the the key size we want, * just subset the original key. In quick mode we are actually getting * new keys (salted with our seed data and our gxy key), so we want to * run through our algorithm */ if ((!quickMode) && (keySize <= inKey->attrib.ulValueLen)) { return sftk_forceAttribute(outKey, CKA_VALUE, inKey->attrib.pValue, keySize); } outKeySize = PR_ROUNDUP(keySize, macSize); outKeyData = PORT_Alloc(outKeySize); if (outKeyData == NULL) { crv = CKR_HOST_MEMORY; goto fail; } /* * this loop generates on block of the prf, basically * kn = prf(key, Kn-1 | [Keygxy] | [ExtraData]) * Kn is thisKey, Kn-1 is lastKey * key is inKey */ thisKey = outKeyData; for (genKeySize = 0; genKeySize < keySize; genKeySize += macSize) { PRBool hashedData = PR_FALSE; crv = prf_init(&context, inKey->attrib.pValue, inKey->attrib.ulValueLen); if (crv != CKR_OK) { goto fail; } if (lastKey != NULL) { crv = prf_update(&context, lastKey, macSize); if (crv != CKR_OK) { goto fail; } hashedData = PR_TRUE; } if (gxyKeyValue != NULL) { crv = prf_update(&context, gxyKeyValue->attrib.pValue, gxyKeyValue->attrib.ulValueLen); if (crv != CKR_OK) { goto fail; } hashedData = PR_TRUE; } if (params->ulExtraDataLen != 0) { crv = prf_update(&context, params->pExtraData, params->ulExtraDataLen); if (crv != CKR_OK) { goto fail; } hashedData = PR_TRUE; } /* if we haven't hashed anything yet, hash a zero */ if (hashedData == PR_FALSE) { const unsigned char zero = 0; crv = prf_update(&context, &zero, 1); if (crv != CKR_OK) { goto fail; } } crv = prf_final(&context, thisKey, macSize); if (crv != CKR_OK) { goto fail; } lastKey = thisKey; thisKey += macSize; } crv = sftk_forceAttribute(outKey, CKA_VALUE, outKeyData, keySize); fail: if (gxyKeyValue) { sftk_FreeAttribute(gxyKeyValue); } if (gxyKeyObj) { sftk_FreeObject(gxyKeyObj); } if (outKeyData) { PORT_ZFree(outKeyData, outKeySize); } prf_free(&context); return crv; } /* * The final flavor of ike prf is ike_prf_plus * * It is used by ikeV2 to generate the various session keys used in the * connection. It uses the initial key and a feedback version of the prf * to generate sufficient bytes to cover all the session keys. The application * will then use CK_EXTRACT_KEY_FROM_KEY to pull out the various subkeys. * This function expects a key size to be set by the application to cover * all the keys. Unlike ike1_prf, if no length is provided, this function * will generate a KEY_RANGE_ERROR * * This function returns (from rfc5996): * prfplus = T1 | T2 | T3 | T4 |... Tn * where: * T1 = prf(K, S | 0x01) * T2 = prf(K, T1 | S | 0x02) * T3 = prf(K, T3 | S | 0x03) * T4 = prf(K, T4 | S | 0x04) * . * Tn = prf(K, T(n-1) | n) * K = inKey, S = seedKey | seedData */ static CK_RV sftk_ike_prf_plus_raw(CK_SESSION_HANDLE hSession, const unsigned char *inKeyData, CK_ULONG inKeyLen, const CK_NSS_IKE_PRF_PLUS_DERIVE_PARAMS *params, unsigned char **outKeyDataPtr, unsigned int *outKeySizePtr, unsigned int keySize) { SFTKAttribute *seedValue = NULL; SFTKObject *seedKeyObj = NULL; unsigned char *outKeyData = NULL; unsigned int outKeySize; unsigned char *thisKey; unsigned char *lastKey = NULL; unsigned char currentByte = 0; unsigned int getKeySize; unsigned int macSize; CK_RV crv; prfContext context; if (keySize == 0) { return CKR_KEY_SIZE_RANGE; } crv = prf_setup(&context, params->prfMechanism); if (crv != CKR_OK) { return crv; } /* pull in optional seedKey */ if (params->bHasSeedKey) { SFTKSession *session = sftk_SessionFromHandle(hSession); if (session == NULL) { return CKR_SESSION_HANDLE_INVALID; } seedKeyObj = sftk_ObjectFromHandle(params->hSeedKey, session); sftk_FreeSession(session); if (seedKeyObj == NULL) { return CKR_KEY_HANDLE_INVALID; } seedValue = sftk_FindAttribute(seedKeyObj, CKA_VALUE); if (seedValue == NULL) { crv = CKR_KEY_HANDLE_INVALID; goto fail; } } else if (params->ulSeedDataLen == 0) { crv = CKR_ARGUMENTS_BAD; goto fail; } macSize = prf_length(&context); outKeySize = PR_ROUNDUP(keySize, macSize); outKeyData = PORT_Alloc(outKeySize); if (outKeyData == NULL) { crv = CKR_HOST_MEMORY; goto fail; } /* * this loop generates on block of the prf, basically * Tn = prf(key, Tn-1 | S | n) * Tn is thisKey, Tn-2 is lastKey, S is seedKey || seedData, * key is inKey. currentByte = n-1 on entry. */ thisKey = outKeyData; for (getKeySize = 0; getKeySize < keySize; getKeySize += macSize) { /* if currentByte is 255, we'll overflow when we increment it below. * This can only happen if keysize > 255*macSize. In that case * the application has asked for too much key material, so return * an error */ if (currentByte == 255) { crv = CKR_KEY_SIZE_RANGE; goto fail; } crv = prf_init(&context, inKeyData, inKeyLen); if (crv != CKR_OK) { goto fail; } if (lastKey) { crv = prf_update(&context, lastKey, macSize); if (crv != CKR_OK) { goto fail; } } /* prf the key first */ if (seedValue) { crv = prf_update(&context, seedValue->attrib.pValue, seedValue->attrib.ulValueLen); if (crv != CKR_OK) { goto fail; } } /* then prf the data */ if (params->ulSeedDataLen != 0) { crv = prf_update(&context, params->pSeedData, params->ulSeedDataLen); if (crv != CKR_OK) { goto fail; } } currentByte++; crv = prf_update(&context, ¤tByte, 1); if (crv != CKR_OK) { goto fail; } crv = prf_final(&context, thisKey, macSize); if (crv != CKR_OK) { goto fail; } lastKey = thisKey; thisKey += macSize; } *outKeyDataPtr = outKeyData; *outKeySizePtr = outKeySize; outKeyData = NULL; /* don't free it here, our caller will free it */ fail: if (outKeyData) { PORT_ZFree(outKeyData, outKeySize); } if (seedValue) { sftk_FreeAttribute(seedValue); } if (seedKeyObj) { sftk_FreeObject(seedKeyObj); } prf_free(&context); return crv; } /* * ike prf + with code to deliever results tosoftoken objects. */ CK_RV sftk_ike_prf_plus(CK_SESSION_HANDLE hSession, const SFTKAttribute *inKey, const CK_NSS_IKE_PRF_PLUS_DERIVE_PARAMS *params, SFTKObject *outKey, unsigned int keySize) { unsigned char *outKeyData = NULL; unsigned int outKeySize; CK_RV crv; crv = sftk_ike_prf_plus_raw(hSession, inKey->attrib.pValue, inKey->attrib.ulValueLen, params, &outKeyData, &outKeySize, keySize); if (crv != CKR_OK) { return crv; } crv = sftk_forceAttribute(outKey, CKA_VALUE, outKeyData, keySize); PORT_ZFree(outKeyData, outKeySize); return crv; } /* sftk_aes_xcbc_new_keys: * * aes xcbc creates 3 new keys from the input key. The first key will be the * base key of the underlying cbc. The sign code hooks directly into encrypt * so we'll have to create a full PKCS #11 key with handle for that key. The * caller needs to delete the key when it's through setting up the context. * * The other two keys will be stored in the sign context until we need them * at the end. */ CK_RV sftk_aes_xcbc_new_keys(CK_SESSION_HANDLE hSession, CK_OBJECT_HANDLE hKey, CK_OBJECT_HANDLE_PTR phKey, unsigned char *k2, unsigned char *k3) { SFTKObject *key = NULL; SFTKSession *session = NULL; SFTKObject *inKeyObj = NULL; SFTKAttribute *inKeyValue = NULL; CK_KEY_TYPE key_type = CKK_AES; CK_OBJECT_CLASS objclass = CKO_SECRET_KEY; CK_BBOOL ck_true = CK_TRUE; CK_RV crv = CKR_OK; SFTKSlot *slot = sftk_SlotFromSessionHandle(hSession); unsigned char buf[AES_BLOCK_SIZE]; if (!slot) { return CKR_SESSION_HANDLE_INVALID; } /* get the session */ session = sftk_SessionFromHandle(hSession); if (session == NULL) { crv = CKR_SESSION_HANDLE_INVALID; goto fail; } inKeyObj = sftk_ObjectFromHandle(hKey, session); if (inKeyObj == NULL) { crv = CKR_KEY_HANDLE_INVALID; goto fail; } inKeyValue = sftk_FindAttribute(inKeyObj, CKA_VALUE); if (inKeyValue == NULL) { crv = CKR_KEY_HANDLE_INVALID; goto fail; } crv = sftk_aes_xcbc_get_keys(inKeyValue->attrib.pValue, inKeyValue->attrib.ulValueLen, buf, k2, k3); if (crv != CKR_OK) { goto fail; } /* * now lets create an object to hang the attributes off of */ key = sftk_NewObject(slot); /* fill in the handle later */ if (key == NULL) { crv = CKR_HOST_MEMORY; goto fail; } /* make sure we don't have any class, key_type, or value fields */ sftk_DeleteAttributeType(key, CKA_CLASS); sftk_DeleteAttributeType(key, CKA_KEY_TYPE); sftk_DeleteAttributeType(key, CKA_VALUE); sftk_DeleteAttributeType(key, CKA_SIGN); /* Add the class, key_type, and value */ crv = sftk_AddAttributeType(key, CKA_CLASS, &objclass, sizeof(CK_OBJECT_CLASS)); if (crv != CKR_OK) { goto fail; } crv = sftk_AddAttributeType(key, CKA_KEY_TYPE, &key_type, sizeof(CK_KEY_TYPE)); if (crv != CKR_OK) { goto fail; } crv = sftk_AddAttributeType(key, CKA_SIGN, &ck_true, sizeof(CK_BBOOL)); if (crv != CKR_OK) { goto fail; } crv = sftk_AddAttributeType(key, CKA_VALUE, buf, AES_BLOCK_SIZE); if (crv != CKR_OK) { goto fail; } /* * finish filling in the key and link it with our global system. */ crv = sftk_handleObject(key, session); if (crv != CKR_OK) { goto fail; } *phKey = key->handle; fail: if (session) { sftk_FreeSession(session); } if (inKeyValue) { sftk_FreeAttribute(inKeyValue); } if (inKeyObj) { sftk_FreeObject(inKeyObj); } if (key) { sftk_FreeObject(key); } /* clear our CSPs */ PORT_Memset(buf, 0, sizeof(buf)); if (crv != CKR_OK) { PORT_Memset(k2, 0, AES_BLOCK_SIZE); PORT_Memset(k3, 0, AES_BLOCK_SIZE); } return crv; } /* * Helper function that tests a single prf test vector */ static SECStatus prf_test(CK_MECHANISM_TYPE mech, const unsigned char *inKey, unsigned int inKeyLen, const unsigned char *plainText, unsigned int plainTextLen, const unsigned char *expectedResult, unsigned int expectedResultLen) { PRUint8 ike_computed_mac[HASH_LENGTH_MAX]; prfContext context; unsigned int macSize; CK_RV crv; crv = prf_setup(&context, mech); if (crv != CKR_OK) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } macSize = prf_length(&context); crv = prf_init(&context, inKey, inKeyLen); if (crv != CKR_OK) { goto fail; } crv = prf_update(&context, plainText, plainTextLen); if (crv != CKR_OK) { goto fail; } crv = prf_final(&context, ike_computed_mac, macSize); if (crv != CKR_OK) { goto fail; } if (macSize != expectedResultLen) { goto fail; } if (PORT_Memcmp(expectedResult, ike_computed_mac, macSize) != 0) { goto fail; } /* only do the alignment if the plaintext is long enough */ if (plainTextLen <= macSize) { return SECSuccess; } prf_free(&context); /* do it again, but this time tweak with the alignment */ crv = prf_init(&context, inKey, inKeyLen); if (crv != CKR_OK) { goto fail; } crv = prf_update(&context, plainText, 1); if (crv != CKR_OK) { goto fail; } crv = prf_update(&context, &plainText[1], macSize); if (crv != CKR_OK) { goto fail; } crv = prf_update(&context, &plainText[1 + macSize], plainTextLen - (macSize + 1)); if (crv != CKR_OK) { goto fail; } crv = prf_final(&context, ike_computed_mac, macSize); if (crv != CKR_OK) { goto fail; } if (PORT_Memcmp(expectedResult, ike_computed_mac, macSize) != 0) { goto fail; } prf_free(&context); return SECSuccess; fail: prf_free(&context); PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } /* * FIPS Power up Self Tests for IKE. This is in this function so it * can access the private prf_ functions here. It's called out of fipstest.c */ SECStatus sftk_fips_IKE_PowerUpSelfTests(void) { /* PRF known test vectors */ static const PRUint8 ike_xcbc_known_key[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }; static const PRUint8 ike_xcbc_known_plain_text[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f }; static const PRUint8 ike_xcbc_known_mac[] = { 0xd2, 0xa2, 0x46, 0xfa, 0x34, 0x9b, 0x68, 0xa7, 0x99, 0x98, 0xa4, 0x39, 0x4f, 0xf7, 0xa2, 0x63 }; /* test 2 uses the same key as test 1 */ static const PRUint8 ike_xcbc_known_plain_text_2[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13 }; static const PRUint8 ike_xcbc_known_mac_2[] = { 0x47, 0xf5, 0x1b, 0x45, 0x64, 0x96, 0x62, 0x15, 0xb8, 0x98, 0x5c, 0x63, 0x05, 0x5e, 0xd3, 0x08 }; static const PRUint8 ike_xcbc_known_key_3[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09 }; /* test 3 uses the same plaintest as test 2 */ static const PRUint8 ike_xcbc_known_mac_3[] = { 0x0f, 0xa0, 0x87, 0xaf, 0x7d, 0x86, 0x6e, 0x76, 0x53, 0x43, 0x4e, 0x60, 0x2f, 0xdd, 0xe8, 0x35 }; static const PRUint8 ike_xcbc_known_key_4[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0xed, 0xcb }; /* test 4 uses the same plaintest as test 2 */ static const PRUint8 ike_xcbc_known_mac_4[] = { 0x8c, 0xd3, 0xc9, 0x3a, 0xe5, 0x98, 0xa9, 0x80, 0x30, 0x06, 0xff, 0xb6, 0x7c, 0x40, 0xe9, 0xe4 }; static const PRUint8 ike_sha1_known_key[] = { 0x59, 0x98, 0x2b, 0x5b, 0xa5, 0x7e, 0x62, 0xc0, 0x46, 0x0d, 0xef, 0xc7, 0x1e, 0x18, 0x64, 0x63 }; static const PRUint8 ike_sha1_known_plain_text[] = { 0x1c, 0x07, 0x32, 0x1a, 0x9a, 0x7e, 0x41, 0xcd, 0x88, 0x0c, 0xa3, 0x7a, 0xdb, 0x10, 0xc7, 0x3b, 0xf0, 0x0e, 0x7a, 0xe3, 0xcf, 0xc6, 0xfd, 0x8b, 0x51, 0xbc, 0xe2, 0xb9, 0x90, 0xe6, 0xf2, 0x01 }; static const PRUint8 ike_sha1_known_mac[] = { 0x0c, 0x2a, 0xf3, 0x42, 0x97, 0x15, 0x62, 0x1d, 0x2a, 0xad, 0xc9, 0x94, 0x5a, 0x90, 0x26, 0xfa, 0xc7, 0x91, 0xe2, 0x4b }; static const PRUint8 ike_sha256_known_key[] = { 0x9d, 0xa2, 0xd5, 0x8f, 0x57, 0xf0, 0x39, 0xf9, 0x20, 0x4e, 0x0d, 0xd0, 0xef, 0x04, 0xf3, 0x72 }; static const PRUint8 ike_sha256_known_plain_text[] = { 0x33, 0xf1, 0x7a, 0xfc, 0xb6, 0x13, 0x4c, 0xbf, 0x1c, 0xab, 0x59, 0x87, 0x7d, 0x42, 0xdb, 0x35, 0x82, 0x22, 0x6e, 0xff, 0x74, 0xdd, 0x37, 0xeb, 0x8b, 0x75, 0xe6, 0x75, 0x64, 0x5f, 0xc1, 0x69 }; static const PRUint8 ike_sha256_known_mac[] = { 0x80, 0x4b, 0x4a, 0x1e, 0x0e, 0xc5, 0x93, 0xcf, 0xb6, 0xe4, 0x54, 0x52, 0x41, 0x49, 0x39, 0x6d, 0xe2, 0x34, 0xd0, 0xda, 0xe2, 0x9f, 0x34, 0xa8, 0xfd, 0xb5, 0xf9, 0xaf, 0xe7, 0x6e, 0xa6, 0x52 }; static const PRUint8 ike_sha384_known_key[] = { 0xce, 0xc8, 0x9d, 0x84, 0x5a, 0xdd, 0x83, 0xef, 0xce, 0xbd, 0x43, 0xab, 0x71, 0xd1, 0x7d, 0xb9 }; static const PRUint8 ike_sha384_known_plain_text[] = { 0x17, 0x24, 0xdb, 0xd8, 0x93, 0x52, 0x37, 0x64, 0xbf, 0xef, 0x8c, 0x6f, 0xa9, 0x27, 0x85, 0x6f, 0xcc, 0xfb, 0x77, 0xae, 0x25, 0x43, 0x58, 0xcc, 0xe2, 0x9c, 0x27, 0x69, 0xa3, 0x29, 0x15, 0xc1 }; static const PRUint8 ike_sha384_known_mac[] = { 0x6e, 0x45, 0x14, 0x61, 0x0b, 0xf8, 0x2d, 0x0a, 0xb7, 0xbf, 0x02, 0x60, 0x09, 0x6f, 0x61, 0x46, 0xa1, 0x53, 0xc7, 0x12, 0x07, 0x1a, 0xbb, 0x63, 0x3c, 0xed, 0x81, 0x3c, 0x57, 0x21, 0x56, 0xc7, 0x83, 0xe3, 0x68, 0x74, 0xa6, 0x5a, 0x64, 0x69, 0x0c, 0xa7, 0x01, 0xd4, 0x0d, 0x56, 0xea, 0x18 }; static const PRUint8 ike_sha512_known_key[] = { 0xac, 0xad, 0xc6, 0x31, 0x4a, 0x69, 0xcf, 0xcd, 0x4e, 0x4a, 0xd1, 0x77, 0x18, 0xfe, 0xa7, 0xce }; static const PRUint8 ike_sha512_known_plain_text[] = { 0xb1, 0x5a, 0x9c, 0xfc, 0xe8, 0xc8, 0xd7, 0xea, 0xb8, 0x79, 0xd6, 0x24, 0x30, 0x29, 0xd4, 0x01, 0x88, 0xd3, 0xb7, 0x40, 0x87, 0x5a, 0x6a, 0xc6, 0x2f, 0x56, 0xca, 0xc4, 0x37, 0x7e, 0x2e, 0xdd }; static const PRUint8 ike_sha512_known_mac[] = { 0xf0, 0x5a, 0xa0, 0x36, 0xdf, 0xce, 0x45, 0xa5, 0x58, 0xd4, 0x04, 0x18, 0xde, 0xa9, 0x80, 0x96, 0xe5, 0x19, 0xbc, 0x78, 0x41, 0xe3, 0xdb, 0x3d, 0xd9, 0x36, 0x58, 0xd1, 0x18, 0xc3, 0xe8, 0x3b, 0x50, 0x2f, 0x39, 0x8e, 0xcb, 0x13, 0x61, 0xec, 0x77, 0xd3, 0x8a, 0x88, 0x55, 0xef, 0xff, 0x40, 0x7f, 0x6f, 0x77, 0x2e, 0x5d, 0x65, 0xb5, 0x8e, 0xb1, 0x13, 0x40, 0x96, 0xe8, 0x47, 0x8d, 0x2b }; static const PRUint8 ike_known_sha256_prf_plus[] = { 0xe6, 0xf1, 0x9b, 0x4a, 0x02, 0xe9, 0x73, 0x72, 0x93, 0x9f, 0xdb, 0x46, 0x1d, 0xb1, 0x49, 0xcb, 0x53, 0x08, 0x98, 0x3d, 0x41, 0x36, 0xfa, 0x8b, 0x47, 0x04, 0x49, 0x11, 0x0d, 0x6e, 0x96, 0x1d, 0xab, 0xbe, 0x94, 0x28, 0xa0, 0xb7, 0x9c, 0xa3, 0x29, 0xe1, 0x40, 0xf8, 0xf8, 0x88, 0xb9, 0xb5, 0x40, 0xd4, 0x54, 0x4d, 0x25, 0xab, 0x94, 0xd4, 0x98, 0xd8, 0x00, 0xbf, 0x6f, 0xef, 0xe8, 0x39 }; SECStatus rv; CK_RV crv; unsigned char *outKeyData = NULL; unsigned int outKeySize; CK_NSS_IKE_PRF_PLUS_DERIVE_PARAMS ike_params; rv = prf_test(CKM_AES_XCBC_MAC, ike_xcbc_known_key, sizeof(ike_xcbc_known_key), ike_xcbc_known_plain_text, sizeof(ike_xcbc_known_plain_text), ike_xcbc_known_mac, sizeof(ike_xcbc_known_mac)); if (rv != SECSuccess) return rv; rv = prf_test(CKM_AES_XCBC_MAC, ike_xcbc_known_key, sizeof(ike_xcbc_known_key), ike_xcbc_known_plain_text_2, sizeof(ike_xcbc_known_plain_text_2), ike_xcbc_known_mac_2, sizeof(ike_xcbc_known_mac_2)); if (rv != SECSuccess) return rv; rv = prf_test(CKM_AES_XCBC_MAC, ike_xcbc_known_key_3, sizeof(ike_xcbc_known_key_3), ike_xcbc_known_plain_text_2, sizeof(ike_xcbc_known_plain_text_2), ike_xcbc_known_mac_3, sizeof(ike_xcbc_known_mac_3)); if (rv != SECSuccess) return rv; rv = prf_test(CKM_AES_XCBC_MAC, ike_xcbc_known_key_4, sizeof(ike_xcbc_known_key_4), ike_xcbc_known_plain_text_2, sizeof(ike_xcbc_known_plain_text_2), ike_xcbc_known_mac_4, sizeof(ike_xcbc_known_mac_4)); if (rv != SECSuccess) return rv; rv = prf_test(CKM_SHA_1_HMAC, ike_sha1_known_key, sizeof(ike_sha1_known_key), ike_sha1_known_plain_text, sizeof(ike_sha1_known_plain_text), ike_sha1_known_mac, sizeof(ike_sha1_known_mac)); if (rv != SECSuccess) return rv; rv = prf_test(CKM_SHA256_HMAC, ike_sha256_known_key, sizeof(ike_sha256_known_key), ike_sha256_known_plain_text, sizeof(ike_sha256_known_plain_text), ike_sha256_known_mac, sizeof(ike_sha256_known_mac)); if (rv != SECSuccess) return rv; rv = prf_test(CKM_SHA384_HMAC, ike_sha384_known_key, sizeof(ike_sha384_known_key), ike_sha384_known_plain_text, sizeof(ike_sha384_known_plain_text), ike_sha384_known_mac, sizeof(ike_sha384_known_mac)); if (rv != SECSuccess) return rv; rv = prf_test(CKM_SHA512_HMAC, ike_sha512_known_key, sizeof(ike_sha512_known_key), ike_sha512_known_plain_text, sizeof(ike_sha512_known_plain_text), ike_sha512_known_mac, sizeof(ike_sha512_known_mac)); ike_params.prfMechanism = CKM_SHA256_HMAC; ike_params.bHasSeedKey = PR_FALSE; ike_params.hSeedKey = CK_INVALID_HANDLE; ike_params.pSeedData = (CK_BYTE_PTR)ike_sha256_known_plain_text; ike_params.ulSeedDataLen = sizeof(ike_sha256_known_plain_text); crv = sftk_ike_prf_plus_raw(CK_INVALID_HANDLE, ike_sha256_known_key, sizeof(ike_sha256_known_key), &ike_params, &outKeyData, &outKeySize, 64); if ((crv != CKR_OK) || (outKeySize != sizeof(ike_known_sha256_prf_plus)) || (PORT_Memcmp(outKeyData, ike_known_sha256_prf_plus, sizeof(ike_known_sha256_prf_plus)) != 0)) { PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); return SECFailure; } PORT_ZFree(outKeyData, outKeySize); return rv; }