1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
/*
* prng.c: Pseudo Random Number Generator abstractions for nwipe.
*
* Copyright Darik Horn <dajhorn-dban@vanadac.com>.
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "nwipe.h"
#include "prng.h"
#include "context.h"
#include "logging.h"
#include "mt19937ar-cok/mt19937ar-cok.h"
#include "isaac_rand/isaac_rand.h"
#include "isaac_rand/isaac64.h"
#include "alfg/add_lagg_fibonacci_prng.h" //Lagged Fibonacci generator prototype
#include "xor/xoroshiro256_prng.h" //XORoshiro-256 prototype
nwipe_prng_t nwipe_twister = { "Mersenne Twister (mt19937ar-cok)", nwipe_twister_init, nwipe_twister_read };
nwipe_prng_t nwipe_isaac = { "ISAAC (rand.c 20010626)", nwipe_isaac_init, nwipe_isaac_read };
nwipe_prng_t nwipe_isaac64 = { "ISAAC-64 (isaac64.c)", nwipe_isaac64_init, nwipe_isaac64_read };
/* ALFG PRNG Structure */
nwipe_prng_t nwipe_add_lagg_fibonacci_prng = { "Lagged Fibonacci generator",
nwipe_add_lagg_fibonacci_prng_init,
nwipe_add_lagg_fibonacci_prng_read };
/* XOROSHIRO-256 PRNG Structure */
nwipe_prng_t nwipe_xoroshiro256_prng = { "XORoshiro-256", nwipe_xoroshiro256_prng_init, nwipe_xoroshiro256_prng_read };
/* Print given number of bytes from unsigned integer number to a byte stream buffer starting with low-endian. */
static inline void u32_to_buffer( u8* restrict buffer, u32 val, const int len )
{
for( int i = 0; i < len; ++i )
{
buffer[i] = (u8) ( val & 0xFFUL );
val >>= 8;
}
}
static inline void u64_to_buffer( u8* restrict buffer, u64 val, const int len )
{
for( int i = 0; i < len; ++i )
{
buffer[i] = (u8) ( val & 0xFFULL );
val >>= 8;
}
}
static inline u32 isaac_nextval( randctx* restrict ctx )
{
if( ctx->randcnt == 0 )
{
isaac( ctx );
ctx->randcnt = RANDSIZ;
}
ctx->randcnt--;
return ctx->randrsl[ctx->randcnt];
}
static inline u64 isaac64_nextval( rand64ctx* restrict ctx )
{
if( ctx->randcnt == 0 )
{
isaac64( ctx );
ctx->randcnt = RANDSIZ;
}
ctx->randcnt--;
return ctx->randrsl[ctx->randcnt];
}
int nwipe_twister_init( NWIPE_PRNG_INIT_SIGNATURE )
{
nwipe_log( NWIPE_LOG_NOTICE, "Initialising Mersenne Twister prng" );
if( *state == NULL )
{
/* This is the first time that we have been called. */
*state = malloc( sizeof( twister_state_t ) );
}
twister_init( (twister_state_t*) *state, (u32*) ( seed->s ), seed->length / sizeof( u32 ) );
return 0;
}
int nwipe_twister_read( NWIPE_PRNG_READ_SIGNATURE )
{
u8* restrict bufpos = buffer;
size_t words = count / SIZE_OF_TWISTER; // the values of twister_genrand_int32 is strictly 4 bytes
/* Twister returns 4-bytes per call, so progress by 4 bytes. */
for( size_t ii = 0; ii < words; ++ii )
{
u32_to_buffer( bufpos, twister_genrand_int32( (twister_state_t*) *state ), SIZE_OF_TWISTER );
bufpos += SIZE_OF_TWISTER;
}
/* If there is some remainder copy only relevant number of bytes to not
* overflow the buffer. */
const size_t remain = count % SIZE_OF_TWISTER; // SIZE_OF_TWISTER is strictly 4 bytes
if( remain > 0 )
{
u32_to_buffer( bufpos, twister_genrand_int32( (twister_state_t*) *state ), remain );
}
return 0;
}
int nwipe_isaac_init( NWIPE_PRNG_INIT_SIGNATURE )
{
int count;
randctx* isaac_state = *state;
nwipe_log( NWIPE_LOG_NOTICE, "Initialising Isaac prng" );
if( *state == NULL )
{
/* This is the first time that we have been called. */
*state = malloc( sizeof( randctx ) );
isaac_state = *state;
/* Check the memory allocation. */
if( isaac_state == 0 )
{
nwipe_perror( errno, __FUNCTION__, "malloc" );
nwipe_log( NWIPE_LOG_FATAL, "Unable to allocate memory for the isaac state." );
return -1;
}
}
/* Take the minimum of the isaac seed size and available entropy. */
if( sizeof( isaac_state->randrsl ) < seed->length )
{
count = sizeof( isaac_state->randrsl );
}
else
{
memset( isaac_state->randrsl, 0, sizeof( isaac_state->randrsl ) );
count = seed->length;
}
if( count == 0 )
{
/* Start ISACC without a seed. */
randinit( isaac_state, 0 );
}
else
{
/* Seed the ISAAC state with entropy. */
memcpy( isaac_state->randrsl, seed->s, count );
/* The second parameter indicates that randrsl is non-empty. */
randinit( isaac_state, 1 );
}
return 0;
}
int nwipe_isaac_read( NWIPE_PRNG_READ_SIGNATURE )
{
randctx* isaac_state = *state;
u8* restrict bufpos = buffer;
size_t words = count / SIZE_OF_ISAAC; // the values of isaac is strictly 4 bytes
/* Isaac returns 4-bytes per call, so progress by 4 bytes. */
for( size_t ii = 0; ii < words; ++ii )
{
/* get the next 32bit random number */
u32_to_buffer( bufpos, isaac_nextval( isaac_state ), SIZE_OF_ISAAC );
bufpos += SIZE_OF_ISAAC;
}
/* If there is some remainder copy only relevant number of bytes to not overflow the buffer. */
const size_t remain = count % SIZE_OF_ISAAC; // SIZE_OF_ISAAC is strictly 4 bytes
if( remain > 0 )
{
u32_to_buffer( bufpos, isaac_nextval( isaac_state ), remain );
}
return 0;
}
int nwipe_isaac64_init( NWIPE_PRNG_INIT_SIGNATURE )
{
int count;
rand64ctx* isaac_state = *state;
nwipe_log( NWIPE_LOG_NOTICE, "Initialising ISAAC-64 prng" );
if( *state == NULL )
{
/* This is the first time that we have been called. */
*state = malloc( sizeof( rand64ctx ) );
isaac_state = *state;
/* Check the memory allocation. */
if( isaac_state == 0 )
{
nwipe_perror( errno, __FUNCTION__, "malloc" );
nwipe_log( NWIPE_LOG_FATAL, "Unable to allocate memory for the isaac state." );
return -1;
}
}
/* Take the minimum of the isaac seed size and available entropy. */
if( sizeof( isaac_state->randrsl ) < seed->length )
{
count = sizeof( isaac_state->randrsl );
}
else
{
memset( isaac_state->randrsl, 0, sizeof( isaac_state->randrsl ) );
count = seed->length;
}
if( count == 0 )
{
/* Start ISACC without a seed. */
rand64init( isaac_state, 0 );
}
else
{
/* Seed the ISAAC state with entropy. */
memcpy( isaac_state->randrsl, seed->s, count );
/* The second parameter indicates that randrsl is non-empty. */
rand64init( isaac_state, 1 );
}
return 0;
}
int nwipe_isaac64_read( NWIPE_PRNG_READ_SIGNATURE )
{
rand64ctx* isaac_state = *state;
u8* restrict bufpos = buffer;
size_t words = count / SIZE_OF_ISAAC64; // the values of ISAAC-64 is strictly 8 bytes
for( size_t ii = 0; ii < words; ++ii )
{
u64_to_buffer( bufpos, isaac64_nextval( isaac_state ), SIZE_OF_ISAAC64 );
bufpos += SIZE_OF_ISAAC64;
}
/* If there is some remainder copy only relevant number of bytes to not overflow the buffer. */
const size_t remain = count % SIZE_OF_ISAAC64; // SIZE_OF_ISAAC64 is strictly 8 bytes
if( remain > 0 )
{
u64_to_buffer( bufpos, isaac64_nextval( isaac_state ), remain );
}
return 0;
}
/* EXPERIMENTAL implementation of Lagged Fibonacci generator a lot of random numbers */
int nwipe_add_lagg_fibonacci_prng_init( NWIPE_PRNG_INIT_SIGNATURE )
{
if( *state == NULL )
{
nwipe_log( NWIPE_LOG_NOTICE, "Initialising Lagged Fibonacci generator PRNG" );
*state = malloc( sizeof( add_lagg_fibonacci_state_t ) );
}
add_lagg_fibonacci_init(
(add_lagg_fibonacci_state_t*) *state, (unsigned long*) ( seed->s ), seed->length / sizeof( unsigned long ) );
return 0;
}
/* EXPERIMENTAL implementation of XORoroshiro256 algorithm to provide high-quality, but a lot of random numbers */
int nwipe_xoroshiro256_prng_init( NWIPE_PRNG_INIT_SIGNATURE )
{
nwipe_log( NWIPE_LOG_NOTICE, "Initialising XORoroshiro-256 PRNG" );
if( *state == NULL )
{
/* This is the first time that we have been called. */
*state = malloc( sizeof( xoroshiro256_state_t ) );
}
xoroshiro256_init(
(xoroshiro256_state_t*) *state, (unsigned long*) ( seed->s ), seed->length / sizeof( unsigned long ) );
return 0;
}
int nwipe_add_lagg_fibonacci_prng_read( NWIPE_PRNG_READ_SIGNATURE )
{
u8* restrict bufpos = buffer;
size_t words = count / SIZE_OF_ADD_LAGG_FIBONACCI_PRNG;
/* Loop to fill the buffer with blocks directly from the Fibonacci algorithm */
for( size_t ii = 0; ii < words; ++ii )
{
add_lagg_fibonacci_genrand_uint256_to_buf( (add_lagg_fibonacci_state_t*) *state, bufpos );
bufpos += SIZE_OF_ADD_LAGG_FIBONACCI_PRNG; // Move to the next block
}
/* Handle remaining bytes if count is not a multiple of SIZE_OF_ADD_LAGG_FIBONACCI_PRNG */
const size_t remain = count % SIZE_OF_ADD_LAGG_FIBONACCI_PRNG;
if( remain > 0 )
{
unsigned char temp_output[16]; // Temporary buffer for the last block
add_lagg_fibonacci_genrand_uint256_to_buf( (add_lagg_fibonacci_state_t*) *state, temp_output );
// Copy the remaining bytes
memcpy( bufpos, temp_output, remain );
}
return 0; // Success
}
int nwipe_xoroshiro256_prng_read( NWIPE_PRNG_READ_SIGNATURE )
{
u8* restrict bufpos = buffer;
size_t words = count / SIZE_OF_XOROSHIRO256_PRNG;
/* Loop to fill the buffer with blocks directly from the XORoroshiro256 algorithm */
for( size_t ii = 0; ii < words; ++ii )
{
xoroshiro256_genrand_uint256_to_buf( (xoroshiro256_state_t*) *state, bufpos );
bufpos += SIZE_OF_XOROSHIRO256_PRNG; // Move to the next block
}
/* Handle remaining bytes if count is not a multiple of SIZE_OF_XOROSHIRO256_PRNG */
const size_t remain = count % SIZE_OF_XOROSHIRO256_PRNG;
if( remain > 0 )
{
unsigned char temp_output[16]; // Temporary buffer for the last block
xoroshiro256_genrand_uint256_to_buf( (xoroshiro256_state_t*) *state, temp_output );
// Copy the remaining bytes
memcpy( bufpos, temp_output, remain );
}
return 0; // Success
}
|