#!/usr/bin/perl -w # SPDX-FileCopyrightText: 2021-2024 Ole Tange, http://ole.tange.dk and Free Software and Foundation, Inc. # SPDX-License-Identifier: GFDL-1.3-or-later # SPDX-License-Identifier: CC-BY-SA-4.0 =encoding utf8 =head1 NAME parallel_alternatives - Alternatives to GNU B =head1 DIFFERENCES BETWEEN GNU Parallel AND ALTERNATIVES There are a lot programs that share functionality with GNU B. Some of these are specialized tools, and while GNU B can emulate many of them, a specialized tool can be better at a given task. GNU B strives to include the best of the general functionality without sacrificing ease of use. B has existed since 2002-01-06 and as GNU B since 2010. A lot of the alternatives have not had the vitality to survive that long, but have come and gone during that time. GNU B is actively maintained with a new release every month since 2010. Most other alternatives are fleeting interests of the developers with irregular releases and only maintained for a few years. =head2 SUMMARY LEGEND The following features are in some of the comparable tools: =head3 Inputs =over =item I1. Arguments can be read from stdin =item I2. Arguments can be read from a file =item I3. Arguments can be read from multiple files =item I4. Arguments can be read from command line =item I5. Arguments can be read from a table =item I6. Arguments can be read from the same file using #! (shebang) =item I7. Line oriented input as default (Quoting of special chars not needed) =back =head3 Manipulation of input =over =item M1. Composed command =item M2. Multiple arguments can fill up an execution line =item M3. Arguments can be put anywhere in the execution line =item M4. Multiple arguments can be put anywhere in the execution line =item M5. Arguments can be replaced with context =item M6. Input can be treated as the complete command line =back =head3 Outputs =over =item O1. Grouping output so output from different jobs do not mix =item O2. Send stderr (standard error) to stderr (standard error) =item O3. Send stdout (standard output) to stdout (standard output) =item O4. Order of output can be same as order of input =item O5. Stdout only contains stdout (standard output) from the command =item O6. Stderr only contains stderr (standard error) from the command =item O7. Buffering on disk =item O8. No temporary files left if killed =item O9. Test if disk runs full during run =item O10. Output of a line bigger than 4 GB =back =head3 Execution =over =item E1. Run jobs in parallel =item E2. List running jobs =item E3. Finish running jobs, but do not start new jobs =item E4. Number of running jobs can depend on number of cpus =item E5. Finish running jobs, but do not start new jobs after first failure =item E6. Number of running jobs can be adjusted while running =item E7. Only spawn new jobs if load is less than a limit =back =head3 Remote execution =over =item R1. Jobs can be run on remote computers =item R2. Basefiles can be transferred =item R3. Argument files can be transferred =item R4. Result files can be transferred =item R5. Cleanup of transferred files =item R6. No config files needed =item R7. Do not run more than SSHD's MaxStartups can handle =item R8. Configurable SSH command =item R9. Retry if connection breaks occasionally =back =head3 Semaphore =over =item S1. Possibility to work as a mutex =item S2. Possibility to work as a counting semaphore =back =head3 Legend =over =item - = no =item x = not applicable =item ID = yes =back As every new version of the programs are not tested the table may be outdated. Please file a bug report if you find errors (See REPORTING BUGS). parallel: =over =item I1 I2 I3 I4 I5 I6 I7 =item M1 M2 M3 M4 M5 M6 =item O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 =item E1 E2 E3 E4 E5 E6 E7 =item R1 R2 R3 R4 R5 R6 R7 R8 R9 =item S1 S2 =back =head2 DIFFERENCES BETWEEN xargs AND GNU Parallel Summary (see legend above): =over =item I1 I2 - - - - - =item - M2 M3 - - - =item - O2 O3 - O5 O6 =item E1 - - - - - - =item - - - - - x - - - =item - - =back B offers some of the same possibilities as GNU B. B deals badly with special characters (such as space, \, ' and "). To see the problem try this: touch important_file touch 'not important_file' ls not* | xargs rm mkdir -p "My brother's 12\" records" ls | xargs rmdir touch 'c:\windows\system32\clfs.sys' echo 'c:\windows\system32\clfs.sys' | xargs ls -l You can specify B<-0>, but many input generators are not optimized for using B as separator but are optimized for B as separator. E.g. B, B, B, B, B (requires using B<-z>), B (requires using B<-z>), B (requires using B<-z>), B (B<-0> and \0 instead of \n), B (requires using B<-0>), B (requires using B<-print0>), B (requires using B<-z> or B<-Z>), B (requires using B<-z>). GNU B's newline separation can be emulated with: cat | xargs -d "\n" -n1 command B can run a given number of jobs in parallel, but has no support for running number-of-cpu-cores jobs in parallel. B has no support for grouping the output, therefore output may run together, e.g. the first half of a line is from one process and the last half of the line is from another process. The example B cannot be done reliably with B because of this. To see this in action try: parallel perl -e "'"'$a="1"."{}"x10000000;print $a,"\n"'"'" \ '>' {} ::: a b c d e f g h # Serial = no mixing = the wanted result # 'tr -s a-z' squeezes repeating letters into a single letter echo a b c d e f g h | xargs -P1 -n1 grep 1 | tr -s a-z # Compare to 8 jobs in parallel parallel -kP8 -n1 grep 1 ::: a b c d e f g h | tr -s a-z echo a b c d e f g h | xargs -P8 -n1 grep 1 | tr -s a-z echo a b c d e f g h | xargs -P8 -n1 grep --line-buffered 1 | \ tr -s a-z Or try this: slow_seq() { echo Count to "$@" seq "$@" | perl -ne '$|=1; for(split//){ print; select($a,$a,$a,0.100);}' } export -f slow_seq # Serial = no mixing = the wanted result seq 8 | xargs -n1 -P1 -I {} bash -c 'slow_seq {}' # Compare to 8 jobs in parallel seq 8 | parallel -P8 slow_seq {} seq 8 | xargs -n1 -P8 -I {} bash -c 'slow_seq {}' B has no support for keeping the order of the output, therefore if running jobs in parallel using B the output of the second job cannot be postponed till the first job is done. B has no support for running jobs on remote computers. B has no support for context replace, so you will have to create the arguments. If you use a replace string in B (B<-I>) you can not force B to use more than one argument. Quoting in B works like B<-q> in GNU B. This means composed commands and redirection require using B. ls | parallel "wc {} >{}.wc" ls | parallel "echo {}; ls {}|wc" becomes (assuming you have 8 cores and that none of the filenames contain space, " or '). ls | xargs -d "\n" -P8 -I {} bash -c "wc {} >{}.wc" ls | xargs -d "\n" -P8 -I {} bash -c "echo {}; ls {}|wc" A more extreme example can be found on: https://unix.stackexchange.com/q/405552/ https://www.gnu.org/software/findutils/ =head2 DIFFERENCES BETWEEN find -exec AND GNU Parallel Summary (see legend above): =over =item - - - x - x - =item - M2 M3 - - - - =item - O2 O3 O4 O5 O6 =item - - - - - - - =item - - - - - - - - - =item x x =back B offers some of the same possibilities as GNU B. B only works on files. Processing other input (such as hosts or URLs) will require creating these inputs as files. B has no support for running commands in parallel. https://www.gnu.org/software/findutils/ (Last checked: 2019-01) =head2 DIFFERENCES BETWEEN make -j AND GNU Parallel Summary (see legend above): =over =item - - - - - - - =item - - - - - - =item O1 O2 O3 - x O6 =item E1 - - - E5 - =item - - - - - - - - - =item - - =back B can run jobs in parallel, but requires a crafted Makefile to do this. That results in extra quoting to get filenames containing newlines to work correctly. B computes a dependency graph before running jobs. Jobs run by GNU B does not depend on each other. (Very early versions of GNU B were coincidentally implemented using B). https://www.gnu.org/software/make/ (Last checked: 2019-01) =head2 DIFFERENCES BETWEEN ppss AND GNU Parallel Summary (see legend above): =over =item I1 I2 - - - - I7 =item M1 - M3 - - M6 =item O1 - - x - - =item E1 E2 ?E3 E4 - - - =item R1 R2 R3 R4 - - ?R7 ? ? =item - - =back B is also a tool for running jobs in parallel. The output of B is status information and thus not useful for using as input for another command. The output from the jobs are put into files. The argument replace string ($ITEM) cannot be changed. Arguments must be quoted - thus arguments containing special characters (space '"&!*) may cause problems. More than one argument is not supported. Filenames containing newlines are not processed correctly. When reading input from a file null cannot be used as a terminator. B needs to read the whole input file before starting any jobs. Output and status information is stored in ppss_dir and thus requires cleanup when completed. If the dir is not removed before running B again it may cause nothing to happen as B thinks the task is already done. GNU B will normally not need cleaning up if running locally and will only need cleaning up if stopped abnormally and running remote (B<--cleanup> may not complete if stopped abnormally). The example B would require extra postprocessing if written using B. For remote systems PPSS requires 3 steps: config, deploy, and start. GNU B only requires one step. =head3 EXAMPLES FROM ppss MANUAL Here are the examples from B's manual page with the equivalent using GNU B: 1$ ./ppss.sh standalone -d /path/to/files -c 'gzip ' 1$ find /path/to/files -type f | parallel gzip 2$ ./ppss.sh standalone -d /path/to/files \ -c 'cp "$ITEM" /destination/dir ' 2$ find /path/to/files -type f | parallel cp {} /destination/dir 3$ ./ppss.sh standalone -f list-of-urls.txt -c 'wget -q ' 3$ parallel -a list-of-urls.txt wget -q 4$ ./ppss.sh standalone -f list-of-urls.txt -c 'wget -q "$ITEM"' 4$ parallel -a list-of-urls.txt wget -q {} 5$ ./ppss config -C config.cfg -c 'encode.sh ' -d /source/dir \ -m 192.168.1.100 -u ppss -k ppss-key.key -S ./encode.sh \ -n nodes.txt -o /some/output/dir --upload --download; ./ppss deploy -C config.cfg ./ppss start -C config 5$ # parallel does not use configs. If you want # a different username put it in nodes.txt: user@hostname find source/dir -type f | parallel --sshloginfile nodes.txt --trc {.}.mp3 \ lame -a {} -o {.}.mp3 --preset standard --quiet 6$ ./ppss stop -C config.cfg 6$ killall -TERM parallel 7$ ./ppss pause -C config.cfg 7$ Press: CTRL-Z or killall -SIGTSTP parallel 8$ ./ppss continue -C config.cfg 8$ Enter: fg or killall -SIGCONT parallel 9$ ./ppss.sh status -C config.cfg 9$ killall -SIGUSR2 parallel https://github.com/louwrentius/PPSS (Last checked: 2010-12) =head2 DIFFERENCES BETWEEN pexec AND GNU Parallel Summary (see legend above): =over =item I1 I2 - I4 I5 - - =item M1 - M3 - - M6 =item O1 O2 O3 - O5 O6 =item E1 - - E4 - E6 - =item R1 - - - - R6 - - - =item S1 - =back B is also a tool for running jobs in parallel. =head3 EXAMPLES FROM pexec MANUAL Here are the examples from B's info page with the equivalent using GNU B: 1$ pexec -o sqrt-%s.dat -p "$(seq 10)" -e NUM -n 4 -c -- \ 'echo "scale=10000;sqrt($NUM)" | bc' 1$ seq 10 | parallel -j4 'echo "scale=10000;sqrt({})" | \ bc > sqrt-{}.dat' 2$ pexec -p "$(ls myfiles*.ext)" -i %s -o %s.sort -- sort 2$ ls myfiles*.ext | parallel sort {} ">{}.sort" 3$ pexec -f image.list -n auto -e B -u star.log -c -- \ 'fistar $B.fits -f 100 -F id,x,y,flux -o $B.star' 3$ parallel -a image.list \ 'fistar {}.fits -f 100 -F id,x,y,flux -o {}.star' 2>star.log 4$ pexec -r *.png -e IMG -c -o - -- \ 'convert $IMG ${IMG%.png}.jpeg ; "echo $IMG: done"' 4$ ls *.png | parallel 'convert {} {.}.jpeg; echo {}: done' 5$ pexec -r *.png -i %s -o %s.jpg -c 'pngtopnm | pnmtojpeg' 5$ ls *.png | parallel 'pngtopnm < {} | pnmtojpeg > {}.jpg' 6$ for p in *.png ; do echo ${p%.png} ; done | \ pexec -f - -i %s.png -o %s.jpg -c 'pngtopnm | pnmtojpeg' 6$ ls *.png | parallel 'pngtopnm < {} | pnmtojpeg > {.}.jpg' 7$ LIST=$(for p in *.png ; do echo ${p%.png} ; done) pexec -r $LIST -i %s.png -o %s.jpg -c 'pngtopnm | pnmtojpeg' 7$ ls *.png | parallel 'pngtopnm < {} | pnmtojpeg > {.}.jpg' 8$ pexec -n 8 -r *.jpg -y unix -e IMG -c \ 'pexec -j -m blockread -d $IMG | \ jpegtopnm | pnmscale 0.5 | pnmtojpeg | \ pexec -j -m blockwrite -s th_$IMG' 8$ # Combining GNU B and GNU B. ls *jpg | parallel -j8 'sem --id blockread cat {} | jpegtopnm |' \ 'pnmscale 0.5 | pnmtojpeg | sem --id blockwrite cat > th_{}' # If reading and writing is done to the same disk, this may be # faster as only one process will be either reading or writing: ls *jpg | parallel -j8 'sem --id diskio cat {} | jpegtopnm |' \ 'pnmscale 0.5 | pnmtojpeg | sem --id diskio cat > th_{}' https://www.gnu.org/software/pexec/ (Last checked: 2010-12) =head2 DIFFERENCES BETWEEN xjobs AND GNU Parallel B is also a tool for running jobs in parallel. It only supports running jobs on your local computer. B deals badly with special characters just like B. See the section B. =head3 EXAMPLES FROM xjobs MANUAL Here are the examples from B's man page with the equivalent using GNU B: 1$ ls -1 *.zip | xjobs unzip 1$ ls *.zip | parallel unzip 2$ ls -1 *.zip | xjobs -n unzip 2$ ls *.zip | parallel unzip >/dev/null 3$ find . -name '*.bak' | xjobs gzip 3$ find . -name '*.bak' | parallel gzip 4$ ls -1 *.jar | sed 's/\(.*\)/\1 > \1.idx/' | xjobs jar tf 4$ ls *.jar | parallel jar tf {} '>' {}.idx 5$ xjobs -s script 5$ cat script | parallel 6$ mkfifo /var/run/my_named_pipe; xjobs -s /var/run/my_named_pipe & echo unzip 1.zip >> /var/run/my_named_pipe; echo tar cf /backup/myhome.tar /home/me >> /var/run/my_named_pipe 6$ mkfifo /var/run/my_named_pipe; cat /var/run/my_named_pipe | parallel & echo unzip 1.zip >> /var/run/my_named_pipe; echo tar cf /backup/myhome.tar /home/me >> /var/run/my_named_pipe https://www.maier-komor.de/xjobs.html (Last checked: 2019-01) =head2 DIFFERENCES BETWEEN prll AND GNU Parallel B is also a tool for running jobs in parallel. It does not support running jobs on remote computers. B encourages using BASH aliases and BASH functions instead of scripts. GNU B supports scripts directly, functions if they are exported using B, and aliases if using B. B generates a lot of status information on stderr (standard error) which makes it harder to use the stderr (standard error) output of the job directly as input for another program. =head3 EXAMPLES FROM prll's MANUAL Here is the example from B's man page with the equivalent using GNU B: 1$ prll -s 'mogrify -flip $1' *.jpg 1$ parallel mogrify -flip ::: *.jpg https://github.com/exzombie/prll (Last checked: 2019-01) =head2 DIFFERENCES BETWEEN dxargs AND GNU Parallel B is also a tool for running jobs in parallel. B does not deal well with more simultaneous jobs than SSHD's MaxStartups. B is only built for remote run jobs, but does not support transferring of files. https://web.archive.org/web/20120518070250/http://www. semicomplete.com/blog/geekery/distributed-xargs.html (Last checked: 2019-01) =head2 DIFFERENCES BETWEEN mdm/middleman AND GNU Parallel middleman(mdm) is also a tool for running jobs in parallel. =head3 EXAMPLES FROM middleman's WEBSITE Here are the shellscripts of https://web.archive.org/web/20110728064735/http://mdm. berlios.de/usage.html ported to GNU B: 1$ seq 19 | parallel buffon -o - | sort -n > result cat files | parallel cmd find dir -execdir sem cmd {} \; https://github.com/cklin/mdm (Last checked: 2019-01) =head2 DIFFERENCES BETWEEN xapply AND GNU Parallel B can run jobs in parallel on the local computer. =head3 EXAMPLES FROM xapply's MANUAL Here are the examples from B's man page with the equivalent using GNU B: 1$ xapply '(cd %1 && make all)' */ 1$ parallel 'cd {} && make all' ::: */ 2$ xapply -f 'diff %1 ../version5/%1' manifest | more 2$ parallel diff {} ../version5/{} < manifest | more 3$ xapply -p/dev/null -f 'diff %1 %2' manifest1 checklist1 3$ parallel --link diff {1} {2} :::: manifest1 checklist1 4$ xapply 'indent' *.c 4$ parallel indent ::: *.c 5$ find ~ksb/bin -type f ! -perm -111 -print | \ xapply -f -v 'chmod a+x' - 5$ find ~ksb/bin -type f ! -perm -111 -print | \ parallel -v chmod a+x 6$ find */ -... | fmt 960 1024 | xapply -f -i /dev/tty 'vi' - 6$ sh <(find */ -... | parallel -s 1024 echo vi) 6$ find */ -... | parallel -s 1024 -Xuj1 vi 7$ find ... | xapply -f -5 -i /dev/tty 'vi' - - - - - 7$ sh <(find ... | parallel -n5 echo vi) 7$ find ... | parallel -n5 -uj1 vi 8$ xapply -fn "" /etc/passwd 8$ parallel -k echo < /etc/passwd 9$ tr ':' '\012' < /etc/passwd | \ xapply -7 -nf 'chown %1 %6' - - - - - - - 9$ tr ':' '\012' < /etc/passwd | parallel -N7 chown {1} {6} 10$ xapply '[ -d %1/RCS ] || echo %1' */ 10$ parallel '[ -d {}/RCS ] || echo {}' ::: */ 11$ xapply -f '[ -f %1 ] && echo %1' List | ... 11$ parallel '[ -f {} ] && echo {}' < List | ... https://www.databits.net/~ksb/msrc/local/bin/xapply/xapply.html (Last checked: 2010-12) =head2 DIFFERENCES BETWEEN AIX apply AND GNU Parallel B can build command lines based on a template and arguments - very much like GNU B. B does not run jobs in parallel. B does not use an argument separator (like B<:::>); instead the template must be the first argument. =head3 EXAMPLES FROM IBM's KNOWLEDGE CENTER Here are the examples from IBM's Knowledge Center and the corresponding command using GNU B: =head4 To obtain results similar to those of the B command, enter: 1$ apply echo * 1$ parallel echo ::: * =head4 To compare the file named a1 to the file named b1, and the file named a2 to the file named b2, enter: 2$ apply -2 cmp a1 b1 a2 b2 2$ parallel -N2 cmp ::: a1 b1 a2 b2 =head4 To run the B command five times, enter: 3$ apply -0 who 1 2 3 4 5 3$ parallel -N0 who ::: 1 2 3 4 5 =head4 To link all files in the current directory to the directory /usr/joe, enter: 4$ apply 'ln %1 /usr/joe' * 4$ parallel ln {} /usr/joe ::: * https://www-01.ibm.com/support/knowledgecenter/ ssw_aix_71/com.ibm.aix.cmds1/apply.htm (Last checked: 2019-01) =head2 DIFFERENCES BETWEEN paexec AND GNU Parallel B can run jobs in parallel on both the local and remote computers. B requires commands to print a blank line as the last output. This means you will have to write a wrapper for most programs. B has a job dependency facility so a job can depend on another job to be executed successfully. Sort of a poor-man's B. =head3 EXAMPLES FROM paexec's EXAMPLE CATALOG Here are the examples from B's example catalog with the equivalent using GNU B: =head4 1_div_X_run 1$ ../../paexec -s -l -c "`pwd`/1_div_X_cmd" -n +1 < rejects input with special characters: echo "The Cure" > My\ brother\'s\ 12\"\ records ls | map 'echo %; wc %' It works with GNU B: ls | parallel 'echo {}; wc {}' Under some circumstances it also works with B: ls | map 'echo % works %' But tiny changes make it reject the input with special characters: ls | map 'echo % does not work "%"' This means that many UTF-8 characters will be rejected. This is by design. From the web page: "As such, programs that I are doing their users a disservice." B delays each job by 0.01 s. This can be emulated by using B. B prints '+' on stderr when a job starts, and '-' when a job finishes. This cannot be disabled. B has B<--bar> if you need to see progress. B's replacement strings (% %D %B %E) can be simulated in GNU B by putting this in B<~/.parallel/config>: --rpl '%' --rpl '%D $_=Q(::dirname($_));' --rpl '%B s:.*/::;s:\.[^/.]+$::;' --rpl '%E s:.*\.::' B does not have an argument separator on the command line, but uses the first argument as command. This makes quoting harder which again may affect readability. Compare: map -p 2 'perl -ne '"'"'/^\S+\s+\S+$/ and print $ARGV,"\n"'"'" * parallel -q perl -ne '/^\S+\s+\S+$/ and print $ARGV,"\n"' ::: * B can do multiple arguments with context replace, but not without context replace: parallel --xargs echo 'BEGIN{'{}'}END' ::: 1 2 3 map "echo 'BEGIN{'%'}END'" 1 2 3 B has no support for grouping. So this gives the wrong results: parallel perl -e '\$a=\"1{}\"x10000000\;print\ \$a,\"\\n\"' '>' {} \ ::: a b c d e f ls -l a b c d e f parallel -kP4 -n1 grep 1 ::: a b c d e f > out.par map -n1 -p 4 'grep 1' a b c d e f > out.map-unbuf map -n1 -p 4 'grep --line-buffered 1' a b c d e f > out.map-linebuf map -n1 -p 1 'grep --line-buffered 1' a b c d e f > out.map-serial ls -l out* md5sum out* =head3 EXAMPLES FROM map's WEBSITE Here are the examples from B's web page with the equivalent using GNU B: 1$ ls *.gif | map convert % %B.png # default max-args: 1 1$ ls *.gif | parallel convert {} {.}.png 2$ map "mkdir %B; tar -C %B -xf %" *.tgz # default max-args: 1 2$ parallel 'mkdir {.}; tar -C {.} -xf {}' ::: *.tgz 3$ ls *.gif | map cp % /tmp # default max-args: 100 3$ ls *.gif | parallel -X cp {} /tmp 4$ ls *.tar | map -n 1 tar -xf % 4$ ls *.tar | parallel tar -xf 5$ map "cp % /tmp" *.tgz 5$ parallel cp {} /tmp ::: *.tgz 6$ map "du -sm /home/%/mail" alice bob carol 6$ parallel "du -sm /home/{}/mail" ::: alice bob carol or if you prefer running a single job with multiple args: 6$ parallel -Xj1 "du -sm /home/{}/mail" ::: alice bob carol 7$ cat /etc/passwd | map -d: 'echo user %1 has shell %7' 7$ cat /etc/passwd | parallel --colsep : 'echo user {1} has shell {7}' 8$ export MAP_MAX_PROCS=$(( `nproc` / 2 )) 8$ export PARALLEL=-j50% https://github.com/sitaramc/map (Last checked: 2020-05) =head2 DIFFERENCES BETWEEN ladon AND GNU Parallel B can run multiple jobs on files in parallel. B only works on files and the only way to specify files is using a quoted glob string (such as \*.jpg). It is not possible to list the files manually. As replacement strings it uses FULLPATH DIRNAME BASENAME EXT RELDIR RELPATH These can be simulated using GNU B by putting this in B<~/.parallel/config>: --rpl 'FULLPATH $_=Q($_);chomp($_=qx{readlink -f $_});' --rpl 'DIRNAME $_=Q(::dirname($_));chomp($_=qx{readlink -f $_});' --rpl 'BASENAME s:.*/::;s:\.[^/.]+$::;' --rpl 'EXT s:.*\.::' --rpl 'RELDIR $_=Q($_);chomp(($_,$c)=qx{readlink -f $_;pwd}); s:\Q$c/\E::;$_=::dirname($_);' --rpl 'RELPATH $_=Q($_);chomp(($_,$c)=qx{readlink -f $_;pwd}); s:\Q$c/\E::;' B deals badly with filenames containing " and newline, and it fails for output larger than 200k: ladon '*' -- seq 36000 | wc =head3 EXAMPLES FROM ladon MANUAL It is assumed that the '--rpl's above are put in B<~/.parallel/config> and that it is run under a shell that supports '**' globbing (such as B): 1$ ladon "**/*.txt" -- echo RELPATH 1$ parallel echo RELPATH ::: **/*.txt 2$ ladon "~/Documents/**/*.pdf" -- shasum FULLPATH >hashes.txt 2$ parallel shasum FULLPATH ::: ~/Documents/**/*.pdf >hashes.txt 3$ ladon -m thumbs/RELDIR "**/*.jpg" -- convert FULLPATH \ -thumbnail 100x100^ -gravity center -extent 100x100 \ thumbs/RELPATH 3$ parallel mkdir -p thumbs/RELDIR\; convert FULLPATH -thumbnail 100x100^ -gravity center -extent 100x100 \ thumbs/RELPATH ::: **/*.jpg 4$ ladon "~/Music/*.wav" -- lame -V 2 FULLPATH DIRNAME/BASENAME.mp3 4$ parallel lame -V 2 FULLPATH DIRNAME/BASENAME.mp3 ::: ~/Music/*.wav https://github.com/danielgtaylor/ladon (Last checked: 2019-01) =head2 DIFFERENCES BETWEEN jobflow AND GNU Parallel Summary (see legend above): =over =item I1 - - - - - I7 =item - - M3 - - (M6) =item O1 O2 O3 - O5 O6 (O7) - - O10 =item E1 - - - - E6 - =item - - - - - - - - - =item - - =back B can run multiple jobs in parallel. Just like B output from B jobs running in parallel mix together by default. B can buffer into files with B<-buffered> (placed in /run/shm), but these are not cleaned up if B dies unexpectedly (e.g. by Ctrl-C). If the total output is big (in the order of RAM+swap) it can cause the system to slow to a crawl and eventually run out of memory. Just like B redirection and composed commands require wrapping with B. Input lines can at most be 4096 bytes. B is faster than GNU B but around 6 times slower than B. B has no equivalent for B<--pipe>, or B<--sshlogin>. B makes it possible to set resource limits on the running jobs. This can be emulated by GNU B using B's B: jobflow -limits=mem=100M,cpu=3,fsize=20M,nofiles=300 myjob parallel 'ulimit -v 102400 -t 3 -f 204800 -n 300 myjob' =head3 EXAMPLES FROM jobflow README 1$ cat things.list | jobflow -threads=8 -exec ./mytask {} 1$ cat things.list | parallel -j8 ./mytask {} 2$ seq 100 | jobflow -threads=100 -exec echo {} 2$ seq 100 | parallel -j100 echo {} 3$ cat urls.txt | jobflow -threads=32 -exec wget {} 3$ cat urls.txt | parallel -j32 wget {} 4$ find . -name '*.bmp' | \ jobflow -threads=8 -exec bmp2jpeg {.}.bmp {.}.jpg 4$ find . -name '*.bmp' | \ parallel -j8 bmp2jpeg {.}.bmp {.}.jpg 5$ seq 100 | jobflow -skip 10 -count 10 5$ seq 100 | parallel --filter '{1} > 10 and {1} <= 20' echo 5$ seq 100 | parallel echo '{= $_>10 and $_<=20 or skip() =}' https://github.com/rofl0r/jobflow (Last checked: 2022-05) =head2 DIFFERENCES BETWEEN gargs AND GNU Parallel B can run multiple jobs in parallel. Older versions cache output in memory. This causes it to be extremely slow when the output is larger than the physical RAM, and can cause the system to run out of memory. See more details on this in B. Newer versions cache output in files, but leave files in $TMPDIR if it is killed. Output to stderr (standard error) is changed if the command fails. =head3 EXAMPLES FROM gargs WEBSITE 1$ seq 12 -1 1 | gargs -p 4 -n 3 "sleep {0}; echo {1} {2}" 1$ seq 12 -1 1 | parallel -P 4 -n 3 "sleep {1}; echo {2} {3}" 2$ cat t.txt | gargs --sep "\s+" \ -p 2 "echo '{0}:{1}-{2}' full-line: \'{}\'" 2$ cat t.txt | parallel --colsep "\\s+" \ -P 2 "echo '{1}:{2}-{3}' full-line: \'{}\'" https://github.com/brentp/gargs (Last checked: 2016-08) =head2 DIFFERENCES BETWEEN orgalorg AND GNU Parallel B can run the same job on multiple machines. This is related to B<--onall> and B<--nonall>. B supports entering the SSH password - provided it is the same for all servers. GNU B advocates using B instead, but it is possible to emulate B's behavior by setting SSHPASS and by using B<--ssh "sshpass ssh">. To make the emulation easier, make a simple alias: alias par_emul="parallel -j0 --ssh 'sshpass ssh' --nonall --tag --lb" If you want to supply a password run: SSHPASS=`ssh-askpass` or set the password directly: SSHPASS=P4$$w0rd! If the above is set up you can then do: orgalorg -o frontend1 -o frontend2 -p -C uptime par_emul -S frontend1 -S frontend2 uptime orgalorg -o frontend1 -o frontend2 -p -C top -bid 1 par_emul -S frontend1 -S frontend2 top -bid 1 orgalorg -o frontend1 -o frontend2 -p -er /tmp -n \ 'md5sum /tmp/bigfile' -S bigfile par_emul -S frontend1 -S frontend2 --basefile bigfile \ --workdir /tmp md5sum /tmp/bigfile B has a progress indicator for the transferring of a file. GNU B does not. https://github.com/reconquest/orgalorg (Last checked: 2016-08) =head2 DIFFERENCES BETWEEN Rust parallel(mmstick) AND GNU Parallel Rust parallel focuses on speed. It is almost as fast as B, but not as fast as B. It implements a few features from GNU B, but lacks many functions. All these fail: # Read arguments from file parallel -a file echo # Changing the delimiter parallel -d _ echo ::: a_b_c_ These do something different from GNU B # -q to protect quoted $ and space parallel -q perl -e '$a=shift; print "$a"x10000000' ::: a b c # Generation of combination of inputs parallel echo {1} {2} ::: red green blue ::: S M L XL XXL # {= perl expression =} replacement string parallel echo '{= s/new/old/ =}' ::: my.new your.new # --pipe seq 100000 | parallel --pipe wc # linked arguments parallel echo ::: S M L :::+ sml med lrg ::: R G B :::+ red grn blu # Run different shell dialects zsh -c 'parallel echo \={} ::: zsh && true' csh -c 'parallel echo \$\{\} ::: shell && true' bash -c 'parallel echo \$\({}\) ::: pwd && true' # Rust parallel does not start before the last argument is read (seq 10; sleep 5; echo 2) | time parallel -j2 'sleep 2; echo' tail -f /var/log/syslog | parallel echo Most of the examples from the book GNU Parallel 2018 do not work, thus Rust parallel is not close to being a compatible replacement. Rust parallel has no remote facilities. It uses /tmp/parallel for tmp files and does not clean up if terminated abruptly. If another user on the system uses Rust parallel, then /tmp/parallel will have the wrong permissions and Rust parallel will fail. A malicious user can setup the right permissions and symlink the output file to one of the user's files and next time the user uses Rust parallel it will overwrite this file. attacker$ mkdir /tmp/parallel attacker$ chmod a+rwX /tmp/parallel # Symlink to the file the attacker wants to zero out attacker$ ln -s ~victim/.important-file /tmp/parallel/stderr_1 victim$ seq 1000 | parallel echo # This file is now overwritten with stderr from 'echo' victim$ cat ~victim/.important-file If /tmp/parallel runs full during the run, Rust parallel does not report this, but finishes with success - thereby risking data loss. https://github.com/mmstick/parallel (Last checked: 2016-08) =head2 DIFFERENCES BETWEEN Rush AND GNU Parallel B (https://github.com/shenwei356/rush) is written in Go and based on B. Just like GNU B B buffers in temporary files. But opposite GNU B B does not clean up, if the process dies abnormally. B has some string manipulations that can be emulated by putting this into ~/.parallel/config (/ is used instead of %, and % is used instead of ^ as that is closer to bash's ${var%postfix}): --rpl '{:} s:(\.[^/]+)*$::' --rpl '{:%([^}]+?)} s:$$1(\.[^/]+)*$::' --rpl '{/:%([^}]*?)} s:.*/(.*)$$1(\.[^/]+)*$:$1:' --rpl '{/:} s:(.*/)?([^/.]+)(\.[^/]+)*$:$2:' --rpl '{@(.*?)} /$$1/ and $_=$1;' =head3 EXAMPLES FROM rush's WEBSITE Here are the examples from B's website with the equivalent command in GNU B. B<1. Simple run, quoting is not necessary> 1$ seq 1 3 | rush echo {} 1$ seq 1 3 | parallel echo {} B<2. Read data from file (`-i`)> 2$ rush echo {} -i data1.txt -i data2.txt 2$ cat data1.txt data2.txt | parallel echo {} B<3. Keep output order (`-k`)> 3$ seq 1 3 | rush 'echo {}' -k 3$ seq 1 3 | parallel -k echo {} B<4. Timeout (`-t`)> 4$ time seq 1 | rush 'sleep 2; echo {}' -t 1 4$ time seq 1 | parallel --timeout 1 'sleep 2; echo {}' B<5. Retry (`-r`)> 5$ seq 1 | rush 'python unexisted_script.py' -r 1 5$ seq 1 | parallel --retries 2 'python unexisted_script.py' Use B<-u> to see it is really run twice: 5$ seq 1 | parallel -u --retries 2 'python unexisted_script.py' B<6. Dirname (`{/}`) and basename (`{%}`) and remove custom suffix (`{^suffix}`)> 6$ echo dir/file_1.txt.gz | rush 'echo {/} {%} {^_1.txt.gz}' 6$ echo dir/file_1.txt.gz | parallel --plus echo {//} {/} {%_1.txt.gz} B<7. Get basename, and remove last (`{.}`) or any (`{:}`) extension> 7$ echo dir.d/file.txt.gz | rush 'echo {.} {:} {%.} {%:}' 7$ echo dir.d/file.txt.gz | parallel 'echo {.} {:} {/.} {/:}' B<8. Job ID, combine fields index and other replacement strings> 8$ echo 12 file.txt dir/s_1.fq.gz | rush 'echo job {#}: {2} {2.} {3%:^_1}' 8$ echo 12 file.txt dir/s_1.fq.gz | parallel --colsep ' ' 'echo job {#}: {2} {2.} {3/:%_1}' B<9. Capture submatch using regular expression (`{@regexp}`)> 9$ echo read_1.fq.gz | rush 'echo {@(.+)_\d}' 9$ echo read_1.fq.gz | parallel 'echo {@(.+)_\d}' B<10. Custom field delimiter (`-d`)> 10$ echo a=b=c | rush 'echo {1} {2} {3}' -d = 10$ echo a=b=c | parallel -d = echo {1} {2} {3} B<11. Send multi-lines to every command (`-n`)> 11$ seq 5 | rush -n 2 -k 'echo "{}"; echo' 11$ seq 5 | parallel -n 2 -k \ 'echo {=-1 $_=join"\n",@arg[1..$#arg] =}; echo' 11$ seq 5 | rush -n 2 -k 'echo "{}"; echo' -J ' ' 11$ seq 5 | parallel -n 2 -k 'echo {}; echo' B<12. Custom record delimiter (`-D`), note that empty records are not used.> 12$ echo a b c d | rush -D " " -k 'echo {}' 12$ echo a b c d | parallel -d " " -k 'echo {}' 12$ echo abcd | rush -D "" -k 'echo {}' Cannot be done by GNU Parallel 12$ cat fasta.fa >seq1 tag >seq2 cat gat >seq3 attac a cat 12$ cat fasta.fa | rush -D ">" \ 'echo FASTA record {#}: name: {1} sequence: {2}' -k -d "\n" # rush fails to join the multiline sequences 12$ cat fasta.fa | (read -n1 ignore_first_char; parallel -d '>' --colsep '\n' echo FASTA record {#}: \ name: {1} sequence: '{=2 $_=join"",@arg[2..$#arg]=}' ) B<13. Assign value to variable, like `awk -v` (`-v`)> 13$ seq 1 | rush 'echo Hello, {fname} {lname}!' -v fname=Wei -v lname=Shen 13$ seq 1 | parallel -N0 \ 'fname=Wei; lname=Shen; echo Hello, ${fname} ${lname}!' 13$ for var in a b; do \ 13$ seq 1 3 | rush -k -v var=$var 'echo var: {var}, data: {}'; \ 13$ done In GNU B you would typically do: 13$ seq 1 3 | parallel -k echo var: {1}, data: {2} ::: a b :::: - If you I want the var: 13$ seq 1 3 | parallel -k var={1} ';echo var: $var, data: {}' ::: a b :::: - If you I want the B-loop: 13$ for var in a b; do export var; seq 1 3 | parallel -k 'echo var: $var, data: {}'; done Contrary to B this also works if the value is complex like: My brother's 12" records B<14. Preset variable (`-v`), avoid repeatedly writing verbose replacement strings> 14$ # naive way echo read_1.fq.gz | rush 'echo {:^_1} {:^_1}_2.fq.gz' 14$ echo read_1.fq.gz | parallel 'echo {:%_1} {:%_1}_2.fq.gz' 14$ # macro + removing suffix echo read_1.fq.gz | rush -v p='{:^_1}' 'echo {p} {p}_2.fq.gz' 14$ echo read_1.fq.gz | parallel 'p={:%_1}; echo $p ${p}_2.fq.gz' 14$ # macro + regular expression echo read_1.fq.gz | rush -v p='{@(.+?)_\d}' 'echo {p} {p}_2.fq.gz' 14$ echo read_1.fq.gz | parallel 'p={@(.+?)_\d}; echo $p ${p}_2.fq.gz' Contrary to B GNU B works with complex values: 14$ echo "My brother's 12\"read_1.fq.gz" | parallel 'p={@(.+?)_\d}; echo $p ${p}_2.fq.gz' B<15. Interrupt jobs by `Ctrl-C`, rush will stop unfinished commands and exit.> 15$ seq 1 20 | rush 'sleep 1; echo {}' ^C 15$ seq 1 20 | parallel 'sleep 1; echo {}' ^C B<16. Continue/resume jobs (`-c`). When some jobs failed (by execution failure, timeout, or canceling by user with `Ctrl + C`), please switch flag `-c/--continue` on and run again, so that `rush` can save successful commands and ignore them in I run.> 16$ seq 1 3 | rush 'sleep {}; echo {}' -t 3 -c cat successful_cmds.rush seq 1 3 | rush 'sleep {}; echo {}' -t 3 -c 16$ seq 1 3 | parallel --joblog mylog --timeout 2 \ 'sleep {}; echo {}' cat mylog seq 1 3 | parallel --joblog mylog --retry-failed \ 'sleep {}; echo {}' Multi-line jobs: 16$ seq 1 3 | rush 'sleep {}; echo {}; \ echo finish {}' -t 3 -c -C finished.rush cat finished.rush seq 1 3 | rush 'sleep {}; echo {}; \ echo finish {}' -t 3 -c -C finished.rush 16$ seq 1 3 | parallel --joblog mylog --timeout 2 'sleep {}; echo {}; \ echo finish {}' cat mylog seq 1 3 | parallel --joblog mylog --retry-failed 'sleep {}; echo {}; \ echo finish {}' B<17. A comprehensive example: downloading 1K+ pages given by three URL list files using `phantomjs save_page.js` (some page contents are dynamically generated by Javascript, so `wget` does not work). Here I set max jobs number (`-j`) as `20`, each job has a max running time (`-t`) of `60` seconds and `3` retry changes (`-r`). Continue flag `-c` is also switched on, so we can continue unfinished jobs. Luckily, it's accomplished in one run :)> 17$ for f in $(seq 2014 2016); do \ /bin/rm -rf $f; mkdir -p $f; \ cat $f.html.txt | rush -v d=$f -d = \ 'phantomjs save_page.js "{}" > {d}/{3}.html' \ -j 20 -t 60 -r 3 -c; \ done GNU B can append to an existing joblog with '+': 17$ rm mylog for f in $(seq 2014 2016); do /bin/rm -rf $f; mkdir -p $f; cat $f.html.txt | parallel -j20 --timeout 60 --retries 4 --joblog +mylog \ --colsep = \ phantomjs save_page.js {1}={2}={3} '>' $f/{3}.html done B<18. A bioinformatics example: mapping with `bwa`, and processing result with `samtools`:> 18$ ref=ref/xxx.fa threads=25 ls -d raw.cluster.clean.mapping/* \ | rush -v ref=$ref -v j=$threads -v p='{}/{%}' \ 'bwa mem -t {j} -M -a {ref} {p}_1.fq.gz {p}_2.fq.gz >{p}.sam;\ samtools view -bS {p}.sam > {p}.bam; \ samtools sort -T {p}.tmp -@ {j} {p}.bam -o {p}.sorted.bam; \ samtools index {p}.sorted.bam; \ samtools flagstat {p}.sorted.bam > {p}.sorted.bam.flagstat; \ /bin/rm {p}.bam {p}.sam;' \ -j 2 --verbose -c -C mapping.rush GNU B would use a function: 18$ ref=ref/xxx.fa export ref thr=25 export thr bwa_sam() { p="$1" bam="$p".bam sam="$p".sam sortbam="$p".sorted.bam bwa mem -t $thr -M -a $ref ${p}_1.fq.gz ${p}_2.fq.gz > "$sam" samtools view -bS "$sam" > "$bam" samtools sort -T ${p}.tmp -@ $thr "$bam" -o "$sortbam" samtools index "$sortbam" samtools flagstat "$sortbam" > "$sortbam".flagstat /bin/rm "$bam" "$sam" } export -f bwa_sam ls -d raw.cluster.clean.mapping/* | parallel -j 2 --verbose --joblog mylog bwa_sam =head3 Other B features B has: =over 4 =item * B like custom defined variables (B<-v>) With GNU B you would simply set a shell variable: parallel 'v={}; echo "$v"' ::: foo echo foo | rush -v v={} 'echo {v}' Also B does not like special chars. So these B: echo does not work | rush -v v=\" 'echo {v}' echo "My brother's 12\" records" | rush -v v={} 'echo {v}' Whereas the corresponding GNU B version works: parallel 'v=\"; echo "$v"' ::: works parallel 'v={}; echo "$v"' ::: "My brother's 12\" records" =item * Exit on first error(s) (-e) This is called B<--halt now,fail=1> (or shorter: B<--halt 2>) when used with GNU B. =item * Settable records sending to every command (B<-n>, default 1) This is also called B<-n> in GNU B. =item * Practical replacement strings =over 4 =item {:} remove any extension With GNU B this can be emulated by: parallel --plus echo '{/\..*/}' ::: foo.ext.bar.gz =item {^suffix}, remove suffix With GNU B this can be emulated by: parallel --plus echo '{%.bar.gz}' ::: foo.ext.bar.gz =item {@regexp}, capture submatch using regular expression With GNU B this can be emulated by: parallel --rpl '{@(.*?)} /$$1/ and $_=$1;' \ echo '{@\d_(.*).gz}' ::: 1_foo.gz =item {%.}, {%:}, basename without extension With GNU B this can be emulated by: parallel echo '{= s:.*/::;s/\..*// =}' ::: dir/foo.bar.gz And if you need it often, you define a B<--rpl> in B<$HOME/.parallel/config>: --rpl '{%.} s:.*/::;s/\..*//' --rpl '{%:} s:.*/::;s/\..*//' Then you can use them as: parallel echo {%.} {%:} ::: dir/foo.bar.gz =back =item * Preset variable (macro) E.g. echo foosuffix | rush -v p={^suffix} 'echo {p}_new_suffix' With GNU B this can be emulated by: echo foosuffix | parallel --plus 'p={%suffix}; echo ${p}_new_suffix' Opposite B GNU B works fine if the input contains double space, ' and ": echo "1'6\" foosuffix" | parallel --plus 'p={%suffix}; echo "${p}"_new_suffix' =item * Commands of multi-lines While you I use multi-lined commands in GNU B, to improve readability GNU B discourages the use of multi-line commands. In most cases it can be written as a function: seq 1 3 | parallel --timeout 2 --joblog my.log 'sleep {}; echo {}; \ echo finish {}' Could be written as: doit() { sleep "$1" echo "$1" echo finish "$1" } export -f doit seq 1 3 | parallel --timeout 2 --joblog my.log doit The failed commands can be resumed with: seq 1 3 | parallel --resume-failed --joblog my.log 'sleep {}; echo {};\ echo finish {}' =back https://github.com/shenwei356/rush (Last checked: 2017-05) =head2 DIFFERENCES BETWEEN ClusterSSH AND GNU Parallel ClusterSSH solves a different problem than GNU B. ClusterSSH opens a terminal window for each computer and using a master window you can run the same command on all the computers. This is typically used for administrating several computers that are almost identical. GNU B runs the same (or different) commands with different arguments in parallel possibly using remote computers to help computing. If more than one computer is listed in B<-S> GNU B may only use one of these (e.g. if there are 8 jobs to be run and one computer has 8 cores). GNU B can be used as a poor-man's version of ClusterSSH: B https://github.com/duncs/clusterssh (Last checked: 2010-12) =head2 DIFFERENCES BETWEEN coshell AND GNU Parallel B only accepts full commands on standard input. Any quoting needs to be done by the user. Commands are run in B so any B/B/B specific syntax will not work. Output can be buffered by using B<-d>. Output is buffered in memory, so big output can cause swapping and therefore be terrible slow or even cause out of memory. https://github.com/gdm85/coshell (Last checked: 2019-01) =head2 DIFFERENCES BETWEEN spread AND GNU Parallel B runs commands on all directories. It can be emulated with GNU B using this Bash function: spread() { _cmds() { perl -e '$"=" && ";print "@ARGV"' "cd {}" "$@" } parallel $(_cmds "$@")'|| echo exit status $?' ::: */ } This works except for the B<--exclude> option. (Last checked: 2017-11) =head2 DIFFERENCES BETWEEN pyargs AND GNU Parallel B deals badly with input containing spaces. It buffers stdout, but not stderr. It buffers in RAM. {} does not work as replacement string. It does not support running functions. B does not support composed commands if run with B<--lines>, and fails on B. =head3 Examples seq 5 | pyargs -P50 -L seq seq 5 | parallel -P50 --lb seq seq 5 | pyargs -P50 --mark -L seq seq 5 | parallel -P50 --lb \ --tagstring OUTPUT'[{= $_=$job->replaced() =}]' seq # Similar, but not precisely the same seq 5 | parallel -P50 --lb --tag seq seq 5 | pyargs -P50 --mark command # Somewhat longer with GNU Parallel due to the special # --mark formatting cmd="$(echo "command" | parallel --shellquote)" wrap_cmd() { echo "MARK $cmd $@================================" >&3 echo "OUTPUT START[$cmd $@]:" eval $cmd "$@" echo "OUTPUT END[$cmd $@]" } (seq 5 | env_parallel -P2 wrap_cmd) 3>&1 # Similar, but not exactly the same seq 5 | parallel -t --tag command (echo '1 2 3';echo 4 5 6) | pyargs --stream seq (echo '1 2 3';echo 4 5 6) | perl -pe 's/\n/ /' | parallel -r -d' ' seq # Similar, but not exactly the same parallel seq ::: 1 2 3 4 5 6 https://github.com/robertblackwell/pyargs (Last checked: 2019-01) =head2 DIFFERENCES BETWEEN concurrently AND GNU Parallel B runs jobs in parallel. The output is prepended with the job number, and may be incomplete: $ concurrently 'seq 100000' | (sleep 3;wc -l) 7165 When pretty printing it caches output in memory. Output mixes by using test MIX below whether or not output is cached. There seems to be no way of making a template command and have B fill that with different args. The full commands must be given on the command line. There is also no way of controlling how many jobs should be run in parallel at a time - i.e. "number of jobslots". Instead all jobs are simply started in parallel. https://github.com/kimmobrunfeldt/concurrently (Last checked: 2019-01) =head2 DIFFERENCES BETWEEN map(soveran) AND GNU Parallel B does not run jobs in parallel by default. The README suggests using: ... | map t 'sleep $t && say done &' But this fails if more jobs are run in parallel than the number of available processes. Since there is no support for parallelization in B itself, the output also mixes: seq 10 | map i 'echo start-$i && sleep 0.$i && echo end-$i &' The major difference is that GNU B is built for parallelization and B is not. So GNU B has lots of ways of dealing with the issues that parallelization raises: =over 4 =item * Keep the number of processes manageable =item * Make sure output does not mix =item * Make Ctrl-C kill all running processes =back =head3 EXAMPLES FROM maps WEBSITE Here are the 5 examples converted to GNU Parallel: 1$ ls *.c | map f 'foo $f' 1$ ls *.c | parallel foo 2$ ls *.c | map f 'foo $f; bar $f' 2$ ls *.c | parallel 'foo {}; bar {}' 3$ cat urls | map u 'curl -O $u' 3$ cat urls | parallel curl -O 4$ printf "1\n1\n1\n" | map t 'sleep $t && say done' 4$ printf "1\n1\n1\n" | parallel 'sleep {} && say done' 4$ parallel 'sleep {} && say done' ::: 1 1 1 5$ printf "1\n1\n1\n" | map t 'sleep $t && say done &' 5$ printf "1\n1\n1\n" | parallel -j0 'sleep {} && say done' 5$ parallel -j0 'sleep {} && say done' ::: 1 1 1 https://github.com/soveran/map (Last checked: 2019-01) =head2 DIFFERENCES BETWEEN loop AND GNU Parallel B mixes stdout and stderr: loop 'ls /no-such-file' >/dev/null B's replacement string B<$ITEM> does not quote strings: echo 'two spaces' | loop 'echo $ITEM' B cannot run functions: myfunc() { echo joe; } export -f myfunc loop 'myfunc this fails' =head3 EXAMPLES FROM loop's WEBSITE Some of the examples from https://github.com/Miserlou/Loop/ can be emulated with GNU B: # A couple of functions will make the code easier to read $ loopy() { yes | parallel -uN0 -j1 "$@" } $ export -f loopy $ time_out() { parallel -uN0 -q --timeout "$@" ::: 1 } $ match() { perl -0777 -ne 'grep /'"$1"'/,$_ and print or exit 1' } $ export -f match $ loop 'ls' --every 10s $ loopy --delay 10s ls $ loop 'touch $COUNT.txt' --count-by 5 $ loopy touch '{= $_=seq()*5 =}'.txt $ loop --until-contains 200 -- \ ./get_response_code.sh --site mysite.biz` $ loopy --halt now,success=1 \ './get_response_code.sh --site mysite.biz | match 200' $ loop './poke_server' --for-duration 8h $ time_out 8h loopy ./poke_server $ loop './poke_server' --until-success $ loopy --halt now,success=1 ./poke_server $ cat files_to_create.txt | loop 'touch $ITEM' $ cat files_to_create.txt | parallel touch {} $ loop 'ls' --for-duration 10min --summary # --joblog is somewhat more verbose than --summary $ time_out 10m loopy --joblog my.log ./poke_server; cat my.log $ loop 'echo hello' $ loopy echo hello $ loop 'echo $COUNT' # GNU Parallel counts from 1 $ loopy echo {#} # Counting from 0 can be forced $ loopy echo '{= $_=seq()-1 =}' $ loop 'echo $COUNT' --count-by 2 $ loopy echo '{= $_=2*(seq()-1) =}' $ loop 'echo $COUNT' --count-by 2 --offset 10 $ loopy echo '{= $_=10+2*(seq()-1) =}' $ loop 'echo $COUNT' --count-by 1.1 # GNU Parallel rounds 3.3000000000000003 to 3.3 $ loopy echo '{= $_=1.1*(seq()-1) =}' $ loop 'echo $COUNT $ACTUALCOUNT' --count-by 2 $ loopy echo '{= $_=2*(seq()-1) =} {#}' $ loop 'echo $COUNT' --num 3 --summary # --joblog is somewhat more verbose than --summary $ seq 3 | parallel --joblog my.log echo; cat my.log $ loop 'ls -foobarbatz' --num 3 --summary # --joblog is somewhat more verbose than --summary $ seq 3 | parallel --joblog my.log -N0 ls -foobarbatz; cat my.log $ loop 'echo $COUNT' --count-by 2 --num 50 --only-last # Can be emulated by running 2 jobs $ seq 49 | parallel echo '{= $_=2*(seq()-1) =}' >/dev/null $ echo 50| parallel echo '{= $_=2*(seq()-1) =}' $ loop 'date' --every 5s $ loopy --delay 5s date $ loop 'date' --for-duration 8s --every 2s $ time_out 8s loopy --delay 2s date $ loop 'date -u' --until-time '2018-05-25 20:50:00' --every 5s $ seconds=$((`date -d 2019-05-25T20:50:00 +%s` - `date +%s`))s $ time_out $seconds loopy --delay 5s date -u $ loop 'echo $RANDOM' --until-contains "666" $ loopy --halt now,success=1 'echo $RANDOM | match 666' $ loop 'if (( RANDOM % 2 )); then (echo "TRUE"; true); else (echo "FALSE"; false); fi' --until-success $ loopy --halt now,success=1 'if (( $RANDOM % 2 )); then (echo "TRUE"; true); else (echo "FALSE"; false); fi' $ loop 'if (( RANDOM % 2 )); then (echo "TRUE"; true); else (echo "FALSE"; false); fi' --until-error $ loopy --halt now,fail=1 'if (( $RANDOM % 2 )); then (echo "TRUE"; true); else (echo "FALSE"; false); fi' $ loop 'date' --until-match "(\d{4})" $ loopy --halt now,success=1 'date | match [0-9][0-9][0-9][0-9]' $ loop 'echo $ITEM' --for red,green,blue $ parallel echo ::: red green blue $ cat /tmp/my-list-of-files-to-create.txt | loop 'touch $ITEM' $ cat /tmp/my-list-of-files-to-create.txt | parallel touch $ ls | loop 'cp $ITEM $ITEM.bak'; ls $ ls | parallel cp {} {}.bak; ls $ loop 'echo $ITEM | tr a-z A-Z' -i $ parallel 'echo {} | tr a-z A-Z' # Or more efficiently: $ parallel --pipe tr a-z A-Z $ loop 'echo $ITEM' --for "`ls`" $ parallel echo {} ::: "`ls`" $ ls | loop './my_program $ITEM' --until-success; $ ls | parallel --halt now,success=1 ./my_program {} $ ls | loop './my_program $ITEM' --until-fail; $ ls | parallel --halt now,fail=1 ./my_program {} $ ./deploy.sh; loop 'curl -sw "%{http_code}" http://coolwebsite.biz' \ --every 5s --until-contains 200; ./announce_to_slack.sh $ ./deploy.sh; loopy --delay 5s --halt now,success=1 \ 'curl -sw "%{http_code}" http://coolwebsite.biz | match 200'; ./announce_to_slack.sh $ loop "ping -c 1 mysite.com" --until-success; ./do_next_thing $ loopy --halt now,success=1 ping -c 1 mysite.com; ./do_next_thing $ ./create_big_file -o my_big_file.bin; loop 'ls' --until-contains 'my_big_file.bin'; ./upload_big_file my_big_file.bin # inotifywait is a better tool to detect file system changes. # It can even make sure the file is complete # so you are not uploading an incomplete file $ inotifywait -qmre MOVED_TO -e CLOSE_WRITE --format %w%f . | grep my_big_file.bin $ ls | loop 'cp $ITEM $ITEM.bak' $ ls | parallel cp {} {}.bak $ loop './do_thing.sh' --every 15s --until-success --num 5 $ parallel --retries 5 --delay 15s ::: ./do_thing.sh https://github.com/Miserlou/Loop/ (Last checked: 2018-10) =head2 DIFFERENCES BETWEEN lorikeet AND GNU Parallel B can run jobs in parallel. It does this based on a dependency graph described in a file, so this is similar to B. https://github.com/cetra3/lorikeet (Last checked: 2018-10) =head2 DIFFERENCES BETWEEN spp AND GNU Parallel B can run jobs in parallel. B does not use a command template to generate the jobs, but requires jobs to be in a file. Output from the jobs mix. https://github.com/john01dav/spp (Last checked: 2019-01) =head2 DIFFERENCES BETWEEN paral AND GNU Parallel B prints a lot of status information and stores the output from the commands run into files. This means it cannot be used the middle of a pipe like this paral "echo this" "echo does not" "echo work" | wc Instead it puts the output into files named like B.out.log>. To get a very similar behaviour with GNU B use B<--results 'out_{#}_{=s/[^\sa-z_0-9]//g;s/\s+/_/g=}.log' --eta> B only takes arguments on the command line and each argument should be a full command. Thus it does not use command templates. This limits how many jobs it can run in total, because they all need to fit on a single command line. B has no support for running jobs remotely. =head3 EXAMPLES FROM README.markdown The examples from B and the corresponding command run with GNU B (B<--results 'out_{#}_{=s/[^\sa-z_0-9]//g;s/\s+/_/g=}.log' --eta> is omitted from the GNU B command): 1$ paral "command 1" "command 2 --flag" "command arg1 arg2" 1$ parallel ::: "command 1" "command 2 --flag" "command arg1 arg2" 2$ paral "sleep 1 && echo c1" "sleep 2 && echo c2" \ "sleep 3 && echo c3" "sleep 4 && echo c4" "sleep 5 && echo c5" 2$ parallel ::: "sleep 1 && echo c1" "sleep 2 && echo c2" \ "sleep 3 && echo c3" "sleep 4 && echo c4" "sleep 5 && echo c5" # Or shorter: parallel "sleep {} && echo c{}" ::: {1..5} 3$ paral -n=0 "sleep 5 && echo c5" "sleep 4 && echo c4" \ "sleep 3 && echo c3" "sleep 2 && echo c2" "sleep 1 && echo c1" 3$ parallel ::: "sleep 5 && echo c5" "sleep 4 && echo c4" \ "sleep 3 && echo c3" "sleep 2 && echo c2" "sleep 1 && echo c1" # Or shorter: parallel -j0 "sleep {} && echo c{}" ::: 5 4 3 2 1 4$ paral -n=1 "sleep 5 && echo c5" "sleep 4 && echo c4" \ "sleep 3 && echo c3" "sleep 2 && echo c2" "sleep 1 && echo c1" 4$ parallel -j1 "sleep {} && echo c{}" ::: 5 4 3 2 1 5$ paral -n=2 "sleep 5 && echo c5" "sleep 4 && echo c4" \ "sleep 3 && echo c3" "sleep 2 && echo c2" "sleep 1 && echo c1" 5$ parallel -j2 "sleep {} && echo c{}" ::: 5 4 3 2 1 6$ paral -n=5 "sleep 5 && echo c5" "sleep 4 && echo c4" \ "sleep 3 && echo c3" "sleep 2 && echo c2" "sleep 1 && echo c1" 6$ parallel -j5 "sleep {} && echo c{}" ::: 5 4 3 2 1 7$ paral -n=1 "echo a && sleep 0.5 && echo b && sleep 0.5 && \ echo c && sleep 0.5 && echo d && sleep 0.5 && \ echo e && sleep 0.5 && echo f && sleep 0.5 && \ echo g && sleep 0.5 && echo h" 7$ parallel ::: "echo a && sleep 0.5 && echo b && sleep 0.5 && \ echo c && sleep 0.5 && echo d && sleep 0.5 && \ echo e && sleep 0.5 && echo f && sleep 0.5 && \ echo g && sleep 0.5 && echo h" https://github.com/amattn/paral (Last checked: 2019-01) =head2 DIFFERENCES BETWEEN concurr AND GNU Parallel B is built to run jobs in parallel using a client/server model. =head3 EXAMPLES FROM README.md The examples from B: 1$ concurr 'echo job {#} on slot {%}: {}' : arg1 arg2 arg3 arg4 1$ parallel 'echo job {#} on slot {%}: {}' ::: arg1 arg2 arg3 arg4 2$ concurr 'echo job {#} on slot {%}: {}' :: file1 file2 file3 2$ parallel 'echo job {#} on slot {%}: {}' :::: file1 file2 file3 3$ concurr 'echo {}' < input_file 3$ parallel 'echo {}' < input_file 4$ cat file | concurr 'echo {}' 4$ cat file | parallel 'echo {}' B deals badly empty input files and with output larger than 64 KB. https://github.com/mmstick/concurr (Last checked: 2019-01) =head2 DIFFERENCES BETWEEN lesser-parallel AND GNU Parallel B is the inspiration for B. Both B and B define bash functions that can be included as part of a bash script to run jobs in parallel. B implements a few of the replacement strings, but hardly any options, whereas B gives you the full GNU B experience. https://github.com/kou1okada/lesser-parallel (Last checked: 2019-01) =head2 DIFFERENCES BETWEEN npm-parallel AND GNU Parallel B can run npm tasks in parallel. There are no examples and very little documentation, so it is hard to compare to GNU B. https://github.com/spion/npm-parallel (Last checked: 2019-01) =head2 DIFFERENCES BETWEEN machma AND GNU Parallel B runs tasks in parallel. It gives time stamped output. It buffers in RAM. =head3 EXAMPLES FROM README.md The examples from README.md: 1$ # Put shorthand for timestamp in config for the examples echo '--rpl '\ \''{time} $_=::strftime("%Y-%m-%d %H:%M:%S",localtime())'\' \ > ~/.parallel/machma echo '--line-buffer --tagstring "{#} {time} {}"' \ >> ~/.parallel/machma 2$ find . -iname '*.jpg' | machma -- mogrify -resize 1200x1200 -filter Lanczos {} find . -iname '*.jpg' | parallel --bar -Jmachma mogrify -resize 1200x1200 \ -filter Lanczos {} 3$ cat /tmp/ips | machma -p 2 -- ping -c 2 -q {} 3$ cat /tmp/ips | parallel -j2 -Jmachma ping -c 2 -q {} 4$ cat /tmp/ips | machma -- sh -c 'ping -c 2 -q $0 > /dev/null && echo alive' {} 4$ cat /tmp/ips | parallel -Jmachma 'ping -c 2 -q {} > /dev/null && echo alive' 5$ find . -iname '*.jpg' | machma --timeout 5s -- mogrify -resize 1200x1200 \ -filter Lanczos {} 5$ find . -iname '*.jpg' | parallel --timeout 5s --bar mogrify -resize 1200x1200 \ -filter Lanczos {} 6$ find . -iname '*.jpg' -print0 | machma --null -- mogrify -resize 1200x1200 -filter Lanczos {} 6$ find . -iname '*.jpg' -print0 | parallel --null --bar mogrify -resize 1200x1200 \ -filter Lanczos {} https://github.com/fd0/machma (Last checked: 2019-06) =head2 DIFFERENCES BETWEEN interlace AND GNU Parallel Summary (see legend above): =over =item - I2 I3 I4 - - - =item M1 - M3 - - M6 =item - O2 O3 - - - - x x =item E1 E2 - - - - - =item - - - - - - - - - =item - - =back B is built for network analysis to run network tools in parallel. B does not buffer output, so output from different jobs mixes. The overhead for each target is O(n*n), so with 1000 targets it becomes very slow with an overhead in the order of 500ms/target. =head3 EXAMPLES FROM interlace's WEBSITE Using B most of the examples from https://github.com/codingo/Interlace can be run with GNU B: Blocker commands.txt: mkdir -p _output_/_target_/scans/ _blocker_ nmap _target_ -oA _output_/_target_/scans/_target_-nmap interlace -tL ./targets.txt -cL commands.txt -o $output parallel -a targets.txt \ mkdir -p $output/{}/scans/\; nmap {} -oA $output/{}/scans/{}-nmap Blocks commands.txt: _block:nmap_ mkdir -p _target_/output/scans/ nmap _target_ -oN _target_/output/scans/_target_-nmap _block:nmap_ nikto --host _target_ interlace -tL ./targets.txt -cL commands.txt _nmap() { mkdir -p $1/output/scans/ nmap $1 -oN $1/output/scans/$1-nmap } export -f _nmap parallel ::: _nmap "nikto --host" :::: targets.txt Run Nikto Over Multiple Sites interlace -tL ./targets.txt -threads 5 \ -c "nikto --host _target_ > ./_target_-nikto.txt" -v parallel -a targets.txt -P5 nikto --host {} \> ./{}_-nikto.txt Run Nikto Over Multiple Sites and Ports interlace -tL ./targets.txt -threads 5 -c \ "nikto --host _target_:_port_ > ./_target_-_port_-nikto.txt" \ -p 80,443 -v parallel -P5 nikto --host {1}:{2} \> ./{1}-{2}-nikto.txt \ :::: targets.txt ::: 80 443 Run a List of Commands against Target Hosts commands.txt: nikto --host _target_:_port_ > _output_/_target_-nikto.txt sslscan _target_:_port_ > _output_/_target_-sslscan.txt testssl.sh _target_:_port_ > _output_/_target_-testssl.txt interlace -t example.com -o ~/Engagements/example/ \ -cL ./commands.txt -p 80,443 parallel --results ~/Engagements/example/{2}:{3}{1} {1} {2}:{3} \ ::: "nikto --host" sslscan testssl.sh ::: example.com ::: 80 443 CIDR notation with an application that doesn't support it interlace -t 192.168.12.0/24 -c "vhostscan _target_ \ -oN _output_/_target_-vhosts.txt" -o ~/scans/ -threads 50 prips 192.168.12.0/24 | parallel -P50 vhostscan {} -oN ~/scans/{}-vhosts.txt Glob notation with an application that doesn't support it interlace -t 192.168.12.* -c "vhostscan _target_ \ -oN _output_/_target_-vhosts.txt" -o ~/scans/ -threads 50 # Glob is not supported in prips prips 192.168.12.0/24 | parallel -P50 vhostscan {} -oN ~/scans/{}-vhosts.txt Dash (-) notation with an application that doesn't support it interlace -t 192.168.12.1-15 -c \ "vhostscan _target_ -oN _output_/_target_-vhosts.txt" \ -o ~/scans/ -threads 50 # Dash notation is not supported in prips prips 192.168.12.1 192.168.12.15 | parallel -P50 vhostscan {} -oN ~/scans/{}-vhosts.txt Threading Support for an application that doesn't support it interlace -tL ./target-list.txt -c \ "vhostscan -t _target_ -oN _output_/_target_-vhosts.txt" \ -o ~/scans/ -threads 50 cat ./target-list.txt | parallel -P50 vhostscan -t {} -oN ~/scans/{}-vhosts.txt alternatively ./vhosts-commands.txt: vhostscan -t $target -oN _output_/_target_-vhosts.txt interlace -cL ./vhosts-commands.txt -tL ./target-list.txt \ -threads 50 -o ~/scans ./vhosts-commands.txt: vhostscan -t "$1" -oN "$2" parallel -P50 ./vhosts-commands.txt {} ~/scans/{}-vhosts.txt \ :::: ./target-list.txt Exclusions interlace -t 192.168.12.0/24 -e 192.168.12.0/26 -c \ "vhostscan _target_ -oN _output_/_target_-vhosts.txt" \ -o ~/scans/ -threads 50 prips 192.168.12.0/24 | grep -xv -Ff <(prips 192.168.12.0/26) | parallel -P50 vhostscan {} -oN ~/scans/{}-vhosts.txt Run Nikto Using Multiple Proxies interlace -tL ./targets.txt -pL ./proxies.txt -threads 5 -c \ "nikto --host _target_:_port_ -useproxy _proxy_ > \ ./_target_-_port_-nikto.txt" -p 80,443 -v parallel -j5 \ "nikto --host {1}:{2} -useproxy {3} > ./{1}-{2}-nikto.txt" \ :::: ./targets.txt ::: 80 443 :::: ./proxies.txt https://github.com/codingo/Interlace (Last checked: 2019-09) =head2 DIFFERENCES BETWEEN otonvm Parallel AND GNU Parallel I have been unable to get the code to run at all. It seems unfinished. https://github.com/otonvm/Parallel (Last checked: 2019-02) =head2 DIFFERENCES BETWEEN k-bx par AND GNU Parallel B requires Haskell to work. This limits the number of platforms this can work on. B does line buffering in memory. The memory usage is 3x the longest line (compared to 1x for B). Commands must be given as arguments. There is no template. These are the examples from https://github.com/k-bx/par with the corresponding GNU B command. par "echo foo; sleep 1; echo foo; sleep 1; echo foo" \ "echo bar; sleep 1; echo bar; sleep 1; echo bar" && echo "success" parallel --lb ::: "echo foo; sleep 1; echo foo; sleep 1; echo foo" \ "echo bar; sleep 1; echo bar; sleep 1; echo bar" && echo "success" par "echo foo; sleep 1; foofoo" \ "echo bar; sleep 1; echo bar; sleep 1; echo bar" && echo "success" parallel --lb --halt 1 ::: "echo foo; sleep 1; foofoo" \ "echo bar; sleep 1; echo bar; sleep 1; echo bar" && echo "success" par "PARPREFIX=[fooechoer] echo foo" "PARPREFIX=[bar] echo bar" parallel --lb --colsep , --tagstring {1} {2} \ ::: "[fooechoer],echo foo" "[bar],echo bar" par --succeed "foo" "bar" && echo 'wow' parallel "foo" "bar"; true && echo 'wow' https://github.com/k-bx/par (Last checked: 2019-02) =head2 DIFFERENCES BETWEEN parallelshell AND GNU Parallel B does not allow for composed commands: # This does not work parallelshell 'echo foo;echo bar' 'echo baz;echo quuz' Instead you have to wrap that in a shell: parallelshell 'sh -c "echo foo;echo bar"' 'sh -c "echo baz;echo quuz"' It buffers output in RAM. All commands must be given on the command line and all commands are started in parallel at the same time. This will cause the system to freeze if there are so many jobs that there is not enough memory to run them all at the same time. https://github.com/keithamus/parallelshell (Last checked: 2019-02) https://github.com/darkguy2008/parallelshell (Last checked: 2019-03) =head2 DIFFERENCES BETWEEN shell-executor AND GNU Parallel B does not allow for composed commands: # This does not work sx 'echo foo;echo bar' 'echo baz;echo quuz' Instead you have to wrap that in a shell: sx 'sh -c "echo foo;echo bar"' 'sh -c "echo baz;echo quuz"' It buffers output in RAM. All commands must be given on the command line and all commands are started in parallel at the same time. This will cause the system to freeze if there are so many jobs that there is not enough memory to run them all at the same time. https://github.com/royriojas/shell-executor (Last checked: 2019-02) =head2 DIFFERENCES BETWEEN non-GNU par AND GNU Parallel B buffers in memory to avoid mixing of jobs. It takes 1s per 1 million output lines. B needs to have all commands before starting the first job. The jobs are read from stdin (standard input) so any quoting will have to be done by the user. Stdout (standard output) is prepended with o:. Stderr (standard error) is sendt to stdout (standard output) and prepended with e:. For short jobs with little output B is 20% faster than GNU B and 60% slower than B. https://github.com/UnixJunkie/PAR https://savannah.nongnu.org/projects/par (Last checked: 2019-02) =head2 DIFFERENCES BETWEEN fd AND GNU Parallel B does not support composed commands, so commands must be wrapped in B. It buffers output in RAM. It only takes file names from the filesystem as input (similar to B). https://github.com/sharkdp/fd (Last checked: 2019-02) =head2 DIFFERENCES BETWEEN lateral AND GNU Parallel B is very similar to B: It takes a single command and runs it in the background. The design means that output from parallel running jobs may mix. If it dies unexpectly it leaves a socket in ~/.lateral/socket.PID. B deals badly with too long command lines. This makes the B server crash: lateral run echo `seq 100000| head -c 1000k` Any options will be read by B so this does not work (B interprets the B<-l>): lateral run ls -l Composed commands do not work: lateral run pwd ';' ls Functions do not work: myfunc() { echo a; } export -f myfunc lateral run myfunc Running B in the terminal causes the parent shell to die: echo '#!/bin/bash' > mycmd echo emacs -nw >> mycmd chmod +x mycmd lateral start lateral run ./mycmd Here are the examples from https://github.com/akramer/lateral with the corresponding GNU B and GNU B commands: 1$ lateral start for i in $(cat /tmp/names); do lateral run -- some_command $i done lateral wait 1$ for i in $(cat /tmp/names); do sem some_command $i done sem --wait 1$ parallel some_command :::: /tmp/names 2$ lateral start for i in $(seq 1 100); do lateral run -- my_slow_command < workfile$i > /tmp/logfile$i done lateral wait 2$ for i in $(seq 1 100); do sem my_slow_command < workfile$i > /tmp/logfile$i done sem --wait 2$ parallel 'my_slow_command < workfile{} > /tmp/logfile{}' \ ::: {1..100} 3$ lateral start -p 0 # yup, it will just queue tasks for i in $(seq 1 100); do lateral run -- command_still_outputs_but_wont_spam inputfile$i done # command output spam can commence lateral config -p 10; lateral wait 3$ for i in $(seq 1 100); do echo "command inputfile$i" >> joblist done parallel -j 10 :::: joblist 3$ echo 1 > /tmp/njobs parallel -j /tmp/njobs command inputfile{} \ ::: {1..100} & echo 10 >/tmp/njobs wait https://github.com/akramer/lateral (Last checked: 2019-03) =head2 DIFFERENCES BETWEEN with-this AND GNU Parallel The examples from https://github.com/amritb/with-this.git and the corresponding GNU B command: with -v "$(cat myurls.txt)" "curl -L this" parallel curl -L ::: myurls.txt with -v "$(cat myregions.txt)" \ "aws --region=this ec2 describe-instance-status" parallel aws --region={} ec2 describe-instance-status \ :::: myregions.txt with -v "$(ls)" "kubectl --kubeconfig=this get pods" ls | parallel kubectl --kubeconfig={} get pods with -v "$(ls | grep config)" "kubectl --kubeconfig=this get pods" ls | grep config | parallel kubectl --kubeconfig={} get pods with -v "$(echo {1..10})" "echo 123" parallel -N0 echo 123 ::: {1..10} Stderr is merged with stdout. B buffers in RAM. It uses 3x the output size, so you cannot have output larger than 1/3rd the amount of RAM. The input values cannot contain spaces. Composed commands do not work. B gives some additional information, so the output has to be cleaned before piping it to the next command. https://github.com/amritb/with-this.git (Last checked: 2019-03) =head2 DIFFERENCES BETWEEN Tollef's parallel (moreutils) AND GNU Parallel Summary (see legend above): =over =item - - - I4 - - I7 =item - - M3 - - M6 =item - O2 O3 - O5 O6 - x x =item E1 - - - - - E7 =item - x x x x x x x x =item - - =back =head3 EXAMPLES FROM Tollef's parallel MANUAL B parallel sh -c "echo hi; sleep 2; echo bye" -- 1 2 3 B parallel "echo hi; sleep 2; echo bye" ::: 1 2 3 B parallel -j 3 ufraw -o processed -- *.NEF B parallel -j 3 ufraw -o processed ::: *.NEF B parallel -j 3 -- ls df "echo hi" B parallel -j 3 ::: ls df "echo hi" (Last checked: 2019-08) =head2 DIFFERENCES BETWEEN rargs AND GNU Parallel Summary (see legend above): =over =item I1 - - - - - I7 =item - - M3 M4 - - =item - O2 O3 - O5 O6 - O8 - =item E1 - - E4 - - - =item - - - - - - - - - =item - - =back B has elegant ways of doing named regexp capture and field ranges. With GNU B you can use B<--rpl> to get a similar functionality as regexp capture gives, and use B and B<@arg> to get the field ranges. But the syntax is longer. This: --rpl '{r(\d+)\.\.(\d+)} $_=join"$opt::colsep",@arg[$$1..$$2]' would make it possible to use: {1r3..6} for field 3..6. For full support of {n..m:s} including negative numbers use a dynamic replacement string like this: PARALLEL=--rpl\ \''{r((-?\d+)?)\.\.((-?\d+)?)((:([^}]*))?)} $a = defined $$2 ? $$2 < 0 ? 1+$#arg+$$2 : $$2 : 1; $b = defined $$4 ? $$4 < 0 ? 1+$#arg+$$4 : $$4 : $#arg+1; $s = defined $$6 ? $$7 : " "; $_ = join $s,@arg[$a..$b]'\' export PARALLEL You can then do: head /etc/passwd | parallel --colsep : echo ..={1r..} ..3={1r..3} \ 4..={1r4..} 2..4={1r2..4} 3..3={1r3..3} ..3:-={1r..3:-} \ ..3:/={1r..3:/} -1={-1} -5={-5} -6={-6} -3..={1r-3..} =head3 EXAMPLES FROM rargs MANUAL 1$ ls *.bak | rargs -p '(.*)\.bak' mv {0} {1} 1$ ls *.bak | parallel mv {} {.} 2$ cat download-list.csv | rargs -p '(?P.*),(?P.*)' wget {url} -O {filename} 2$ cat download-list.csv | parallel --csv wget {1} -O {2} # or use regexps: 2$ cat download-list.csv | parallel --rpl '{url} s/,.*//' --rpl '{filename} s/.*?,//' \ wget {url} -O {filename} 3$ cat /etc/passwd | rargs -d: echo -e 'id: "{1}"\t name: "{5}"\t rest: "{6..::}"' 3$ cat /etc/passwd | parallel -q --colsep : \ echo -e 'id: "{1}"\t name: "{5}"\t rest: "{=6 $_=join":",@arg[6..$#arg]=}"' https://github.com/lotabout/rargs (Last checked: 2020-01) =head2 DIFFERENCES BETWEEN threader AND GNU Parallel Summary (see legend above): =over =item I1 - - - - - - =item M1 - M3 - - M6 =item O1 - O3 - O5 - - x x =item E1 - - E4 - - - =item - - - - - - - - - =item - - =back Newline separates arguments, but newline at the end of file is treated as an empty argument. So this runs 2 jobs: echo two_jobs | threader -run 'echo "$THREADID"' B ignores stderr, so any output to stderr is lost. B buffers in RAM, so output bigger than the machine's virtual memory will cause the machine to crash. https://github.com/voodooEntity/threader (Last checked: 2020-04) =head2 DIFFERENCES BETWEEN runp AND GNU Parallel Summary (see legend above): =over =item I1 I2 - - - - - =item M1 - (M3) - - M6 =item O1 O2 O3 - O5 O6 - x x - =item E1 - - - - - - =item - - - - - - - - - =item - - =back (M3): You can add a prefix and a postfix to the input, so it means you can only insert the argument on the command line once. B runs 10 jobs in parallel by default. B blocks if output of a command is > 64 Kbytes. Quoting of input is needed. It adds output to stderr (this can be prevented with -q) =head3 Examples as GNU Parallel base='https://images-api.nasa.gov/search' query='jupiter' desc='planet' type='image' url="$base?q=$query&description=$desc&media_type=$type" # Download the images in parallel using runp curl -s $url | jq -r .collection.items[].href | \ runp -p 'curl -s' | jq -r .[] | grep large | \ runp -p 'curl -s -L -O' time curl -s $url | jq -r .collection.items[].href | \ runp -g 1 -q -p 'curl -s' | jq -r .[] | grep large | \ runp -g 1 -q -p 'curl -s -L -O' # Download the images in parallel curl -s $url | jq -r .collection.items[].href | \ parallel curl -s | jq -r .[] | grep large | \ parallel curl -s -L -O time curl -s $url | jq -r .collection.items[].href | \ parallel -j 1 curl -s | jq -r .[] | grep large | \ parallel -j 1 curl -s -L -O =head4 Run some test commands (read from file) # Create a file containing commands to run in parallel. cat << EOF > /tmp/test-commands.txt sleep 5 sleep 3 blah # this will fail ls $PWD # PWD shell variable is used here EOF # Run commands from the file. runp /tmp/test-commands.txt > /dev/null parallel -a /tmp/test-commands.txt > /dev/null =head4 Ping several hosts and see packet loss (read from stdin) # First copy this line and press Enter runp -p 'ping -c 5 -W 2' -s '| grep loss' localhost 1.1.1.1 8.8.8.8 # Press Enter and Ctrl-D when done entering the hosts # First copy this line and press Enter parallel ping -c 5 -W 2 {} '| grep loss' localhost 1.1.1.1 8.8.8.8 # Press Enter and Ctrl-D when done entering the hosts =head4 Get directories' sizes (read from stdin) echo -e "$HOME\n/etc\n/tmp" | runp -q -p 'sudo du -sh' echo -e "$HOME\n/etc\n/tmp" | parallel sudo du -sh # or: parallel sudo du -sh ::: "$HOME" /etc /tmp =head4 Compress files find . -iname '*.txt' | runp -p 'gzip --best' find . -iname '*.txt' | parallel gzip --best =head4 Measure HTTP request + response time export CURL="curl -w 'time_total: %{time_total}\n'" CURL="$CURL -o /dev/null -s https://golang.org/" perl -wE 'for (1..10) { say $ENV{CURL} }' | runp -q # Make 10 requests perl -wE 'for (1..10) { say $ENV{CURL} }' | parallel # or: parallel -N0 "$CURL" ::: {1..10} =head4 Find open TCP ports cat << EOF > /tmp/host-port.txt localhost 22 localhost 80 localhost 81 127.0.0.1 443 127.0.0.1 444 scanme.nmap.org 22 scanme.nmap.org 23 scanme.nmap.org 443 EOF 1$ cat /tmp/host-port.txt | runp -q -p 'netcat -v -w2 -z' 2>&1 | egrep '(succeeded!|open)$' # --colsep is needed to split the line 1$ cat /tmp/host-port.txt | parallel --colsep ' ' netcat -v -w2 -z 2>&1 | egrep '(succeeded!|open)$' # or use uq for unquoted: 1$ cat /tmp/host-port.txt | parallel netcat -v -w2 -z {=uq=} 2>&1 | egrep '(succeeded!|open)$' https://github.com/jreisinger/runp (Last checked: 2020-04) =head2 DIFFERENCES BETWEEN papply AND GNU Parallel Summary (see legend above): =over =item - - - I4 - - - =item M1 - M3 - - M6 =item - - O3 - O5 - - x x O10 =item E1 - - E4 - - - =item - - - - - - - - - =item - - =back B does not print the output if the command fails: $ papply 'echo %F; false' foo "echo foo; false" did not succeed B's replacement strings (%F %d %f %n %e %z) can be simulated in GNU B by putting this in B<~/.parallel/config>: --rpl '%F' --rpl '%d $_=Q(::dirname($_));' --rpl '%f s:.*/::;' --rpl '%n s:.*/::;s:\.[^/.]+$::;' --rpl '%e s:.*\.:.:' --rpl '%z $_=""' B buffers in RAM, and uses twice the amount of output. So output of 5 GB takes 10 GB RAM. The buffering is very CPU intensive: Buffering a line of 5 GB takes 40 seconds (compared to 10 seconds with GNU B). =head3 Examples as GNU Parallel 1$ papply gzip *.txt 1$ parallel gzip ::: *.txt 2$ papply "convert %F %n.jpg" *.png 2$ parallel convert {} {.}.jpg ::: *.png https://pypi.org/project/papply/ (Last checked: 2020-04) =head2 DIFFERENCES BETWEEN async AND GNU Parallel Summary (see legend above): =over =item - - - I4 - - I7 =item - - - - - M6 =item - O2 O3 - O5 O6 - x x O10 =item E1 - - E4 - E6 - =item - - - - - - - - - =item S1 S2 =back B is very similary to GNU B's B<--semaphore> mode (aka B). B requires the user to start a server process. The input is quoted like B<-q> so you need B to run composed commands. =head3 Examples as GNU Parallel 1$ S="/tmp/example_socket" 1$ ID=myid 2$ async -s="$S" server --start 2$ # GNU Parallel does not need a server to run 3$ for i in {1..20}; do # prints command output to stdout async -s="$S" cmd -- bash -c "sleep 1 && echo test $i" done 3$ for i in {1..20}; do # prints command output to stdout sem --id "$ID" -j100% "sleep 1 && echo test $i" # GNU Parallel will only print job when it is done # If you need output from different jobs to mix # use -u or --line-buffer sem --id "$ID" -j100% --line-buffer "sleep 1 && echo test $i" done 4$ # wait until all commands are finished async -s="$S" wait 4$ sem --id "$ID" --wait 5$ # configure the server to run four commands in parallel async -s="$S" server -j4 5$ export PARALLEL=-j4 6$ mkdir "/tmp/ex_dir" for i in {21..40}; do # redirects command output to /tmp/ex_dir/file* async -s="$S" cmd -o "/tmp/ex_dir/file$i" -- \ bash -c "sleep 1 && echo test $i" done 6$ mkdir "/tmp/ex_dir" for i in {21..40}; do # redirects command output to /tmp/ex_dir/file* sem --id "$ID" --result '/tmp/my-ex/file-{=$_=""=}'"$i" \ "sleep 1 && echo test $i" done 7$ sem --id "$ID" --wait 7$ async -s="$S" wait 8$ # stops server async -s="$S" server --stop 8$ # GNU Parallel does not need to stop a server https://github.com/ctbur/async/ (Last checked: 2023-01) =head2 DIFFERENCES BETWEEN pardi AND GNU Parallel Summary (see legend above): =over =item I1 I2 - - - - I7 =item M1 - - - - M6 =item O1 O2 O3 O4 O5 - O7 - - O10 =item E1 - - E4 - - - =item - - - - - - - - - =item - - =back B is very similar to B: It reads blocks of data and not arguments. So it cannot insert an argument in the command line. It puts the block into a temporary file, and this file name (%IN) can be put in the command line. You can only use %IN once. It can also run full command lines in parallel (like: B). =head3 EXAMPLES FROM pardi test.sh 1$ time pardi -v -c 100 -i data/decoys.smi -ie .smi -oe .smi \ -o data/decoys_std_pardi.smi \ -w '(standardiser -i %IN -o %OUT 2>&1) > /dev/null' 1$ cat data/decoys.smi | time parallel -N 100 --pipe --cat \ '(standardiser -i {} -o {#} 2>&1) > /dev/null; cat {#}; rm {#}' \ > data/decoys_std_pardi.smi 2$ pardi -n 1 -i data/test_in.types -o data/test_out.types \ -d 'r:^#atoms:' -w 'cat %IN > %OUT' 2$ cat data/test_in.types | parallel -n 1 -k --pipe --cat --regexp --recstart '^#atoms' \ 'cat {}' > data/test_out.types 3$ pardi -c 6 -i data/test_in.types -o data/test_out.types \ -d 'r:^#atoms:' -w 'cat %IN > %OUT' 3$ cat data/test_in.types | parallel -n 6 -k --pipe --cat --regexp --recstart '^#atoms' \ 'cat {}' > data/test_out.types 4$ pardi -i data/decoys.mol2 -o data/still_decoys.mol2 \ -d 's:@MOLECULE' -w 'cp %IN %OUT' 4$ cat data/decoys.mol2 | parallel -n 1 --pipe --cat --recstart '@MOLECULE' \ 'cp {} {#}; cat {#}; rm {#}' > data/still_decoys.mol2 5$ pardi -i data/decoys.mol2 -o data/decoys2.mol2 \ -d b:10000 -w 'cp %IN %OUT' --preserve 5$ cat data/decoys.mol2 | parallel -k --pipe --block 10k --recend '' --cat \ 'cat {} > {#}; cat {#}; rm {#}' > data/decoys2.mol2 https://github.com/UnixJunkie/pardi (Last checked: 2021-01) =head2 DIFFERENCES BETWEEN bthread AND GNU Parallel Summary (see legend above): =over =item - - - I4 - - - =item - - - - - M6 =item O1 - O3 - - - O7 O8 - - =item E1 - - - - - - =item - - - - - - - - - =item - - =back B takes around 1 sec per MB of output. The maximal output line length is 1073741759. You cannot quote space in the command, so you cannot run composed commands like B. https://gitlab.com/netikras/bthread (Last checked: 2021-01) =head2 DIFFERENCES BETWEEN simple_gpu_scheduler AND GNU Parallel Summary (see legend above): =over =item I1 - - - - - I7 =item M1 - - - - M6 =item - O2 O3 - - O6 - x x O10 =item E1 - - - - - - =item - - - - - - - - - =item - - =back =head3 EXAMPLES FROM simple_gpu_scheduler MANUAL 1$ simple_gpu_scheduler --gpus 0 1 2 < gpu_commands.txt 1$ parallel -j3 --shuf \ CUDA_VISIBLE_DEVICES='{=1 $_=slot()-1 =} {=uq;=}' \ < gpu_commands.txt 2$ simple_hypersearch \ "python3 train_dnn.py --lr {lr} --batch_size {bs}" \ -p lr 0.001 0.0005 0.0001 -p bs 32 64 128 | simple_gpu_scheduler --gpus 0,1,2 2$ parallel --header : --shuf -j3 -v \ CUDA_VISIBLE_DEVICES='{=1 $_=slot()-1 =}' \ python3 train_dnn.py --lr {lr} --batch_size {bs} \ ::: lr 0.001 0.0005 0.0001 ::: bs 32 64 128 3$ simple_hypersearch \ "python3 train_dnn.py --lr {lr} --batch_size {bs}" \ --n-samples 5 -p lr 0.001 0.0005 0.0001 -p bs 32 64 128 | simple_gpu_scheduler --gpus 0,1,2 3$ parallel --header : --shuf \ CUDA_VISIBLE_DEVICES='{=1 $_=slot()-1; seq()>5 and skip() =}' \ python3 train_dnn.py --lr {lr} --batch_size {bs} \ ::: lr 0.001 0.0005 0.0001 ::: bs 32 64 128 4$ touch gpu.queue tail -f -n 0 gpu.queue | simple_gpu_scheduler --gpus 0,1,2 & echo "my_command_with | and stuff > logfile" >> gpu.queue 4$ touch gpu.queue tail -f -n 0 gpu.queue | parallel -j3 CUDA_VISIBLE_DEVICES='{=1 $_=slot()-1 =} {=uq;=}' & # Needed to fill job slots once seq 3 | parallel echo true >> gpu.queue # Add jobs echo "my_command_with | and stuff > logfile" >> gpu.queue # Needed to flush output from completed jobs seq 3 | parallel echo true >> gpu.queue https://github.com/ExpectationMax/simple_gpu_scheduler (Last checked: 2021-01) =head2 DIFFERENCES BETWEEN parasweep AND GNU Parallel B is a Python module for facilitating parallel parameter sweeps. A B job will normally take a text file as input. The text file contains arguments for the job. Some of these arguments will be fixed and some of them will be changed by B. It does this by having a template file such as template.txt: Xval: {x} Yval: {y} FixedValue: 9 # x with 2 decimals DecimalX: {x:.2f} TenX: ${x*10} RandomVal: {r} and from this template it generates the file to be used by the job by replacing the replacement strings. Being a Python module B integrates tighter with Python than GNU B. You get the parameters directly in a Python data structure. With GNU B you can use the JSON or CSV output format to get something similar, but you would have to read the output. B has a filtering method to ignore parameter combinations you do not need. Instead of calling the jobs directly, B can use Python's Distributed Resource Management Application API to make jobs run with different cluster software. GNU B B<--tmpl> supports templates with replacement strings. Such as: Xval: {x} Yval: {y} FixedValue: 9 # x with 2 decimals DecimalX: {=x $_=sprintf("%.2f",$_) =} TenX: {=x $_=$_*10 =} RandomVal: {=1 $_=rand() =} that can be used like: parallel --header : --tmpl my.tmpl={#}.t myprog {#}.t \ ::: x 1 2 3 ::: y 1 2 3 Filtering is supported as: parallel --filter '{1} > {2}' echo ::: 1 2 3 ::: 1 2 3 https://github.com/eviatarbach/parasweep (Last checked: 2021-01) =head2 DIFFERENCES BETWEEN parallel-bash AND GNU Parallel Summary (see legend above): =over =item I1 I2 - - - - - =item - - M3 - - M6 =item - O2 O3 - O5 O6 - O8 x O10 =item E1 - - - - - - =item - - - - - - - - - =item - - =back B is written in pure bash. It is really fast (overhead of ~0.05 ms/job compared to GNU B's 3-10 ms/job). So if your jobs are extremely short lived, and you can live with the quite limited command, this may be useful. It works by making a queue for each process. Then the jobs are distributed to the queues in a round robin fashion. Finally the queues are started in parallel. This works fine, if you are lucky, but if not, all the long jobs may end up in the same queue, so you may see: $ printf "%b\n" 1 1 1 4 1 1 1 4 1 1 1 4 | time parallel -P4 sleep {} (7 seconds) $ printf "%b\n" 1 1 1 4 1 1 1 4 1 1 1 4 | time ./parallel-bash.bash -p 4 -c sleep {} (12 seconds) Because it uses bash lists, the total number of jobs is limited to 167000..265000 depending on your environment. You get a segmentation fault, when you reach the limit. Ctrl-C does not stop spawning new jobs. Ctrl-Z does not suspend running jobs. =head3 EXAMPLES FROM parallel-bash 1$ some_input | parallel-bash -p 5 -c echo 1$ some_input | parallel -j 5 echo 2$ parallel-bash -p 5 -c echo < some_file 2$ parallel -j 5 echo < some_file 3$ parallel-bash -p 5 -c echo <<< 'some string' 3$ parallel -j 5 -c echo <<< 'some string' 4$ something | parallel-bash -p 5 -c echo {} {} 4$ something | parallel -j 5 echo {} {} https://reposhub.com/python/command-line-tools/Akianonymus-parallel-bash.html (Last checked: 2021-06) =head2 DIFFERENCES BETWEEN bash-concurrent AND GNU Parallel B is more an alternative to B than to GNU B. Its input is very similar to a Makefile, where jobs depend on other jobs. It has a nice progress indicator where you can see which jobs completed successfully, which jobs are currently running, which jobs failed, and which jobs were skipped due to a depending job failed. The indicator does not deal well with resizing the window. Output is cached in tempfiles on disk, but is only shown if there is an error, so it is not meant to be part of a UNIX pipeline. If B crashes these tempfiles are not removed. It uses an O(n*n) algorithm, so if you have 1000 independent jobs it takes 22 seconds to start it. https://github.com/themattrix/bash-concurrent (Last checked: 2021-02) =head2 DIFFERENCES BETWEEN spawntool AND GNU Parallel Summary (see legend above): =over =item I1 - - - - - - =item M1 - - - - M6 =item - O2 O3 - O5 O6 - x x O10 =item E1 - - - - - - =item - - - - - - - - - =item - - =back B reads a full command line from stdin which it executes in parallel. http://code.google.com/p/spawntool/ (Last checked: 2021-07) =head2 DIFFERENCES BETWEEN go-pssh AND GNU Parallel Summary (see legend above): =over =item - - - - - - - =item M1 - - - - - =item O1 - - - - - - x x O10 =item E1 - - - - - - =item R1 R2 - - - R6 - - - =item - - =back B does B in parallel to multiple machines. It runs the same command on multiple machines similar to B<--nonall>. The hostnames must be given as IP-addresses (not as hostnames). Output is sent to stdout (standard output) if command is successful, and to stderr (standard error) if the command fails. =head3 EXAMPLES FROM go-pssh 1$ go-pssh -l , -u -p -P -c "" 1$ parallel -S 'sshpass -p ssh -p @' \ --nonall "" 2$ go-pssh scp -f host.txt -u -p -P \ -s /local/file_or_directory -d /remote/directory 2$ parallel --nonall --slf host.txt \ --basefile /local/file_or_directory/./ --wd /remote/directory --ssh 'sshpass -p ssh -p -l ' true 3$ go-pssh scp -l , -u -p -P \ -s /local/file_or_directory -d /remote/directory 3$ parallel --nonall -S , \ --basefile /local/file_or_directory/./ --wd /remote/directory --ssh 'sshpass -p ssh -p -l ' true https://github.com/xuchenCN/go-pssh (Last checked: 2021-07) =head2 DIFFERENCES BETWEEN go-parallel AND GNU Parallel Summary (see legend above): =over =item I1 I2 - - - - I7 =item - - M3 - - M6 =item - O2 O3 - O5 - - x x - O10 =item E1 - - E4 - - - =item - - - - - - - - - =item - - =back B uses Go templates for replacement strings. Quite similar to the I<{= perl expr =}> replacement string. =head3 EXAMPLES FROM go-parallel 1$ go-parallel -a ./files.txt -t 'cp {{.Input}} {{.Input | dirname | dirname}}' 1$ parallel -a ./files.txt cp {} '{= $_=::dirname(::dirname($_)) =}' 2$ go-parallel -a ./files.txt -t 'mkdir -p {{.Input}} {{noExt .Input}}' 2$ parallel -a ./files.txt echo mkdir -p {} {.} 3$ go-parallel -a ./files.txt -t 'mkdir -p {{.Input}} {{.Input | basename | noExt}}' 3$ parallel -a ./files.txt echo mkdir -p {} {/.} https://github.com/mylanconnolly/parallel (Last checked: 2021-07) =head2 DIFFERENCES BETWEEN p AND GNU Parallel Summary (see legend above): =over =item - - - I4 - - x =item - - - - - M6 =item - O2 O3 - O5 O6 - x x - O10 =item E1 - - - - - - =item - - - - - - - - - =item - - =back B

is a tiny shell script. It can color output with some predefined colors, but is otherwise quite limited. It maxes out at around 116000 jobs (probably due to limitations in Bash). =head3 EXAMPLES FROM p Some of the examples from B

cannot be implemented 100% by GNU B: The coloring is a bit different, and GNU B cannot have B<--tag> for some inputs and not for others. The coloring done by GNU B is not exactly the same as B

. 1$ p -bc blue "ping 127.0.0.1" -uc red "ping 192.168.0.1" \ -rc yellow "ping 192.168.1.1" -t example "ping example.com" 1$ parallel --lb -j0 --color --tag ping \ ::: 127.0.0.1 192.168.0.1 192.168.1.1 example.com 2$ p "tail -f /var/log/httpd/access_log" \ -bc red "tail -f /var/log/httpd/error_log" 2$ cd /var/log/httpd; parallel --lb --color --tag tail -f ::: access_log error_log 3$ p tail -f "some file" \& p tail -f "other file with space.txt" 3$ parallel --lb tail -f ::: 'some file' "other file with space.txt" 4$ p -t project1 "hg pull project1" -t project2 \ "hg pull project2" -t project3 "hg pull project3" 4$ parallel --lb hg pull ::: project{1..3} https://github.com/rudymatela/evenmoreutils/blob/master/man/p.1.adoc (Last checked: 2022-04) =head2 DIFFERENCES BETWEEN senechal AND GNU Parallel Summary (see legend above): =over =item I1 - - - - - - =item M1 - M3 - - M6 =item O1 - O3 O4 - - - x x - =item E1 - - - - - - =item - - - - - - - - - =item - - =back B only starts the first job after reading the last job, and output from the first job is only printed after the last job finishes. 1 byte of output requites 3.5 bytes of RAM. This makes it impossible to have a total output bigger than the virtual memory. Even though output is kept in RAM outputing is quite slow: 30 MB/s. Output larger than 4 GB causes random problems - it looks like a race condition. This: echo 1 | seneschal --prefix='yes `seq 1000`|head -c 1G' >/dev/null takes 4100(!) CPU seconds to run on a 64C64T server, but only 140 CPU seconds on a 4C8T laptop. So it looks like B wastes a lot of CPU time coordinating the CPUs. Compare this to: echo 1 | time -v parallel -N0 'yes `seq 1000`|head -c 1G' >/dev/null which takes 3-8 CPU seconds. =head3 EXAMPLES FROM seneschal README.md 1$ echo $REPOS | seneschal --prefix="cd {} && git pull" # If $REPOS is newline separated 1$ echo "$REPOS" | parallel -k "cd {} && git pull" # If $REPOS is space separated 1$ echo -n "$REPOS" | parallel -d' ' -k "cd {} && git pull" COMMANDS="pwd sleep 5 && echo boom echo Howdy whoami" 2$ echo "$COMMANDS" | seneschal --debug 2$ echo "$COMMANDS" | parallel -k -v 3$ ls -1 | seneschal --prefix="pushd {}; git pull; popd;" 3$ ls -1 | parallel -k "pushd {}; git pull; popd;" # Or if current dir also contains files: 3$ parallel -k "pushd {}; git pull; popd;" ::: */ https://github.com/TheWizardTower/seneschal (Last checked: 2022-06) =head2 DIFFERENCES BETWEEN async AND GNU Parallel Summary (see legend above): =over =item x x x x x x x =item - x x x x x =item x O2 O3 O4 O5 O6 - x x O10 =item E1 - - E4 - - - =item - - - - - - - - - =item S1 S2 =back B works like B. =head3 EXAMPLES FROM async 1$ S="/tmp/example_socket" async -s="$S" server --start for i in {1..20}; do # prints command output to stdout async -s="$S" cmd -- bash -c "sleep 1 && echo test $i" done # wait until all commands are finished async -s="$S" wait 1$ S="example_id" # server not needed for i in {1..20}; do # prints command output to stdout sem --bg --id "$S" -j100% "sleep 1 && echo test $i" done # wait until all commands are finished sem --fg --id "$S" --wait 2$ # configure the server to run four commands in parallel async -s="$S" server -j4 mkdir "/tmp/ex_dir" for i in {21..40}; do # redirects command output to /tmp/ex_dir/file* async -s="$S" cmd -o "/tmp/ex_dir/file$i" -- \ bash -c "sleep 1 && echo test $i" done async -s="$S" wait # stops server async -s="$S" server --stop 2$ # starting server not needed mkdir "/tmp/ex_dir" for i in {21..40}; do # redirects command output to /tmp/ex_dir/file* sem --bg --id "$S" --results "/tmp/ex_dir/file$i{}" \ "sleep 1 && echo test $i" done sem --fg --id "$S" --wait # there is no server to stop https://github.com/ctbur/async (Last checked: 2023-01) =head2 DIFFERENCES BETWEEN tandem AND GNU Parallel Summary (see legend above): =over =item - - - I4 - - x =item M1 - - - - M6 =item - - O3 - - - - x - - =item E1 - E3 - E5 - - =item - - - - - - - - - =item - - =back B runs full commands in parallel. It is made for starting a "server", running a job against the server, and when the job is done, the server is killed. More generally: it kills all jobs when the first job completes - similar to '--halt now,done=1'. B silently discards some output. It is unclear exactly when this happens. It looks like a race condition, because it varies for each run. $ tandem "seq 10000" | wc -l 6731 <- This should always be 10002 =head3 EXAMPLES FROM Demo tandem \ 'php -S localhost:8000' \ 'esbuild src/*.ts --bundle --outdir=dist --watch' \ 'tailwind -i src/index.css -o dist/index.css --watch' # Emulate tandem's behaviour PARALLEL='--color --lb --halt now,done=1 --tagstring ' PARALLEL="$PARALLEL'"'{=s/ .*//; $_.=".".$app{$_}++;=}'"'" export PARALLEL parallel ::: \ 'php -S localhost:8000' \ 'esbuild src/*.ts --bundle --outdir=dist --watch' \ 'tailwind -i src/index.css -o dist/index.css --watch' =head3 EXAMPLES FROM tandem -h # Emulate tandem's behaviour PARALLEL='--color --lb --halt now,done=1 --tagstring ' PARALLEL="$PARALLEL'"'{=s/ .*//; $_.=".".$app{$_}++;=}'"'" export PARALLEL 1$ tandem 'sleep 5 && echo "hello"' 'sleep 2 && echo "world"' 1$ parallel ::: 'sleep 5 && echo "hello"' 'sleep 2 && echo "world"' # '-t 0' fails. But '--timeout 0 works' 2$ tandem --timeout 0 'sleep 5 && echo "hello"' \ 'sleep 2 && echo "world"' 2$ parallel --timeout 0 ::: 'sleep 5 && echo "hello"' \ 'sleep 2 && echo "world"' =head3 EXAMPLES FROM tandem's readme.md # Emulate tandem's behaviour PARALLEL='--color --lb --halt now,done=1 --tagstring ' PARALLEL="$PARALLEL'"'{=s/ .*//; $_.=".".$app{$_}++;=}'"'" export PARALLEL 1$ tandem 'next dev' 'nodemon --quiet ./server.js' 1$ parallel ::: 'next dev' 'nodemon --quiet ./server.js' 2$ cat package.json { "scripts": { "dev:php": "...", "dev:js": "...", "dev:css": "..." } } tandem 'npm:dev:php' 'npm:dev:js' 'npm:dev:css' # GNU Parallel uses bash functions instead 2$ cat package.sh dev:php() { ... ; } dev:js() { ... ; } dev:css() { ... ; } export -f dev:php dev:js dev:css . package.sh parallel ::: dev:php dev:js dev:css 3$ tandem 'npm:dev:*' 3$ compgen -A function | grep ^dev: | parallel For usage in Makefiles, include a copy of GNU Parallel with your source using `parallel --embed`. This has the added benefit of also working if access to the internet is down or restricted. https://github.com/rosszurowski/tandem (Last checked: 2023-01) =head2 DIFFERENCES BETWEEN rust-parallel(aaronriekenberg) AND GNU Parallel Summary (see legend above): =over =item I1 I2 I3 - - - - =item - - - - - M6 =item O1 O2 O3 - O5 O6 - x - O10 =item E1 - - E4 - - - =item - - - - - - - - - =item - - =back B has a goal of only using Rust. It seems it is impossible to call bash functions from the command line. You would need to put these in a script. Calling a script that misses the shebang line (#! as first line) fails. =head3 EXAMPLES FROM rust-parallel's README.md $ cat >./test < merges standard output (stdout) and standard error (stderr). The maximal output of a command is 8192 bytes. Bigger output makes B go into an infinite loop. In the input file for B you can define a tag, so that you can select to run only these commands. A bit like a target in a Makefile. Progress is printed on standard output (stdout) prepended with '#' with similar information as GNU B's B<--bar>. =head3 EXAMPLES $ cat testjobs.txt #tag common sleeps classA (sleep 4.495;echo "job 000") : (sleep 2.587;echo "job 016") #tag common sleeps classB (sleep 0.218;echo "job 017") : (sleep 2.269;echo "job 040") #tag common sleeps classC (sleep 2.586;echo "job 041") : (sleep 1.626;echo "job 099") #tag lasthalf, sleeps, classB (sleep 1.540;echo "job 100") : (sleep 2.001;echo "job 199") 1$ parallelium -f testjobs.txt -l logdir -t classB,classC 1$ cat testjobs.txt | parallel --plus --results logdir/testjobs.txt_{0#}.output \ '{= if(/^#tag /) { @tag = split/,|\s+/ } (grep /^(classB|classC)$/, @tag) or skip =}' https://github.com/beomagi/parallelium (Last checked: 2023-01) =head2 DIFFERENCES BETWEEN forkrun AND GNU Parallel Summary (see legend above): =over =item I1 - - - - - I7 =item - - - - - - =item - O2 O3 - O5 - - - - O10 =item E1 - - E4 - - - =item - - - - - - - - - =item - - =back B blocks if it receives fewer jobs than slots: echo | forkrun -p 2 echo or when it gets some specific commands e.g.: f() { seq "$@" | pv -qL 3; } seq 10 | forkrun f It is not clear why. It is faster than GNU B (overhead: 1.2 ms/job vs 3 ms/job), but way slower than B (0.059 ms/job). Running jobs cannot be stopped by pressing CTRL-C. B<-k> is supposed to keep the order but fails on the MIX testing example below. If used with B<-k> it caches output in RAM. If B is killed, it leaves temporary files in B that has to be cleaned up manually. =head3 EXAMPLES 1$ time find ./ -type f | forkrun -l512 -- sha256sum 2>/dev/null | wc -l 1$ time find ./ -type f | parallel -j28 -m -- sha256sum 2>/dev/null | wc -l 2$ time find ./ -type f | forkrun -l512 -k -- sha256sum 2>/dev/null | wc -l 2$ time find ./ -type f | parallel -j28 -k -m -- sha256sum 2>/dev/null | wc -l https://github.com/jkool702/forkrun (Last checked: 2023-02) =head2 DIFFERENCES BETWEEN parallel-sh AND GNU Parallel Summary (see legend above): =over =item I1 I2 - I4 - - - =item M1 - - - - M6 =item O1 O2 O3 - O5 O6 - - - O10 =item E1 - - E4 - - - =item - - - - - - - - - =item - - =back B buffers in RAM. The buffering data takes O(n^1.5) time: 2MB=0.107s 4MB=0.175s 8MB=0.342s 16MB=0.766s 32MB=2.2s 64MB=6.7s 128MB=20s 256MB=64s 512MB=248s 1024MB=998s 2048MB=3756s It limits the practical usability to jobs outputting < 256 MB. GNU B buffers on disk, yet is faster for jobs with outputs > 16 MB and is only limited by the free space in $TMPDIR. B can kill running jobs if a job fails (Similar to B<--halt now,fail=1>). =head3 EXAMPLES 1$ parallel-sh "sleep 2 && echo first" "sleep 1 && echo second" 1$ parallel ::: "sleep 2 && echo first" "sleep 1 && echo second" 2$ cat /tmp/commands sleep 2 && echo first sleep 1 && echo second 2$ parallel-sh -f /tmp/commands 2$ parallel -a /tmp/commands 3$ echo -e 'sleep 2 && echo first\nsleep 1 && echo second' | parallel-sh 3$ echo -e 'sleep 2 && echo first\nsleep 1 && echo second' | parallel https://github.com/thyrc/parallel-sh (Last checked: 2023-04) =head2 DIFFERENCES BETWEEN bash-parallel AND GNU Parallel Summary (see legend above): =over =item - I2 - - - - I7 =item M1 - M3 - M5 M6 =item - O2 O3 - - O6 - O8 - O10 =item E1 - - - - - - =item - - - - - - - - - =item - - =back B is not as much a command as it is a shell script that you have to alter. It requires you to change the shell function process_job that runs the job, and set $MAX_POOL_SIZE to the number of jobs to run in parallel. It is half as fast as GNU B for short jobs. https://github.com/thilinaba/bash-parallel (Last checked: 2023-05) =head2 DIFFERENCES BETWEEN PaSH AND GNU Parallel Summary (see legend above): N/A B is quite different from GNU B. It is not a general parallelizer. It takes a shell script and analyses it and parallelizes parts of it by replacing the parts with commands that will give the same result. This will replace B with a command that does pretty much the same as B (except somewhat slower): pa.sh --width 8 -c 'cat bigfile | sort' However, even a simple change will confuse B and you will get no parallelization: pa.sh --width 8 -c 'mysort() { sort; }; cat bigfile | mysort' pa.sh --width 8 -c 'cat bigfile | sort | md5sum' From the source it seems B only looks at: awk cat col comm cut diff grep head mkfifo mv rm sed seq sort tail tee tr uniq wc xargs For pipelines where these commands are bottlenecks, it might be worth testing if B is faster than GNU B. B does not respect $TMPDIR but always uses /tmp. If B dies unexpectantly it does not clean up. https://github.com/binpash/pash (Last checked: 2023-05) =head2 DIFFERENCES BETWEEN korovkin-parallel AND GNU Parallel Summary (see legend above): =over =item I1 - - - - - - =item M1 - - - - M6 =item - - O3 - - - - x x - =item E1 - - - - - - =item R1 - - - - R6 x x - =item - - =back B prepends all lines with some info. The output is colored with 6 color combinations, so job 1 and 7 will get the same color. You can get similar output with: (echo ...) | parallel --color -j 10 --lb --tagstring \ '[l:{#}:{=$_=sprintf("%7.03f",::now()-$^T)=} {=$_=hh_mm_ss($^T)=} {%}]' Lines longer than 8192 chars are broken into lines shorter than 8192. B loses the last char for lines exactly 8193 chars long. Short lines from different jobs do not mix, but long lines do: fun() { perl -e '$a="'$1'"x1000000; for(1..'$2') { print $a };'; echo; } export -f fun (echo fun a 100;echo fun b 100) | korovkin-parallel | tr -s abcdef # Compare to: (echo fun a 100;echo fun b 100) | parallel | tr -s abcdef There should be only one line of a's and one line of b's. Just like GNU B B offers a master/slave model, so workers on other servers can do some of the tasks. But contrary to GNU B you must manually start workers on these servers. The communication is neither authenticated nor encrypted. It caches output in RAM: a 1GB line uses ~2.5GB RAM https://github.com/korovkin/parallel (Last checked: 2023-07) =head2 DIFFERENCES BETWEEN xe AND GNU Parallel Summary (see legend above): =over =item I1 I2 - I4 - - I7 =item M1 - M3 M4 - M6 =item - O2 O3 - O5 O6 - O8 - O10 =item E1 - - E4 - - - =item - - - - - - - - - =item - - =back B has a peculiar limitation: echo /bin/echo | xe {} OK echo echo | xe /bin/{} fails =head3 EXAMPLES Compress all .c files in the current directory, using all CPU cores: 1$ xe -a -j0 gzip -- *.c 1$ parallel gzip ::: *.c Remove all empty files, using lr(1): 2$ lr -U -t 'size == 0' | xe -N0 rm 2$ lr -U -t 'size == 0' | parallel -X rm Convert .mp3 to .ogg, using all CPU cores: 3$ xe -a -j0 -s 'ffmpeg -i "${1}" "${1%.mp3}.ogg"' -- *.mp3 3$ parallel ffmpeg -i {} {.}.ogg ::: *.mp3 Same, using percent rules: 4$ xe -a -j0 -p %.mp3 ffmpeg -i %.mp3 %.ogg -- *.mp3 4$ parallel --rpl '% s/\.mp3// or skip' ffmpeg -i %.mp3 %.ogg ::: *.mp3 Similar, but hiding output of ffmpeg, instead showing spawned jobs: 5$ xe -ap -j0 -vvq '%.{m4a,ogg,opus}' ffmpeg -y -i {} out/%.mp3 -- * 5$ parallel -v --rpl '% s/\.(m4a|ogg|opus)// or skip' \ ffmpeg -y -i {} out/%.mp3 '2>/dev/null' ::: * 5$ parallel -v ffmpeg -y -i {} out/{.}.mp3 '2>/dev/null' ::: * https://github.com/leahneukirchen/xe (Last checked: 2023-08) =head2 DIFFERENCES BETWEEN sp AND GNU Parallel Summary (see legend above): =over =item - - - I4 - - - =item M1 - M3 - - M6 =item - O2 O3 - O5 (O6) - x x O10 =item E1 - - - - - - =item - - - - - - - - - =item - - =back B has very few options. It can either be used like: sp command {} option :: arg1 arg2 arg3 which is similar to: parallel command {} option ::: arg1 arg2 arg3 Or: sp command1 :: "command2 -option" :: "command3 foo bar" which is similar to: parallel ::: command1 "command2 -option" "command3 foo bar" B deals badly with too many commands: This causes B to run out of file handles and gives data loss. For each command that fails, B will print an error message on stderr (standard error). You cannot used exported shell functions as commands. =head3 EXAMPLES 1$ sp echo {} :: 1 2 3 1$ parallel echo {} ::: 1 2 3 2$ sp echo {} {} :: 1 2 3 2$ parallel echo {} {} :: 1 2 3 3$ sp echo 1 :: echo 2 :: echo 3 3$ parallel ::: 'echo 1' 'echo 2' 'echo 3' 4$ sp a foo bar :: "b 'baz bar'" :: c 4$ parallel ::: 'a foo bar' "b 'baz bar'" :: c https://github.com/SergioBenitez/sp (Last checked: 2023-10) =head2 DIFFERENCES BETWEEN repeater AND GNU Parallel Summary (see legend above): =over =item - - - - - - - =item - - - - - - =item - O2 O3 N/A - O6 - x x ?O10 =item E1 - - - E5 - - =item - - - - - - - - - =item - - =back B runs the same job repeatedly. In other words: It does not read arguments, thus is it an alternative for GNU B for only quite limited applications. B has an overhead of around 0.23 ms/job. Compared to GNU B's 2-3 ms this is fast. Compared to B's 0.05 ms/job it is slow. =head3 Memory use and run time for large output Output takes O(n^2) time for output of size n. 10 MB takes ~1 second, 30 MB takes ~7 seconds, 100 MB takes ~60 seconds, 300 MB takes ~480 seconds, 1000 GB takes 100 MB of output takes around 1 GB of RAM. # Run time = 15 sec # Memory use = 20 MB # Output = 1 GB per job \time -v parallel -j1 seq ::: 120000000 120000000 >/dev/null # Run time = 4.7 sec # Memory use = 95 MB # Output = 8 MB per job \time -v repeater -w 1 -n 2 -reportFile ./run_output seq 1200000 >/dev/null # Run time = 42 sec # Memory use = 277 MB # Output = 27 MB per job \time -v repeater -w 1 -n 2 -reportFile ./run_output seq 3600000 >/dev/null # Run time = 530 sec # Memory use = 1000 MB # Output = 97 MB per job \time -v repeater -w 1 -n 2 -reportFile ./run_output seq 12000000 >/dev/null # Run time = 2h41m # Memory use = 8.6 GB # Output = 1 GB per job \time -v repeater -w 1 -n 2 -reportFile ./run_output seq 120000000 >/dev/null For even just moderate sized outputs GNU B will be faster and use less memory. =head3 EXAMPLES 1$ repeater -n 100 -w 10 -reportFile ./run_output -output REPORT_FILE -progress BOTH curl example.com 1$ seq 100 | parallel --joblog run.log --eta curl example.com > output 2$ repeater -n 100 -increment -progress HIDDEN -reportFile foo echo "this is increment: " INC 2$ seq 100 | parallel echo {} 2$ seq 100 | parallel echo '{= $_ = ++$myvar =}' https://github.com/baalimago/repeater (Last checked: 2023-12) =head2 Todo https://github.com/justanhduc/task-spooler https://manpages.ubuntu.com/manpages/xenial/man1/tsp.1.html https://www.npmjs.com/package/concurrently http://code.google.com/p/push/ (cannot compile) https://github.com/krashanoff/parallel https://github.com/Nukesor/pueue https://arxiv.org/pdf/2012.15443.pdf KumQuat https://github.com/JeiKeiLim/simple_distribute_job https://github.com/reggi/pkgrun - not obvious how to use https://github.com/benoror/better-npm-run - not obvious how to use https://github.com/bahmutov/with-package https://github.com/flesler/parallel https://github.com/Julian/Verge https://vicerveza.homeunix.net/~viric/soft/ts/ https://github.com/chapmanjacobd/que =head1 TESTING OTHER TOOLS There are certain issues that are very common on parallelizing tools. Here are a few stress tests. Be warned: If the tool is badly coded it may overload your machine. =head2 MIX: Output mixes Output from 2 jobs should not mix. If the output is not used, this does not matter; but if the output I used then it is important that you do not get half a line from one job followed by half a line from another job. If the tool does not buffer, output will most likely mix now and then. This test stresses whether output mixes. #!/bin/bash paralleltool="parallel -j 30" cat <<-EOF > mycommand #!/bin/bash # If a, b, c, d, e, and f mix: Very bad perl -e 'print STDOUT "a"x3000_000," "' perl -e 'print STDERR "b"x3000_000," "' perl -e 'print STDOUT "c"x3000_000," "' perl -e 'print STDERR "d"x3000_000," "' perl -e 'print STDOUT "e"x3000_000," "' perl -e 'print STDERR "f"x3000_000," "' echo echo >&2 EOF chmod +x mycommand # Run 30 jobs in parallel seq 30 | $paralleltool ./mycommand > >(tr -s abcdef) 2> >(tr -s abcdef >&2) # 'a c e' and 'b d f' should always stay together # and there should only be a single line per job =head2 STDERRMERGE: Stderr is merged with stdout Output from stdout and stderr should not be merged, but kept separated. This test shows whether stdout is mixed with stderr. #!/bin/bash paralleltool="parallel -j0" cat <<-EOF > mycommand #!/bin/bash echo stdout echo stderr >&2 echo stdout echo stderr >&2 EOF chmod +x mycommand # Run one job echo | $paralleltool ./mycommand > stdout 2> stderr cat stdout cat stderr =head2 RAM: Output limited by RAM Some tools cache output in RAM. This makes them extremely slow if the output is bigger than physical memory and crash if the output is bigger than the virtual memory. #!/bin/bash paralleltool="parallel -j0" cat <<'EOF' > mycommand #!/bin/bash # Generate 1 GB output yes "`perl -e 'print \"c\"x30_000'`" | head -c 1G EOF chmod +x mycommand # Run 20 jobs in parallel # Adjust 20 to be > physical RAM and < free space on /tmp seq 20 | time $paralleltool ./mycommand | wc -c =head2 DISKFULL: Incomplete data if /tmp runs full If caching is done on disk, the disk can run full during the run. Not all programs discover this. GNU Parallel discovers it, if it stays full for at least 2 seconds. #!/bin/bash paralleltool="parallel -j0" # This should be a dir with less than 100 GB free space smalldisk=/tmp/shm/parallel TMPDIR="$smalldisk" export TMPDIR max_output() { # Force worst case scenario: # Make GNU Parallel only check once per second sleep 10 # Generate 100 GB to fill $TMPDIR # Adjust if /tmp is bigger than 100 GB yes | head -c 100G >$TMPDIR/$$ # Generate 10 MB output that will not be buffered # due to full disk perl -e 'print "X"x10_000_000' | head -c 10M echo This part is missing from incomplete output sleep 2 rm $TMPDIR/$$ echo Final output } export -f max_output seq 10 | $paralleltool max_output | tr -s X =head2 CLEANUP: Leaving tmp files at unexpected death Some tools do not clean up tmp files if they are killed. If the tool buffers on disk, they may not clean up, if they are killed. #!/bin/bash paralleltool=parallel ls /tmp >/tmp/before seq 10 | $paralleltool sleep & pid=$! # Give the tool time to start up sleep 1 # Kill it without giving it a chance to cleanup kill -9 $! # Should be empty: No files should be left behind diff <(ls /tmp) /tmp/before =head2 SPCCHAR: Dealing badly with special file names. It is not uncommon for users to create files like: My brother's 12" *** record (costs $$$).jpg Some tools break on this. #!/bin/bash paralleltool=parallel touch "My brother's 12\" *** record (costs \$\$\$).jpg" ls My*jpg | $paralleltool ls -l =head2 COMPOSED: Composed commands do not work Some tools require you to wrap composed commands into B. echo bar | $paralleltool echo foo';' echo {} =head2 ONEREP: Only one replacement string allowed Some tools can only insert the argument once. echo bar | $paralleltool echo {} foo {} =head2 INPUTSIZE: Length of input should not be limited Some tools limit the length of the input lines artificially with no good reason. GNU B does not: perl -e 'print "foo."."x"x100_000_000' | parallel echo {.} GNU B limits the command to run to 128 KB due to execve(1): perl -e 'print "x"x131_000' | parallel echo {} | wc =head2 NUMWORDS: Speed depends on number of words Some tools become very slow if output lines have many words. #!/bin/bash paralleltool=parallel cat <<-EOF > mycommand #!/bin/bash # 10 MB of lines with 1000 words yes "`seq 1000`" | head -c 10M EOF chmod +x mycommand # Run 30 jobs in parallel seq 30 | time $paralleltool -j0 ./mycommand > /dev/null =head2 4GB: Output with a line > 4GB should be OK #!/bin/bash paralleltool="parallel -j0" cat <<-EOF > mycommand #!/bin/bash perl -e '\$a="a"x1000_000; for(1..5000) { print \$a }' EOF chmod +x mycommand # Run 1 job seq 1 | $paralleltool ./mycommand | LC_ALL=C wc =head1 AUTHOR When using GNU B for a publication please cite: O. Tange (2011): GNU Parallel - The Command-Line Power Tool, ;login: The USENIX Magazine, February 2011:42-47. This helps funding further development; and it won't cost you a cent. If you pay 10000 EUR you should feel free to use GNU Parallel without citing. Copyright (C) 2007-10-18 Ole Tange, http://ole.tange.dk Copyright (C) 2008-2010 Ole Tange, http://ole.tange.dk Copyright (C) 2010-2024 Ole Tange, http://ole.tange.dk and Free Software Foundation, Inc. Parts of the manual concerning B compatibility is inspired by the manual of B from GNU findutils 4.4.2. =head1 LICENSE This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or at your option any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . =head2 Documentation license I Permission is granted to copy, distribute and/or modify this documentation under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the file LICENSES/GFDL-1.3-or-later.txt. =head2 Documentation license II You are free: =over 9 =item B to copy, distribute and transmit the work =item B to adapt the work =back Under the following conditions: =over 9 =item B You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). =item B If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license. =back With the understanding that: =over 9 =item B Any of the above conditions can be waived if you get permission from the copyright holder. =item B Where the work or any of its elements is in the public domain under applicable law, that status is in no way affected by the license. =item B In no way are any of the following rights affected by the license: =over 2 =item * Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations; =item * The author's moral rights; =item * Rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights. =back =back =over 9 =item B For any reuse or distribution, you must make clear to others the license terms of this work. =back A copy of the full license is included in the file as LICENCES/CC-BY-SA-4.0.txt =head1 DEPENDENCIES GNU B uses Perl, and the Perl modules Getopt::Long, IPC::Open3, Symbol, IO::File, POSIX, and File::Temp. For remote usage it also uses rsync with ssh. =head1 SEE ALSO B(1), B(1), B(1), B(1), B(1), B(1), B(1), B(1), B(1) =cut