/* libparted - a library for manipulating disk partitions Copyright (C) 2000, 2007-2014, 2019-2023 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /** * \file natmath.c */ /** * \addtogroup PedAlignment * * \brief Alignment constraint model. * * This part of libparted models alignment constraints. * * @{ */ #include #include #include #include #include /* Arrrghhh! Why doesn't C have tuples? */ typedef struct { PedSector gcd; /* "converges" to the gcd */ PedSector x; PedSector y; } EuclidTriple; static const PedAlignment _any = { offset: 0, grain_size: 1 }; const PedAlignment* ped_alignment_any = &_any; const PedAlignment* ped_alignment_none = NULL; /* This function returns "a mod b", the way C should have done it! * Mathematicians prefer -3 mod 4 to be 3. Reason: division by N * is all about adding or subtracting N, and we like our remainders * to be between 0 and N - 1. */ static PedSector abs_mod (PedSector a, PedSector b) { if (a < 0) return a % b + b; else return a % b; } /* Rounds a number down to the closest number that is a multiple of * grain_size. */ PedSector ped_round_down_to (PedSector sector, PedSector grain_size) { return sector - abs_mod (sector, grain_size); } /* Rounds a number up to the closest number that is a multiple of * grain_size. */ PedSector ped_round_up_to (PedSector sector, PedSector grain_size) { if (sector % grain_size) return ped_round_down_to (sector, grain_size) + grain_size; else return sector; } /* Rounds a number to the closest number that is a multiple of grain_size. */ PedSector ped_round_to_nearest (PedSector sector, PedSector grain_size) { if (sector % grain_size > grain_size/2) return ped_round_up_to (sector, grain_size); else return ped_round_down_to (sector, grain_size); } /* This function returns the largest number that divides both a and b. * It uses the ancient Euclidean algorithm. */ PedSector ped_greatest_common_divisor (PedSector a, PedSector b) { PED_ASSERT (a >= 0); PED_ASSERT (b >= 0); /* Put the arguments in the "right" format. (Recursive calls made by * this function are always in the right format.) */ if (b > a) return ped_greatest_common_divisor (b, a); if (b) return ped_greatest_common_divisor (b, a % b); else return a; } /** * Initialize a preallocated piece of memory for an alignment object * (used by PedConstraint). * * The object will represent all sectors \e s for which the equation * s = offset + X * grain_size holds. */ int ped_alignment_init (PedAlignment* align, PedSector offset, PedSector grain_size) { PED_ASSERT (align != NULL); if (grain_size < 0) return 0; if (grain_size) align->offset = abs_mod (offset, grain_size); else align->offset = offset; align->grain_size = grain_size; return 1; } /** * Return an alignment object (used by PedConstraint), representing all * PedSector's that are of the form offset + X * grain_size. */ PedAlignment* ped_alignment_new (PedSector offset, PedSector grain_size) { PedAlignment* align; align = (PedAlignment*) ped_malloc (sizeof (PedAlignment)); if (!align) goto error; if (!ped_alignment_init (align, offset, grain_size)) goto error_free_align; return align; error_free_align: free (align); error: return NULL; } /** * Free up memory associated with \p align. */ void ped_alignment_destroy (PedAlignment* align) { free (align); } /** * Return a duplicate of \p align. */ PedAlignment* ped_alignment_duplicate (const PedAlignment* align) { if (!align) return NULL; return ped_alignment_new (align->offset, align->grain_size); } /* the extended Euclid algorithm. * * input: * a and b, a > b * * output: * gcd, x and y, such that: * * gcd = greatest common divisor of a and b * gcd = x*a + y*b */ static EuclidTriple _GL_ATTRIBUTE_PURE extended_euclid (int a, int b) { EuclidTriple result; EuclidTriple tmp; if (b == 0) { result.gcd = a; result.x = 1; result.y = 0; return result; } tmp = extended_euclid (b, a % b); result.gcd = tmp.gcd; result.x = tmp.y; result.y = tmp.x - (a/b) * tmp.y; return result; } /** * This function computes a PedAlignment object that describes the * intersection of two alignments. That is, a sector satisfies the * new alignment object if and only if it satisfies both of the original * ones. (See ped_alignment_is_aligned() for the meaning of "satisfies") * * Apart from the trivial cases (where one or both of the alignment objects * constraints have no sectors that satisfy them), this is what we're trying to * do: * - two input constraints: \p a and \p b. * - the new grain_size is going to be the lowest common multiple of * \p a->grain_size and \p b->grain_size * - hard part - solve the simultaneous equations, for offset, where offset, * X and Y are variables. (Note: offset can be obtained from either X or Y, * by substituing into either equation) * * \code * offset = \p a->offset + X * \p a->grain_size (1) * offset = \p b->offset + Y * \p b->grain_size (2) * \endcode * * or, abbreviated: * * \code * o = Ao + X*Ag (1) * o = Bo + Y*Bg (2) * * => Ao + X*Ag = Bo + Y*Bg (1) = (2) * X*Ag - Y*Bg = Bo - Ao (3) * \endcode * * As it turns out, there only exists a solution if (Bo - Ao) is a multiple * of the GCD of Ag and Bg. Reason: all linear combinations of Ag and Bg are * multiples of the GCD. * * Proof: * * \code * A * Ag + B * Bg * = A * (\p a * gcd) + B * (\p b * gcd) * = gcd * (A * \p a + B * \p b) * \endcode * * gcd is a factor of the linear combination. QED * * Anyway, \p a * Ag + \p b * Bg = gcd can be solved (for \p a, \p b and gcd) * with Euclid's extended algorithm. Then, we just multiply through by * (Bo - Ao) / gcd to get (3). * * i.e. * \code * A * Ag + B * Bg = gcd * A*(Bo-Ao)/gcd * Ag + B(Bo-Ao)/gcd * Bg = gcd * (Bo-Ao)/gcd * X*Ag - Y*Bg = Bo - Ao (3) * * X = A*(Bo-Ao)/gcd * Y = - B*(Bo-Ao)/gcd * \endcode * * then: * \code * o = Ao + X*Ag (1) * = Ao + A*(Bo-Ao)/gcd*Ag * o = Bo + Y*Bg (2) * = Bo - B*(Bo-Ao)/gcd*Ag * \endcode * * Thanks go to Nathan Hurst (njh@hawthorn.csse.monash.edu.au) for figuring * this algorithm out :-) * * \note Returned \c NULL is a valid PedAlignment object, and can be used for ped_alignment_*() function. * * \return a PedAlignment on success, \c NULL on failure */ PedAlignment* ped_alignment_intersect (const PedAlignment* a, const PedAlignment* b) { PedSector new_grain_size; PedSector new_offset; PedSector delta_on_gcd; EuclidTriple gcd_factors; if (!a || !b) return NULL; /*PED_DEBUG (0x10, "intersecting alignments (%d,%d) and (%d,%d)", a->offset, a->grain_size, b->offset, b->grain_size); */ if (a->grain_size < b->grain_size) { const PedAlignment* tmp; tmp = a; a = b; b = tmp; } /* weird/trivial case: where the solution space for "a" or "b" is * either empty or contains exactly one solution */ if (a->grain_size == 0 && b->grain_size == 0) { if (a->offset == b->offset) return ped_alignment_duplicate (a); else return NULL; } /* general case */ gcd_factors = extended_euclid (a->grain_size, b->grain_size); delta_on_gcd = (b->offset - a->offset) / gcd_factors.gcd; new_offset = a->offset + gcd_factors.x * delta_on_gcd * a->grain_size; new_grain_size = a->grain_size * b->grain_size / gcd_factors.gcd; /* inconsistency => no solution */ if (new_offset != b->offset - gcd_factors.y * delta_on_gcd * b->grain_size) return NULL; return ped_alignment_new (new_offset, new_grain_size); } /* This function returns the sector closest to "sector" that lies inside * geom and satisfies the alignment constraint. */ static PedSector _GL_ATTRIBUTE_PURE _closest_inside_geometry (const PedAlignment* align, const PedGeometry* geom, PedSector sector) { PED_ASSERT (align != NULL); if (!align->grain_size) { if (ped_alignment_is_aligned (align, geom, sector) && (!geom || ped_geometry_test_sector_inside (geom, sector))) return sector; else return -1; } if (sector < geom->start) sector += ped_round_up_to (geom->start - sector, align->grain_size); if (sector > geom->end) sector -= ped_round_up_to (sector - geom->end, align->grain_size); if (!ped_geometry_test_sector_inside (geom, sector)) return -1; return sector; } /** * This function returns the closest sector to \p sector that lies inside * \p geom that satisfies the given alignment constraint \p align. It prefers * sectors that are beyond \p sector (are not smaller than \p sector), * but does not guarantee that this. * * \return a PedSector on success, \c -1 on failure */ PedSector ped_alignment_align_up (const PedAlignment* align, const PedGeometry* geom, PedSector sector) { PedSector result; PED_ASSERT (align != NULL); if (!align->grain_size) result = align->offset; else result = ped_round_up_to (sector - align->offset, align->grain_size) + align->offset; if (geom) result = _closest_inside_geometry (align, geom, result); return result; } /** * This function returns the closest sector to \p sector that lies inside * \p geom that satisfies the given alignment constraint \p align. It prefers * sectors that are before \p sector (are not larger than \p sector), * but does not guarantee that this. * * \return a PedSector on success, \c -1 on failure */ PedSector ped_alignment_align_down (const PedAlignment* align, const PedGeometry* geom, PedSector sector) { PedSector result; PED_ASSERT (align != NULL); if (!align->grain_size) result = align->offset; else result = ped_round_down_to (sector - align->offset, align->grain_size) + align->offset; if (geom) result = _closest_inside_geometry (align, geom, result); return result; } /* Returns either a or b, depending on which is closest to "sector". */ static PedSector closest (PedSector sector, PedSector a, PedSector b) { if (a == -1) return b; if (b == -1) return a; if (llabs (sector - a) < llabs (sector - b)) return a; else return b; } /** * This function returns the sector that is closest to \p sector, * satisfies the \p align constraint and lies inside \p geom. * * \return a PedSector on success, \c -1 on failure */ PedSector ped_alignment_align_nearest (const PedAlignment* align, const PedGeometry* geom, PedSector sector) { PED_ASSERT (align != NULL); return closest (sector, ped_alignment_align_up (align, geom, sector), ped_alignment_align_down (align, geom, sector)); } /** * This function returns 1 if \p sector satisfies the alignment * constraint \p align and lies inside \p geom. * * \return \c 1 on success, \c 0 on failure */ int ped_alignment_is_aligned (const PedAlignment* align, const PedGeometry* geom, PedSector sector) { if (!align) return 0; if (geom && !ped_geometry_test_sector_inside (geom, sector)) return 0; if (align->grain_size) return (sector - align->offset) % align->grain_size == 0; else return sector == align->offset; } /** * @} */