/* * The PCI Utilities -- Show Capabilities * * Copyright (c) 1997--2018 Martin Mares * * Can be freely distributed and used under the terms of the GNU GPL v2+. * * SPDX-License-Identifier: GPL-2.0-or-later */ #include #include #include "lspci.h" static void cap_pm(struct device *d, int where, int cap) { int t, b; static int pm_aux_current[8] = { 0, 55, 100, 160, 220, 270, 320, 375 }; printf("Power Management version %d\n", cap & PCI_PM_CAP_VER_MASK); if (verbose < 2) return; printf("\t\tFlags: PMEClk%c DSI%c D1%c D2%c AuxCurrent=%dmA PME(D0%c,D1%c,D2%c,D3hot%c,D3cold%c)\n", FLAG(cap, PCI_PM_CAP_PME_CLOCK), FLAG(cap, PCI_PM_CAP_DSI), FLAG(cap, PCI_PM_CAP_D1), FLAG(cap, PCI_PM_CAP_D2), pm_aux_current[(cap & PCI_PM_CAP_AUX_C_MASK) >> 6], FLAG(cap, PCI_PM_CAP_PME_D0), FLAG(cap, PCI_PM_CAP_PME_D1), FLAG(cap, PCI_PM_CAP_PME_D2), FLAG(cap, PCI_PM_CAP_PME_D3_HOT), FLAG(cap, PCI_PM_CAP_PME_D3_COLD)); if (!config_fetch(d, where + PCI_PM_CTRL, PCI_PM_SIZEOF - PCI_PM_CTRL)) return; t = get_conf_word(d, where + PCI_PM_CTRL); printf("\t\tStatus: D%d NoSoftRst%c PME-Enable%c DSel=%d DScale=%d PME%c\n", t & PCI_PM_CTRL_STATE_MASK, FLAG(t, PCI_PM_CTRL_NO_SOFT_RST), FLAG(t, PCI_PM_CTRL_PME_ENABLE), (t & PCI_PM_CTRL_DATA_SEL_MASK) >> 9, (t & PCI_PM_CTRL_DATA_SCALE_MASK) >> 13, FLAG(t, PCI_PM_CTRL_PME_STATUS)); b = get_conf_byte(d, where + PCI_PM_PPB_EXTENSIONS); if (b) printf("\t\tBridge: PM%c B3%c\n", FLAG(b, PCI_PM_BPCC_ENABLE), FLAG(~b, PCI_PM_PPB_B2_B3)); } static void format_agp_rate(int rate, char *buf, int agp3) { char *c = buf; int i; for (i=0; i<=2; i++) if (rate & (1 << i)) { if (c != buf) *c++ = ','; c += sprintf(c, "x%d", 1 << (i + 2*agp3)); } if (c != buf) *c = 0; else strcpy(buf, ""); } static void cap_agp(struct device *d, int where, int cap) { u32 t; char rate[16]; int ver, rev; int agp3 = 0; ver = (cap >> 4) & 0x0f; rev = cap & 0x0f; printf("AGP version %x.%x\n", ver, rev); if (verbose < 2) return; if (!config_fetch(d, where + PCI_AGP_STATUS, PCI_AGP_SIZEOF - PCI_AGP_STATUS)) return; t = get_conf_long(d, where + PCI_AGP_STATUS); if (ver >= 3 && (t & PCI_AGP_STATUS_AGP3)) agp3 = 1; format_agp_rate(t & 7, rate, agp3); printf("\t\tStatus: RQ=%d Iso%c ArqSz=%d Cal=%d SBA%c ITACoh%c GART64%c HTrans%c 64bit%c FW%c AGP3%c Rate=%s\n", ((t & PCI_AGP_STATUS_RQ_MASK) >> 24U) + 1, FLAG(t, PCI_AGP_STATUS_ISOCH), ((t & PCI_AGP_STATUS_ARQSZ_MASK) >> 13), ((t & PCI_AGP_STATUS_CAL_MASK) >> 10), FLAG(t, PCI_AGP_STATUS_SBA), FLAG(t, PCI_AGP_STATUS_ITA_COH), FLAG(t, PCI_AGP_STATUS_GART64), FLAG(t, PCI_AGP_STATUS_HTRANS), FLAG(t, PCI_AGP_STATUS_64BIT), FLAG(t, PCI_AGP_STATUS_FW), FLAG(t, PCI_AGP_STATUS_AGP3), rate); t = get_conf_long(d, where + PCI_AGP_COMMAND); format_agp_rate(t & 7, rate, agp3); printf("\t\tCommand: RQ=%d ArqSz=%d Cal=%d SBA%c AGP%c GART64%c 64bit%c FW%c Rate=%s\n", ((t & PCI_AGP_COMMAND_RQ_MASK) >> 24U) + 1, ((t & PCI_AGP_COMMAND_ARQSZ_MASK) >> 13), ((t & PCI_AGP_COMMAND_CAL_MASK) >> 10), FLAG(t, PCI_AGP_COMMAND_SBA), FLAG(t, PCI_AGP_COMMAND_AGP), FLAG(t, PCI_AGP_COMMAND_GART64), FLAG(t, PCI_AGP_COMMAND_64BIT), FLAG(t, PCI_AGP_COMMAND_FW), rate); } static void cap_pcix_nobridge(struct device *d, int where) { u16 command; u32 status; static const byte max_outstanding[8] = { 1, 2, 3, 4, 8, 12, 16, 32 }; printf("PCI-X non-bridge device\n"); if (verbose < 2) return; if (!config_fetch(d, where + PCI_PCIX_STATUS, 4)) return; command = get_conf_word(d, where + PCI_PCIX_COMMAND); status = get_conf_long(d, where + PCI_PCIX_STATUS); printf("\t\tCommand: DPERE%c ERO%c RBC=%d OST=%d\n", FLAG(command, PCI_PCIX_COMMAND_DPERE), FLAG(command, PCI_PCIX_COMMAND_ERO), 1 << (9 + ((command & PCI_PCIX_COMMAND_MAX_MEM_READ_BYTE_COUNT) >> 2U)), max_outstanding[(command & PCI_PCIX_COMMAND_MAX_OUTSTANDING_SPLIT_TRANS) >> 4U]); printf("\t\tStatus: Dev=%02x:%02x.%d 64bit%c 133MHz%c SCD%c USC%c DC=%s DMMRBC=%u DMOST=%u DMCRS=%u RSCEM%c 266MHz%c 533MHz%c\n", (status & PCI_PCIX_STATUS_BUS) >> 8, (status & PCI_PCIX_STATUS_DEVICE) >> 3, (status & PCI_PCIX_STATUS_FUNCTION), FLAG(status, PCI_PCIX_STATUS_64BIT), FLAG(status, PCI_PCIX_STATUS_133MHZ), FLAG(status, PCI_PCIX_STATUS_SC_DISCARDED), FLAG(status, PCI_PCIX_STATUS_UNEXPECTED_SC), ((status & PCI_PCIX_STATUS_DEVICE_COMPLEXITY) ? "bridge" : "simple"), 1 << (9 + ((status & PCI_PCIX_STATUS_DESIGNED_MAX_MEM_READ_BYTE_COUNT) >> 21)), max_outstanding[(status & PCI_PCIX_STATUS_DESIGNED_MAX_OUTSTANDING_SPLIT_TRANS) >> 23], 1 << (3 + ((status & PCI_PCIX_STATUS_DESIGNED_MAX_CUMULATIVE_READ_SIZE) >> 26)), FLAG(status, PCI_PCIX_STATUS_RCVD_SC_ERR_MESS), FLAG(status, PCI_PCIX_STATUS_266MHZ), FLAG(status, PCI_PCIX_STATUS_533MHZ)); } static void cap_pcix_bridge(struct device *d, int where) { static const char * const sec_clock_freq[8] = { "conv", "66MHz", "100MHz", "133MHz", "?4", "?5", "?6", "?7" }; u16 secstatus; u32 status, upstcr, downstcr; printf("PCI-X bridge device\n"); if (verbose < 2) return; if (!config_fetch(d, where + PCI_PCIX_BRIDGE_STATUS, 12)) return; secstatus = get_conf_word(d, where + PCI_PCIX_BRIDGE_SEC_STATUS); printf("\t\tSecondary Status: 64bit%c 133MHz%c SCD%c USC%c SCO%c SRD%c Freq=%s\n", FLAG(secstatus, PCI_PCIX_BRIDGE_SEC_STATUS_64BIT), FLAG(secstatus, PCI_PCIX_BRIDGE_SEC_STATUS_133MHZ), FLAG(secstatus, PCI_PCIX_BRIDGE_SEC_STATUS_SC_DISCARDED), FLAG(secstatus, PCI_PCIX_BRIDGE_SEC_STATUS_UNEXPECTED_SC), FLAG(secstatus, PCI_PCIX_BRIDGE_SEC_STATUS_SC_OVERRUN), FLAG(secstatus, PCI_PCIX_BRIDGE_SEC_STATUS_SPLIT_REQUEST_DELAYED), sec_clock_freq[(secstatus & PCI_PCIX_BRIDGE_SEC_STATUS_CLOCK_FREQ) >> 6]); status = get_conf_long(d, where + PCI_PCIX_BRIDGE_STATUS); printf("\t\tStatus: Dev=%02x:%02x.%d 64bit%c 133MHz%c SCD%c USC%c SCO%c SRD%c\n", (status & PCI_PCIX_BRIDGE_STATUS_BUS) >> 8, (status & PCI_PCIX_BRIDGE_STATUS_DEVICE) >> 3, (status & PCI_PCIX_BRIDGE_STATUS_FUNCTION), FLAG(status, PCI_PCIX_BRIDGE_STATUS_64BIT), FLAG(status, PCI_PCIX_BRIDGE_STATUS_133MHZ), FLAG(status, PCI_PCIX_BRIDGE_STATUS_SC_DISCARDED), FLAG(status, PCI_PCIX_BRIDGE_STATUS_UNEXPECTED_SC), FLAG(status, PCI_PCIX_BRIDGE_STATUS_SC_OVERRUN), FLAG(status, PCI_PCIX_BRIDGE_STATUS_SPLIT_REQUEST_DELAYED)); upstcr = get_conf_long(d, where + PCI_PCIX_BRIDGE_UPSTREAM_SPLIT_TRANS_CTRL); printf("\t\tUpstream: Capacity=%u CommitmentLimit=%u\n", (upstcr & PCI_PCIX_BRIDGE_STR_CAPACITY), (upstcr >> 16) & 0xffff); downstcr = get_conf_long(d, where + PCI_PCIX_BRIDGE_DOWNSTREAM_SPLIT_TRANS_CTRL); printf("\t\tDownstream: Capacity=%u CommitmentLimit=%u\n", (downstcr & PCI_PCIX_BRIDGE_STR_CAPACITY), (downstcr >> 16) & 0xffff); } static void cap_pcix(struct device *d, int where) { switch (get_conf_byte(d, PCI_HEADER_TYPE) & 0x7f) { case PCI_HEADER_TYPE_NORMAL: cap_pcix_nobridge(d, where); break; case PCI_HEADER_TYPE_BRIDGE: cap_pcix_bridge(d, where); break; } } static inline char * ht_link_width(unsigned width) { static char * const widths[8] = { "8bit", "16bit", "[2]", "32bit", "2bit", "4bit", "[6]", "N/C" }; return widths[width]; } static inline char * ht_link_freq(unsigned freq) { static char * const freqs[16] = { "200MHz", "300MHz", "400MHz", "500MHz", "600MHz", "800MHz", "1.0GHz", "1.2GHz", "1.4GHz", "1.6GHz", "[a]", "[b]", "[c]", "[d]", "[e]", "Vend" }; return freqs[freq]; } static void cap_ht_pri(struct device *d, int where, int cmd) { u16 lctr0, lcnf0, lctr1, lcnf1, eh; u8 rid, lfrer0, lfcap0, ftr, lfrer1, lfcap1, mbu, mlu, bn; printf("HyperTransport: Slave or Primary Interface\n"); if (verbose < 2) return; if (!config_fetch(d, where + PCI_HT_PRI_LCTR0, PCI_HT_PRI_SIZEOF - PCI_HT_PRI_LCTR0)) return; rid = get_conf_byte(d, where + PCI_HT_PRI_RID); if (rid < 0x22 && rid > 0x11) printf("\t\t!!! Possibly incomplete decoding\n"); printf("\t\tCommand: BaseUnitID=%u UnitCnt=%u MastHost%c DefDir%c", (cmd & PCI_HT_PRI_CMD_BUID), (cmd & PCI_HT_PRI_CMD_UC) >> 5, FLAG(cmd, PCI_HT_PRI_CMD_MH), FLAG(cmd, PCI_HT_PRI_CMD_DD)); if (rid >= 0x22) printf(" DUL%c", FLAG(cmd, PCI_HT_PRI_CMD_DUL)); printf("\n"); lctr0 = get_conf_word(d, where + PCI_HT_PRI_LCTR0); printf("\t\tLink Control 0: CFlE%c CST%c CFE%c > 8); if (rid >= 0x22) printf(" IsocEn%c LSEn%c ExtCTL%c 64b%c", FLAG(lctr0, PCI_HT_LCTR_ISOCEN), FLAG(lctr0, PCI_HT_LCTR_LSEN), FLAG(lctr0, PCI_HT_LCTR_EXTCTL), FLAG(lctr0, PCI_HT_LCTR_64B)); printf("\n"); lcnf0 = get_conf_word(d, where + PCI_HT_PRI_LCNF0); if (rid < 0x22) printf("\t\tLink Config 0: MLWI=%s MLWO=%s LWI=%s LWO=%s\n", ht_link_width(lcnf0 & PCI_HT_LCNF_MLWI), ht_link_width((lcnf0 & PCI_HT_LCNF_MLWO) >> 4), ht_link_width((lcnf0 & PCI_HT_LCNF_LWI) >> 8), ht_link_width((lcnf0 & PCI_HT_LCNF_LWO) >> 12)); else printf("\t\tLink Config 0: MLWI=%s DwFcIn%c MLWO=%s DwFcOut%c LWI=%s DwFcInEn%c LWO=%s DwFcOutEn%c\n", ht_link_width(lcnf0 & PCI_HT_LCNF_MLWI), FLAG(lcnf0, PCI_HT_LCNF_DFI), ht_link_width((lcnf0 & PCI_HT_LCNF_MLWO) >> 4), FLAG(lcnf0, PCI_HT_LCNF_DFO), ht_link_width((lcnf0 & PCI_HT_LCNF_LWI) >> 8), FLAG(lcnf0, PCI_HT_LCNF_DFIE), ht_link_width((lcnf0 & PCI_HT_LCNF_LWO) >> 12), FLAG(lcnf0, PCI_HT_LCNF_DFOE)); lctr1 = get_conf_word(d, where + PCI_HT_PRI_LCTR1); printf("\t\tLink Control 1: CFlE%c CST%c CFE%c > 8); if (rid >= 0x22) printf(" IsocEn%c LSEn%c ExtCTL%c 64b%c", FLAG(lctr1, PCI_HT_LCTR_ISOCEN), FLAG(lctr1, PCI_HT_LCTR_LSEN), FLAG(lctr1, PCI_HT_LCTR_EXTCTL), FLAG(lctr1, PCI_HT_LCTR_64B)); printf("\n"); lcnf1 = get_conf_word(d, where + PCI_HT_PRI_LCNF1); if (rid < 0x22) printf("\t\tLink Config 1: MLWI=%s MLWO=%s LWI=%s LWO=%s\n", ht_link_width(lcnf1 & PCI_HT_LCNF_MLWI), ht_link_width((lcnf1 & PCI_HT_LCNF_MLWO) >> 4), ht_link_width((lcnf1 & PCI_HT_LCNF_LWI) >> 8), ht_link_width((lcnf1 & PCI_HT_LCNF_LWO) >> 12)); else printf("\t\tLink Config 1: MLWI=%s DwFcIn%c MLWO=%s DwFcOut%c LWI=%s DwFcInEn%c LWO=%s DwFcOutEn%c\n", ht_link_width(lcnf1 & PCI_HT_LCNF_MLWI), FLAG(lcnf1, PCI_HT_LCNF_DFI), ht_link_width((lcnf1 & PCI_HT_LCNF_MLWO) >> 4), FLAG(lcnf1, PCI_HT_LCNF_DFO), ht_link_width((lcnf1 & PCI_HT_LCNF_LWI) >> 8), FLAG(lcnf1, PCI_HT_LCNF_DFIE), ht_link_width((lcnf1 & PCI_HT_LCNF_LWO) >> 12), FLAG(lcnf1, PCI_HT_LCNF_DFOE)); printf("\t\tRevision ID: %u.%02u\n", (rid & PCI_HT_RID_MAJ) >> 5, (rid & PCI_HT_RID_MIN)); if (rid < 0x22) return; lfrer0 = get_conf_byte(d, where + PCI_HT_PRI_LFRER0); printf("\t\tLink Frequency 0: %s\n", ht_link_freq(lfrer0 & PCI_HT_LFRER_FREQ)); printf("\t\tLink Error 0: 0x11) printf("\t\t!!! Possibly incomplete decoding\n"); if (rid >= 0x22) fmt = "\t\tCommand: WarmRst%c DblEnd%c DevNum=%u ChainSide%c HostHide%c Slave%c > 2, FLAG(cmd, PCI_HT_SEC_CMD_CS), FLAG(cmd, PCI_HT_SEC_CMD_HH), FLAG(cmd, PCI_HT_SEC_CMD_AS), FLAG(cmd, PCI_HT_SEC_CMD_HIECE), FLAG(cmd, PCI_HT_SEC_CMD_DUL)); lctr = get_conf_word(d, where + PCI_HT_SEC_LCTR); if (rid >= 0x22) fmt = "\t\tLink Control: CFlE%c CST%c CFE%c > 8, FLAG(lctr, PCI_HT_LCTR_ISOCEN), FLAG(lctr, PCI_HT_LCTR_LSEN), FLAG(lctr, PCI_HT_LCTR_EXTCTL), FLAG(lctr, PCI_HT_LCTR_64B)); lcnf = get_conf_word(d, where + PCI_HT_SEC_LCNF); if (rid >= 0x22) fmt = "\t\tLink Config: MLWI=%1$s DwFcIn%5$c MLWO=%2$s DwFcOut%6$c LWI=%3$s DwFcInEn%7$c LWO=%4$s DwFcOutEn%8$c\n"; else fmt = "\t\tLink Config: MLWI=%s MLWO=%s LWI=%s LWO=%s\n"; printf(fmt, ht_link_width(lcnf & PCI_HT_LCNF_MLWI), ht_link_width((lcnf & PCI_HT_LCNF_MLWO) >> 4), ht_link_width((lcnf & PCI_HT_LCNF_LWI) >> 8), ht_link_width((lcnf & PCI_HT_LCNF_LWO) >> 12), FLAG(lcnf, PCI_HT_LCNF_DFI), FLAG(lcnf, PCI_HT_LCNF_DFO), FLAG(lcnf, PCI_HT_LCNF_DFIE), FLAG(lcnf, PCI_HT_LCNF_DFOE)); printf("\t\tRevision ID: %u.%02u\n", (rid & PCI_HT_RID_MAJ) >> 5, (rid & PCI_HT_RID_MIN)); if (rid < 0x22) return; lfrer = get_conf_byte(d, where + PCI_HT_SEC_LFRER); printf("\t\tLink Frequency: %s\n", ht_link_freq(lfrer & PCI_HT_LFRER_FREQ)); printf("\t\tLink Error: > 5, (cmd & PCI_HT_RID_MIN)); break; case PCI_HT_CMD_TYP_UIDC: printf("HyperTransport: UnitID Clumping\n"); break; case PCI_HT_CMD_TYP_ECSA: printf("HyperTransport: Extended Configuration Space Access\n"); break; case PCI_HT_CMD_TYP_AM: printf("HyperTransport: Address Mapping\n"); break; case PCI_HT_CMD_TYP_MSIM: printf("HyperTransport: MSI Mapping Enable%c Fixed%c\n", FLAG(cmd, PCI_HT_MSIM_CMD_EN), FLAG(cmd, PCI_HT_MSIM_CMD_FIXD)); if (verbose >= 2 && !(cmd & PCI_HT_MSIM_CMD_FIXD)) { u32 offl, offh; if (!config_fetch(d, where + PCI_HT_MSIM_ADDR_LO, 8)) break; offl = get_conf_long(d, where + PCI_HT_MSIM_ADDR_LO); offh = get_conf_long(d, where + PCI_HT_MSIM_ADDR_HI); printf("\t\tMapping Address Base: %016" PCI_U64_FMT_X "\n", ((u64)offh << 32) | (offl & ~0xfffff)); } break; case PCI_HT_CMD_TYP_DR: printf("HyperTransport: DirectRoute\n"); break; case PCI_HT_CMD_TYP_VCS: printf("HyperTransport: VCSet\n"); break; case PCI_HT_CMD_TYP_RM: printf("HyperTransport: Retry Mode\n"); break; case PCI_HT_CMD_TYP_X86: printf("HyperTransport: X86 (reserved)\n"); break; default: printf("HyperTransport: #%02x\n", type >> 11); } } static void cap_msi(struct device *d, int where, int cap) { int is64; u32 t; u16 w; printf("MSI: Enable%c Count=%d/%d Maskable%c 64bit%c\n", FLAG(cap, PCI_MSI_FLAGS_ENABLE), 1 << ((cap & PCI_MSI_FLAGS_QSIZE) >> 4), 1 << ((cap & PCI_MSI_FLAGS_QMASK) >> 1), FLAG(cap, PCI_MSI_FLAGS_MASK_BIT), FLAG(cap, PCI_MSI_FLAGS_64BIT)); if (verbose < 2) return; is64 = cap & PCI_MSI_FLAGS_64BIT; if (!config_fetch(d, where + PCI_MSI_ADDRESS_LO, (is64 ? PCI_MSI_DATA_64 : PCI_MSI_DATA_32) + 2 - PCI_MSI_ADDRESS_LO)) return; printf("\t\tAddress: "); if (is64) { t = get_conf_long(d, where + PCI_MSI_ADDRESS_HI); w = get_conf_word(d, where + PCI_MSI_DATA_64); printf("%08x", t); } else w = get_conf_word(d, where + PCI_MSI_DATA_32); t = get_conf_long(d, where + PCI_MSI_ADDRESS_LO); printf("%08x Data: %04x\n", t, w); if (cap & PCI_MSI_FLAGS_MASK_BIT) { u32 mask, pending; if (is64) { if (!config_fetch(d, where + PCI_MSI_MASK_BIT_64, 8)) return; mask = get_conf_long(d, where + PCI_MSI_MASK_BIT_64); pending = get_conf_long(d, where + PCI_MSI_PENDING_64); } else { if (!config_fetch(d, where + PCI_MSI_MASK_BIT_32, 8)) return; mask = get_conf_long(d, where + PCI_MSI_MASK_BIT_32); pending = get_conf_long(d, where + PCI_MSI_PENDING_32); } printf("\t\tMasking: %08x Pending: %08x\n", mask, pending); } } static int exp_downstream_port(int type) { return type == PCI_EXP_TYPE_ROOT_PORT || type == PCI_EXP_TYPE_DOWNSTREAM || type == PCI_EXP_TYPE_PCIE_BRIDGE; /* PCI/PCI-X to PCIe Bridge */ } static void show_power_limit(int value, int scale) { static const float scales[4] = { 1.0, 0.1, 0.01, 0.001 }; if (scale == 0 && value == 0xFF) { printf(">600W"); return; } if (scale == 0 && value >= 0xF0 && value <= 0xFE) value = 250 + 25 * (value - 0xF0); printf("%gW", value * scales[scale]); } static const char *latency_l0s(int value) { static const char *latencies[] = { "<64ns", "<128ns", "<256ns", "<512ns", "<1us", "<2us", "<4us", "unlimited" }; return latencies[value]; } static const char *latency_l1(int value) { static const char *latencies[] = { "<1us", "<2us", "<4us", "<8us", "<16us", "<32us", "<64us", "unlimited" }; return latencies[value]; } static void cap_express_dev(struct device *d, int where, int type) { u32 t; u16 w; t = get_conf_long(d, where + PCI_EXP_DEVCAP); printf("\t\tDevCap:\tMaxPayload %d bytes, PhantFunc %d", 128 << (t & PCI_EXP_DEVCAP_PAYLOAD), (1 << ((t & PCI_EXP_DEVCAP_PHANTOM) >> 3)) - 1); if ((type == PCI_EXP_TYPE_ENDPOINT) || (type == PCI_EXP_TYPE_LEG_END)) printf(", Latency L0s %s, L1 %s", latency_l0s((t & PCI_EXP_DEVCAP_L0S) >> 6), latency_l1((t & PCI_EXP_DEVCAP_L1) >> 9)); printf("\n"); printf("\t\t\tExtTag%c", FLAG(t, PCI_EXP_DEVCAP_EXT_TAG)); if ((type == PCI_EXP_TYPE_ENDPOINT) || (type == PCI_EXP_TYPE_LEG_END) || (type == PCI_EXP_TYPE_UPSTREAM) || (type == PCI_EXP_TYPE_PCI_BRIDGE)) printf(" AttnBtn%c AttnInd%c PwrInd%c", FLAG(t, PCI_EXP_DEVCAP_ATN_BUT), FLAG(t, PCI_EXP_DEVCAP_ATN_IND), FLAG(t, PCI_EXP_DEVCAP_PWR_IND)); printf(" RBE%c", FLAG(t, PCI_EXP_DEVCAP_RBE)); if ((type == PCI_EXP_TYPE_ENDPOINT) || (type == PCI_EXP_TYPE_LEG_END) || (type == PCI_EXP_TYPE_ROOT_INT_EP)) printf(" FLReset%c", FLAG(t, PCI_EXP_DEVCAP_FLRESET)); if ((type == PCI_EXP_TYPE_ENDPOINT) || (type == PCI_EXP_TYPE_UPSTREAM) || (type == PCI_EXP_TYPE_PCI_BRIDGE)) { printf(" SlotPowerLimit "); show_power_limit((t & PCI_EXP_DEVCAP_PWR_VAL) >> 18, (t & PCI_EXP_DEVCAP_PWR_SCL) >> 26); } printf("\n"); w = get_conf_word(d, where + PCI_EXP_DEVCTL); printf("\t\tDevCtl:\tCorrErr%c NonFatalErr%c FatalErr%c UnsupReq%c\n", FLAG(w, PCI_EXP_DEVCTL_CERE), FLAG(w, PCI_EXP_DEVCTL_NFERE), FLAG(w, PCI_EXP_DEVCTL_FERE), FLAG(w, PCI_EXP_DEVCTL_URRE)); printf("\t\t\tRlxdOrd%c ExtTag%c PhantFunc%c AuxPwr%c NoSnoop%c", FLAG(w, PCI_EXP_DEVCTL_RELAXED), FLAG(w, PCI_EXP_DEVCTL_EXT_TAG), FLAG(w, PCI_EXP_DEVCTL_PHANTOM), FLAG(w, PCI_EXP_DEVCTL_AUX_PME), FLAG(w, PCI_EXP_DEVCTL_NOSNOOP)); if (type == PCI_EXP_TYPE_PCI_BRIDGE) printf(" BrConfRtry%c", FLAG(w, PCI_EXP_DEVCTL_BCRE)); if (((type == PCI_EXP_TYPE_ENDPOINT) || (type == PCI_EXP_TYPE_LEG_END) || (type == PCI_EXP_TYPE_ROOT_INT_EP)) && (t & PCI_EXP_DEVCAP_FLRESET)) printf(" FLReset%c", FLAG(w, PCI_EXP_DEVCTL_FLRESET)); printf("\n\t\t\tMaxPayload %d bytes, MaxReadReq %d bytes\n", 128 << ((w & PCI_EXP_DEVCTL_PAYLOAD) >> 5), 128 << ((w & PCI_EXP_DEVCTL_READRQ) >> 12)); w = get_conf_word(d, where + PCI_EXP_DEVSTA); printf("\t\tDevSta:\tCorrErr%c NonFatalErr%c FatalErr%c UnsupReq%c AuxPwr%c TransPend%c\n", FLAG(w, PCI_EXP_DEVSTA_CED), FLAG(w, PCI_EXP_DEVSTA_NFED), FLAG(w, PCI_EXP_DEVSTA_FED), FLAG(w, PCI_EXP_DEVSTA_URD), FLAG(w, PCI_EXP_DEVSTA_AUXPD), FLAG(w, PCI_EXP_DEVSTA_TRPND)); } static char *link_speed(int speed) { switch (speed) { case 1: return "2.5GT/s"; case 2: return "5GT/s"; case 3: return "8GT/s"; case 4: return "16GT/s"; case 5: return "32GT/s"; case 6: return "64GT/s"; default: return "unknown"; } } static char *link_compare(int type, int sta, int cap) { if (sta > cap) return " (overdriven)"; if (sta == cap) return ""; if ((type == PCI_EXP_TYPE_ROOT_PORT) || (type == PCI_EXP_TYPE_DOWNSTREAM) || (type == PCI_EXP_TYPE_PCIE_BRIDGE)) return ""; return " (downgraded)"; } static char *aspm_support(int code) { switch (code) { case 0: return "not supported"; case 1: return "L0s"; case 2: return "L1"; case 3: return "L0s L1"; default: return "unknown"; } } static const char *aspm_enabled(int code) { static const char *desc[] = { "Disabled", "L0s Enabled", "L1 Enabled", "L0s L1 Enabled" }; return desc[code]; } static void cap_express_link(struct device *d, int where, int type) { u32 t, aspm, cap_speed, cap_width, sta_speed, sta_width; u16 w; t = get_conf_long(d, where + PCI_EXP_LNKCAP); aspm = (t & PCI_EXP_LNKCAP_ASPM) >> 10; cap_speed = t & PCI_EXP_LNKCAP_SPEED; cap_width = (t & PCI_EXP_LNKCAP_WIDTH) >> 4; printf("\t\tLnkCap:\tPort #%d, Speed %s, Width x%d, ASPM %s", t >> 24, link_speed(cap_speed), cap_width, aspm_support(aspm)); if (aspm) { printf(", Exit Latency "); if (aspm & 1) printf("L0s %s", latency_l0s((t & PCI_EXP_LNKCAP_L0S) >> 12)); if (aspm & 2) printf("%sL1 %s", (aspm & 1) ? ", " : "", latency_l1((t & PCI_EXP_LNKCAP_L1) >> 15)); } printf("\n"); printf("\t\t\tClockPM%c Surprise%c LLActRep%c BwNot%c ASPMOptComp%c\n", FLAG(t, PCI_EXP_LNKCAP_CLOCKPM), FLAG(t, PCI_EXP_LNKCAP_SURPRISE), FLAG(t, PCI_EXP_LNKCAP_DLLA), FLAG(t, PCI_EXP_LNKCAP_LBNC), FLAG(t, PCI_EXP_LNKCAP_AOC)); w = get_conf_word(d, where + PCI_EXP_LNKCTL); printf("\t\tLnkCtl:\tASPM %s;", aspm_enabled(w & PCI_EXP_LNKCTL_ASPM)); if ((type == PCI_EXP_TYPE_ROOT_PORT) || (type == PCI_EXP_TYPE_ENDPOINT) || (type == PCI_EXP_TYPE_LEG_END) || (type == PCI_EXP_TYPE_PCI_BRIDGE)) printf(" RCB %d bytes,", w & PCI_EXP_LNKCTL_RCB ? 128 : 64); printf(" LnkDisable%c CommClk%c\n\t\t\tExtSynch%c ClockPM%c AutWidDis%c BWInt%c AutBWInt%c\n", FLAG(w, PCI_EXP_LNKCTL_DISABLE), FLAG(w, PCI_EXP_LNKCTL_CLOCK), FLAG(w, PCI_EXP_LNKCTL_XSYNCH), FLAG(w, PCI_EXP_LNKCTL_CLOCKPM), FLAG(w, PCI_EXP_LNKCTL_HWAUTWD), FLAG(w, PCI_EXP_LNKCTL_BWMIE), FLAG(w, PCI_EXP_LNKCTL_AUTBWIE)); w = get_conf_word(d, where + PCI_EXP_LNKSTA); sta_speed = w & PCI_EXP_LNKSTA_SPEED; sta_width = (w & PCI_EXP_LNKSTA_WIDTH) >> 4; printf("\t\tLnkSta:\tSpeed %s%s, Width x%d%s\n", link_speed(sta_speed), link_compare(type, sta_speed, cap_speed), sta_width, link_compare(type, sta_width, cap_width)); printf("\t\t\tTrErr%c Train%c SlotClk%c DLActive%c BWMgmt%c ABWMgmt%c\n", FLAG(w, PCI_EXP_LNKSTA_TR_ERR), FLAG(w, PCI_EXP_LNKSTA_TRAIN), FLAG(w, PCI_EXP_LNKSTA_SL_CLK), FLAG(w, PCI_EXP_LNKSTA_DL_ACT), FLAG(w, PCI_EXP_LNKSTA_BWMGMT), FLAG(w, PCI_EXP_LNKSTA_AUTBW)); } static const char *indicator(int code) { static const char *names[] = { "Unknown", "On", "Blink", "Off" }; return names[code]; } static void cap_express_slot(struct device *d, int where) { u32 t; u16 w; t = get_conf_long(d, where + PCI_EXP_SLTCAP); printf("\t\tSltCap:\tAttnBtn%c PwrCtrl%c MRL%c AttnInd%c PwrInd%c HotPlug%c Surprise%c\n", FLAG(t, PCI_EXP_SLTCAP_ATNB), FLAG(t, PCI_EXP_SLTCAP_PWRC), FLAG(t, PCI_EXP_SLTCAP_MRL), FLAG(t, PCI_EXP_SLTCAP_ATNI), FLAG(t, PCI_EXP_SLTCAP_PWRI), FLAG(t, PCI_EXP_SLTCAP_HPC), FLAG(t, PCI_EXP_SLTCAP_HPS)); printf("\t\t\tSlot #%d, PowerLimit ", (t & PCI_EXP_SLTCAP_PSN) >> 19); show_power_limit((t & PCI_EXP_SLTCAP_PWR_VAL) >> 7, (t & PCI_EXP_SLTCAP_PWR_SCL) >> 15); printf("; Interlock%c NoCompl%c\n", FLAG(t, PCI_EXP_SLTCAP_INTERLOCK), FLAG(t, PCI_EXP_SLTCAP_NOCMDCOMP)); w = get_conf_word(d, where + PCI_EXP_SLTCTL); printf("\t\tSltCtl:\tEnable: AttnBtn%c PwrFlt%c MRL%c PresDet%c CmdCplt%c HPIrq%c LinkChg%c\n", FLAG(w, PCI_EXP_SLTCTL_ATNB), FLAG(w, PCI_EXP_SLTCTL_PWRF), FLAG(w, PCI_EXP_SLTCTL_MRLS), FLAG(w, PCI_EXP_SLTCTL_PRSD), FLAG(w, PCI_EXP_SLTCTL_CMDC), FLAG(w, PCI_EXP_SLTCTL_HPIE), FLAG(w, PCI_EXP_SLTCTL_LLCHG)); printf("\t\t\tControl: AttnInd %s, PwrInd %s, Power%c Interlock%c\n", indicator((w & PCI_EXP_SLTCTL_ATNI) >> 6), indicator((w & PCI_EXP_SLTCTL_PWRI) >> 8), FLAG(w, PCI_EXP_SLTCTL_PWRC), FLAG(w, PCI_EXP_SLTCTL_INTERLOCK)); w = get_conf_word(d, where + PCI_EXP_SLTSTA); printf("\t\tSltSta:\tStatus: AttnBtn%c PowerFlt%c MRL%c CmdCplt%c PresDet%c Interlock%c\n", FLAG(w, PCI_EXP_SLTSTA_ATNB), FLAG(w, PCI_EXP_SLTSTA_PWRF), FLAG(w, PCI_EXP_SLTSTA_MRL_ST), FLAG(w, PCI_EXP_SLTSTA_CMDC), FLAG(w, PCI_EXP_SLTSTA_PRES), FLAG(w, PCI_EXP_SLTSTA_INTERLOCK)); printf("\t\t\tChanged: MRL%c PresDet%c LinkState%c\n", FLAG(w, PCI_EXP_SLTSTA_MRLS), FLAG(w, PCI_EXP_SLTSTA_PRSD), FLAG(w, PCI_EXP_SLTSTA_LLCHG)); } static void cap_express_root(struct device *d, int where) { u32 w; w = get_conf_word(d, where + PCI_EXP_RTCAP); printf("\t\tRootCap: CRSVisible%c\n", FLAG(w, PCI_EXP_RTCAP_CRSVIS)); w = get_conf_word(d, where + PCI_EXP_RTCTL); printf("\t\tRootCtl: ErrCorrectable%c ErrNon-Fatal%c ErrFatal%c PMEIntEna%c CRSVisible%c\n", FLAG(w, PCI_EXP_RTCTL_SECEE), FLAG(w, PCI_EXP_RTCTL_SENFEE), FLAG(w, PCI_EXP_RTCTL_SEFEE), FLAG(w, PCI_EXP_RTCTL_PMEIE), FLAG(w, PCI_EXP_RTCTL_CRSVIS)); w = get_conf_long(d, where + PCI_EXP_RTSTA); printf("\t\tRootSta: PME ReqID %04x, PMEStatus%c PMEPending%c\n", w & PCI_EXP_RTSTA_PME_REQID, FLAG(w, PCI_EXP_RTSTA_PME_STATUS), FLAG(w, PCI_EXP_RTSTA_PME_PENDING)); } static const char *cap_express_dev2_timeout_range(int type) { /* Decode Completion Timeout Ranges. */ switch (type) { case 0: return "Not Supported"; case 1: return "Range A"; case 2: return "Range B"; case 3: return "Range AB"; case 6: return "Range BC"; case 7: return "Range ABC"; case 14: return "Range BCD"; case 15: return "Range ABCD"; default: return "Unknown"; } } static const char *cap_express_dev2_timeout_value(int type) { /* Decode Completion Timeout Value. */ switch (type) { case 0: return "50us to 50ms"; case 1: return "50us to 100us"; case 2: return "1ms to 10ms"; case 5: return "16ms to 55ms"; case 6: return "65ms to 210ms"; case 9: return "260ms to 900ms"; case 10: return "1s to 3.5s"; case 13: return "4s to 13s"; case 14: return "17s to 64s"; default: return "Unknown"; } } static const char *cap_express_devcap2_obff(int obff) { switch (obff) { case 1: return "Via message"; case 2: return "Via WAKE#"; case 3: return "Via message/WAKE#"; default: return "Not Supported"; } } static const char *cap_express_devcap2_epr(int epr) { switch (epr) { case 1: return "Dev Specific"; case 2: return "Form Factor Dev Specific"; case 3: return "Reserved"; default: return "Not Supported"; } } static const char *cap_express_devcap2_lncls(int lncls) { switch (lncls) { case 1: return "64byte cachelines"; case 2: return "128byte cachelines"; case 3: return "Reserved"; default: return "Not Supported"; } } static const char *cap_express_devcap2_tphcomp(int tph) { switch (tph) { case 1: return "TPHComp+ ExtTPHComp-"; case 2: /* Reserved; intentionally left blank */ return ""; case 3: return "TPHComp+ ExtTPHComp+"; default: return "TPHComp- ExtTPHComp-"; } } static const char *cap_express_devctl2_obff(int obff) { switch (obff) { case 0: return "Disabled"; case 1: return "Via message A"; case 2: return "Via message B"; case 3: return "Via WAKE#"; default: return "Unknown"; } } static int device_has_memory_space_bar(struct device *d) { struct pci_dev *p = d->dev; int i, found = 0; for (i=0; i<6; i++) if (p->base_addr[i] || p->size[i]) { if (!(p->base_addr[i] & PCI_BASE_ADDRESS_SPACE_IO)) { found = 1; break; } } return found; } static void cap_express_dev2(struct device *d, int where, int type) { u32 l; u16 w; int has_mem_bar = device_has_memory_space_bar(d); l = get_conf_long(d, where + PCI_EXP_DEVCAP2); printf("\t\tDevCap2: Completion Timeout: %s, TimeoutDis%c NROPrPrP%c LTR%c", cap_express_dev2_timeout_range(PCI_EXP_DEVCAP2_TIMEOUT_RANGE(l)), FLAG(l, PCI_EXP_DEVCAP2_TIMEOUT_DIS), FLAG(l, PCI_EXP_DEVCAP2_NROPRPRP), FLAG(l, PCI_EXP_DEVCAP2_LTR)); printf("\n\t\t\t 10BitTagComp%c 10BitTagReq%c OBFF %s, ExtFmt%c EETLPPrefix%c", FLAG(l, PCI_EXP_DEVCAP2_10BIT_TAG_COMP), FLAG(l, PCI_EXP_DEVCAP2_10BIT_TAG_REQ), cap_express_devcap2_obff(PCI_EXP_DEVCAP2_OBFF(l)), FLAG(l, PCI_EXP_DEVCAP2_EXTFMT), FLAG(l, PCI_EXP_DEVCAP2_EE_TLP)); if (PCI_EXP_DEVCAP2_EE_TLP == (l & PCI_EXP_DEVCAP2_EE_TLP)) { printf(", MaxEETLPPrefixes %d", PCI_EXP_DEVCAP2_MEE_TLP(l) ? PCI_EXP_DEVCAP2_MEE_TLP(l) : 4); } printf("\n\t\t\t EmergencyPowerReduction %s, EmergencyPowerReductionInit%c", cap_express_devcap2_epr(PCI_EXP_DEVCAP2_EPR(l)), FLAG(l, PCI_EXP_DEVCAP2_EPR_INIT)); printf("\n\t\t\t FRS%c", FLAG(l, PCI_EXP_DEVCAP2_FRS)); if (type == PCI_EXP_TYPE_ROOT_PORT) printf(" LN System CLS %s,", cap_express_devcap2_lncls(PCI_EXP_DEVCAP2_LN_CLS(l))); if (type == PCI_EXP_TYPE_ROOT_PORT || type == PCI_EXP_TYPE_ENDPOINT) printf(" %s", cap_express_devcap2_tphcomp(PCI_EXP_DEVCAP2_TPH_COMP(l))); if (type == PCI_EXP_TYPE_ROOT_PORT || type == PCI_EXP_TYPE_DOWNSTREAM) printf(" ARIFwd%c\n", FLAG(l, PCI_EXP_DEVCAP2_ARI)); else printf("\n"); if (type == PCI_EXP_TYPE_ROOT_PORT || type == PCI_EXP_TYPE_UPSTREAM || type == PCI_EXP_TYPE_DOWNSTREAM || has_mem_bar) { printf("\t\t\t AtomicOpsCap:"); if (type == PCI_EXP_TYPE_ROOT_PORT || type == PCI_EXP_TYPE_UPSTREAM || type == PCI_EXP_TYPE_DOWNSTREAM) printf(" Routing%c", FLAG(l, PCI_EXP_DEVCAP2_ATOMICOP_ROUTING)); if (type == PCI_EXP_TYPE_ROOT_PORT || has_mem_bar) printf(" 32bit%c 64bit%c 128bitCAS%c", FLAG(l, PCI_EXP_DEVCAP2_32BIT_ATOMICOP_COMP), FLAG(l, PCI_EXP_DEVCAP2_64BIT_ATOMICOP_COMP), FLAG(l, PCI_EXP_DEVCAP2_128BIT_CAS_COMP)); printf("\n"); } w = get_conf_word(d, where + PCI_EXP_DEVCTL2); printf("\t\tDevCtl2: Completion Timeout: %s, TimeoutDis%c", cap_express_dev2_timeout_value(PCI_EXP_DEVCTL2_TIMEOUT_VALUE(w)), FLAG(w, PCI_EXP_DEVCTL2_TIMEOUT_DIS)); if (type == PCI_EXP_TYPE_ROOT_PORT || type == PCI_EXP_TYPE_DOWNSTREAM) printf(" ARIFwd%c\n", FLAG(w, PCI_EXP_DEVCTL2_ARI)); else printf("\n"); if (type == PCI_EXP_TYPE_ROOT_PORT || type == PCI_EXP_TYPE_UPSTREAM || type == PCI_EXP_TYPE_DOWNSTREAM || type == PCI_EXP_TYPE_ENDPOINT || type == PCI_EXP_TYPE_ROOT_INT_EP || type == PCI_EXP_TYPE_LEG_END) { printf("\t\t\t AtomicOpsCtl:"); if (type == PCI_EXP_TYPE_ROOT_PORT || type == PCI_EXP_TYPE_ENDPOINT || type == PCI_EXP_TYPE_ROOT_INT_EP || type == PCI_EXP_TYPE_LEG_END) printf(" ReqEn%c", FLAG(w, PCI_EXP_DEVCTL2_ATOMICOP_REQUESTER_EN)); if (type == PCI_EXP_TYPE_ROOT_PORT || type == PCI_EXP_TYPE_UPSTREAM || type == PCI_EXP_TYPE_DOWNSTREAM) printf(" EgressBlck%c", FLAG(w, PCI_EXP_DEVCTL2_ATOMICOP_EGRESS_BLOCK)); printf("\n"); } printf("\t\t\t IDOReq%c IDOCompl%c LTR%c EmergencyPowerReductionReq%c\n", FLAG(w, PCI_EXP_DEVCTL2_IDO_REQ_EN), FLAG(w, PCI_EXP_DEVCTL2_IDO_CMP_EN), FLAG(w, PCI_EXP_DEVCTL2_LTR), FLAG(w, PCI_EXP_DEVCTL2_EPR_REQ)); printf("\t\t\t 10BitTagReq%c OBFF %s, EETLPPrefixBlk%c\n", FLAG(w, PCI_EXP_DEVCTL2_10BIT_TAG_REQ), cap_express_devctl2_obff(PCI_EXP_DEVCTL2_OBFF(w)), FLAG(w, PCI_EXP_DEVCTL2_EE_TLP_BLK)); } static const char *cap_express_link2_speed_cap(int vector) { /* * Per PCIe r5.0, sec 8.2.1, a device must support 2.5GT/s and is not * permitted to skip support for any data rates between 2.5GT/s and the * highest supported rate. */ if (vector & 0x40) return "RsvdP"; if (vector & 0x20) return "2.5-64GT/s"; if (vector & 0x10) return "2.5-32GT/s"; if (vector & 0x08) return "2.5-16GT/s"; if (vector & 0x04) return "2.5-8GT/s"; if (vector & 0x02) return "2.5-5GT/s"; if (vector & 0x01) return "2.5GT/s"; return "Unknown"; } static const char *cap_express_link2_speed(int type) { switch (type) { case 0: /* hardwire to 0 means only the 2.5GT/s is supported */ case 1: return "2.5GT/s"; case 2: return "5GT/s"; case 3: return "8GT/s"; case 4: return "16GT/s"; case 5: return "32GT/s"; case 6: return "64GT/s"; default: return "Unknown"; } } static const char *cap_express_link2_deemphasis(int type) { switch (type) { case 0: return "-6dB"; case 1: return "-3.5dB"; default: return "Unknown"; } } static const char *cap_express_link2_compliance_preset(int type) { switch (type) { case 0: return "-6dB de-emphasis, 0dB preshoot"; case 1: return "-3.5dB de-emphasis, 0dB preshoot"; case 2: return "-4.4dB de-emphasis, 0dB preshoot"; case 3: return "-2.5dB de-emphasis, 0dB preshoot"; case 4: return "0dB de-emphasis, 0dB preshoot"; case 5: return "0dB de-emphasis, 1.9dB preshoot"; case 6: return "0dB de-emphasis, 2.5dB preshoot"; case 7: return "-6.0dB de-emphasis, 3.5dB preshoot"; case 8: return "-3.5dB de-emphasis, 3.5dB preshoot"; case 9: return "0dB de-emphasis, 3.5dB preshoot"; default: return "Unknown"; } } static const char *cap_express_link2_transmargin(int type) { switch (type) { case 0: return "Normal Operating Range"; case 1: return "800-1200mV(full-swing)/400-700mV(half-swing)"; case 2: case 3: case 4: case 5: return "200-400mV(full-swing)/100-200mV(half-swing)"; default: return "Unknown"; } } static const char *cap_express_link2_crosslink_res(int crosslink) { switch (crosslink) { case 0: return "unsupported"; case 1: return "Upstream Port"; case 2: return "Downstream Port"; default: return "incomplete"; } } static const char *cap_express_link2_component(int presence) { switch (presence) { case 0: return "Link Down - Not Determined"; case 1: return "Link Down - Not Present"; case 2: return "Link Down - Present"; case 4: return "Link Up - Present"; case 5: return "Link Up - Present and DRS Received"; default: return "Reserved"; } } static void cap_express_link2(struct device *d, int where, int type) { u32 l = 0; u16 w; if (!((type == PCI_EXP_TYPE_ENDPOINT || type == PCI_EXP_TYPE_LEG_END) && (d->dev->dev != 0 || d->dev->func != 0))) { /* Link Capabilities 2 was reserved before PCIe r3.0 */ l = get_conf_long(d, where + PCI_EXP_LNKCAP2); if (l) { printf("\t\tLnkCap2: Supported Link Speeds: %s, Crosslink%c " "Retimer%c 2Retimers%c DRS%c\n", cap_express_link2_speed_cap(PCI_EXP_LNKCAP2_SPEED(l)), FLAG(l, PCI_EXP_LNKCAP2_CROSSLINK), FLAG(l, PCI_EXP_LNKCAP2_RETIMER), FLAG(l, PCI_EXP_LNKCAP2_2RETIMERS), FLAG(l, PCI_EXP_LNKCAP2_DRS)); } w = get_conf_word(d, where + PCI_EXP_LNKCTL2); printf("\t\tLnkCtl2: Target Link Speed: %s, EnterCompliance%c SpeedDis%c", cap_express_link2_speed(PCI_EXP_LNKCTL2_SPEED(w)), FLAG(w, PCI_EXP_LNKCTL2_CMPLNC), FLAG(w, PCI_EXP_LNKCTL2_SPEED_DIS)); if (type == PCI_EXP_TYPE_DOWNSTREAM) printf(", Selectable De-emphasis: %s", cap_express_link2_deemphasis(PCI_EXP_LNKCTL2_DEEMPHASIS(w))); printf("\n" "\t\t\t Transmit Margin: %s, EnterModifiedCompliance%c ComplianceSOS%c\n" "\t\t\t Compliance Preset/De-emphasis: %s\n", cap_express_link2_transmargin(PCI_EXP_LNKCTL2_MARGIN(w)), FLAG(w, PCI_EXP_LNKCTL2_MOD_CMPLNC), FLAG(w, PCI_EXP_LNKCTL2_CMPLNC_SOS), cap_express_link2_compliance_preset(PCI_EXP_LNKCTL2_COM_DEEMPHASIS(w))); } w = get_conf_word(d, where + PCI_EXP_LNKSTA2); printf("\t\tLnkSta2: Current De-emphasis Level: %s, EqualizationComplete%c EqualizationPhase1%c\n" "\t\t\t EqualizationPhase2%c EqualizationPhase3%c LinkEqualizationRequest%c\n" "\t\t\t Retimer%c 2Retimers%c CrosslinkRes: %s", cap_express_link2_deemphasis(PCI_EXP_LINKSTA2_DEEMPHASIS(w)), FLAG(w, PCI_EXP_LINKSTA2_EQU_COMP), FLAG(w, PCI_EXP_LINKSTA2_EQU_PHASE1), FLAG(w, PCI_EXP_LINKSTA2_EQU_PHASE2), FLAG(w, PCI_EXP_LINKSTA2_EQU_PHASE3), FLAG(w, PCI_EXP_LINKSTA2_EQU_REQ), FLAG(w, PCI_EXP_LINKSTA2_RETIMER), FLAG(w, PCI_EXP_LINKSTA2_2RETIMERS), cap_express_link2_crosslink_res(PCI_EXP_LINKSTA2_CROSSLINK(w))); if (exp_downstream_port(type) && (l & PCI_EXP_LNKCAP2_DRS)) { printf(", DRS%c\n" "\t\t\t DownstreamComp: %s\n", FLAG(w, PCI_EXP_LINKSTA2_DRS_RCVD), cap_express_link2_component(PCI_EXP_LINKSTA2_COMPONENT(w))); } else printf("\n"); } static void cap_express_slot2(struct device *d UNUSED, int where UNUSED) { /* No capabilities that require this field in PCIe rev2.0 spec. */ } static int cap_express(struct device *d, int where, int cap) { int type = (cap & PCI_EXP_FLAGS_TYPE) >> 4; int size; int slot = 0; int link = 1; printf("Express "); if (verbose >= 2) printf("(v%d) ", cap & PCI_EXP_FLAGS_VERS); switch (type) { case PCI_EXP_TYPE_ENDPOINT: printf("Endpoint"); break; case PCI_EXP_TYPE_LEG_END: printf("Legacy Endpoint"); break; case PCI_EXP_TYPE_ROOT_PORT: slot = cap & PCI_EXP_FLAGS_SLOT; printf("Root Port (Slot%c)", FLAG(cap, PCI_EXP_FLAGS_SLOT)); break; case PCI_EXP_TYPE_UPSTREAM: printf("Upstream Port"); break; case PCI_EXP_TYPE_DOWNSTREAM: slot = cap & PCI_EXP_FLAGS_SLOT; printf("Downstream Port (Slot%c)", FLAG(cap, PCI_EXP_FLAGS_SLOT)); break; case PCI_EXP_TYPE_PCI_BRIDGE: printf("PCI-Express to PCI/PCI-X Bridge"); break; case PCI_EXP_TYPE_PCIE_BRIDGE: slot = cap & PCI_EXP_FLAGS_SLOT; printf("PCI/PCI-X to PCI-Express Bridge (Slot%c)", FLAG(cap, PCI_EXP_FLAGS_SLOT)); break; case PCI_EXP_TYPE_ROOT_INT_EP: link = 0; printf("Root Complex Integrated Endpoint"); break; case PCI_EXP_TYPE_ROOT_EC: link = 0; printf("Root Complex Event Collector"); break; default: printf("Unknown type %d", type); } printf(", IntMsgNum %d\n", (cap & PCI_EXP_FLAGS_IRQ) >> 9); if (verbose < 2) return type; size = 16; if (slot) size = 24; if (type == PCI_EXP_TYPE_ROOT_PORT || type == PCI_EXP_TYPE_ROOT_EC) size = 32; if (!config_fetch(d, where + PCI_EXP_DEVCAP, size)) return type; cap_express_dev(d, where, type); if (link) cap_express_link(d, where, type); if (slot) cap_express_slot(d, where); if (type == PCI_EXP_TYPE_ROOT_PORT || type == PCI_EXP_TYPE_ROOT_EC) cap_express_root(d, where); if ((cap & PCI_EXP_FLAGS_VERS) < 2) return type; size = 16; if (slot) size = 24; if (!config_fetch(d, where + PCI_EXP_DEVCAP2, size)) return type; cap_express_dev2(d, where, type); if (link) cap_express_link2(d, where, type); if (slot) cap_express_slot2(d, where); return type; } static void cap_msix(struct device *d, int where, int cap) { u32 off; printf("MSI-X: Enable%c Count=%d Masked%c\n", FLAG(cap, PCI_MSIX_ENABLE), (cap & PCI_MSIX_TABSIZE) + 1, FLAG(cap, PCI_MSIX_MASK)); if (verbose < 2 || !config_fetch(d, where + PCI_MSIX_TABLE, 8)) return; off = get_conf_long(d, where + PCI_MSIX_TABLE); printf("\t\tVector table: BAR=%d offset=%08x\n", off & PCI_MSIX_BIR, off & ~PCI_MSIX_BIR); off = get_conf_long(d, where + PCI_MSIX_PBA); printf("\t\tPBA: BAR=%d offset=%08x\n", off & PCI_MSIX_BIR, off & ~PCI_MSIX_BIR); } static void cap_slotid(int cap) { int esr = cap & 0xff; int chs = cap >> 8; printf("Slot ID: %d slots, First%c, chassis %02x\n", esr & PCI_SID_ESR_NSLOTS, FLAG(esr, PCI_SID_ESR_FIC), chs); } static void cap_ssvid(struct device *d, int where) { u16 subsys_v, subsys_d; char ssnamebuf[256]; if (!config_fetch(d, where, 8)) return; subsys_v = get_conf_word(d, where + PCI_SSVID_VENDOR); subsys_d = get_conf_word(d, where + PCI_SSVID_DEVICE); printf("Subsystem: %s\n", pci_lookup_name(pacc, ssnamebuf, sizeof(ssnamebuf), PCI_LOOKUP_SUBSYSTEM | PCI_LOOKUP_VENDOR | PCI_LOOKUP_DEVICE, d->dev->vendor_id, d->dev->device_id, subsys_v, subsys_d)); } static void cap_debug_port(int cap) { int bar = cap >> 13; int pos = cap & 0x1fff; printf("Debug port: BAR=%d offset=%04x\n", bar, pos); } static void cap_af(struct device *d, int where) { u8 reg; printf("PCI Advanced Features\n"); if (verbose < 2 || !config_fetch(d, where + PCI_AF_CAP, 3)) return; reg = get_conf_byte(d, where + PCI_AF_CAP); printf("\t\tAFCap: TP%c FLR%c\n", FLAG(reg, PCI_AF_CAP_TP), FLAG(reg, PCI_AF_CAP_FLR)); reg = get_conf_byte(d, where + PCI_AF_CTRL); printf("\t\tAFCtrl: FLR%c\n", FLAG(reg, PCI_AF_CTRL_FLR)); reg = get_conf_byte(d, where + PCI_AF_STATUS); printf("\t\tAFStatus: TP%c\n", FLAG(reg, PCI_AF_STATUS_TP)); } static void cap_sata_hba(struct device *d, int where, int cap) { u32 bars; int bar; printf("SATA HBA v%d.%d", BITS(cap, 4, 4), BITS(cap, 0, 4)); if (verbose < 2 || !config_fetch(d, where + PCI_SATA_HBA_BARS, 4)) { printf("\n"); return; } bars = get_conf_long(d, where + PCI_SATA_HBA_BARS); bar = BITS(bars, 0, 4); if (bar >= 4 && bar <= 9) printf(" BAR%d Offset=%08x\n", bar - 4, BITS(bars, 4, 20)); else if (bar == 15) printf(" InCfgSpace\n"); else printf(" BAR??%d\n", bar); } static const char *cap_ea_property(int p, int is_secondary) { switch (p) { case 0x00: return "memory space, non-prefetchable"; case 0x01: return "memory space, prefetchable"; case 0x02: return "I/O space"; case 0x03: return "VF memory space, prefetchable"; case 0x04: return "VF memory space, non-prefetchable"; case 0x05: return "allocation behind bridge, non-prefetchable memory"; case 0x06: return "allocation behind bridge, prefetchable memory"; case 0x07: return "allocation behind bridge, I/O space"; case 0xfd: return "memory space resource unavailable for use"; case 0xfe: return "I/O space resource unavailable for use"; case 0xff: if (is_secondary) return "entry unavailable for use, PrimaryProperties should be used"; else return "entry unavailable for use"; default: return NULL; } } static void cap_ea(struct device *d, int where, int cap) { int entry; int entry_base = where + 4; int num_entries = BITS(cap, 0, 6); u8 htype = get_conf_byte(d, PCI_HEADER_TYPE) & 0x7f; printf("Enhanced Allocation (EA): NumEntries=%u", num_entries); if (htype == PCI_HEADER_TYPE_BRIDGE) { byte fixed_sub, fixed_sec; entry_base += 4; if (!config_fetch(d, where + 4, 2)) { printf("\n"); return; } fixed_sec = get_conf_byte(d, where + PCI_EA_CAP_TYPE1_SECONDARY); fixed_sub = get_conf_byte(d, where + PCI_EA_CAP_TYPE1_SUBORDINATE); printf(", secondary=%d, subordinate=%d", fixed_sec, fixed_sub); } printf("\n"); if (verbose < 2) return; for (entry = 0; entry < num_entries; entry++) { int max_offset_high_pos, has_base_high, has_max_offset_high; u32 entry_header; u32 base, max_offset; int es, bei, pp, sp; const char *prop_text; if (!config_fetch(d, entry_base, 4)) return; entry_header = get_conf_long(d, entry_base); es = BITS(entry_header, 0, 3); bei = BITS(entry_header, 4, 4); pp = BITS(entry_header, 8, 8); sp = BITS(entry_header, 16, 8); if (!config_fetch(d, entry_base + 4, es * 4)) return; printf("\t\tEntry %u: Enable%c Writable%c EntrySize=%u\n", entry, FLAG(entry_header, PCI_EA_CAP_ENT_ENABLE), FLAG(entry_header, PCI_EA_CAP_ENT_WRITABLE), es); printf("\t\t\t BAR Equivalent Indicator: "); switch (bei) { case 0: case 1: case 2: case 3: case 4: case 5: printf("BAR %u", bei); break; case 6: printf("resource behind function"); break; case 7: printf("not indicated"); break; case 8: printf("expansion ROM"); break; case 9: case 10: case 11: case 12: case 13: case 14: printf("VF-BAR %u", bei - 9); break; default: printf("reserved"); break; } printf("\n"); prop_text = cap_ea_property(pp, 0); printf("\t\t\t PrimaryProperties: "); if (prop_text) printf("%s\n", prop_text); else printf("[%02x]\n", pp); prop_text = cap_ea_property(sp, 1); printf("\t\t\t SecondaryProperties: "); if (prop_text) printf("%s\n", prop_text); else printf("[%02x]\n", sp); base = get_conf_long(d, entry_base + 4); has_base_high = ((base & 2) != 0); base &= ~3; max_offset = get_conf_long(d, entry_base + 8); has_max_offset_high = ((max_offset & 2) != 0); max_offset |= 3; max_offset_high_pos = entry_base + 12; printf("\t\t\t Base: "); if (has_base_high) { u32 base_high = get_conf_long(d, entry_base + 12); printf("%x", base_high); max_offset_high_pos += 4; } printf("%08x\n", base); printf("\t\t\t MaxOffset: "); if (has_max_offset_high) { u32 max_offset_high = get_conf_long(d, max_offset_high_pos); printf("%x", max_offset_high); } printf("%08x\n", max_offset); entry_base += 4 + 4 * es; } } void show_caps(struct device *d, int where) { int can_have_ext_caps = 0; int type = -1; if (get_conf_word(d, PCI_STATUS) & PCI_STATUS_CAP_LIST) { byte been_there[256]; where = get_conf_byte(d, where) & ~3; memset(been_there, 0, 256); while (where) { int id, next, cap; printf("\tCapabilities: "); if (!config_fetch(d, where, 4)) { puts(""); break; } id = get_conf_byte(d, where + PCI_CAP_LIST_ID); next = get_conf_byte(d, where + PCI_CAP_LIST_NEXT) & ~3; cap = get_conf_word(d, where + PCI_CAP_FLAGS); printf("[%02x] ", where); if (been_there[where]++) { printf("\n"); break; } if (id == 0xff) { printf("\n"); break; } switch (id) { case PCI_CAP_ID_NULL: printf("Null\n"); break; case PCI_CAP_ID_PM: cap_pm(d, where, cap); break; case PCI_CAP_ID_AGP: cap_agp(d, where, cap); break; case PCI_CAP_ID_VPD: cap_vpd(d); break; case PCI_CAP_ID_SLOTID: cap_slotid(cap); break; case PCI_CAP_ID_MSI: cap_msi(d, where, cap); break; case PCI_CAP_ID_CHSWP: printf("CompactPCI hot-swap \n"); break; case PCI_CAP_ID_PCIX: cap_pcix(d, where); can_have_ext_caps = 1; break; case PCI_CAP_ID_HT: cap_ht(d, where, cap); break; case PCI_CAP_ID_VNDR: show_vendor_caps(d, where, cap); break; case PCI_CAP_ID_DBG: cap_debug_port(cap); break; case PCI_CAP_ID_CCRC: printf("CompactPCI central resource control \n"); break; case PCI_CAP_ID_HOTPLUG: printf("Hot-plug capable\n"); break; case PCI_CAP_ID_SSVID: cap_ssvid(d, where); break; case PCI_CAP_ID_AGP3: printf("AGP3 \n"); break; case PCI_CAP_ID_SECURE: printf("Secure device \n"); break; case PCI_CAP_ID_EXP: type = cap_express(d, where, cap); can_have_ext_caps = 1; break; case PCI_CAP_ID_MSIX: cap_msix(d, where, cap); break; case PCI_CAP_ID_SATA: cap_sata_hba(d, where, cap); break; case PCI_CAP_ID_AF: cap_af(d, where); break; case PCI_CAP_ID_EA: cap_ea(d, where, cap); break; default: printf("Capability ID %#02x [%04x]\n", id, cap); } where = next; } } if (can_have_ext_caps) show_ext_caps(d, type); }