1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
|
/*-------------------------------------------------------------------------
*
* atomics.h
* Atomic operations.
*
* Hardware and compiler dependent functions for manipulating memory
* atomically and dealing with cache coherency. Used to implement locking
* facilities and lockless algorithms/data structures.
*
* To bring up postgres on a platform/compiler at the very least
* implementations for the following operations should be provided:
* * pg_compiler_barrier(), pg_write_barrier(), pg_read_barrier()
* * pg_atomic_compare_exchange_u32(), pg_atomic_fetch_add_u32()
* * pg_atomic_test_set_flag(), pg_atomic_init_flag(), pg_atomic_clear_flag()
* * PG_HAVE_8BYTE_SINGLE_COPY_ATOMICITY should be defined if appropriate.
*
* There exist generic, hardware independent, implementations for several
* compilers which might be sufficient, although possibly not optimal, for a
* new platform. If no such generic implementation is available spinlocks (or
* even OS provided semaphores) will be used to implement the API.
*
* Implement _u64 atomics if and only if your platform can use them
* efficiently (and obviously correctly).
*
* Use higher level functionality (lwlocks, spinlocks, heavyweight locks)
* whenever possible. Writing correct code using these facilities is hard.
*
* For an introduction to using memory barriers within the PostgreSQL backend,
* see src/backend/storage/lmgr/README.barrier
*
* Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/include/port/atomics.h
*
*-------------------------------------------------------------------------
*/
#ifndef ATOMICS_H
#define ATOMICS_H
#ifdef FRONTEND
#error "atomics.h may not be included from frontend code"
#endif
#define INSIDE_ATOMICS_H
#include <limits.h>
/*
* First a set of architecture specific files is included.
*
* These files can provide the full set of atomics or can do pretty much
* nothing if all the compilers commonly used on these platforms provide
* usable generics.
*
* Don't add an inline assembly of the actual atomic operations if all the
* common implementations of your platform provide intrinsics. Intrinsics are
* much easier to understand and potentially support more architectures.
*
* It will often make sense to define memory barrier semantics here, since
* e.g. generic compiler intrinsics for x86 memory barriers can't know that
* postgres doesn't need x86 read/write barriers do anything more than a
* compiler barrier.
*
*/
#if defined(__arm__) || defined(__arm) || \
defined(__aarch64__) || defined(__aarch64)
#include "port/atomics/arch-arm.h"
#elif defined(__i386__) || defined(__i386) || defined(__x86_64__)
#include "port/atomics/arch-x86.h"
#elif defined(__ia64__) || defined(__ia64)
#include "port/atomics/arch-ia64.h"
#elif defined(__ppc__) || defined(__powerpc__) || defined(__ppc64__) || defined(__powerpc64__)
#include "port/atomics/arch-ppc.h"
#elif defined(__hppa) || defined(__hppa__)
#include "port/atomics/arch-hppa.h"
#endif
/*
* Compiler specific, but architecture independent implementations.
*
* Provide architecture independent implementations of the atomic
* facilities. At the very least compiler barriers should be provided, but a
* full implementation of
* * pg_compiler_barrier(), pg_write_barrier(), pg_read_barrier()
* * pg_atomic_compare_exchange_u32(), pg_atomic_fetch_add_u32()
* using compiler intrinsics are a good idea.
*/
/*
* gcc or compatible, including clang and icc. Exclude xlc. The ppc64le "IBM
* XL C/C++ for Linux, V13.1.2" emulates gcc, but __sync_lock_test_and_set()
* of one-byte types elicits SIGSEGV. That bug was gone by V13.1.5 (2016-12).
*/
#if (defined(__GNUC__) || defined(__INTEL_COMPILER)) && !(defined(__IBMC__) || defined(__IBMCPP__))
#include "port/atomics/generic-gcc.h"
#elif defined(_MSC_VER)
#include "port/atomics/generic-msvc.h"
#elif defined(__hpux) && defined(__ia64) && !defined(__GNUC__)
#include "port/atomics/generic-acc.h"
#elif defined(__SUNPRO_C) && !defined(__GNUC__)
#include "port/atomics/generic-sunpro.h"
#else
/*
* Unsupported compiler, we'll likely use slower fallbacks... At least
* compiler barriers should really be provided.
*/
#endif
/*
* Provide a full fallback of the pg_*_barrier(), pg_atomic**_flag and
* pg_atomic_* APIs for platforms without sufficient spinlock and/or atomics
* support. In the case of spinlock backed atomics the emulation is expected
* to be efficient, although less so than native atomics support.
*/
#include "port/atomics/fallback.h"
/*
* Provide additional operations using supported infrastructure. These are
* expected to be efficient if the underlying atomic operations are efficient.
*/
#include "port/atomics/generic.h"
/*
* pg_compiler_barrier - prevent the compiler from moving code across
*
* A compiler barrier need not (and preferably should not) emit any actual
* machine code, but must act as an optimization fence: the compiler must not
* reorder loads or stores to main memory around the barrier. However, the
* CPU may still reorder loads or stores at runtime, if the architecture's
* memory model permits this.
*/
#define pg_compiler_barrier() pg_compiler_barrier_impl()
/*
* pg_memory_barrier - prevent the CPU from reordering memory access
*
* A memory barrier must act as a compiler barrier, and in addition must
* guarantee that all loads and stores issued prior to the barrier are
* completed before any loads or stores issued after the barrier. Unless
* loads and stores are totally ordered (which is not the case on most
* architectures) this requires issuing some sort of memory fencing
* instruction.
*/
#define pg_memory_barrier() pg_memory_barrier_impl()
/*
* pg_(read|write)_barrier - prevent the CPU from reordering memory access
*
* A read barrier must act as a compiler barrier, and in addition must
* guarantee that any loads issued prior to the barrier are completed before
* any loads issued after the barrier. Similarly, a write barrier acts
* as a compiler barrier, and also orders stores. Read and write barriers
* are thus weaker than a full memory barrier, but stronger than a compiler
* barrier. In practice, on machines with strong memory ordering, read and
* write barriers may require nothing more than a compiler barrier.
*/
#define pg_read_barrier() pg_read_barrier_impl()
#define pg_write_barrier() pg_write_barrier_impl()
/*
* Spinloop delay - Allow CPU to relax in busy loops
*/
#define pg_spin_delay() pg_spin_delay_impl()
/*
* pg_atomic_init_flag - initialize atomic flag.
*
* No barrier semantics.
*/
static inline void
pg_atomic_init_flag(volatile pg_atomic_flag *ptr)
{
pg_atomic_init_flag_impl(ptr);
}
/*
* pg_atomic_test_set_flag - TAS()
*
* Returns true if the flag has successfully been set, false otherwise.
*
* Acquire (including read barrier) semantics.
*/
static inline bool
pg_atomic_test_set_flag(volatile pg_atomic_flag *ptr)
{
return pg_atomic_test_set_flag_impl(ptr);
}
/*
* pg_atomic_unlocked_test_flag - Check if the lock is free
*
* Returns true if the flag currently is not set, false otherwise.
*
* No barrier semantics.
*/
static inline bool
pg_atomic_unlocked_test_flag(volatile pg_atomic_flag *ptr)
{
return pg_atomic_unlocked_test_flag_impl(ptr);
}
/*
* pg_atomic_clear_flag - release lock set by TAS()
*
* Release (including write barrier) semantics.
*/
static inline void
pg_atomic_clear_flag(volatile pg_atomic_flag *ptr)
{
pg_atomic_clear_flag_impl(ptr);
}
/*
* pg_atomic_init_u32 - initialize atomic variable
*
* Has to be done before any concurrent usage..
*
* No barrier semantics.
*/
static inline void
pg_atomic_init_u32(volatile pg_atomic_uint32 *ptr, uint32 val)
{
AssertPointerAlignment(ptr, 4);
pg_atomic_init_u32_impl(ptr, val);
}
/*
* pg_atomic_read_u32 - unlocked read from atomic variable.
*
* The read is guaranteed to return a value as it has been written by this or
* another process at some point in the past. There's however no cache
* coherency interaction guaranteeing the value hasn't since been written to
* again.
*
* No barrier semantics.
*/
static inline uint32
pg_atomic_read_u32(volatile pg_atomic_uint32 *ptr)
{
AssertPointerAlignment(ptr, 4);
return pg_atomic_read_u32_impl(ptr);
}
/*
* pg_atomic_write_u32 - write to atomic variable.
*
* The write is guaranteed to succeed as a whole, i.e. it's not possible to
* observe a partial write for any reader. Note that this correctly interacts
* with pg_atomic_compare_exchange_u32, in contrast to
* pg_atomic_unlocked_write_u32().
*
* No barrier semantics.
*/
static inline void
pg_atomic_write_u32(volatile pg_atomic_uint32 *ptr, uint32 val)
{
AssertPointerAlignment(ptr, 4);
pg_atomic_write_u32_impl(ptr, val);
}
/*
* pg_atomic_unlocked_write_u32 - unlocked write to atomic variable.
*
* The write is guaranteed to succeed as a whole, i.e. it's not possible to
* observe a partial write for any reader. But note that writing this way is
* not guaranteed to correctly interact with read-modify-write operations like
* pg_atomic_compare_exchange_u32. This should only be used in cases where
* minor performance regressions due to atomics emulation are unacceptable.
*
* No barrier semantics.
*/
static inline void
pg_atomic_unlocked_write_u32(volatile pg_atomic_uint32 *ptr, uint32 val)
{
AssertPointerAlignment(ptr, 4);
pg_atomic_unlocked_write_u32_impl(ptr, val);
}
/*
* pg_atomic_exchange_u32 - exchange newval with current value
*
* Returns the old value of 'ptr' before the swap.
*
* Full barrier semantics.
*/
static inline uint32
pg_atomic_exchange_u32(volatile pg_atomic_uint32 *ptr, uint32 newval)
{
AssertPointerAlignment(ptr, 4);
return pg_atomic_exchange_u32_impl(ptr, newval);
}
/*
* pg_atomic_compare_exchange_u32 - CAS operation
*
* Atomically compare the current value of ptr with *expected and store newval
* iff ptr and *expected have the same value. The current value of *ptr will
* always be stored in *expected.
*
* Return true if values have been exchanged, false otherwise.
*
* Full barrier semantics.
*/
static inline bool
pg_atomic_compare_exchange_u32(volatile pg_atomic_uint32 *ptr,
uint32 *expected, uint32 newval)
{
AssertPointerAlignment(ptr, 4);
AssertPointerAlignment(expected, 4);
return pg_atomic_compare_exchange_u32_impl(ptr, expected, newval);
}
/*
* pg_atomic_fetch_add_u32 - atomically add to variable
*
* Returns the value of ptr before the arithmetic operation.
*
* Full barrier semantics.
*/
static inline uint32
pg_atomic_fetch_add_u32(volatile pg_atomic_uint32 *ptr, int32 add_)
{
AssertPointerAlignment(ptr, 4);
return pg_atomic_fetch_add_u32_impl(ptr, add_);
}
/*
* pg_atomic_fetch_sub_u32 - atomically subtract from variable
*
* Returns the value of ptr before the arithmetic operation. Note that sub_
* may not be INT_MIN due to platform limitations.
*
* Full barrier semantics.
*/
static inline uint32
pg_atomic_fetch_sub_u32(volatile pg_atomic_uint32 *ptr, int32 sub_)
{
AssertPointerAlignment(ptr, 4);
Assert(sub_ != INT_MIN);
return pg_atomic_fetch_sub_u32_impl(ptr, sub_);
}
/*
* pg_atomic_fetch_and_u32 - atomically bit-and and_ with variable
*
* Returns the value of ptr before the arithmetic operation.
*
* Full barrier semantics.
*/
static inline uint32
pg_atomic_fetch_and_u32(volatile pg_atomic_uint32 *ptr, uint32 and_)
{
AssertPointerAlignment(ptr, 4);
return pg_atomic_fetch_and_u32_impl(ptr, and_);
}
/*
* pg_atomic_fetch_or_u32 - atomically bit-or or_ with variable
*
* Returns the value of ptr before the arithmetic operation.
*
* Full barrier semantics.
*/
static inline uint32
pg_atomic_fetch_or_u32(volatile pg_atomic_uint32 *ptr, uint32 or_)
{
AssertPointerAlignment(ptr, 4);
return pg_atomic_fetch_or_u32_impl(ptr, or_);
}
/*
* pg_atomic_add_fetch_u32 - atomically add to variable
*
* Returns the value of ptr after the arithmetic operation.
*
* Full barrier semantics.
*/
static inline uint32
pg_atomic_add_fetch_u32(volatile pg_atomic_uint32 *ptr, int32 add_)
{
AssertPointerAlignment(ptr, 4);
return pg_atomic_add_fetch_u32_impl(ptr, add_);
}
/*
* pg_atomic_sub_fetch_u32 - atomically subtract from variable
*
* Returns the value of ptr after the arithmetic operation. Note that sub_ may
* not be INT_MIN due to platform limitations.
*
* Full barrier semantics.
*/
static inline uint32
pg_atomic_sub_fetch_u32(volatile pg_atomic_uint32 *ptr, int32 sub_)
{
AssertPointerAlignment(ptr, 4);
Assert(sub_ != INT_MIN);
return pg_atomic_sub_fetch_u32_impl(ptr, sub_);
}
/* ----
* The 64 bit operations have the same semantics as their 32bit counterparts
* if they are available. Check the corresponding 32bit function for
* documentation.
* ----
*/
static inline void
pg_atomic_init_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
{
/*
* Can't necessarily enforce alignment - and don't need it - when using
* the spinlock based fallback implementation. Therefore only assert when
* not using it.
*/
#ifndef PG_HAVE_ATOMIC_U64_SIMULATION
AssertPointerAlignment(ptr, 8);
#endif
pg_atomic_init_u64_impl(ptr, val);
}
static inline uint64
pg_atomic_read_u64(volatile pg_atomic_uint64 *ptr)
{
#ifndef PG_HAVE_ATOMIC_U64_SIMULATION
AssertPointerAlignment(ptr, 8);
#endif
return pg_atomic_read_u64_impl(ptr);
}
static inline void
pg_atomic_write_u64(volatile pg_atomic_uint64 *ptr, uint64 val)
{
#ifndef PG_HAVE_ATOMIC_U64_SIMULATION
AssertPointerAlignment(ptr, 8);
#endif
pg_atomic_write_u64_impl(ptr, val);
}
static inline uint64
pg_atomic_exchange_u64(volatile pg_atomic_uint64 *ptr, uint64 newval)
{
#ifndef PG_HAVE_ATOMIC_U64_SIMULATION
AssertPointerAlignment(ptr, 8);
#endif
return pg_atomic_exchange_u64_impl(ptr, newval);
}
static inline bool
pg_atomic_compare_exchange_u64(volatile pg_atomic_uint64 *ptr,
uint64 *expected, uint64 newval)
{
#ifndef PG_HAVE_ATOMIC_U64_SIMULATION
AssertPointerAlignment(ptr, 8);
AssertPointerAlignment(expected, 8);
#endif
return pg_atomic_compare_exchange_u64_impl(ptr, expected, newval);
}
static inline uint64
pg_atomic_fetch_add_u64(volatile pg_atomic_uint64 *ptr, int64 add_)
{
#ifndef PG_HAVE_ATOMIC_U64_SIMULATION
AssertPointerAlignment(ptr, 8);
#endif
return pg_atomic_fetch_add_u64_impl(ptr, add_);
}
static inline uint64
pg_atomic_fetch_sub_u64(volatile pg_atomic_uint64 *ptr, int64 sub_)
{
#ifndef PG_HAVE_ATOMIC_U64_SIMULATION
AssertPointerAlignment(ptr, 8);
#endif
Assert(sub_ != PG_INT64_MIN);
return pg_atomic_fetch_sub_u64_impl(ptr, sub_);
}
static inline uint64
pg_atomic_fetch_and_u64(volatile pg_atomic_uint64 *ptr, uint64 and_)
{
#ifndef PG_HAVE_ATOMIC_U64_SIMULATION
AssertPointerAlignment(ptr, 8);
#endif
return pg_atomic_fetch_and_u64_impl(ptr, and_);
}
static inline uint64
pg_atomic_fetch_or_u64(volatile pg_atomic_uint64 *ptr, uint64 or_)
{
#ifndef PG_HAVE_ATOMIC_U64_SIMULATION
AssertPointerAlignment(ptr, 8);
#endif
return pg_atomic_fetch_or_u64_impl(ptr, or_);
}
static inline uint64
pg_atomic_add_fetch_u64(volatile pg_atomic_uint64 *ptr, int64 add_)
{
#ifndef PG_HAVE_ATOMIC_U64_SIMULATION
AssertPointerAlignment(ptr, 8);
#endif
return pg_atomic_add_fetch_u64_impl(ptr, add_);
}
static inline uint64
pg_atomic_sub_fetch_u64(volatile pg_atomic_uint64 *ptr, int64 sub_)
{
#ifndef PG_HAVE_ATOMIC_U64_SIMULATION
AssertPointerAlignment(ptr, 8);
#endif
Assert(sub_ != PG_INT64_MIN);
return pg_atomic_sub_fetch_u64_impl(ptr, sub_);
}
#undef INSIDE_ATOMICS_H
#endif /* ATOMICS_H */
|