summaryrefslogtreecommitdiffstats
path: root/src/backend/executor/execPartition.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 13:44:03 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 13:44:03 +0000
commit293913568e6a7a86fd1479e1cff8e2ecb58d6568 (patch)
treefc3b469a3ec5ab71b36ea97cc7aaddb838423a0c /src/backend/executor/execPartition.c
parentInitial commit. (diff)
downloadpostgresql-16-293913568e6a7a86fd1479e1cff8e2ecb58d6568.tar.xz
postgresql-16-293913568e6a7a86fd1479e1cff8e2ecb58d6568.zip
Adding upstream version 16.2.upstream/16.2
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/backend/executor/execPartition.c')
-rw-r--r--src/backend/executor/execPartition.c2398
1 files changed, 2398 insertions, 0 deletions
diff --git a/src/backend/executor/execPartition.c b/src/backend/executor/execPartition.c
new file mode 100644
index 0000000..f6c3432
--- /dev/null
+++ b/src/backend/executor/execPartition.c
@@ -0,0 +1,2398 @@
+/*-------------------------------------------------------------------------
+ *
+ * execPartition.c
+ * Support routines for partitioning.
+ *
+ * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
+ * Portions Copyright (c) 1994, Regents of the University of California
+ *
+ * IDENTIFICATION
+ * src/backend/executor/execPartition.c
+ *
+ *-------------------------------------------------------------------------
+ */
+#include "postgres.h"
+
+#include "access/table.h"
+#include "access/tableam.h"
+#include "catalog/partition.h"
+#include "catalog/pg_inherits.h"
+#include "catalog/pg_type.h"
+#include "executor/execPartition.h"
+#include "executor/executor.h"
+#include "executor/nodeModifyTable.h"
+#include "foreign/fdwapi.h"
+#include "mb/pg_wchar.h"
+#include "miscadmin.h"
+#include "nodes/makefuncs.h"
+#include "partitioning/partbounds.h"
+#include "partitioning/partdesc.h"
+#include "partitioning/partprune.h"
+#include "rewrite/rewriteManip.h"
+#include "utils/acl.h"
+#include "utils/lsyscache.h"
+#include "utils/partcache.h"
+#include "utils/rls.h"
+#include "utils/ruleutils.h"
+
+
+/*-----------------------
+ * PartitionTupleRouting - Encapsulates all information required to
+ * route a tuple inserted into a partitioned table to one of its leaf
+ * partitions.
+ *
+ * partition_root
+ * The partitioned table that's the target of the command.
+ *
+ * partition_dispatch_info
+ * Array of 'max_dispatch' elements containing a pointer to a
+ * PartitionDispatch object for every partitioned table touched by tuple
+ * routing. The entry for the target partitioned table is *always*
+ * present in the 0th element of this array. See comment for
+ * PartitionDispatchData->indexes for details on how this array is
+ * indexed.
+ *
+ * nonleaf_partitions
+ * Array of 'max_dispatch' elements containing pointers to fake
+ * ResultRelInfo objects for nonleaf partitions, useful for checking
+ * the partition constraint.
+ *
+ * num_dispatch
+ * The current number of items stored in the 'partition_dispatch_info'
+ * array. Also serves as the index of the next free array element for
+ * new PartitionDispatch objects that need to be stored.
+ *
+ * max_dispatch
+ * The current allocated size of the 'partition_dispatch_info' array.
+ *
+ * partitions
+ * Array of 'max_partitions' elements containing a pointer to a
+ * ResultRelInfo for every leaf partition touched by tuple routing.
+ * Some of these are pointers to ResultRelInfos which are borrowed out of
+ * the owning ModifyTableState node. The remainder have been built
+ * especially for tuple routing. See comment for
+ * PartitionDispatchData->indexes for details on how this array is
+ * indexed.
+ *
+ * is_borrowed_rel
+ * Array of 'max_partitions' booleans recording whether a given entry
+ * in 'partitions' is a ResultRelInfo pointer borrowed from the owning
+ * ModifyTableState node, rather than being built here.
+ *
+ * num_partitions
+ * The current number of items stored in the 'partitions' array. Also
+ * serves as the index of the next free array element for new
+ * ResultRelInfo objects that need to be stored.
+ *
+ * max_partitions
+ * The current allocated size of the 'partitions' array.
+ *
+ * memcxt
+ * Memory context used to allocate subsidiary structs.
+ *-----------------------
+ */
+struct PartitionTupleRouting
+{
+ Relation partition_root;
+ PartitionDispatch *partition_dispatch_info;
+ ResultRelInfo **nonleaf_partitions;
+ int num_dispatch;
+ int max_dispatch;
+ ResultRelInfo **partitions;
+ bool *is_borrowed_rel;
+ int num_partitions;
+ int max_partitions;
+ MemoryContext memcxt;
+};
+
+/*-----------------------
+ * PartitionDispatch - information about one partitioned table in a partition
+ * hierarchy required to route a tuple to any of its partitions. A
+ * PartitionDispatch is always encapsulated inside a PartitionTupleRouting
+ * struct and stored inside its 'partition_dispatch_info' array.
+ *
+ * reldesc
+ * Relation descriptor of the table
+ *
+ * key
+ * Partition key information of the table
+ *
+ * keystate
+ * Execution state required for expressions in the partition key
+ *
+ * partdesc
+ * Partition descriptor of the table
+ *
+ * tupslot
+ * A standalone TupleTableSlot initialized with this table's tuple
+ * descriptor, or NULL if no tuple conversion between the parent is
+ * required.
+ *
+ * tupmap
+ * TupleConversionMap to convert from the parent's rowtype to this table's
+ * rowtype (when extracting the partition key of a tuple just before
+ * routing it through this table). A NULL value is stored if no tuple
+ * conversion is required.
+ *
+ * indexes
+ * Array of partdesc->nparts elements. For leaf partitions the index
+ * corresponds to the partition's ResultRelInfo in the encapsulating
+ * PartitionTupleRouting's partitions array. For partitioned partitions,
+ * the index corresponds to the PartitionDispatch for it in its
+ * partition_dispatch_info array. -1 indicates we've not yet allocated
+ * anything in PartitionTupleRouting for the partition.
+ *-----------------------
+ */
+typedef struct PartitionDispatchData
+{
+ Relation reldesc;
+ PartitionKey key;
+ List *keystate; /* list of ExprState */
+ PartitionDesc partdesc;
+ TupleTableSlot *tupslot;
+ AttrMap *tupmap;
+ int indexes[FLEXIBLE_ARRAY_MEMBER];
+} PartitionDispatchData;
+
+
+static ResultRelInfo *ExecInitPartitionInfo(ModifyTableState *mtstate,
+ EState *estate, PartitionTupleRouting *proute,
+ PartitionDispatch dispatch,
+ ResultRelInfo *rootResultRelInfo,
+ int partidx);
+static void ExecInitRoutingInfo(ModifyTableState *mtstate,
+ EState *estate,
+ PartitionTupleRouting *proute,
+ PartitionDispatch dispatch,
+ ResultRelInfo *partRelInfo,
+ int partidx,
+ bool is_borrowed_rel);
+static PartitionDispatch ExecInitPartitionDispatchInfo(EState *estate,
+ PartitionTupleRouting *proute,
+ Oid partoid, PartitionDispatch parent_pd,
+ int partidx, ResultRelInfo *rootResultRelInfo);
+static void FormPartitionKeyDatum(PartitionDispatch pd,
+ TupleTableSlot *slot,
+ EState *estate,
+ Datum *values,
+ bool *isnull);
+static int get_partition_for_tuple(PartitionDispatch pd, Datum *values,
+ bool *isnull);
+static char *ExecBuildSlotPartitionKeyDescription(Relation rel,
+ Datum *values,
+ bool *isnull,
+ int maxfieldlen);
+static List *adjust_partition_colnos(List *colnos, ResultRelInfo *leaf_part_rri);
+static List *adjust_partition_colnos_using_map(List *colnos, AttrMap *attrMap);
+static PartitionPruneState *CreatePartitionPruneState(PlanState *planstate,
+ PartitionPruneInfo *pruneinfo);
+static void InitPartitionPruneContext(PartitionPruneContext *context,
+ List *pruning_steps,
+ PartitionDesc partdesc,
+ PartitionKey partkey,
+ PlanState *planstate,
+ ExprContext *econtext);
+static void PartitionPruneFixSubPlanMap(PartitionPruneState *prunestate,
+ Bitmapset *initially_valid_subplans,
+ int n_total_subplans);
+static void find_matching_subplans_recurse(PartitionPruningData *prunedata,
+ PartitionedRelPruningData *pprune,
+ bool initial_prune,
+ Bitmapset **validsubplans);
+
+
+/*
+ * ExecSetupPartitionTupleRouting - sets up information needed during
+ * tuple routing for partitioned tables, encapsulates it in
+ * PartitionTupleRouting, and returns it.
+ *
+ * Callers must use the returned PartitionTupleRouting during calls to
+ * ExecFindPartition(). The actual ResultRelInfo for a partition is only
+ * allocated when the partition is found for the first time.
+ *
+ * The current memory context is used to allocate this struct and all
+ * subsidiary structs that will be allocated from it later on. Typically
+ * it should be estate->es_query_cxt.
+ */
+PartitionTupleRouting *
+ExecSetupPartitionTupleRouting(EState *estate, Relation rel)
+{
+ PartitionTupleRouting *proute;
+
+ /*
+ * Here we attempt to expend as little effort as possible in setting up
+ * the PartitionTupleRouting. Each partition's ResultRelInfo is built on
+ * demand, only when we actually need to route a tuple to that partition.
+ * The reason for this is that a common case is for INSERT to insert a
+ * single tuple into a partitioned table and this must be fast.
+ */
+ proute = (PartitionTupleRouting *) palloc0(sizeof(PartitionTupleRouting));
+ proute->partition_root = rel;
+ proute->memcxt = CurrentMemoryContext;
+ /* Rest of members initialized by zeroing */
+
+ /*
+ * Initialize this table's PartitionDispatch object. Here we pass in the
+ * parent as NULL as we don't need to care about any parent of the target
+ * partitioned table.
+ */
+ ExecInitPartitionDispatchInfo(estate, proute, RelationGetRelid(rel),
+ NULL, 0, NULL);
+
+ return proute;
+}
+
+/*
+ * ExecFindPartition -- Return the ResultRelInfo for the leaf partition that
+ * the tuple contained in *slot should belong to.
+ *
+ * If the partition's ResultRelInfo does not yet exist in 'proute' then we set
+ * one up or reuse one from mtstate's resultRelInfo array. When reusing a
+ * ResultRelInfo from the mtstate we verify that the relation is a valid
+ * target for INSERTs and initialize tuple routing information.
+ *
+ * rootResultRelInfo is the relation named in the query.
+ *
+ * estate must be non-NULL; we'll need it to compute any expressions in the
+ * partition keys. Also, its per-tuple contexts are used as evaluation
+ * scratch space.
+ *
+ * If no leaf partition is found, this routine errors out with the appropriate
+ * error message. An error may also be raised if the found target partition
+ * is not a valid target for an INSERT.
+ */
+ResultRelInfo *
+ExecFindPartition(ModifyTableState *mtstate,
+ ResultRelInfo *rootResultRelInfo,
+ PartitionTupleRouting *proute,
+ TupleTableSlot *slot, EState *estate)
+{
+ PartitionDispatch *pd = proute->partition_dispatch_info;
+ Datum values[PARTITION_MAX_KEYS];
+ bool isnull[PARTITION_MAX_KEYS];
+ Relation rel;
+ PartitionDispatch dispatch;
+ PartitionDesc partdesc;
+ ExprContext *ecxt = GetPerTupleExprContext(estate);
+ TupleTableSlot *ecxt_scantuple_saved = ecxt->ecxt_scantuple;
+ TupleTableSlot *rootslot = slot;
+ TupleTableSlot *myslot = NULL;
+ MemoryContext oldcxt;
+ ResultRelInfo *rri = NULL;
+
+ /* use per-tuple context here to avoid leaking memory */
+ oldcxt = MemoryContextSwitchTo(GetPerTupleMemoryContext(estate));
+
+ /*
+ * First check the root table's partition constraint, if any. No point in
+ * routing the tuple if it doesn't belong in the root table itself.
+ */
+ if (rootResultRelInfo->ri_RelationDesc->rd_rel->relispartition)
+ ExecPartitionCheck(rootResultRelInfo, slot, estate, true);
+
+ /* start with the root partitioned table */
+ dispatch = pd[0];
+ while (dispatch != NULL)
+ {
+ int partidx = -1;
+ bool is_leaf;
+
+ CHECK_FOR_INTERRUPTS();
+
+ rel = dispatch->reldesc;
+ partdesc = dispatch->partdesc;
+
+ /*
+ * Extract partition key from tuple. Expression evaluation machinery
+ * that FormPartitionKeyDatum() invokes expects ecxt_scantuple to
+ * point to the correct tuple slot. The slot might have changed from
+ * what was used for the parent table if the table of the current
+ * partitioning level has different tuple descriptor from the parent.
+ * So update ecxt_scantuple accordingly.
+ */
+ ecxt->ecxt_scantuple = slot;
+ FormPartitionKeyDatum(dispatch, slot, estate, values, isnull);
+
+ /*
+ * If this partitioned table has no partitions or no partition for
+ * these values, error out.
+ */
+ if (partdesc->nparts == 0 ||
+ (partidx = get_partition_for_tuple(dispatch, values, isnull)) < 0)
+ {
+ char *val_desc;
+
+ val_desc = ExecBuildSlotPartitionKeyDescription(rel,
+ values, isnull, 64);
+ Assert(OidIsValid(RelationGetRelid(rel)));
+ ereport(ERROR,
+ (errcode(ERRCODE_CHECK_VIOLATION),
+ errmsg("no partition of relation \"%s\" found for row",
+ RelationGetRelationName(rel)),
+ val_desc ?
+ errdetail("Partition key of the failing row contains %s.",
+ val_desc) : 0,
+ errtable(rel)));
+ }
+
+ is_leaf = partdesc->is_leaf[partidx];
+ if (is_leaf)
+ {
+ /*
+ * We've reached the leaf -- hurray, we're done. Look to see if
+ * we've already got a ResultRelInfo for this partition.
+ */
+ if (likely(dispatch->indexes[partidx] >= 0))
+ {
+ /* ResultRelInfo already built */
+ Assert(dispatch->indexes[partidx] < proute->num_partitions);
+ rri = proute->partitions[dispatch->indexes[partidx]];
+ }
+ else
+ {
+ /*
+ * If the partition is known in the owning ModifyTableState
+ * node, we can re-use that ResultRelInfo instead of creating
+ * a new one with ExecInitPartitionInfo().
+ */
+ rri = ExecLookupResultRelByOid(mtstate,
+ partdesc->oids[partidx],
+ true, false);
+ if (rri)
+ {
+ /* Verify this ResultRelInfo allows INSERTs */
+ CheckValidResultRel(rri, CMD_INSERT);
+
+ /*
+ * Initialize information needed to insert this and
+ * subsequent tuples routed to this partition.
+ */
+ ExecInitRoutingInfo(mtstate, estate, proute, dispatch,
+ rri, partidx, true);
+ }
+ else
+ {
+ /* We need to create a new one. */
+ rri = ExecInitPartitionInfo(mtstate, estate, proute,
+ dispatch,
+ rootResultRelInfo, partidx);
+ }
+ }
+ Assert(rri != NULL);
+
+ /* Signal to terminate the loop */
+ dispatch = NULL;
+ }
+ else
+ {
+ /*
+ * Partition is a sub-partitioned table; get the PartitionDispatch
+ */
+ if (likely(dispatch->indexes[partidx] >= 0))
+ {
+ /* Already built. */
+ Assert(dispatch->indexes[partidx] < proute->num_dispatch);
+
+ rri = proute->nonleaf_partitions[dispatch->indexes[partidx]];
+
+ /*
+ * Move down to the next partition level and search again
+ * until we find a leaf partition that matches this tuple
+ */
+ dispatch = pd[dispatch->indexes[partidx]];
+ }
+ else
+ {
+ /* Not yet built. Do that now. */
+ PartitionDispatch subdispatch;
+
+ /*
+ * Create the new PartitionDispatch. We pass the current one
+ * in as the parent PartitionDispatch
+ */
+ subdispatch = ExecInitPartitionDispatchInfo(estate,
+ proute,
+ partdesc->oids[partidx],
+ dispatch, partidx,
+ mtstate->rootResultRelInfo);
+ Assert(dispatch->indexes[partidx] >= 0 &&
+ dispatch->indexes[partidx] < proute->num_dispatch);
+
+ rri = proute->nonleaf_partitions[dispatch->indexes[partidx]];
+ dispatch = subdispatch;
+ }
+
+ /*
+ * Convert the tuple to the new parent's layout, if different from
+ * the previous parent.
+ */
+ if (dispatch->tupslot)
+ {
+ AttrMap *map = dispatch->tupmap;
+ TupleTableSlot *tempslot = myslot;
+
+ myslot = dispatch->tupslot;
+ slot = execute_attr_map_slot(map, slot, myslot);
+
+ if (tempslot != NULL)
+ ExecClearTuple(tempslot);
+ }
+ }
+
+ /*
+ * If this partition is the default one, we must check its partition
+ * constraint now, which may have changed concurrently due to
+ * partitions being added to the parent.
+ *
+ * (We do this here, and do not rely on ExecInsert doing it, because
+ * we don't want to miss doing it for non-leaf partitions.)
+ */
+ if (partidx == partdesc->boundinfo->default_index)
+ {
+ /*
+ * The tuple must match the partition's layout for the constraint
+ * expression to be evaluated successfully. If the partition is
+ * sub-partitioned, that would already be the case due to the code
+ * above, but for a leaf partition the tuple still matches the
+ * parent's layout.
+ *
+ * Note that we have a map to convert from root to current
+ * partition, but not from immediate parent to current partition.
+ * So if we have to convert, do it from the root slot; if not, use
+ * the root slot as-is.
+ */
+ if (is_leaf)
+ {
+ TupleConversionMap *map = ExecGetRootToChildMap(rri, estate);
+
+ if (map)
+ slot = execute_attr_map_slot(map->attrMap, rootslot,
+ rri->ri_PartitionTupleSlot);
+ else
+ slot = rootslot;
+ }
+
+ ExecPartitionCheck(rri, slot, estate, true);
+ }
+ }
+
+ /* Release the tuple in the lowest parent's dedicated slot. */
+ if (myslot != NULL)
+ ExecClearTuple(myslot);
+ /* and restore ecxt's scantuple */
+ ecxt->ecxt_scantuple = ecxt_scantuple_saved;
+ MemoryContextSwitchTo(oldcxt);
+
+ return rri;
+}
+
+/*
+ * ExecInitPartitionInfo
+ * Lock the partition and initialize ResultRelInfo. Also setup other
+ * information for the partition and store it in the next empty slot in
+ * the proute->partitions array.
+ *
+ * Returns the ResultRelInfo
+ */
+static ResultRelInfo *
+ExecInitPartitionInfo(ModifyTableState *mtstate, EState *estate,
+ PartitionTupleRouting *proute,
+ PartitionDispatch dispatch,
+ ResultRelInfo *rootResultRelInfo,
+ int partidx)
+{
+ ModifyTable *node = (ModifyTable *) mtstate->ps.plan;
+ Oid partOid = dispatch->partdesc->oids[partidx];
+ Relation partrel;
+ int firstVarno = mtstate->resultRelInfo[0].ri_RangeTableIndex;
+ Relation firstResultRel = mtstate->resultRelInfo[0].ri_RelationDesc;
+ ResultRelInfo *leaf_part_rri;
+ MemoryContext oldcxt;
+ AttrMap *part_attmap = NULL;
+ bool found_whole_row;
+
+ oldcxt = MemoryContextSwitchTo(proute->memcxt);
+
+ partrel = table_open(partOid, RowExclusiveLock);
+
+ leaf_part_rri = makeNode(ResultRelInfo);
+ InitResultRelInfo(leaf_part_rri,
+ partrel,
+ 0,
+ rootResultRelInfo,
+ estate->es_instrument);
+
+ /*
+ * Verify result relation is a valid target for an INSERT. An UPDATE of a
+ * partition-key becomes a DELETE+INSERT operation, so this check is still
+ * required when the operation is CMD_UPDATE.
+ */
+ CheckValidResultRel(leaf_part_rri, CMD_INSERT);
+
+ /*
+ * Open partition indices. The user may have asked to check for conflicts
+ * within this leaf partition and do "nothing" instead of throwing an
+ * error. Be prepared in that case by initializing the index information
+ * needed by ExecInsert() to perform speculative insertions.
+ */
+ if (partrel->rd_rel->relhasindex &&
+ leaf_part_rri->ri_IndexRelationDescs == NULL)
+ ExecOpenIndices(leaf_part_rri,
+ (node != NULL &&
+ node->onConflictAction != ONCONFLICT_NONE));
+
+ /*
+ * Build WITH CHECK OPTION constraints for the partition. Note that we
+ * didn't build the withCheckOptionList for partitions within the planner,
+ * but simple translation of varattnos will suffice. This only occurs for
+ * the INSERT case or in the case of UPDATE/MERGE tuple routing where we
+ * didn't find a result rel to reuse.
+ */
+ if (node && node->withCheckOptionLists != NIL)
+ {
+ List *wcoList;
+ List *wcoExprs = NIL;
+ ListCell *ll;
+
+ /*
+ * In the case of INSERT on a partitioned table, there is only one
+ * plan. Likewise, there is only one WCO list, not one per partition.
+ * For UPDATE/MERGE, there are as many WCO lists as there are plans.
+ */
+ Assert((node->operation == CMD_INSERT &&
+ list_length(node->withCheckOptionLists) == 1 &&
+ list_length(node->resultRelations) == 1) ||
+ (node->operation == CMD_UPDATE &&
+ list_length(node->withCheckOptionLists) ==
+ list_length(node->resultRelations)) ||
+ (node->operation == CMD_MERGE &&
+ list_length(node->withCheckOptionLists) ==
+ list_length(node->resultRelations)));
+
+ /*
+ * Use the WCO list of the first plan as a reference to calculate
+ * attno's for the WCO list of this partition. In the INSERT case,
+ * that refers to the root partitioned table, whereas in the UPDATE
+ * tuple routing case, that refers to the first partition in the
+ * mtstate->resultRelInfo array. In any case, both that relation and
+ * this partition should have the same columns, so we should be able
+ * to map attributes successfully.
+ */
+ wcoList = linitial(node->withCheckOptionLists);
+
+ /*
+ * Convert Vars in it to contain this partition's attribute numbers.
+ */
+ part_attmap =
+ build_attrmap_by_name(RelationGetDescr(partrel),
+ RelationGetDescr(firstResultRel),
+ false);
+ wcoList = (List *)
+ map_variable_attnos((Node *) wcoList,
+ firstVarno, 0,
+ part_attmap,
+ RelationGetForm(partrel)->reltype,
+ &found_whole_row);
+ /* We ignore the value of found_whole_row. */
+
+ foreach(ll, wcoList)
+ {
+ WithCheckOption *wco = lfirst_node(WithCheckOption, ll);
+ ExprState *wcoExpr = ExecInitQual(castNode(List, wco->qual),
+ &mtstate->ps);
+
+ wcoExprs = lappend(wcoExprs, wcoExpr);
+ }
+
+ leaf_part_rri->ri_WithCheckOptions = wcoList;
+ leaf_part_rri->ri_WithCheckOptionExprs = wcoExprs;
+ }
+
+ /*
+ * Build the RETURNING projection for the partition. Note that we didn't
+ * build the returningList for partitions within the planner, but simple
+ * translation of varattnos will suffice. This only occurs for the INSERT
+ * case or in the case of UPDATE tuple routing where we didn't find a
+ * result rel to reuse.
+ */
+ if (node && node->returningLists != NIL)
+ {
+ TupleTableSlot *slot;
+ ExprContext *econtext;
+ List *returningList;
+
+ /* See the comment above for WCO lists. */
+ /* (except no RETURNING support for MERGE yet) */
+ Assert((node->operation == CMD_INSERT &&
+ list_length(node->returningLists) == 1 &&
+ list_length(node->resultRelations) == 1) ||
+ (node->operation == CMD_UPDATE &&
+ list_length(node->returningLists) ==
+ list_length(node->resultRelations)));
+
+ /*
+ * Use the RETURNING list of the first plan as a reference to
+ * calculate attno's for the RETURNING list of this partition. See
+ * the comment above for WCO lists for more details on why this is
+ * okay.
+ */
+ returningList = linitial(node->returningLists);
+
+ /*
+ * Convert Vars in it to contain this partition's attribute numbers.
+ */
+ if (part_attmap == NULL)
+ part_attmap =
+ build_attrmap_by_name(RelationGetDescr(partrel),
+ RelationGetDescr(firstResultRel),
+ false);
+ returningList = (List *)
+ map_variable_attnos((Node *) returningList,
+ firstVarno, 0,
+ part_attmap,
+ RelationGetForm(partrel)->reltype,
+ &found_whole_row);
+ /* We ignore the value of found_whole_row. */
+
+ leaf_part_rri->ri_returningList = returningList;
+
+ /*
+ * Initialize the projection itself.
+ *
+ * Use the slot and the expression context that would have been set up
+ * in ExecInitModifyTable() for projection's output.
+ */
+ Assert(mtstate->ps.ps_ResultTupleSlot != NULL);
+ slot = mtstate->ps.ps_ResultTupleSlot;
+ Assert(mtstate->ps.ps_ExprContext != NULL);
+ econtext = mtstate->ps.ps_ExprContext;
+ leaf_part_rri->ri_projectReturning =
+ ExecBuildProjectionInfo(returningList, econtext, slot,
+ &mtstate->ps, RelationGetDescr(partrel));
+ }
+
+ /* Set up information needed for routing tuples to the partition. */
+ ExecInitRoutingInfo(mtstate, estate, proute, dispatch,
+ leaf_part_rri, partidx, false);
+
+ /*
+ * If there is an ON CONFLICT clause, initialize state for it.
+ */
+ if (node && node->onConflictAction != ONCONFLICT_NONE)
+ {
+ TupleDesc partrelDesc = RelationGetDescr(partrel);
+ ExprContext *econtext = mtstate->ps.ps_ExprContext;
+ ListCell *lc;
+ List *arbiterIndexes = NIL;
+
+ /*
+ * If there is a list of arbiter indexes, map it to a list of indexes
+ * in the partition. We do that by scanning the partition's index
+ * list and searching for ancestry relationships to each index in the
+ * ancestor table.
+ */
+ if (rootResultRelInfo->ri_onConflictArbiterIndexes != NIL)
+ {
+ List *childIdxs;
+
+ childIdxs = RelationGetIndexList(leaf_part_rri->ri_RelationDesc);
+
+ foreach(lc, childIdxs)
+ {
+ Oid childIdx = lfirst_oid(lc);
+ List *ancestors;
+ ListCell *lc2;
+
+ ancestors = get_partition_ancestors(childIdx);
+ foreach(lc2, rootResultRelInfo->ri_onConflictArbiterIndexes)
+ {
+ if (list_member_oid(ancestors, lfirst_oid(lc2)))
+ arbiterIndexes = lappend_oid(arbiterIndexes, childIdx);
+ }
+ list_free(ancestors);
+ }
+ }
+
+ /*
+ * If the resulting lists are of inequal length, something is wrong.
+ * (This shouldn't happen, since arbiter index selection should not
+ * pick up an invalid index.)
+ */
+ if (list_length(rootResultRelInfo->ri_onConflictArbiterIndexes) !=
+ list_length(arbiterIndexes))
+ elog(ERROR, "invalid arbiter index list");
+ leaf_part_rri->ri_onConflictArbiterIndexes = arbiterIndexes;
+
+ /*
+ * In the DO UPDATE case, we have some more state to initialize.
+ */
+ if (node->onConflictAction == ONCONFLICT_UPDATE)
+ {
+ OnConflictSetState *onconfl = makeNode(OnConflictSetState);
+ TupleConversionMap *map;
+
+ map = ExecGetRootToChildMap(leaf_part_rri, estate);
+
+ Assert(node->onConflictSet != NIL);
+ Assert(rootResultRelInfo->ri_onConflict != NULL);
+
+ leaf_part_rri->ri_onConflict = onconfl;
+
+ /*
+ * Need a separate existing slot for each partition, as the
+ * partition could be of a different AM, even if the tuple
+ * descriptors match.
+ */
+ onconfl->oc_Existing =
+ table_slot_create(leaf_part_rri->ri_RelationDesc,
+ &mtstate->ps.state->es_tupleTable);
+
+ /*
+ * If the partition's tuple descriptor matches exactly the root
+ * parent (the common case), we can re-use most of the parent's ON
+ * CONFLICT SET state, skipping a bunch of work. Otherwise, we
+ * need to create state specific to this partition.
+ */
+ if (map == NULL)
+ {
+ /*
+ * It's safe to reuse these from the partition root, as we
+ * only process one tuple at a time (therefore we won't
+ * overwrite needed data in slots), and the results of
+ * projections are independent of the underlying storage.
+ * Projections and where clauses themselves don't store state
+ * / are independent of the underlying storage.
+ */
+ onconfl->oc_ProjSlot =
+ rootResultRelInfo->ri_onConflict->oc_ProjSlot;
+ onconfl->oc_ProjInfo =
+ rootResultRelInfo->ri_onConflict->oc_ProjInfo;
+ onconfl->oc_WhereClause =
+ rootResultRelInfo->ri_onConflict->oc_WhereClause;
+ }
+ else
+ {
+ List *onconflset;
+ List *onconflcols;
+
+ /*
+ * Translate expressions in onConflictSet to account for
+ * different attribute numbers. For that, map partition
+ * varattnos twice: first to catch the EXCLUDED
+ * pseudo-relation (INNER_VAR), and second to handle the main
+ * target relation (firstVarno).
+ */
+ onconflset = copyObject(node->onConflictSet);
+ if (part_attmap == NULL)
+ part_attmap =
+ build_attrmap_by_name(RelationGetDescr(partrel),
+ RelationGetDescr(firstResultRel),
+ false);
+ onconflset = (List *)
+ map_variable_attnos((Node *) onconflset,
+ INNER_VAR, 0,
+ part_attmap,
+ RelationGetForm(partrel)->reltype,
+ &found_whole_row);
+ /* We ignore the value of found_whole_row. */
+ onconflset = (List *)
+ map_variable_attnos((Node *) onconflset,
+ firstVarno, 0,
+ part_attmap,
+ RelationGetForm(partrel)->reltype,
+ &found_whole_row);
+ /* We ignore the value of found_whole_row. */
+
+ /* Finally, adjust the target colnos to match the partition. */
+ onconflcols = adjust_partition_colnos(node->onConflictCols,
+ leaf_part_rri);
+
+ /* create the tuple slot for the UPDATE SET projection */
+ onconfl->oc_ProjSlot =
+ table_slot_create(partrel,
+ &mtstate->ps.state->es_tupleTable);
+
+ /* build UPDATE SET projection state */
+ onconfl->oc_ProjInfo =
+ ExecBuildUpdateProjection(onconflset,
+ true,
+ onconflcols,
+ partrelDesc,
+ econtext,
+ onconfl->oc_ProjSlot,
+ &mtstate->ps);
+
+ /*
+ * If there is a WHERE clause, initialize state where it will
+ * be evaluated, mapping the attribute numbers appropriately.
+ * As with onConflictSet, we need to map partition varattnos
+ * to the partition's tupdesc.
+ */
+ if (node->onConflictWhere)
+ {
+ List *clause;
+
+ clause = copyObject((List *) node->onConflictWhere);
+ clause = (List *)
+ map_variable_attnos((Node *) clause,
+ INNER_VAR, 0,
+ part_attmap,
+ RelationGetForm(partrel)->reltype,
+ &found_whole_row);
+ /* We ignore the value of found_whole_row. */
+ clause = (List *)
+ map_variable_attnos((Node *) clause,
+ firstVarno, 0,
+ part_attmap,
+ RelationGetForm(partrel)->reltype,
+ &found_whole_row);
+ /* We ignore the value of found_whole_row. */
+ onconfl->oc_WhereClause =
+ ExecInitQual((List *) clause, &mtstate->ps);
+ }
+ }
+ }
+ }
+
+ /*
+ * Since we've just initialized this ResultRelInfo, it's not in any list
+ * attached to the estate as yet. Add it, so that it can be found later.
+ *
+ * Note that the entries in this list appear in no predetermined order,
+ * because partition result rels are initialized as and when they're
+ * needed.
+ */
+ MemoryContextSwitchTo(estate->es_query_cxt);
+ estate->es_tuple_routing_result_relations =
+ lappend(estate->es_tuple_routing_result_relations,
+ leaf_part_rri);
+
+ /*
+ * Initialize information about this partition that's needed to handle
+ * MERGE. We take the "first" result relation's mergeActionList as
+ * reference and make copy for this relation, converting stuff that
+ * references attribute numbers to match this relation's.
+ *
+ * This duplicates much of the logic in ExecInitMerge(), so something
+ * changes there, look here too.
+ */
+ if (node && node->operation == CMD_MERGE)
+ {
+ List *firstMergeActionList = linitial(node->mergeActionLists);
+ ListCell *lc;
+ ExprContext *econtext = mtstate->ps.ps_ExprContext;
+
+ if (part_attmap == NULL)
+ part_attmap =
+ build_attrmap_by_name(RelationGetDescr(partrel),
+ RelationGetDescr(firstResultRel),
+ false);
+
+ if (unlikely(!leaf_part_rri->ri_projectNewInfoValid))
+ ExecInitMergeTupleSlots(mtstate, leaf_part_rri);
+
+ foreach(lc, firstMergeActionList)
+ {
+ /* Make a copy for this relation to be safe. */
+ MergeAction *action = copyObject(lfirst(lc));
+ MergeActionState *action_state;
+ List **list;
+
+ /* Generate the action's state for this relation */
+ action_state = makeNode(MergeActionState);
+ action_state->mas_action = action;
+
+ /* And put the action in the appropriate list */
+ if (action->matched)
+ list = &leaf_part_rri->ri_matchedMergeAction;
+ else
+ list = &leaf_part_rri->ri_notMatchedMergeAction;
+ *list = lappend(*list, action_state);
+
+ switch (action->commandType)
+ {
+ case CMD_INSERT:
+
+ /*
+ * ExecCheckPlanOutput() already done on the targetlist
+ * when "first" result relation initialized and it is same
+ * for all result relations.
+ */
+ action_state->mas_proj =
+ ExecBuildProjectionInfo(action->targetList, econtext,
+ leaf_part_rri->ri_newTupleSlot,
+ &mtstate->ps,
+ RelationGetDescr(partrel));
+ break;
+ case CMD_UPDATE:
+
+ /*
+ * Convert updateColnos from "first" result relation
+ * attribute numbers to this result rel's.
+ */
+ if (part_attmap)
+ action->updateColnos =
+ adjust_partition_colnos_using_map(action->updateColnos,
+ part_attmap);
+ action_state->mas_proj =
+ ExecBuildUpdateProjection(action->targetList,
+ true,
+ action->updateColnos,
+ RelationGetDescr(leaf_part_rri->ri_RelationDesc),
+ econtext,
+ leaf_part_rri->ri_newTupleSlot,
+ NULL);
+ break;
+ case CMD_DELETE:
+ break;
+
+ default:
+ elog(ERROR, "unknown action in MERGE WHEN clause");
+ }
+
+ /* found_whole_row intentionally ignored. */
+ action->qual =
+ map_variable_attnos(action->qual,
+ firstVarno, 0,
+ part_attmap,
+ RelationGetForm(partrel)->reltype,
+ &found_whole_row);
+ action_state->mas_whenqual =
+ ExecInitQual((List *) action->qual, &mtstate->ps);
+ }
+ }
+ MemoryContextSwitchTo(oldcxt);
+
+ return leaf_part_rri;
+}
+
+/*
+ * ExecInitRoutingInfo
+ * Set up information needed for translating tuples between root
+ * partitioned table format and partition format, and keep track of it
+ * in PartitionTupleRouting.
+ */
+static void
+ExecInitRoutingInfo(ModifyTableState *mtstate,
+ EState *estate,
+ PartitionTupleRouting *proute,
+ PartitionDispatch dispatch,
+ ResultRelInfo *partRelInfo,
+ int partidx,
+ bool is_borrowed_rel)
+{
+ MemoryContext oldcxt;
+ int rri_index;
+
+ oldcxt = MemoryContextSwitchTo(proute->memcxt);
+
+ /*
+ * Set up tuple conversion between root parent and the partition if the
+ * two have different rowtypes. If conversion is indeed required, also
+ * initialize a slot dedicated to storing this partition's converted
+ * tuples. Various operations that are applied to tuples after routing,
+ * such as checking constraints, will refer to this slot.
+ */
+ if (ExecGetRootToChildMap(partRelInfo, estate) != NULL)
+ {
+ Relation partrel = partRelInfo->ri_RelationDesc;
+
+ /*
+ * This pins the partition's TupleDesc, which will be released at the
+ * end of the command.
+ */
+ partRelInfo->ri_PartitionTupleSlot =
+ table_slot_create(partrel, &estate->es_tupleTable);
+ }
+ else
+ partRelInfo->ri_PartitionTupleSlot = NULL;
+
+ /*
+ * If the partition is a foreign table, let the FDW init itself for
+ * routing tuples to the partition.
+ */
+ if (partRelInfo->ri_FdwRoutine != NULL &&
+ partRelInfo->ri_FdwRoutine->BeginForeignInsert != NULL)
+ partRelInfo->ri_FdwRoutine->BeginForeignInsert(mtstate, partRelInfo);
+
+ /*
+ * Determine if the FDW supports batch insert and determine the batch size
+ * (a FDW may support batching, but it may be disabled for the
+ * server/table or for this particular query).
+ *
+ * If the FDW does not support batching, we set the batch size to 1.
+ */
+ if (partRelInfo->ri_FdwRoutine != NULL &&
+ partRelInfo->ri_FdwRoutine->GetForeignModifyBatchSize &&
+ partRelInfo->ri_FdwRoutine->ExecForeignBatchInsert)
+ partRelInfo->ri_BatchSize =
+ partRelInfo->ri_FdwRoutine->GetForeignModifyBatchSize(partRelInfo);
+ else
+ partRelInfo->ri_BatchSize = 1;
+
+ Assert(partRelInfo->ri_BatchSize >= 1);
+
+ partRelInfo->ri_CopyMultiInsertBuffer = NULL;
+
+ /*
+ * Keep track of it in the PartitionTupleRouting->partitions array.
+ */
+ Assert(dispatch->indexes[partidx] == -1);
+
+ rri_index = proute->num_partitions++;
+
+ /* Allocate or enlarge the array, as needed */
+ if (proute->num_partitions >= proute->max_partitions)
+ {
+ if (proute->max_partitions == 0)
+ {
+ proute->max_partitions = 8;
+ proute->partitions = (ResultRelInfo **)
+ palloc(sizeof(ResultRelInfo *) * proute->max_partitions);
+ proute->is_borrowed_rel = (bool *)
+ palloc(sizeof(bool) * proute->max_partitions);
+ }
+ else
+ {
+ proute->max_partitions *= 2;
+ proute->partitions = (ResultRelInfo **)
+ repalloc(proute->partitions, sizeof(ResultRelInfo *) *
+ proute->max_partitions);
+ proute->is_borrowed_rel = (bool *)
+ repalloc(proute->is_borrowed_rel, sizeof(bool) *
+ proute->max_partitions);
+ }
+ }
+
+ proute->partitions[rri_index] = partRelInfo;
+ proute->is_borrowed_rel[rri_index] = is_borrowed_rel;
+ dispatch->indexes[partidx] = rri_index;
+
+ MemoryContextSwitchTo(oldcxt);
+}
+
+/*
+ * ExecInitPartitionDispatchInfo
+ * Lock the partitioned table (if not locked already) and initialize
+ * PartitionDispatch for a partitioned table and store it in the next
+ * available slot in the proute->partition_dispatch_info array. Also,
+ * record the index into this array in the parent_pd->indexes[] array in
+ * the partidx element so that we can properly retrieve the newly created
+ * PartitionDispatch later.
+ */
+static PartitionDispatch
+ExecInitPartitionDispatchInfo(EState *estate,
+ PartitionTupleRouting *proute, Oid partoid,
+ PartitionDispatch parent_pd, int partidx,
+ ResultRelInfo *rootResultRelInfo)
+{
+ Relation rel;
+ PartitionDesc partdesc;
+ PartitionDispatch pd;
+ int dispatchidx;
+ MemoryContext oldcxt;
+
+ /*
+ * For data modification, it is better that executor does not include
+ * partitions being detached, except when running in snapshot-isolation
+ * mode. This means that a read-committed transaction immediately gets a
+ * "no partition for tuple" error when a tuple is inserted into a
+ * partition that's being detached concurrently, but a transaction in
+ * repeatable-read mode can still use such a partition.
+ */
+ if (estate->es_partition_directory == NULL)
+ estate->es_partition_directory =
+ CreatePartitionDirectory(estate->es_query_cxt,
+ !IsolationUsesXactSnapshot());
+
+ oldcxt = MemoryContextSwitchTo(proute->memcxt);
+
+ /*
+ * Only sub-partitioned tables need to be locked here. The root
+ * partitioned table will already have been locked as it's referenced in
+ * the query's rtable.
+ */
+ if (partoid != RelationGetRelid(proute->partition_root))
+ rel = table_open(partoid, RowExclusiveLock);
+ else
+ rel = proute->partition_root;
+ partdesc = PartitionDirectoryLookup(estate->es_partition_directory, rel);
+
+ pd = (PartitionDispatch) palloc(offsetof(PartitionDispatchData, indexes) +
+ partdesc->nparts * sizeof(int));
+ pd->reldesc = rel;
+ pd->key = RelationGetPartitionKey(rel);
+ pd->keystate = NIL;
+ pd->partdesc = partdesc;
+ if (parent_pd != NULL)
+ {
+ TupleDesc tupdesc = RelationGetDescr(rel);
+
+ /*
+ * For sub-partitioned tables where the column order differs from its
+ * direct parent partitioned table, we must store a tuple table slot
+ * initialized with its tuple descriptor and a tuple conversion map to
+ * convert a tuple from its parent's rowtype to its own. This is to
+ * make sure that we are looking at the correct row using the correct
+ * tuple descriptor when computing its partition key for tuple
+ * routing.
+ */
+ pd->tupmap = build_attrmap_by_name_if_req(RelationGetDescr(parent_pd->reldesc),
+ tupdesc,
+ false);
+ pd->tupslot = pd->tupmap ?
+ MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual) : NULL;
+ }
+ else
+ {
+ /* Not required for the root partitioned table */
+ pd->tupmap = NULL;
+ pd->tupslot = NULL;
+ }
+
+ /*
+ * Initialize with -1 to signify that the corresponding partition's
+ * ResultRelInfo or PartitionDispatch has not been created yet.
+ */
+ memset(pd->indexes, -1, sizeof(int) * partdesc->nparts);
+
+ /* Track in PartitionTupleRouting for later use */
+ dispatchidx = proute->num_dispatch++;
+
+ /* Allocate or enlarge the array, as needed */
+ if (proute->num_dispatch >= proute->max_dispatch)
+ {
+ if (proute->max_dispatch == 0)
+ {
+ proute->max_dispatch = 4;
+ proute->partition_dispatch_info = (PartitionDispatch *)
+ palloc(sizeof(PartitionDispatch) * proute->max_dispatch);
+ proute->nonleaf_partitions = (ResultRelInfo **)
+ palloc(sizeof(ResultRelInfo *) * proute->max_dispatch);
+ }
+ else
+ {
+ proute->max_dispatch *= 2;
+ proute->partition_dispatch_info = (PartitionDispatch *)
+ repalloc(proute->partition_dispatch_info,
+ sizeof(PartitionDispatch) * proute->max_dispatch);
+ proute->nonleaf_partitions = (ResultRelInfo **)
+ repalloc(proute->nonleaf_partitions,
+ sizeof(ResultRelInfo *) * proute->max_dispatch);
+ }
+ }
+ proute->partition_dispatch_info[dispatchidx] = pd;
+
+ /*
+ * If setting up a PartitionDispatch for a sub-partitioned table, we may
+ * also need a minimally valid ResultRelInfo for checking the partition
+ * constraint later; set that up now.
+ */
+ if (parent_pd)
+ {
+ ResultRelInfo *rri = makeNode(ResultRelInfo);
+
+ InitResultRelInfo(rri, rel, 0, rootResultRelInfo, 0);
+ proute->nonleaf_partitions[dispatchidx] = rri;
+ }
+ else
+ proute->nonleaf_partitions[dispatchidx] = NULL;
+
+ /*
+ * Finally, if setting up a PartitionDispatch for a sub-partitioned table,
+ * install a downlink in the parent to allow quick descent.
+ */
+ if (parent_pd)
+ {
+ Assert(parent_pd->indexes[partidx] == -1);
+ parent_pd->indexes[partidx] = dispatchidx;
+ }
+
+ MemoryContextSwitchTo(oldcxt);
+
+ return pd;
+}
+
+/*
+ * ExecCleanupTupleRouting -- Clean up objects allocated for partition tuple
+ * routing.
+ *
+ * Close all the partitioned tables, leaf partitions, and their indices.
+ */
+void
+ExecCleanupTupleRouting(ModifyTableState *mtstate,
+ PartitionTupleRouting *proute)
+{
+ int i;
+
+ /*
+ * Remember, proute->partition_dispatch_info[0] corresponds to the root
+ * partitioned table, which we must not try to close, because it is the
+ * main target table of the query that will be closed by callers such as
+ * ExecEndPlan() or DoCopy(). Also, tupslot is NULL for the root
+ * partitioned table.
+ */
+ for (i = 1; i < proute->num_dispatch; i++)
+ {
+ PartitionDispatch pd = proute->partition_dispatch_info[i];
+
+ table_close(pd->reldesc, NoLock);
+
+ if (pd->tupslot)
+ ExecDropSingleTupleTableSlot(pd->tupslot);
+ }
+
+ for (i = 0; i < proute->num_partitions; i++)
+ {
+ ResultRelInfo *resultRelInfo = proute->partitions[i];
+
+ /* Allow any FDWs to shut down */
+ if (resultRelInfo->ri_FdwRoutine != NULL &&
+ resultRelInfo->ri_FdwRoutine->EndForeignInsert != NULL)
+ resultRelInfo->ri_FdwRoutine->EndForeignInsert(mtstate->ps.state,
+ resultRelInfo);
+
+ /*
+ * Close it if it's not one of the result relations borrowed from the
+ * owning ModifyTableState; those will be closed by ExecEndPlan().
+ */
+ if (proute->is_borrowed_rel[i])
+ continue;
+
+ ExecCloseIndices(resultRelInfo);
+ table_close(resultRelInfo->ri_RelationDesc, NoLock);
+ }
+}
+
+/* ----------------
+ * FormPartitionKeyDatum
+ * Construct values[] and isnull[] arrays for the partition key
+ * of a tuple.
+ *
+ * pd Partition dispatch object of the partitioned table
+ * slot Heap tuple from which to extract partition key
+ * estate executor state for evaluating any partition key
+ * expressions (must be non-NULL)
+ * values Array of partition key Datums (output area)
+ * isnull Array of is-null indicators (output area)
+ *
+ * the ecxt_scantuple slot of estate's per-tuple expr context must point to
+ * the heap tuple passed in.
+ * ----------------
+ */
+static void
+FormPartitionKeyDatum(PartitionDispatch pd,
+ TupleTableSlot *slot,
+ EState *estate,
+ Datum *values,
+ bool *isnull)
+{
+ ListCell *partexpr_item;
+ int i;
+
+ if (pd->key->partexprs != NIL && pd->keystate == NIL)
+ {
+ /* Check caller has set up context correctly */
+ Assert(estate != NULL &&
+ GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
+
+ /* First time through, set up expression evaluation state */
+ pd->keystate = ExecPrepareExprList(pd->key->partexprs, estate);
+ }
+
+ partexpr_item = list_head(pd->keystate);
+ for (i = 0; i < pd->key->partnatts; i++)
+ {
+ AttrNumber keycol = pd->key->partattrs[i];
+ Datum datum;
+ bool isNull;
+
+ if (keycol != 0)
+ {
+ /* Plain column; get the value directly from the heap tuple */
+ datum = slot_getattr(slot, keycol, &isNull);
+ }
+ else
+ {
+ /* Expression; need to evaluate it */
+ if (partexpr_item == NULL)
+ elog(ERROR, "wrong number of partition key expressions");
+ datum = ExecEvalExprSwitchContext((ExprState *) lfirst(partexpr_item),
+ GetPerTupleExprContext(estate),
+ &isNull);
+ partexpr_item = lnext(pd->keystate, partexpr_item);
+ }
+ values[i] = datum;
+ isnull[i] = isNull;
+ }
+
+ if (partexpr_item != NULL)
+ elog(ERROR, "wrong number of partition key expressions");
+}
+
+/*
+ * The number of times the same partition must be found in a row before we
+ * switch from a binary search for the given values to just checking if the
+ * values belong to the last found partition. This must be above 0.
+ */
+#define PARTITION_CACHED_FIND_THRESHOLD 16
+
+/*
+ * get_partition_for_tuple
+ * Finds partition of relation which accepts the partition key specified
+ * in values and isnull.
+ *
+ * Calling this function can be quite expensive when LIST and RANGE
+ * partitioned tables have many partitions. This is due to the binary search
+ * that's done to find the correct partition. Many of the use cases for LIST
+ * and RANGE partitioned tables make it likely that the same partition is
+ * found in subsequent ExecFindPartition() calls. This is especially true for
+ * cases such as RANGE partitioned tables on a TIMESTAMP column where the
+ * partition key is the current time. When asked to find a partition for a
+ * RANGE or LIST partitioned table, we record the partition index and datum
+ * offset we've found for the given 'values' in the PartitionDesc (which is
+ * stored in relcache), and if we keep finding the same partition
+ * PARTITION_CACHED_FIND_THRESHOLD times in a row, then we'll enable caching
+ * logic and instead of performing a binary search to find the correct
+ * partition, we'll just double-check that 'values' still belong to the last
+ * found partition, and if so, we'll return that partition index, thus
+ * skipping the need for the binary search. If we fail to match the last
+ * partition when double checking, then we fall back on doing a binary search.
+ * In this case, unless we find 'values' belong to the DEFAULT partition,
+ * we'll reset the number of times we've hit the same partition so that we
+ * don't attempt to use the cache again until we've found that partition at
+ * least PARTITION_CACHED_FIND_THRESHOLD times in a row.
+ *
+ * For cases where the partition changes on each lookup, the amount of
+ * additional work required just amounts to recording the last found partition
+ * and bound offset then resetting the found counter. This is cheap and does
+ * not appear to cause any meaningful slowdowns for such cases.
+ *
+ * No caching of partitions is done when the last found partition is the
+ * DEFAULT or NULL partition. For the case of the DEFAULT partition, there
+ * is no bound offset storing the matching datum, so we cannot confirm the
+ * indexes match. For the NULL partition, this is just so cheap, there's no
+ * sense in caching.
+ *
+ * Return value is index of the partition (>= 0 and < partdesc->nparts) if one
+ * found or -1 if none found.
+ */
+static int
+get_partition_for_tuple(PartitionDispatch pd, Datum *values, bool *isnull)
+{
+ int bound_offset = -1;
+ int part_index = -1;
+ PartitionKey key = pd->key;
+ PartitionDesc partdesc = pd->partdesc;
+ PartitionBoundInfo boundinfo = partdesc->boundinfo;
+
+ /*
+ * In the switch statement below, when we perform a cached lookup for
+ * RANGE and LIST partitioned tables, if we find that the last found
+ * partition matches the 'values', we return the partition index right
+ * away. We do this instead of breaking out of the switch as we don't
+ * want to execute the code about the DEFAULT partition or do any updates
+ * for any of the cache-related fields. That would be a waste of effort
+ * as we already know it's not the DEFAULT partition and have no need to
+ * increment the number of times we found the same partition any higher
+ * than PARTITION_CACHED_FIND_THRESHOLD.
+ */
+
+ /* Route as appropriate based on partitioning strategy. */
+ switch (key->strategy)
+ {
+ case PARTITION_STRATEGY_HASH:
+ {
+ uint64 rowHash;
+
+ /* hash partitioning is too cheap to bother caching */
+ rowHash = compute_partition_hash_value(key->partnatts,
+ key->partsupfunc,
+ key->partcollation,
+ values, isnull);
+
+ /*
+ * HASH partitions can't have a DEFAULT partition and we don't
+ * do any caching work for them, so just return the part index
+ */
+ return boundinfo->indexes[rowHash % boundinfo->nindexes];
+ }
+
+ case PARTITION_STRATEGY_LIST:
+ if (isnull[0])
+ {
+ /* this is far too cheap to bother doing any caching */
+ if (partition_bound_accepts_nulls(boundinfo))
+ {
+ /*
+ * When there is a NULL partition we just return that
+ * directly. We don't have a bound_offset so it's not
+ * valid to drop into the code after the switch which
+ * checks and updates the cache fields. We perhaps should
+ * be invalidating the details of the last cached
+ * partition but there's no real need to. Keeping those
+ * fields set gives a chance at matching to the cached
+ * partition on the next lookup.
+ */
+ return boundinfo->null_index;
+ }
+ }
+ else
+ {
+ bool equal;
+
+ if (partdesc->last_found_count >= PARTITION_CACHED_FIND_THRESHOLD)
+ {
+ int last_datum_offset = partdesc->last_found_datum_index;
+ Datum lastDatum = boundinfo->datums[last_datum_offset][0];
+ int32 cmpval;
+
+ /* does the last found datum index match this datum? */
+ cmpval = DatumGetInt32(FunctionCall2Coll(&key->partsupfunc[0],
+ key->partcollation[0],
+ lastDatum,
+ values[0]));
+
+ if (cmpval == 0)
+ return boundinfo->indexes[last_datum_offset];
+
+ /* fall-through and do a manual lookup */
+ }
+
+ bound_offset = partition_list_bsearch(key->partsupfunc,
+ key->partcollation,
+ boundinfo,
+ values[0], &equal);
+ if (bound_offset >= 0 && equal)
+ part_index = boundinfo->indexes[bound_offset];
+ }
+ break;
+
+ case PARTITION_STRATEGY_RANGE:
+ {
+ bool equal = false,
+ range_partkey_has_null = false;
+ int i;
+
+ /*
+ * No range includes NULL, so this will be accepted by the
+ * default partition if there is one, and otherwise rejected.
+ */
+ for (i = 0; i < key->partnatts; i++)
+ {
+ if (isnull[i])
+ {
+ range_partkey_has_null = true;
+ break;
+ }
+ }
+
+ /* NULLs belong in the DEFAULT partition */
+ if (range_partkey_has_null)
+ break;
+
+ if (partdesc->last_found_count >= PARTITION_CACHED_FIND_THRESHOLD)
+ {
+ int last_datum_offset = partdesc->last_found_datum_index;
+ Datum *lastDatums = boundinfo->datums[last_datum_offset];
+ PartitionRangeDatumKind *kind = boundinfo->kind[last_datum_offset];
+ int32 cmpval;
+
+ /* check if the value is >= to the lower bound */
+ cmpval = partition_rbound_datum_cmp(key->partsupfunc,
+ key->partcollation,
+ lastDatums,
+ kind,
+ values,
+ key->partnatts);
+
+ /*
+ * If it's equal to the lower bound then no need to check
+ * the upper bound.
+ */
+ if (cmpval == 0)
+ return boundinfo->indexes[last_datum_offset + 1];
+
+ if (cmpval < 0 && last_datum_offset + 1 < boundinfo->ndatums)
+ {
+ /* check if the value is below the upper bound */
+ lastDatums = boundinfo->datums[last_datum_offset + 1];
+ kind = boundinfo->kind[last_datum_offset + 1];
+ cmpval = partition_rbound_datum_cmp(key->partsupfunc,
+ key->partcollation,
+ lastDatums,
+ kind,
+ values,
+ key->partnatts);
+
+ if (cmpval > 0)
+ return boundinfo->indexes[last_datum_offset + 1];
+ }
+ /* fall-through and do a manual lookup */
+ }
+
+ bound_offset = partition_range_datum_bsearch(key->partsupfunc,
+ key->partcollation,
+ boundinfo,
+ key->partnatts,
+ values,
+ &equal);
+
+ /*
+ * The bound at bound_offset is less than or equal to the
+ * tuple value, so the bound at offset+1 is the upper bound of
+ * the partition we're looking for, if there actually exists
+ * one.
+ */
+ part_index = boundinfo->indexes[bound_offset + 1];
+ }
+ break;
+
+ default:
+ elog(ERROR, "unexpected partition strategy: %d",
+ (int) key->strategy);
+ }
+
+ /*
+ * part_index < 0 means we failed to find a partition of this parent. Use
+ * the default partition, if there is one.
+ */
+ if (part_index < 0)
+ {
+ /*
+ * No need to reset the cache fields here. The next set of values
+ * might end up belonging to the cached partition, so leaving the
+ * cache alone improves the chances of a cache hit on the next lookup.
+ */
+ return boundinfo->default_index;
+ }
+
+ /* we should only make it here when the code above set bound_offset */
+ Assert(bound_offset >= 0);
+
+ /*
+ * Attend to the cache fields. If the bound_offset matches the last
+ * cached bound offset then we've found the same partition as last time,
+ * so bump the count by one. If all goes well, we'll eventually reach
+ * PARTITION_CACHED_FIND_THRESHOLD and try the cache path next time
+ * around. Otherwise, we'll reset the cache count back to 1 to mark that
+ * we've found this partition for the first time.
+ */
+ if (bound_offset == partdesc->last_found_datum_index)
+ partdesc->last_found_count++;
+ else
+ {
+ partdesc->last_found_count = 1;
+ partdesc->last_found_part_index = part_index;
+ partdesc->last_found_datum_index = bound_offset;
+ }
+
+ return part_index;
+}
+
+/*
+ * ExecBuildSlotPartitionKeyDescription
+ *
+ * This works very much like BuildIndexValueDescription() and is currently
+ * used for building error messages when ExecFindPartition() fails to find
+ * partition for a row.
+ */
+static char *
+ExecBuildSlotPartitionKeyDescription(Relation rel,
+ Datum *values,
+ bool *isnull,
+ int maxfieldlen)
+{
+ StringInfoData buf;
+ PartitionKey key = RelationGetPartitionKey(rel);
+ int partnatts = get_partition_natts(key);
+ int i;
+ Oid relid = RelationGetRelid(rel);
+ AclResult aclresult;
+
+ if (check_enable_rls(relid, InvalidOid, true) == RLS_ENABLED)
+ return NULL;
+
+ /* If the user has table-level access, just go build the description. */
+ aclresult = pg_class_aclcheck(relid, GetUserId(), ACL_SELECT);
+ if (aclresult != ACLCHECK_OK)
+ {
+ /*
+ * Step through the columns of the partition key and make sure the
+ * user has SELECT rights on all of them.
+ */
+ for (i = 0; i < partnatts; i++)
+ {
+ AttrNumber attnum = get_partition_col_attnum(key, i);
+
+ /*
+ * If this partition key column is an expression, we return no
+ * detail rather than try to figure out what column(s) the
+ * expression includes and if the user has SELECT rights on them.
+ */
+ if (attnum == InvalidAttrNumber ||
+ pg_attribute_aclcheck(relid, attnum, GetUserId(),
+ ACL_SELECT) != ACLCHECK_OK)
+ return NULL;
+ }
+ }
+
+ initStringInfo(&buf);
+ appendStringInfo(&buf, "(%s) = (",
+ pg_get_partkeydef_columns(relid, true));
+
+ for (i = 0; i < partnatts; i++)
+ {
+ char *val;
+ int vallen;
+
+ if (isnull[i])
+ val = "null";
+ else
+ {
+ Oid foutoid;
+ bool typisvarlena;
+
+ getTypeOutputInfo(get_partition_col_typid(key, i),
+ &foutoid, &typisvarlena);
+ val = OidOutputFunctionCall(foutoid, values[i]);
+ }
+
+ if (i > 0)
+ appendStringInfoString(&buf, ", ");
+
+ /* truncate if needed */
+ vallen = strlen(val);
+ if (vallen <= maxfieldlen)
+ appendBinaryStringInfo(&buf, val, vallen);
+ else
+ {
+ vallen = pg_mbcliplen(val, vallen, maxfieldlen);
+ appendBinaryStringInfo(&buf, val, vallen);
+ appendStringInfoString(&buf, "...");
+ }
+ }
+
+ appendStringInfoChar(&buf, ')');
+
+ return buf.data;
+}
+
+/*
+ * adjust_partition_colnos
+ * Adjust the list of UPDATE target column numbers to account for
+ * attribute differences between the parent and the partition.
+ *
+ * Note: mustn't be called if no adjustment is required.
+ */
+static List *
+adjust_partition_colnos(List *colnos, ResultRelInfo *leaf_part_rri)
+{
+ TupleConversionMap *map = ExecGetChildToRootMap(leaf_part_rri);
+
+ Assert(map != NULL);
+
+ return adjust_partition_colnos_using_map(colnos, map->attrMap);
+}
+
+/*
+ * adjust_partition_colnos_using_map
+ * Like adjust_partition_colnos, but uses a caller-supplied map instead
+ * of assuming to map from the "root" result relation.
+ *
+ * Note: mustn't be called if no adjustment is required.
+ */
+static List *
+adjust_partition_colnos_using_map(List *colnos, AttrMap *attrMap)
+{
+ List *new_colnos = NIL;
+ ListCell *lc;
+
+ Assert(attrMap != NULL); /* else we shouldn't be here */
+
+ foreach(lc, colnos)
+ {
+ AttrNumber parentattrno = lfirst_int(lc);
+
+ if (parentattrno <= 0 ||
+ parentattrno > attrMap->maplen ||
+ attrMap->attnums[parentattrno - 1] == 0)
+ elog(ERROR, "unexpected attno %d in target column list",
+ parentattrno);
+ new_colnos = lappend_int(new_colnos,
+ attrMap->attnums[parentattrno - 1]);
+ }
+
+ return new_colnos;
+}
+
+/*-------------------------------------------------------------------------
+ * Run-Time Partition Pruning Support.
+ *
+ * The following series of functions exist to support the removal of unneeded
+ * subplans for queries against partitioned tables. The supporting functions
+ * here are designed to work with any plan type which supports an arbitrary
+ * number of subplans, e.g. Append, MergeAppend.
+ *
+ * When pruning involves comparison of a partition key to a constant, it's
+ * done by the planner. However, if we have a comparison to a non-constant
+ * but not volatile expression, that presents an opportunity for run-time
+ * pruning by the executor, allowing irrelevant partitions to be skipped
+ * dynamically.
+ *
+ * We must distinguish expressions containing PARAM_EXEC Params from
+ * expressions that don't contain those. Even though a PARAM_EXEC Param is
+ * considered to be a stable expression, it can change value from one plan
+ * node scan to the next during query execution. Stable comparison
+ * expressions that don't involve such Params allow partition pruning to be
+ * done once during executor startup. Expressions that do involve such Params
+ * require us to prune separately for each scan of the parent plan node.
+ *
+ * Note that pruning away unneeded subplans during executor startup has the
+ * added benefit of not having to initialize the unneeded subplans at all.
+ *
+ *
+ * Functions:
+ *
+ * ExecInitPartitionPruning:
+ * Creates the PartitionPruneState required by ExecFindMatchingSubPlans.
+ * Details stored include how to map the partition index returned by the
+ * partition pruning code into subplan indexes. Also determines the set
+ * of subplans to initialize considering the result of performing initial
+ * pruning steps if any. Maps in PartitionPruneState are updated to
+ * account for initial pruning possibly having eliminated some of the
+ * subplans.
+ *
+ * ExecFindMatchingSubPlans:
+ * Returns indexes of matching subplans after evaluating the expressions
+ * that are safe to evaluate at a given point. This function is first
+ * called during ExecInitPartitionPruning() to find the initially
+ * matching subplans based on performing the initial pruning steps and
+ * then must be called again each time the value of a Param listed in
+ * PartitionPruneState's 'execparamids' changes.
+ *-------------------------------------------------------------------------
+ */
+
+/*
+ * ExecInitPartitionPruning
+ * Initialize data structure needed for run-time partition pruning and
+ * do initial pruning if needed
+ *
+ * On return, *initially_valid_subplans is assigned the set of indexes of
+ * child subplans that must be initialized along with the parent plan node.
+ * Initial pruning is performed here if needed and in that case only the
+ * surviving subplans' indexes are added.
+ *
+ * If subplans are indeed pruned, subplan_map arrays contained in the returned
+ * PartitionPruneState are re-sequenced to not count those, though only if the
+ * maps will be needed for subsequent execution pruning passes.
+ */
+PartitionPruneState *
+ExecInitPartitionPruning(PlanState *planstate,
+ int n_total_subplans,
+ PartitionPruneInfo *pruneinfo,
+ Bitmapset **initially_valid_subplans)
+{
+ PartitionPruneState *prunestate;
+ EState *estate = planstate->state;
+
+ /* We may need an expression context to evaluate partition exprs */
+ ExecAssignExprContext(estate, planstate);
+
+ /* Create the working data structure for pruning */
+ prunestate = CreatePartitionPruneState(planstate, pruneinfo);
+
+ /*
+ * Perform an initial partition prune pass, if required.
+ */
+ if (prunestate->do_initial_prune)
+ *initially_valid_subplans = ExecFindMatchingSubPlans(prunestate, true);
+ else
+ {
+ /* No pruning, so we'll need to initialize all subplans */
+ Assert(n_total_subplans > 0);
+ *initially_valid_subplans = bms_add_range(NULL, 0,
+ n_total_subplans - 1);
+ }
+
+ /*
+ * Re-sequence subplan indexes contained in prunestate to account for any
+ * that were removed above due to initial pruning. No need to do this if
+ * no steps were removed.
+ */
+ if (bms_num_members(*initially_valid_subplans) < n_total_subplans)
+ {
+ /*
+ * We can safely skip this when !do_exec_prune, even though that
+ * leaves invalid data in prunestate, because that data won't be
+ * consulted again (cf initial Assert in ExecFindMatchingSubPlans).
+ */
+ if (prunestate->do_exec_prune)
+ PartitionPruneFixSubPlanMap(prunestate,
+ *initially_valid_subplans,
+ n_total_subplans);
+ }
+
+ return prunestate;
+}
+
+/*
+ * CreatePartitionPruneState
+ * Build the data structure required for calling ExecFindMatchingSubPlans
+ *
+ * 'planstate' is the parent plan node's execution state.
+ *
+ * 'pruneinfo' is a PartitionPruneInfo as generated by
+ * make_partition_pruneinfo. Here we build a PartitionPruneState containing a
+ * PartitionPruningData for each partitioning hierarchy (i.e., each sublist of
+ * pruneinfo->prune_infos), each of which contains a PartitionedRelPruningData
+ * for each PartitionedRelPruneInfo appearing in that sublist. This two-level
+ * system is needed to keep from confusing the different hierarchies when a
+ * UNION ALL contains multiple partitioned tables as children. The data
+ * stored in each PartitionedRelPruningData can be re-used each time we
+ * re-evaluate which partitions match the pruning steps provided in each
+ * PartitionedRelPruneInfo.
+ */
+static PartitionPruneState *
+CreatePartitionPruneState(PlanState *planstate, PartitionPruneInfo *pruneinfo)
+{
+ EState *estate = planstate->state;
+ PartitionPruneState *prunestate;
+ int n_part_hierarchies;
+ ListCell *lc;
+ int i;
+ ExprContext *econtext = planstate->ps_ExprContext;
+
+ /* For data reading, executor always omits detached partitions */
+ if (estate->es_partition_directory == NULL)
+ estate->es_partition_directory =
+ CreatePartitionDirectory(estate->es_query_cxt, false);
+
+ n_part_hierarchies = list_length(pruneinfo->prune_infos);
+ Assert(n_part_hierarchies > 0);
+
+ /*
+ * Allocate the data structure
+ */
+ prunestate = (PartitionPruneState *)
+ palloc(offsetof(PartitionPruneState, partprunedata) +
+ sizeof(PartitionPruningData *) * n_part_hierarchies);
+
+ prunestate->execparamids = NULL;
+ /* other_subplans can change at runtime, so we need our own copy */
+ prunestate->other_subplans = bms_copy(pruneinfo->other_subplans);
+ prunestate->do_initial_prune = false; /* may be set below */
+ prunestate->do_exec_prune = false; /* may be set below */
+ prunestate->num_partprunedata = n_part_hierarchies;
+
+ /*
+ * Create a short-term memory context which we'll use when making calls to
+ * the partition pruning functions. This avoids possible memory leaks,
+ * since the pruning functions call comparison functions that aren't under
+ * our control.
+ */
+ prunestate->prune_context =
+ AllocSetContextCreate(CurrentMemoryContext,
+ "Partition Prune",
+ ALLOCSET_DEFAULT_SIZES);
+
+ i = 0;
+ foreach(lc, pruneinfo->prune_infos)
+ {
+ List *partrelpruneinfos = lfirst_node(List, lc);
+ int npartrelpruneinfos = list_length(partrelpruneinfos);
+ PartitionPruningData *prunedata;
+ ListCell *lc2;
+ int j;
+
+ prunedata = (PartitionPruningData *)
+ palloc(offsetof(PartitionPruningData, partrelprunedata) +
+ npartrelpruneinfos * sizeof(PartitionedRelPruningData));
+ prunestate->partprunedata[i] = prunedata;
+ prunedata->num_partrelprunedata = npartrelpruneinfos;
+
+ j = 0;
+ foreach(lc2, partrelpruneinfos)
+ {
+ PartitionedRelPruneInfo *pinfo = lfirst_node(PartitionedRelPruneInfo, lc2);
+ PartitionedRelPruningData *pprune = &prunedata->partrelprunedata[j];
+ Relation partrel;
+ PartitionDesc partdesc;
+ PartitionKey partkey;
+
+ /*
+ * We can rely on the copies of the partitioned table's partition
+ * key and partition descriptor appearing in its relcache entry,
+ * because that entry will be held open and locked for the
+ * duration of this executor run.
+ */
+ partrel = ExecGetRangeTableRelation(estate, pinfo->rtindex);
+ partkey = RelationGetPartitionKey(partrel);
+ partdesc = PartitionDirectoryLookup(estate->es_partition_directory,
+ partrel);
+
+ /*
+ * Initialize the subplan_map and subpart_map.
+ *
+ * Because we request detached partitions to be included, and
+ * detaching waits for old transactions, it is safe to assume that
+ * no partitions have disappeared since this query was planned.
+ *
+ * However, new partitions may have been added.
+ */
+ Assert(partdesc->nparts >= pinfo->nparts);
+ pprune->nparts = partdesc->nparts;
+ pprune->subplan_map = palloc(sizeof(int) * partdesc->nparts);
+ if (partdesc->nparts == pinfo->nparts)
+ {
+ /*
+ * There are no new partitions, so this is simple. We can
+ * simply point to the subpart_map from the plan, but we must
+ * copy the subplan_map since we may change it later.
+ */
+ pprune->subpart_map = pinfo->subpart_map;
+ memcpy(pprune->subplan_map, pinfo->subplan_map,
+ sizeof(int) * pinfo->nparts);
+
+ /*
+ * Double-check that the list of unpruned relations has not
+ * changed. (Pruned partitions are not in relid_map[].)
+ */
+#ifdef USE_ASSERT_CHECKING
+ for (int k = 0; k < pinfo->nparts; k++)
+ {
+ Assert(partdesc->oids[k] == pinfo->relid_map[k] ||
+ pinfo->subplan_map[k] == -1);
+ }
+#endif
+ }
+ else
+ {
+ int pd_idx = 0;
+ int pp_idx;
+
+ /*
+ * Some new partitions have appeared since plan time, and
+ * those are reflected in our PartitionDesc but were not
+ * present in the one used to construct subplan_map and
+ * subpart_map. So we must construct new and longer arrays
+ * where the partitions that were originally present map to
+ * the same sub-structures, and any added partitions map to
+ * -1, as if the new partitions had been pruned.
+ *
+ * Note: pinfo->relid_map[] may contain InvalidOid entries for
+ * partitions pruned by the planner. We cannot tell exactly
+ * which of the partdesc entries these correspond to, but we
+ * don't have to; just skip over them. The non-pruned
+ * relid_map entries, however, had better be a subset of the
+ * partdesc entries and in the same order.
+ */
+ pprune->subpart_map = palloc(sizeof(int) * partdesc->nparts);
+ for (pp_idx = 0; pp_idx < partdesc->nparts; pp_idx++)
+ {
+ /* Skip any InvalidOid relid_map entries */
+ while (pd_idx < pinfo->nparts &&
+ !OidIsValid(pinfo->relid_map[pd_idx]))
+ pd_idx++;
+
+ if (pd_idx < pinfo->nparts &&
+ pinfo->relid_map[pd_idx] == partdesc->oids[pp_idx])
+ {
+ /* match... */
+ pprune->subplan_map[pp_idx] =
+ pinfo->subplan_map[pd_idx];
+ pprune->subpart_map[pp_idx] =
+ pinfo->subpart_map[pd_idx];
+ pd_idx++;
+ }
+ else
+ {
+ /* this partdesc entry is not in the plan */
+ pprune->subplan_map[pp_idx] = -1;
+ pprune->subpart_map[pp_idx] = -1;
+ }
+ }
+
+ /*
+ * It might seem that we need to skip any trailing InvalidOid
+ * entries in pinfo->relid_map before checking that we scanned
+ * all of the relid_map. But we will have skipped them above,
+ * because they must correspond to some partdesc->oids
+ * entries; we just couldn't tell which.
+ */
+ if (pd_idx != pinfo->nparts)
+ elog(ERROR, "could not match partition child tables to plan elements");
+ }
+
+ /* present_parts is also subject to later modification */
+ pprune->present_parts = bms_copy(pinfo->present_parts);
+
+ /*
+ * Initialize pruning contexts as needed. Note that we must skip
+ * execution-time partition pruning in EXPLAIN (GENERIC_PLAN),
+ * since parameter values may be missing.
+ */
+ pprune->initial_pruning_steps = pinfo->initial_pruning_steps;
+ if (pinfo->initial_pruning_steps &&
+ !(econtext->ecxt_estate->es_top_eflags & EXEC_FLAG_EXPLAIN_GENERIC))
+ {
+ InitPartitionPruneContext(&pprune->initial_context,
+ pinfo->initial_pruning_steps,
+ partdesc, partkey, planstate,
+ econtext);
+ /* Record whether initial pruning is needed at any level */
+ prunestate->do_initial_prune = true;
+ }
+ pprune->exec_pruning_steps = pinfo->exec_pruning_steps;
+ if (pinfo->exec_pruning_steps &&
+ !(econtext->ecxt_estate->es_top_eflags & EXEC_FLAG_EXPLAIN_GENERIC))
+ {
+ InitPartitionPruneContext(&pprune->exec_context,
+ pinfo->exec_pruning_steps,
+ partdesc, partkey, planstate,
+ econtext);
+ /* Record whether exec pruning is needed at any level */
+ prunestate->do_exec_prune = true;
+ }
+
+ /*
+ * Accumulate the IDs of all PARAM_EXEC Params affecting the
+ * partitioning decisions at this plan node.
+ */
+ prunestate->execparamids = bms_add_members(prunestate->execparamids,
+ pinfo->execparamids);
+
+ j++;
+ }
+ i++;
+ }
+
+ return prunestate;
+}
+
+/*
+ * Initialize a PartitionPruneContext for the given list of pruning steps.
+ */
+static void
+InitPartitionPruneContext(PartitionPruneContext *context,
+ List *pruning_steps,
+ PartitionDesc partdesc,
+ PartitionKey partkey,
+ PlanState *planstate,
+ ExprContext *econtext)
+{
+ int n_steps;
+ int partnatts;
+ ListCell *lc;
+
+ n_steps = list_length(pruning_steps);
+
+ context->strategy = partkey->strategy;
+ context->partnatts = partnatts = partkey->partnatts;
+ context->nparts = partdesc->nparts;
+ context->boundinfo = partdesc->boundinfo;
+ context->partcollation = partkey->partcollation;
+ context->partsupfunc = partkey->partsupfunc;
+
+ /* We'll look up type-specific support functions as needed */
+ context->stepcmpfuncs = (FmgrInfo *)
+ palloc0(sizeof(FmgrInfo) * n_steps * partnatts);
+
+ context->ppccontext = CurrentMemoryContext;
+ context->planstate = planstate;
+ context->exprcontext = econtext;
+
+ /* Initialize expression state for each expression we need */
+ context->exprstates = (ExprState **)
+ palloc0(sizeof(ExprState *) * n_steps * partnatts);
+ foreach(lc, pruning_steps)
+ {
+ PartitionPruneStepOp *step = (PartitionPruneStepOp *) lfirst(lc);
+ ListCell *lc2 = list_head(step->exprs);
+ int keyno;
+
+ /* not needed for other step kinds */
+ if (!IsA(step, PartitionPruneStepOp))
+ continue;
+
+ Assert(list_length(step->exprs) <= partnatts);
+
+ for (keyno = 0; keyno < partnatts; keyno++)
+ {
+ if (bms_is_member(keyno, step->nullkeys))
+ continue;
+
+ if (lc2 != NULL)
+ {
+ Expr *expr = lfirst(lc2);
+
+ /* not needed for Consts */
+ if (!IsA(expr, Const))
+ {
+ int stateidx = PruneCxtStateIdx(partnatts,
+ step->step.step_id,
+ keyno);
+
+ /*
+ * When planstate is NULL, pruning_steps is known not to
+ * contain any expressions that depend on the parent plan.
+ * Information of any available EXTERN parameters must be
+ * passed explicitly in that case, which the caller must
+ * have made available via econtext.
+ */
+ if (planstate == NULL)
+ context->exprstates[stateidx] =
+ ExecInitExprWithParams(expr,
+ econtext->ecxt_param_list_info);
+ else
+ context->exprstates[stateidx] =
+ ExecInitExpr(expr, context->planstate);
+ }
+ lc2 = lnext(step->exprs, lc2);
+ }
+ }
+ }
+}
+
+/*
+ * PartitionPruneFixSubPlanMap
+ * Fix mapping of partition indexes to subplan indexes contained in
+ * prunestate by considering the new list of subplans that survived
+ * initial pruning
+ *
+ * Current values of the indexes present in PartitionPruneState count all the
+ * subplans that would be present before initial pruning was done. If initial
+ * pruning got rid of some of the subplans, any subsequent pruning passes will
+ * be looking at a different set of target subplans to choose from than those
+ * in the pre-initial-pruning set, so the maps in PartitionPruneState
+ * containing those indexes must be updated to reflect the new indexes of
+ * subplans in the post-initial-pruning set.
+ */
+static void
+PartitionPruneFixSubPlanMap(PartitionPruneState *prunestate,
+ Bitmapset *initially_valid_subplans,
+ int n_total_subplans)
+{
+ int *new_subplan_indexes;
+ Bitmapset *new_other_subplans;
+ int i;
+ int newidx;
+
+ /*
+ * First we must build a temporary array which maps old subplan indexes to
+ * new ones. For convenience of initialization, we use 1-based indexes in
+ * this array and leave pruned items as 0.
+ */
+ new_subplan_indexes = (int *) palloc0(sizeof(int) * n_total_subplans);
+ newidx = 1;
+ i = -1;
+ while ((i = bms_next_member(initially_valid_subplans, i)) >= 0)
+ {
+ Assert(i < n_total_subplans);
+ new_subplan_indexes[i] = newidx++;
+ }
+
+ /*
+ * Now we can update each PartitionedRelPruneInfo's subplan_map with new
+ * subplan indexes. We must also recompute its present_parts bitmap.
+ */
+ for (i = 0; i < prunestate->num_partprunedata; i++)
+ {
+ PartitionPruningData *prunedata = prunestate->partprunedata[i];
+ int j;
+
+ /*
+ * Within each hierarchy, we perform this loop in back-to-front order
+ * so that we determine present_parts for the lowest-level partitioned
+ * tables first. This way we can tell whether a sub-partitioned
+ * table's partitions were entirely pruned so we can exclude it from
+ * the current level's present_parts.
+ */
+ for (j = prunedata->num_partrelprunedata - 1; j >= 0; j--)
+ {
+ PartitionedRelPruningData *pprune = &prunedata->partrelprunedata[j];
+ int nparts = pprune->nparts;
+ int k;
+
+ /* We just rebuild present_parts from scratch */
+ bms_free(pprune->present_parts);
+ pprune->present_parts = NULL;
+
+ for (k = 0; k < nparts; k++)
+ {
+ int oldidx = pprune->subplan_map[k];
+ int subidx;
+
+ /*
+ * If this partition existed as a subplan then change the old
+ * subplan index to the new subplan index. The new index may
+ * become -1 if the partition was pruned above, or it may just
+ * come earlier in the subplan list due to some subplans being
+ * removed earlier in the list. If it's a subpartition, add
+ * it to present_parts unless it's entirely pruned.
+ */
+ if (oldidx >= 0)
+ {
+ Assert(oldidx < n_total_subplans);
+ pprune->subplan_map[k] = new_subplan_indexes[oldidx] - 1;
+
+ if (new_subplan_indexes[oldidx] > 0)
+ pprune->present_parts =
+ bms_add_member(pprune->present_parts, k);
+ }
+ else if ((subidx = pprune->subpart_map[k]) >= 0)
+ {
+ PartitionedRelPruningData *subprune;
+
+ subprune = &prunedata->partrelprunedata[subidx];
+
+ if (!bms_is_empty(subprune->present_parts))
+ pprune->present_parts =
+ bms_add_member(pprune->present_parts, k);
+ }
+ }
+ }
+ }
+
+ /*
+ * We must also recompute the other_subplans set, since indexes in it may
+ * change.
+ */
+ new_other_subplans = NULL;
+ i = -1;
+ while ((i = bms_next_member(prunestate->other_subplans, i)) >= 0)
+ new_other_subplans = bms_add_member(new_other_subplans,
+ new_subplan_indexes[i] - 1);
+
+ bms_free(prunestate->other_subplans);
+ prunestate->other_subplans = new_other_subplans;
+
+ pfree(new_subplan_indexes);
+}
+
+/*
+ * ExecFindMatchingSubPlans
+ * Determine which subplans match the pruning steps detailed in
+ * 'prunestate' for the current comparison expression values.
+ *
+ * Pass initial_prune if PARAM_EXEC Params cannot yet be evaluated. This
+ * differentiates the initial executor-time pruning step from later
+ * runtime pruning.
+ */
+Bitmapset *
+ExecFindMatchingSubPlans(PartitionPruneState *prunestate,
+ bool initial_prune)
+{
+ Bitmapset *result = NULL;
+ MemoryContext oldcontext;
+ int i;
+
+ /*
+ * Either we're here on the initial prune done during pruning
+ * initialization, or we're at a point where PARAM_EXEC Params can be
+ * evaluated *and* there are steps in which to do so.
+ */
+ Assert(initial_prune || prunestate->do_exec_prune);
+
+ /*
+ * Switch to a temp context to avoid leaking memory in the executor's
+ * query-lifespan memory context.
+ */
+ oldcontext = MemoryContextSwitchTo(prunestate->prune_context);
+
+ /*
+ * For each hierarchy, do the pruning tests, and add nondeletable
+ * subplans' indexes to "result".
+ */
+ for (i = 0; i < prunestate->num_partprunedata; i++)
+ {
+ PartitionPruningData *prunedata = prunestate->partprunedata[i];
+ PartitionedRelPruningData *pprune;
+
+ /*
+ * We pass the zeroth item, belonging to the root table of the
+ * hierarchy, and find_matching_subplans_recurse() takes care of
+ * recursing to other (lower-level) parents as needed.
+ */
+ pprune = &prunedata->partrelprunedata[0];
+ find_matching_subplans_recurse(prunedata, pprune, initial_prune,
+ &result);
+
+ /* Expression eval may have used space in ExprContext too */
+ if (pprune->exec_pruning_steps)
+ ResetExprContext(pprune->exec_context.exprcontext);
+ }
+
+ /* Add in any subplans that partition pruning didn't account for */
+ result = bms_add_members(result, prunestate->other_subplans);
+
+ MemoryContextSwitchTo(oldcontext);
+
+ /* Copy result out of the temp context before we reset it */
+ result = bms_copy(result);
+
+ MemoryContextReset(prunestate->prune_context);
+
+ return result;
+}
+
+/*
+ * find_matching_subplans_recurse
+ * Recursive worker function for ExecFindMatchingSubPlans
+ *
+ * Adds valid (non-prunable) subplan IDs to *validsubplans
+ */
+static void
+find_matching_subplans_recurse(PartitionPruningData *prunedata,
+ PartitionedRelPruningData *pprune,
+ bool initial_prune,
+ Bitmapset **validsubplans)
+{
+ Bitmapset *partset;
+ int i;
+
+ /* Guard against stack overflow due to overly deep partition hierarchy. */
+ check_stack_depth();
+
+ /*
+ * Prune as appropriate, if we have pruning steps matching the current
+ * execution context. Otherwise just include all partitions at this
+ * level.
+ */
+ if (initial_prune && pprune->initial_pruning_steps)
+ partset = get_matching_partitions(&pprune->initial_context,
+ pprune->initial_pruning_steps);
+ else if (!initial_prune && pprune->exec_pruning_steps)
+ partset = get_matching_partitions(&pprune->exec_context,
+ pprune->exec_pruning_steps);
+ else
+ partset = pprune->present_parts;
+
+ /* Translate partset into subplan indexes */
+ i = -1;
+ while ((i = bms_next_member(partset, i)) >= 0)
+ {
+ if (pprune->subplan_map[i] >= 0)
+ *validsubplans = bms_add_member(*validsubplans,
+ pprune->subplan_map[i]);
+ else
+ {
+ int partidx = pprune->subpart_map[i];
+
+ if (partidx >= 0)
+ find_matching_subplans_recurse(prunedata,
+ &prunedata->partrelprunedata[partidx],
+ initial_prune, validsubplans);
+ else
+ {
+ /*
+ * We get here if the planner already pruned all the sub-
+ * partitions for this partition. Silently ignore this
+ * partition in this case. The end result is the same: we
+ * would have pruned all partitions just the same, but we
+ * don't have any pruning steps to execute to verify this.
+ */
+ }
+ }
+ }
+}