diff options
Diffstat (limited to 'contrib/cube/cube.c')
-rw-r--r-- | contrib/cube/cube.c | 1909 |
1 files changed, 1909 insertions, 0 deletions
diff --git a/contrib/cube/cube.c b/contrib/cube/cube.c new file mode 100644 index 0000000..1fc4475 --- /dev/null +++ b/contrib/cube/cube.c @@ -0,0 +1,1909 @@ +/****************************************************************************** + contrib/cube/cube.c + + This file contains routines that can be bound to a Postgres backend and + called by the backend in the process of processing queries. The calling + format for these routines is dictated by Postgres architecture. +******************************************************************************/ + +#include "postgres.h" + +#include <math.h> + +#include "access/gist.h" +#include "access/stratnum.h" +#include "cubedata.h" +#include "libpq/pqformat.h" +#include "utils/array.h" +#include "utils/float.h" + +PG_MODULE_MAGIC; + +/* + * Taken from the intarray contrib header + */ +#define ARRPTR(x) ( (double *) ARR_DATA_PTR(x) ) +#define ARRNELEMS(x) ArrayGetNItems( ARR_NDIM(x), ARR_DIMS(x)) + +/* +** Input/Output routines +*/ +PG_FUNCTION_INFO_V1(cube_in); +PG_FUNCTION_INFO_V1(cube_a_f8_f8); +PG_FUNCTION_INFO_V1(cube_a_f8); +PG_FUNCTION_INFO_V1(cube_out); +PG_FUNCTION_INFO_V1(cube_send); +PG_FUNCTION_INFO_V1(cube_recv); +PG_FUNCTION_INFO_V1(cube_f8); +PG_FUNCTION_INFO_V1(cube_f8_f8); +PG_FUNCTION_INFO_V1(cube_c_f8); +PG_FUNCTION_INFO_V1(cube_c_f8_f8); +PG_FUNCTION_INFO_V1(cube_dim); +PG_FUNCTION_INFO_V1(cube_ll_coord); +PG_FUNCTION_INFO_V1(cube_ur_coord); +PG_FUNCTION_INFO_V1(cube_coord); +PG_FUNCTION_INFO_V1(cube_coord_llur); +PG_FUNCTION_INFO_V1(cube_subset); + +/* +** GiST support methods +*/ + +PG_FUNCTION_INFO_V1(g_cube_consistent); +PG_FUNCTION_INFO_V1(g_cube_compress); +PG_FUNCTION_INFO_V1(g_cube_decompress); +PG_FUNCTION_INFO_V1(g_cube_penalty); +PG_FUNCTION_INFO_V1(g_cube_picksplit); +PG_FUNCTION_INFO_V1(g_cube_union); +PG_FUNCTION_INFO_V1(g_cube_same); +PG_FUNCTION_INFO_V1(g_cube_distance); + +/* +** B-tree support functions +*/ +PG_FUNCTION_INFO_V1(cube_eq); +PG_FUNCTION_INFO_V1(cube_ne); +PG_FUNCTION_INFO_V1(cube_lt); +PG_FUNCTION_INFO_V1(cube_gt); +PG_FUNCTION_INFO_V1(cube_le); +PG_FUNCTION_INFO_V1(cube_ge); +PG_FUNCTION_INFO_V1(cube_cmp); + +/* +** R-tree support functions +*/ + +PG_FUNCTION_INFO_V1(cube_contains); +PG_FUNCTION_INFO_V1(cube_contained); +PG_FUNCTION_INFO_V1(cube_overlap); +PG_FUNCTION_INFO_V1(cube_union); +PG_FUNCTION_INFO_V1(cube_inter); +PG_FUNCTION_INFO_V1(cube_size); + +/* +** miscellaneous +*/ +PG_FUNCTION_INFO_V1(distance_taxicab); +PG_FUNCTION_INFO_V1(cube_distance); +PG_FUNCTION_INFO_V1(distance_chebyshev); +PG_FUNCTION_INFO_V1(cube_is_point); +PG_FUNCTION_INFO_V1(cube_enlarge); + +/* +** For internal use only +*/ +int32 cube_cmp_v0(NDBOX *a, NDBOX *b); +bool cube_contains_v0(NDBOX *a, NDBOX *b); +bool cube_overlap_v0(NDBOX *a, NDBOX *b); +NDBOX *cube_union_v0(NDBOX *a, NDBOX *b); +void rt_cube_size(NDBOX *a, double *size); +NDBOX *g_cube_binary_union(NDBOX *r1, NDBOX *r2, int *sizep); +bool g_cube_leaf_consistent(NDBOX *key, NDBOX *query, StrategyNumber strategy); +bool g_cube_internal_consistent(NDBOX *key, NDBOX *query, StrategyNumber strategy); + +/* +** Auxiliary functions +*/ +static double distance_1D(double a1, double a2, double b1, double b2); +static bool cube_is_point_internal(NDBOX *cube); + + +/***************************************************************************** + * Input/Output functions + *****************************************************************************/ + +/* NdBox = [(lowerleft),(upperright)] */ +/* [(xLL(1)...xLL(N)),(xUR(1)...xUR(n))] */ +Datum +cube_in(PG_FUNCTION_ARGS) +{ + char *str = PG_GETARG_CSTRING(0); + NDBOX *result; + Size scanbuflen; + + cube_scanner_init(str, &scanbuflen); + + cube_yyparse(&result, scanbuflen, fcinfo->context); + + /* We might as well run this even on failure. */ + cube_scanner_finish(); + + PG_RETURN_NDBOX_P(result); +} + + +/* +** Allows the construction of a cube from 2 float[]'s +*/ +Datum +cube_a_f8_f8(PG_FUNCTION_ARGS) +{ + ArrayType *ur = PG_GETARG_ARRAYTYPE_P(0); + ArrayType *ll = PG_GETARG_ARRAYTYPE_P(1); + NDBOX *result; + int i; + int dim; + int size; + bool point; + double *dur, + *dll; + + if (array_contains_nulls(ur) || array_contains_nulls(ll)) + ereport(ERROR, + (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), + errmsg("cannot work with arrays containing NULLs"))); + + dim = ARRNELEMS(ur); + if (dim > CUBE_MAX_DIM) + ereport(ERROR, + (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), + errmsg("can't extend cube"), + errdetail("A cube cannot have more than %d dimensions.", + CUBE_MAX_DIM))); + + if (ARRNELEMS(ll) != dim) + ereport(ERROR, + (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), + errmsg("UR and LL arrays must be of same length"))); + + dur = ARRPTR(ur); + dll = ARRPTR(ll); + + /* Check if it's a point */ + point = true; + for (i = 0; i < dim; i++) + { + if (dur[i] != dll[i]) + { + point = false; + break; + } + } + + size = point ? POINT_SIZE(dim) : CUBE_SIZE(dim); + result = (NDBOX *) palloc0(size); + SET_VARSIZE(result, size); + SET_DIM(result, dim); + + for (i = 0; i < dim; i++) + result->x[i] = dur[i]; + + if (!point) + { + for (i = 0; i < dim; i++) + result->x[i + dim] = dll[i]; + } + else + SET_POINT_BIT(result); + + PG_RETURN_NDBOX_P(result); +} + +/* +** Allows the construction of a zero-volume cube from a float[] +*/ +Datum +cube_a_f8(PG_FUNCTION_ARGS) +{ + ArrayType *ur = PG_GETARG_ARRAYTYPE_P(0); + NDBOX *result; + int i; + int dim; + int size; + double *dur; + + if (array_contains_nulls(ur)) + ereport(ERROR, + (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), + errmsg("cannot work with arrays containing NULLs"))); + + dim = ARRNELEMS(ur); + if (dim > CUBE_MAX_DIM) + ereport(ERROR, + (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), + errmsg("array is too long"), + errdetail("A cube cannot have more than %d dimensions.", + CUBE_MAX_DIM))); + + dur = ARRPTR(ur); + + size = POINT_SIZE(dim); + result = (NDBOX *) palloc0(size); + SET_VARSIZE(result, size); + SET_DIM(result, dim); + SET_POINT_BIT(result); + + for (i = 0; i < dim; i++) + result->x[i] = dur[i]; + + PG_RETURN_NDBOX_P(result); +} + +Datum +cube_subset(PG_FUNCTION_ARGS) +{ + NDBOX *c = PG_GETARG_NDBOX_P(0); + ArrayType *idx = PG_GETARG_ARRAYTYPE_P(1); + NDBOX *result; + int size, + dim, + i; + int *dx; + + if (array_contains_nulls(idx)) + ereport(ERROR, + (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), + errmsg("cannot work with arrays containing NULLs"))); + + dx = (int32 *) ARR_DATA_PTR(idx); + + dim = ARRNELEMS(idx); + if (dim > CUBE_MAX_DIM) + ereport(ERROR, + (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), + errmsg("array is too long"), + errdetail("A cube cannot have more than %d dimensions.", + CUBE_MAX_DIM))); + + size = IS_POINT(c) ? POINT_SIZE(dim) : CUBE_SIZE(dim); + result = (NDBOX *) palloc0(size); + SET_VARSIZE(result, size); + SET_DIM(result, dim); + + if (IS_POINT(c)) + SET_POINT_BIT(result); + + for (i = 0; i < dim; i++) + { + if ((dx[i] <= 0) || (dx[i] > DIM(c))) + ereport(ERROR, + (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), + errmsg("Index out of bounds"))); + result->x[i] = c->x[dx[i] - 1]; + if (!IS_POINT(c)) + result->x[i + dim] = c->x[dx[i] + DIM(c) - 1]; + } + + PG_FREE_IF_COPY(c, 0); + PG_RETURN_NDBOX_P(result); +} + +Datum +cube_out(PG_FUNCTION_ARGS) +{ + NDBOX *cube = PG_GETARG_NDBOX_P(0); + StringInfoData buf; + int dim = DIM(cube); + int i; + + initStringInfo(&buf); + + appendStringInfoChar(&buf, '('); + for (i = 0; i < dim; i++) + { + if (i > 0) + appendStringInfoString(&buf, ", "); + appendStringInfoString(&buf, float8out_internal(LL_COORD(cube, i))); + } + appendStringInfoChar(&buf, ')'); + + if (!cube_is_point_internal(cube)) + { + appendStringInfoString(&buf, ",("); + for (i = 0; i < dim; i++) + { + if (i > 0) + appendStringInfoString(&buf, ", "); + appendStringInfoString(&buf, float8out_internal(UR_COORD(cube, i))); + } + appendStringInfoChar(&buf, ')'); + } + + PG_FREE_IF_COPY(cube, 0); + PG_RETURN_CSTRING(buf.data); +} + +/* + * cube_send - a binary output handler for cube type + */ +Datum +cube_send(PG_FUNCTION_ARGS) +{ + NDBOX *cube = PG_GETARG_NDBOX_P(0); + StringInfoData buf; + int32 i, + nitems = DIM(cube); + + pq_begintypsend(&buf); + pq_sendint32(&buf, cube->header); + if (!IS_POINT(cube)) + nitems += nitems; + /* for symmetry with cube_recv, we don't use LL_COORD/UR_COORD here */ + for (i = 0; i < nitems; i++) + pq_sendfloat8(&buf, cube->x[i]); + + PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); +} + +/* + * cube_recv - a binary input handler for cube type + */ +Datum +cube_recv(PG_FUNCTION_ARGS) +{ + StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); + int32 header; + int32 i, + nitems; + NDBOX *cube; + + header = pq_getmsgint(buf, sizeof(int32)); + nitems = (header & DIM_MASK); + if (nitems > CUBE_MAX_DIM) + ereport(ERROR, + (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), + errmsg("cube dimension is too large"), + errdetail("A cube cannot have more than %d dimensions.", + CUBE_MAX_DIM))); + if ((header & POINT_BIT) == 0) + nitems += nitems; + cube = palloc(offsetof(NDBOX, x) + sizeof(double) * nitems); + SET_VARSIZE(cube, offsetof(NDBOX, x) + sizeof(double) * nitems); + cube->header = header; + for (i = 0; i < nitems; i++) + cube->x[i] = pq_getmsgfloat8(buf); + + PG_RETURN_NDBOX_P(cube); +} + + +/***************************************************************************** + * GiST functions + *****************************************************************************/ + +/* +** The GiST Consistent method for boxes +** Should return false if for all data items x below entry, +** the predicate x op query == false, where op is the oper +** corresponding to strategy in the pg_amop table. +*/ +Datum +g_cube_consistent(PG_FUNCTION_ARGS) +{ + GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0); + NDBOX *query = PG_GETARG_NDBOX_P(1); + StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2); + + /* Oid subtype = PG_GETARG_OID(3); */ + bool *recheck = (bool *) PG_GETARG_POINTER(4); + bool res; + + /* All cases served by this function are exact */ + *recheck = false; + + /* + * if entry is not leaf, use g_cube_internal_consistent, else use + * g_cube_leaf_consistent + */ + if (GIST_LEAF(entry)) + res = g_cube_leaf_consistent(DatumGetNDBOXP(entry->key), + query, strategy); + else + res = g_cube_internal_consistent(DatumGetNDBOXP(entry->key), + query, strategy); + + PG_FREE_IF_COPY(query, 1); + PG_RETURN_BOOL(res); +} + + +/* +** The GiST Union method for boxes +** returns the minimal bounding box that encloses all the entries in entryvec +*/ +Datum +g_cube_union(PG_FUNCTION_ARGS) +{ + GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0); + int *sizep = (int *) PG_GETARG_POINTER(1); + NDBOX *out = (NDBOX *) NULL; + NDBOX *tmp; + int i; + + tmp = DatumGetNDBOXP(entryvec->vector[0].key); + + /* + * sizep = sizeof(NDBOX); -- NDBOX has variable size + */ + *sizep = VARSIZE(tmp); + + for (i = 1; i < entryvec->n; i++) + { + out = g_cube_binary_union(tmp, + DatumGetNDBOXP(entryvec->vector[i].key), + sizep); + tmp = out; + } + + PG_RETURN_POINTER(out); +} + +/* +** GiST Compress and Decompress methods for boxes +** do not do anything. +*/ + +Datum +g_cube_compress(PG_FUNCTION_ARGS) +{ + PG_RETURN_DATUM(PG_GETARG_DATUM(0)); +} + +Datum +g_cube_decompress(PG_FUNCTION_ARGS) +{ + GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0); + NDBOX *key = DatumGetNDBOXP(entry->key); + + if (key != DatumGetNDBOXP(entry->key)) + { + GISTENTRY *retval = (GISTENTRY *) palloc(sizeof(GISTENTRY)); + + gistentryinit(*retval, PointerGetDatum(key), + entry->rel, entry->page, + entry->offset, false); + PG_RETURN_POINTER(retval); + } + PG_RETURN_POINTER(entry); +} + + +/* +** The GiST Penalty method for boxes +** As in the R-tree paper, we use change in area as our penalty metric +*/ +Datum +g_cube_penalty(PG_FUNCTION_ARGS) +{ + GISTENTRY *origentry = (GISTENTRY *) PG_GETARG_POINTER(0); + GISTENTRY *newentry = (GISTENTRY *) PG_GETARG_POINTER(1); + float *result = (float *) PG_GETARG_POINTER(2); + NDBOX *ud; + double tmp1, + tmp2; + + ud = cube_union_v0(DatumGetNDBOXP(origentry->key), + DatumGetNDBOXP(newentry->key)); + rt_cube_size(ud, &tmp1); + rt_cube_size(DatumGetNDBOXP(origentry->key), &tmp2); + *result = (float) (tmp1 - tmp2); + + PG_RETURN_FLOAT8(*result); +} + + + +/* +** The GiST PickSplit method for boxes +** We use Guttman's poly time split algorithm +*/ +Datum +g_cube_picksplit(PG_FUNCTION_ARGS) +{ + GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0); + GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1); + OffsetNumber i, + j; + NDBOX *datum_alpha, + *datum_beta; + NDBOX *datum_l, + *datum_r; + NDBOX *union_d, + *union_dl, + *union_dr; + NDBOX *inter_d; + bool firsttime; + double size_alpha, + size_beta, + size_union, + size_inter; + double size_waste, + waste; + double size_l, + size_r; + int nbytes; + OffsetNumber seed_1 = 1, + seed_2 = 2; + OffsetNumber *left, + *right; + OffsetNumber maxoff; + + maxoff = entryvec->n - 2; + nbytes = (maxoff + 2) * sizeof(OffsetNumber); + v->spl_left = (OffsetNumber *) palloc(nbytes); + v->spl_right = (OffsetNumber *) palloc(nbytes); + + firsttime = true; + waste = 0.0; + + for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i)) + { + datum_alpha = DatumGetNDBOXP(entryvec->vector[i].key); + for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j)) + { + datum_beta = DatumGetNDBOXP(entryvec->vector[j].key); + + /* compute the wasted space by unioning these guys */ + /* size_waste = size_union - size_inter; */ + union_d = cube_union_v0(datum_alpha, datum_beta); + rt_cube_size(union_d, &size_union); + inter_d = DatumGetNDBOXP(DirectFunctionCall2(cube_inter, + entryvec->vector[i].key, + entryvec->vector[j].key)); + rt_cube_size(inter_d, &size_inter); + size_waste = size_union - size_inter; + + /* + * are these a more promising split than what we've already seen? + */ + + if (size_waste > waste || firsttime) + { + waste = size_waste; + seed_1 = i; + seed_2 = j; + firsttime = false; + } + } + } + + left = v->spl_left; + v->spl_nleft = 0; + right = v->spl_right; + v->spl_nright = 0; + + datum_alpha = DatumGetNDBOXP(entryvec->vector[seed_1].key); + datum_l = cube_union_v0(datum_alpha, datum_alpha); + rt_cube_size(datum_l, &size_l); + datum_beta = DatumGetNDBOXP(entryvec->vector[seed_2].key); + datum_r = cube_union_v0(datum_beta, datum_beta); + rt_cube_size(datum_r, &size_r); + + /* + * Now split up the regions between the two seeds. An important property + * of this split algorithm is that the split vector v has the indices of + * items to be split in order in its left and right vectors. We exploit + * this property by doing a merge in the code that actually splits the + * page. + * + * For efficiency, we also place the new index tuple in this loop. This is + * handled at the very end, when we have placed all the existing tuples + * and i == maxoff + 1. + */ + + maxoff = OffsetNumberNext(maxoff); + for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i)) + { + /* + * If we've already decided where to place this item, just put it on + * the right list. Otherwise, we need to figure out which page needs + * the least enlargement in order to store the item. + */ + + if (i == seed_1) + { + *left++ = i; + v->spl_nleft++; + continue; + } + else if (i == seed_2) + { + *right++ = i; + v->spl_nright++; + continue; + } + + /* okay, which page needs least enlargement? */ + datum_alpha = DatumGetNDBOXP(entryvec->vector[i].key); + union_dl = cube_union_v0(datum_l, datum_alpha); + union_dr = cube_union_v0(datum_r, datum_alpha); + rt_cube_size(union_dl, &size_alpha); + rt_cube_size(union_dr, &size_beta); + + /* pick which page to add it to */ + if (size_alpha - size_l < size_beta - size_r) + { + datum_l = union_dl; + size_l = size_alpha; + *left++ = i; + v->spl_nleft++; + } + else + { + datum_r = union_dr; + size_r = size_beta; + *right++ = i; + v->spl_nright++; + } + } + *left = *right = FirstOffsetNumber; /* sentinel value */ + + v->spl_ldatum = PointerGetDatum(datum_l); + v->spl_rdatum = PointerGetDatum(datum_r); + + PG_RETURN_POINTER(v); +} + +/* +** Equality method +*/ +Datum +g_cube_same(PG_FUNCTION_ARGS) +{ + NDBOX *b1 = PG_GETARG_NDBOX_P(0); + NDBOX *b2 = PG_GETARG_NDBOX_P(1); + bool *result = (bool *) PG_GETARG_POINTER(2); + + if (cube_cmp_v0(b1, b2) == 0) + *result = true; + else + *result = false; + + PG_RETURN_NDBOX_P(result); +} + +/* +** SUPPORT ROUTINES +*/ +bool +g_cube_leaf_consistent(NDBOX *key, + NDBOX *query, + StrategyNumber strategy) +{ + bool retval; + + switch (strategy) + { + case RTOverlapStrategyNumber: + retval = cube_overlap_v0(key, query); + break; + case RTSameStrategyNumber: + retval = (cube_cmp_v0(key, query) == 0); + break; + case RTContainsStrategyNumber: + case RTOldContainsStrategyNumber: + retval = cube_contains_v0(key, query); + break; + case RTContainedByStrategyNumber: + case RTOldContainedByStrategyNumber: + retval = cube_contains_v0(query, key); + break; + default: + retval = false; + } + return retval; +} + +bool +g_cube_internal_consistent(NDBOX *key, + NDBOX *query, + StrategyNumber strategy) +{ + bool retval; + + switch (strategy) + { + case RTOverlapStrategyNumber: + retval = (bool) cube_overlap_v0(key, query); + break; + case RTSameStrategyNumber: + case RTContainsStrategyNumber: + case RTOldContainsStrategyNumber: + retval = (bool) cube_contains_v0(key, query); + break; + case RTContainedByStrategyNumber: + case RTOldContainedByStrategyNumber: + retval = (bool) cube_overlap_v0(key, query); + break; + default: + retval = false; + } + return retval; +} + +NDBOX * +g_cube_binary_union(NDBOX *r1, NDBOX *r2, int *sizep) +{ + NDBOX *retval; + + retval = cube_union_v0(r1, r2); + *sizep = VARSIZE(retval); + + return retval; +} + + +/* cube_union_v0 */ +NDBOX * +cube_union_v0(NDBOX *a, NDBOX *b) +{ + int i; + NDBOX *result; + int dim; + int size; + + /* trivial case */ + if (a == b) + return a; + + /* swap the arguments if needed, so that 'a' is always larger than 'b' */ + if (DIM(a) < DIM(b)) + { + NDBOX *tmp = b; + + b = a; + a = tmp; + } + dim = DIM(a); + + size = CUBE_SIZE(dim); + result = palloc0(size); + SET_VARSIZE(result, size); + SET_DIM(result, dim); + + /* First compute the union of the dimensions present in both args */ + for (i = 0; i < DIM(b); i++) + { + result->x[i] = Min(Min(LL_COORD(a, i), UR_COORD(a, i)), + Min(LL_COORD(b, i), UR_COORD(b, i))); + result->x[i + DIM(a)] = Max(Max(LL_COORD(a, i), UR_COORD(a, i)), + Max(LL_COORD(b, i), UR_COORD(b, i))); + } + /* continue on the higher dimensions only present in 'a' */ + for (; i < DIM(a); i++) + { + result->x[i] = Min(0, + Min(LL_COORD(a, i), UR_COORD(a, i)) + ); + result->x[i + dim] = Max(0, + Max(LL_COORD(a, i), UR_COORD(a, i)) + ); + } + + /* + * Check if the result was in fact a point, and set the flag in the datum + * accordingly. (we don't bother to repalloc it smaller) + */ + if (cube_is_point_internal(result)) + { + size = POINT_SIZE(dim); + SET_VARSIZE(result, size); + SET_POINT_BIT(result); + } + + return result; +} + +Datum +cube_union(PG_FUNCTION_ARGS) +{ + NDBOX *a = PG_GETARG_NDBOX_P(0); + NDBOX *b = PG_GETARG_NDBOX_P(1); + NDBOX *res; + + res = cube_union_v0(a, b); + + PG_FREE_IF_COPY(a, 0); + PG_FREE_IF_COPY(b, 1); + PG_RETURN_NDBOX_P(res); +} + +/* cube_inter */ +Datum +cube_inter(PG_FUNCTION_ARGS) +{ + NDBOX *a = PG_GETARG_NDBOX_P(0); + NDBOX *b = PG_GETARG_NDBOX_P(1); + NDBOX *result; + bool swapped = false; + int i; + int dim; + int size; + + /* swap the arguments if needed, so that 'a' is always larger than 'b' */ + if (DIM(a) < DIM(b)) + { + NDBOX *tmp = b; + + b = a; + a = tmp; + swapped = true; + } + dim = DIM(a); + + size = CUBE_SIZE(dim); + result = (NDBOX *) palloc0(size); + SET_VARSIZE(result, size); + SET_DIM(result, dim); + + /* First compute intersection of the dimensions present in both args */ + for (i = 0; i < DIM(b); i++) + { + result->x[i] = Max(Min(LL_COORD(a, i), UR_COORD(a, i)), + Min(LL_COORD(b, i), UR_COORD(b, i))); + result->x[i + DIM(a)] = Min(Max(LL_COORD(a, i), UR_COORD(a, i)), + Max(LL_COORD(b, i), UR_COORD(b, i))); + } + /* continue on the higher dimensions only present in 'a' */ + for (; i < DIM(a); i++) + { + result->x[i] = Max(0, + Min(LL_COORD(a, i), UR_COORD(a, i)) + ); + result->x[i + DIM(a)] = Min(0, + Max(LL_COORD(a, i), UR_COORD(a, i)) + ); + } + + /* + * Check if the result was in fact a point, and set the flag in the datum + * accordingly. (we don't bother to repalloc it smaller) + */ + if (cube_is_point_internal(result)) + { + size = POINT_SIZE(dim); + result = repalloc(result, size); + SET_VARSIZE(result, size); + SET_POINT_BIT(result); + } + + if (swapped) + { + PG_FREE_IF_COPY(b, 0); + PG_FREE_IF_COPY(a, 1); + } + else + { + PG_FREE_IF_COPY(a, 0); + PG_FREE_IF_COPY(b, 1); + } + + /* + * Is it OK to return a non-null intersection for non-overlapping boxes? + */ + PG_RETURN_NDBOX_P(result); +} + +/* cube_size */ +Datum +cube_size(PG_FUNCTION_ARGS) +{ + NDBOX *a = PG_GETARG_NDBOX_P(0); + double result; + + rt_cube_size(a, &result); + PG_FREE_IF_COPY(a, 0); + PG_RETURN_FLOAT8(result); +} + +void +rt_cube_size(NDBOX *a, double *size) +{ + double result; + int i; + + if (a == (NDBOX *) NULL) + { + /* special case for GiST */ + result = 0.0; + } + else if (IS_POINT(a) || DIM(a) == 0) + { + /* necessarily has zero size */ + result = 0.0; + } + else + { + result = 1.0; + for (i = 0; i < DIM(a); i++) + result *= fabs(UR_COORD(a, i) - LL_COORD(a, i)); + } + *size = result; +} + +/* make up a metric in which one box will be 'lower' than the other + -- this can be useful for sorting and to determine uniqueness */ +int32 +cube_cmp_v0(NDBOX *a, NDBOX *b) +{ + int i; + int dim; + + dim = Min(DIM(a), DIM(b)); + + /* compare the common dimensions */ + for (i = 0; i < dim; i++) + { + if (Min(LL_COORD(a, i), UR_COORD(a, i)) > + Min(LL_COORD(b, i), UR_COORD(b, i))) + return 1; + if (Min(LL_COORD(a, i), UR_COORD(a, i)) < + Min(LL_COORD(b, i), UR_COORD(b, i))) + return -1; + } + for (i = 0; i < dim; i++) + { + if (Max(LL_COORD(a, i), UR_COORD(a, i)) > + Max(LL_COORD(b, i), UR_COORD(b, i))) + return 1; + if (Max(LL_COORD(a, i), UR_COORD(a, i)) < + Max(LL_COORD(b, i), UR_COORD(b, i))) + return -1; + } + + /* compare extra dimensions to zero */ + if (DIM(a) > DIM(b)) + { + for (i = dim; i < DIM(a); i++) + { + if (Min(LL_COORD(a, i), UR_COORD(a, i)) > 0) + return 1; + if (Min(LL_COORD(a, i), UR_COORD(a, i)) < 0) + return -1; + } + for (i = dim; i < DIM(a); i++) + { + if (Max(LL_COORD(a, i), UR_COORD(a, i)) > 0) + return 1; + if (Max(LL_COORD(a, i), UR_COORD(a, i)) < 0) + return -1; + } + + /* + * if all common dimensions are equal, the cube with more dimensions + * wins + */ + return 1; + } + if (DIM(a) < DIM(b)) + { + for (i = dim; i < DIM(b); i++) + { + if (Min(LL_COORD(b, i), UR_COORD(b, i)) > 0) + return -1; + if (Min(LL_COORD(b, i), UR_COORD(b, i)) < 0) + return 1; + } + for (i = dim; i < DIM(b); i++) + { + if (Max(LL_COORD(b, i), UR_COORD(b, i)) > 0) + return -1; + if (Max(LL_COORD(b, i), UR_COORD(b, i)) < 0) + return 1; + } + + /* + * if all common dimensions are equal, the cube with more dimensions + * wins + */ + return -1; + } + + /* They're really equal */ + return 0; +} + +Datum +cube_cmp(PG_FUNCTION_ARGS) +{ + NDBOX *a = PG_GETARG_NDBOX_P(0), + *b = PG_GETARG_NDBOX_P(1); + int32 res; + + res = cube_cmp_v0(a, b); + + PG_FREE_IF_COPY(a, 0); + PG_FREE_IF_COPY(b, 1); + PG_RETURN_INT32(res); +} + + +Datum +cube_eq(PG_FUNCTION_ARGS) +{ + NDBOX *a = PG_GETARG_NDBOX_P(0), + *b = PG_GETARG_NDBOX_P(1); + int32 res; + + res = cube_cmp_v0(a, b); + + PG_FREE_IF_COPY(a, 0); + PG_FREE_IF_COPY(b, 1); + PG_RETURN_BOOL(res == 0); +} + + +Datum +cube_ne(PG_FUNCTION_ARGS) +{ + NDBOX *a = PG_GETARG_NDBOX_P(0), + *b = PG_GETARG_NDBOX_P(1); + int32 res; + + res = cube_cmp_v0(a, b); + + PG_FREE_IF_COPY(a, 0); + PG_FREE_IF_COPY(b, 1); + PG_RETURN_BOOL(res != 0); +} + + +Datum +cube_lt(PG_FUNCTION_ARGS) +{ + NDBOX *a = PG_GETARG_NDBOX_P(0), + *b = PG_GETARG_NDBOX_P(1); + int32 res; + + res = cube_cmp_v0(a, b); + + PG_FREE_IF_COPY(a, 0); + PG_FREE_IF_COPY(b, 1); + PG_RETURN_BOOL(res < 0); +} + + +Datum +cube_gt(PG_FUNCTION_ARGS) +{ + NDBOX *a = PG_GETARG_NDBOX_P(0), + *b = PG_GETARG_NDBOX_P(1); + int32 res; + + res = cube_cmp_v0(a, b); + + PG_FREE_IF_COPY(a, 0); + PG_FREE_IF_COPY(b, 1); + PG_RETURN_BOOL(res > 0); +} + + +Datum +cube_le(PG_FUNCTION_ARGS) +{ + NDBOX *a = PG_GETARG_NDBOX_P(0), + *b = PG_GETARG_NDBOX_P(1); + int32 res; + + res = cube_cmp_v0(a, b); + + PG_FREE_IF_COPY(a, 0); + PG_FREE_IF_COPY(b, 1); + PG_RETURN_BOOL(res <= 0); +} + + +Datum +cube_ge(PG_FUNCTION_ARGS) +{ + NDBOX *a = PG_GETARG_NDBOX_P(0), + *b = PG_GETARG_NDBOX_P(1); + int32 res; + + res = cube_cmp_v0(a, b); + + PG_FREE_IF_COPY(a, 0); + PG_FREE_IF_COPY(b, 1); + PG_RETURN_BOOL(res >= 0); +} + + +/* Contains */ +/* Box(A) CONTAINS Box(B) IFF pt(A) < pt(B) */ +bool +cube_contains_v0(NDBOX *a, NDBOX *b) +{ + int i; + + if ((a == NULL) || (b == NULL)) + return false; + + if (DIM(a) < DIM(b)) + { + /* + * the further comparisons will make sense if the excess dimensions of + * (b) were zeroes Since both UL and UR coordinates must be zero, we + * can check them all without worrying about which is which. + */ + for (i = DIM(a); i < DIM(b); i++) + { + if (LL_COORD(b, i) != 0) + return false; + if (UR_COORD(b, i) != 0) + return false; + } + } + + /* Can't care less about the excess dimensions of (a), if any */ + for (i = 0; i < Min(DIM(a), DIM(b)); i++) + { + if (Min(LL_COORD(a, i), UR_COORD(a, i)) > + Min(LL_COORD(b, i), UR_COORD(b, i))) + return false; + if (Max(LL_COORD(a, i), UR_COORD(a, i)) < + Max(LL_COORD(b, i), UR_COORD(b, i))) + return false; + } + + return true; +} + +Datum +cube_contains(PG_FUNCTION_ARGS) +{ + NDBOX *a = PG_GETARG_NDBOX_P(0), + *b = PG_GETARG_NDBOX_P(1); + bool res; + + res = cube_contains_v0(a, b); + + PG_FREE_IF_COPY(a, 0); + PG_FREE_IF_COPY(b, 1); + PG_RETURN_BOOL(res); +} + +/* Contained */ +/* Box(A) Contained by Box(B) IFF Box(B) Contains Box(A) */ +Datum +cube_contained(PG_FUNCTION_ARGS) +{ + NDBOX *a = PG_GETARG_NDBOX_P(0), + *b = PG_GETARG_NDBOX_P(1); + bool res; + + res = cube_contains_v0(b, a); + + PG_FREE_IF_COPY(a, 0); + PG_FREE_IF_COPY(b, 1); + PG_RETURN_BOOL(res); +} + +/* Overlap */ +/* Box(A) Overlap Box(B) IFF (pt(a)LL < pt(B)UR) && (pt(b)LL < pt(a)UR) */ +bool +cube_overlap_v0(NDBOX *a, NDBOX *b) +{ + int i; + + if ((a == NULL) || (b == NULL)) + return false; + + /* swap the box pointers if needed */ + if (DIM(a) < DIM(b)) + { + NDBOX *tmp = b; + + b = a; + a = tmp; + } + + /* compare within the dimensions of (b) */ + for (i = 0; i < DIM(b); i++) + { + if (Min(LL_COORD(a, i), UR_COORD(a, i)) > Max(LL_COORD(b, i), UR_COORD(b, i))) + return false; + if (Max(LL_COORD(a, i), UR_COORD(a, i)) < Min(LL_COORD(b, i), UR_COORD(b, i))) + return false; + } + + /* compare to zero those dimensions in (a) absent in (b) */ + for (i = DIM(b); i < DIM(a); i++) + { + if (Min(LL_COORD(a, i), UR_COORD(a, i)) > 0) + return false; + if (Max(LL_COORD(a, i), UR_COORD(a, i)) < 0) + return false; + } + + return true; +} + + +Datum +cube_overlap(PG_FUNCTION_ARGS) +{ + NDBOX *a = PG_GETARG_NDBOX_P(0), + *b = PG_GETARG_NDBOX_P(1); + bool res; + + res = cube_overlap_v0(a, b); + + PG_FREE_IF_COPY(a, 0); + PG_FREE_IF_COPY(b, 1); + PG_RETURN_BOOL(res); +} + + +/* Distance */ +/* The distance is computed as a per axis sum of the squared distances + between 1D projections of the boxes onto Cartesian axes. Assuming zero + distance between overlapping projections, this metric coincides with the + "common sense" geometric distance */ +Datum +cube_distance(PG_FUNCTION_ARGS) +{ + NDBOX *a = PG_GETARG_NDBOX_P(0), + *b = PG_GETARG_NDBOX_P(1); + bool swapped = false; + double d, + distance; + int i; + + /* swap the box pointers if needed */ + if (DIM(a) < DIM(b)) + { + NDBOX *tmp = b; + + b = a; + a = tmp; + swapped = true; + } + + distance = 0.0; + /* compute within the dimensions of (b) */ + for (i = 0; i < DIM(b); i++) + { + d = distance_1D(LL_COORD(a, i), UR_COORD(a, i), LL_COORD(b, i), UR_COORD(b, i)); + distance += d * d; + } + + /* compute distance to zero for those dimensions in (a) absent in (b) */ + for (i = DIM(b); i < DIM(a); i++) + { + d = distance_1D(LL_COORD(a, i), UR_COORD(a, i), 0.0, 0.0); + distance += d * d; + } + + if (swapped) + { + PG_FREE_IF_COPY(b, 0); + PG_FREE_IF_COPY(a, 1); + } + else + { + PG_FREE_IF_COPY(a, 0); + PG_FREE_IF_COPY(b, 1); + } + + PG_RETURN_FLOAT8(sqrt(distance)); +} + +Datum +distance_taxicab(PG_FUNCTION_ARGS) +{ + NDBOX *a = PG_GETARG_NDBOX_P(0), + *b = PG_GETARG_NDBOX_P(1); + bool swapped = false; + double distance; + int i; + + /* swap the box pointers if needed */ + if (DIM(a) < DIM(b)) + { + NDBOX *tmp = b; + + b = a; + a = tmp; + swapped = true; + } + + distance = 0.0; + /* compute within the dimensions of (b) */ + for (i = 0; i < DIM(b); i++) + distance += fabs(distance_1D(LL_COORD(a, i), UR_COORD(a, i), + LL_COORD(b, i), UR_COORD(b, i))); + + /* compute distance to zero for those dimensions in (a) absent in (b) */ + for (i = DIM(b); i < DIM(a); i++) + distance += fabs(distance_1D(LL_COORD(a, i), UR_COORD(a, i), + 0.0, 0.0)); + + if (swapped) + { + PG_FREE_IF_COPY(b, 0); + PG_FREE_IF_COPY(a, 1); + } + else + { + PG_FREE_IF_COPY(a, 0); + PG_FREE_IF_COPY(b, 1); + } + + PG_RETURN_FLOAT8(distance); +} + +Datum +distance_chebyshev(PG_FUNCTION_ARGS) +{ + NDBOX *a = PG_GETARG_NDBOX_P(0), + *b = PG_GETARG_NDBOX_P(1); + bool swapped = false; + double d, + distance; + int i; + + /* swap the box pointers if needed */ + if (DIM(a) < DIM(b)) + { + NDBOX *tmp = b; + + b = a; + a = tmp; + swapped = true; + } + + distance = 0.0; + /* compute within the dimensions of (b) */ + for (i = 0; i < DIM(b); i++) + { + d = fabs(distance_1D(LL_COORD(a, i), UR_COORD(a, i), + LL_COORD(b, i), UR_COORD(b, i))); + if (d > distance) + distance = d; + } + + /* compute distance to zero for those dimensions in (a) absent in (b) */ + for (i = DIM(b); i < DIM(a); i++) + { + d = fabs(distance_1D(LL_COORD(a, i), UR_COORD(a, i), 0.0, 0.0)); + if (d > distance) + distance = d; + } + + if (swapped) + { + PG_FREE_IF_COPY(b, 0); + PG_FREE_IF_COPY(a, 1); + } + else + { + PG_FREE_IF_COPY(a, 0); + PG_FREE_IF_COPY(b, 1); + } + + PG_RETURN_FLOAT8(distance); +} + +Datum +g_cube_distance(PG_FUNCTION_ARGS) +{ + GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0); + StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2); + NDBOX *cube = DatumGetNDBOXP(entry->key); + double retval; + + if (strategy == CubeKNNDistanceCoord) + { + /* + * Handle ordering by ~> operator. See comments of cube_coord_llur() + * for details + */ + int coord = PG_GETARG_INT32(1); + bool isLeaf = GistPageIsLeaf(entry->page); + bool inverse = false; + + /* 0 is the only unsupported coordinate value */ + if (coord == 0) + ereport(ERROR, + (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), + errmsg("zero cube index is not defined"))); + + /* Return inversed value for negative coordinate */ + if (coord < 0) + { + coord = -coord; + inverse = true; + } + + if (coord <= 2 * DIM(cube)) + { + /* dimension index */ + int index = (coord - 1) / 2; + + /* whether this is upper bound (lower bound otherwise) */ + bool upper = ((coord - 1) % 2 == 1); + + if (IS_POINT(cube)) + { + retval = cube->x[index]; + } + else + { + if (isLeaf) + { + /* For leaf just return required upper/lower bound */ + if (upper) + retval = Max(cube->x[index], cube->x[index + DIM(cube)]); + else + retval = Min(cube->x[index], cube->x[index + DIM(cube)]); + } + else + { + /* + * For non-leaf we should always return lower bound, + * because even upper bound of a child in the subtree can + * be as small as our lower bound. For inversed case we + * return upper bound because it becomes lower bound for + * inversed value. + */ + if (!inverse) + retval = Min(cube->x[index], cube->x[index + DIM(cube)]); + else + retval = Max(cube->x[index], cube->x[index + DIM(cube)]); + } + } + } + else + { + retval = 0.0; + } + + /* Inverse return value if needed */ + if (inverse) + retval = -retval; + } + else + { + NDBOX *query = PG_GETARG_NDBOX_P(1); + + switch (strategy) + { + case CubeKNNDistanceTaxicab: + retval = DatumGetFloat8(DirectFunctionCall2(distance_taxicab, + PointerGetDatum(cube), PointerGetDatum(query))); + break; + case CubeKNNDistanceEuclid: + retval = DatumGetFloat8(DirectFunctionCall2(cube_distance, + PointerGetDatum(cube), PointerGetDatum(query))); + break; + case CubeKNNDistanceChebyshev: + retval = DatumGetFloat8(DirectFunctionCall2(distance_chebyshev, + PointerGetDatum(cube), PointerGetDatum(query))); + break; + default: + elog(ERROR, "unrecognized cube strategy number: %d", strategy); + retval = 0; /* keep compiler quiet */ + break; + } + } + PG_RETURN_FLOAT8(retval); +} + +static double +distance_1D(double a1, double a2, double b1, double b2) +{ + /* interval (a) is entirely on the left of (b) */ + if ((a1 <= b1) && (a2 <= b1) && (a1 <= b2) && (a2 <= b2)) + return (Min(b1, b2) - Max(a1, a2)); + + /* interval (a) is entirely on the right of (b) */ + if ((a1 > b1) && (a2 > b1) && (a1 > b2) && (a2 > b2)) + return (Min(a1, a2) - Max(b1, b2)); + + /* the rest are all sorts of intersections */ + return 0.0; +} + +/* Test if a box is also a point */ +Datum +cube_is_point(PG_FUNCTION_ARGS) +{ + NDBOX *cube = PG_GETARG_NDBOX_P(0); + bool result; + + result = cube_is_point_internal(cube); + PG_FREE_IF_COPY(cube, 0); + PG_RETURN_BOOL(result); +} + +static bool +cube_is_point_internal(NDBOX *cube) +{ + int i; + + if (IS_POINT(cube)) + return true; + + /* + * Even if the point-flag is not set, all the lower-left coordinates might + * match the upper-right coordinates, so that the value is in fact a + * point. Such values don't arise with current code - the point flag is + * always set if appropriate - but they might be present on-disk in + * clusters upgraded from pre-9.4 versions. + */ + for (i = 0; i < DIM(cube); i++) + { + if (LL_COORD(cube, i) != UR_COORD(cube, i)) + return false; + } + return true; +} + +/* Return dimensions in use in the data structure */ +Datum +cube_dim(PG_FUNCTION_ARGS) +{ + NDBOX *c = PG_GETARG_NDBOX_P(0); + int dim = DIM(c); + + PG_FREE_IF_COPY(c, 0); + PG_RETURN_INT32(dim); +} + +/* Return a specific normalized LL coordinate */ +Datum +cube_ll_coord(PG_FUNCTION_ARGS) +{ + NDBOX *c = PG_GETARG_NDBOX_P(0); + int n = PG_GETARG_INT32(1); + double result; + + if (DIM(c) >= n && n > 0) + result = Min(LL_COORD(c, n - 1), UR_COORD(c, n - 1)); + else + result = 0; + + PG_FREE_IF_COPY(c, 0); + PG_RETURN_FLOAT8(result); +} + +/* Return a specific normalized UR coordinate */ +Datum +cube_ur_coord(PG_FUNCTION_ARGS) +{ + NDBOX *c = PG_GETARG_NDBOX_P(0); + int n = PG_GETARG_INT32(1); + double result; + + if (DIM(c) >= n && n > 0) + result = Max(LL_COORD(c, n - 1), UR_COORD(c, n - 1)); + else + result = 0; + + PG_FREE_IF_COPY(c, 0); + PG_RETURN_FLOAT8(result); +} + +/* + * Function returns cube coordinate. + * Numbers from 1 to DIM denotes first corner coordinates. + * Numbers from DIM+1 to 2*DIM denotes second corner coordinates. + */ +Datum +cube_coord(PG_FUNCTION_ARGS) +{ + NDBOX *cube = PG_GETARG_NDBOX_P(0); + int coord = PG_GETARG_INT32(1); + + if (coord <= 0 || coord > 2 * DIM(cube)) + ereport(ERROR, + (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), + errmsg("cube index %d is out of bounds", coord))); + + if (IS_POINT(cube)) + PG_RETURN_FLOAT8(cube->x[(coord - 1) % DIM(cube)]); + else + PG_RETURN_FLOAT8(cube->x[coord - 1]); +} + + +/*---- + * This function works like cube_coord(), but rearranges coordinates in the + * way suitable to support coordinate ordering using KNN-GiST. For historical + * reasons this extension allows us to create cubes in form ((2,1),(1,2)) and + * instead of normalizing such cube to ((1,1),(2,2)) it stores cube in original + * way. But in order to get cubes ordered by one of dimensions from the index + * without explicit sort step we need this representation-independent coordinate + * getter. Moreover, indexed dataset may contain cubes of different dimensions + * number. Accordingly, this coordinate getter should be able to return + * lower/upper bound for particular dimension independently on number of cube + * dimensions. Also, KNN-GiST supports only ascending sorting. In order to + * support descending sorting, this function returns inverse of value when + * negative coordinate is given. + * + * Long story short, this function uses following meaning of coordinates: + * # (2 * N - 1) -- lower bound of Nth dimension, + * # (2 * N) -- upper bound of Nth dimension, + * # - (2 * N - 1) -- negative of lower bound of Nth dimension, + * # - (2 * N) -- negative of upper bound of Nth dimension. + * + * When given coordinate exceeds number of cube dimensions, then 0 returned + * (reproducing logic of GiST indexing of variable-length cubes). + */ +Datum +cube_coord_llur(PG_FUNCTION_ARGS) +{ + NDBOX *cube = PG_GETARG_NDBOX_P(0); + int coord = PG_GETARG_INT32(1); + bool inverse = false; + float8 result; + + /* 0 is the only unsupported coordinate value */ + if (coord == 0) + ereport(ERROR, + (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), + errmsg("zero cube index is not defined"))); + + /* Return inversed value for negative coordinate */ + if (coord < 0) + { + coord = -coord; + inverse = true; + } + + if (coord <= 2 * DIM(cube)) + { + /* dimension index */ + int index = (coord - 1) / 2; + + /* whether this is upper bound (lower bound otherwise) */ + bool upper = ((coord - 1) % 2 == 1); + + if (IS_POINT(cube)) + { + result = cube->x[index]; + } + else + { + if (upper) + result = Max(cube->x[index], cube->x[index + DIM(cube)]); + else + result = Min(cube->x[index], cube->x[index + DIM(cube)]); + } + } + else + { + /* + * Return zero if coordinate is out of bound. That reproduces logic + * of how cubes with low dimension number are expanded during GiST + * indexing. + */ + result = 0.0; + } + + /* Inverse value if needed */ + if (inverse) + result = -result; + + PG_RETURN_FLOAT8(result); +} + +/* Increase or decrease box size by a radius in at least n dimensions. */ +Datum +cube_enlarge(PG_FUNCTION_ARGS) +{ + NDBOX *a = PG_GETARG_NDBOX_P(0); + double r = PG_GETARG_FLOAT8(1); + int32 n = PG_GETARG_INT32(2); + NDBOX *result; + int dim = 0; + int size; + int i, + j; + + if (n > CUBE_MAX_DIM) + n = CUBE_MAX_DIM; + if (r > 0 && n > 0) + dim = n; + if (DIM(a) > dim) + dim = DIM(a); + + size = CUBE_SIZE(dim); + result = (NDBOX *) palloc0(size); + SET_VARSIZE(result, size); + SET_DIM(result, dim); + + for (i = 0, j = dim; i < DIM(a); i++, j++) + { + if (LL_COORD(a, i) >= UR_COORD(a, i)) + { + result->x[i] = UR_COORD(a, i) - r; + result->x[j] = LL_COORD(a, i) + r; + } + else + { + result->x[i] = LL_COORD(a, i) - r; + result->x[j] = UR_COORD(a, i) + r; + } + if (result->x[i] > result->x[j]) + { + result->x[i] = (result->x[i] + result->x[j]) / 2; + result->x[j] = result->x[i]; + } + } + /* dim > a->dim only if r > 0 */ + for (; i < dim; i++, j++) + { + result->x[i] = -r; + result->x[j] = r; + } + + /* + * Check if the result was in fact a point, and set the flag in the datum + * accordingly. (we don't bother to repalloc it smaller) + */ + if (cube_is_point_internal(result)) + { + size = POINT_SIZE(dim); + SET_VARSIZE(result, size); + SET_POINT_BIT(result); + } + + PG_FREE_IF_COPY(a, 0); + PG_RETURN_NDBOX_P(result); +} + +/* Create a one dimensional box with identical upper and lower coordinates */ +Datum +cube_f8(PG_FUNCTION_ARGS) +{ + double x = PG_GETARG_FLOAT8(0); + NDBOX *result; + int size; + + size = POINT_SIZE(1); + result = (NDBOX *) palloc0(size); + SET_VARSIZE(result, size); + SET_DIM(result, 1); + SET_POINT_BIT(result); + result->x[0] = x; + + PG_RETURN_NDBOX_P(result); +} + +/* Create a one dimensional box */ +Datum +cube_f8_f8(PG_FUNCTION_ARGS) +{ + double x0 = PG_GETARG_FLOAT8(0); + double x1 = PG_GETARG_FLOAT8(1); + NDBOX *result; + int size; + + if (x0 == x1) + { + size = POINT_SIZE(1); + result = (NDBOX *) palloc0(size); + SET_VARSIZE(result, size); + SET_DIM(result, 1); + SET_POINT_BIT(result); + result->x[0] = x0; + } + else + { + size = CUBE_SIZE(1); + result = (NDBOX *) palloc0(size); + SET_VARSIZE(result, size); + SET_DIM(result, 1); + result->x[0] = x0; + result->x[1] = x1; + } + + PG_RETURN_NDBOX_P(result); +} + +/* Add a dimension to an existing cube with the same values for the new + coordinate */ +Datum +cube_c_f8(PG_FUNCTION_ARGS) +{ + NDBOX *cube = PG_GETARG_NDBOX_P(0); + double x = PG_GETARG_FLOAT8(1); + NDBOX *result; + int size; + int i; + + if (DIM(cube) + 1 > CUBE_MAX_DIM) + ereport(ERROR, + (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), + errmsg("can't extend cube"), + errdetail("A cube cannot have more than %d dimensions.", + CUBE_MAX_DIM))); + + if (IS_POINT(cube)) + { + size = POINT_SIZE((DIM(cube) + 1)); + result = (NDBOX *) palloc0(size); + SET_VARSIZE(result, size); + SET_DIM(result, DIM(cube) + 1); + SET_POINT_BIT(result); + for (i = 0; i < DIM(cube); i++) + result->x[i] = cube->x[i]; + result->x[DIM(result) - 1] = x; + } + else + { + size = CUBE_SIZE((DIM(cube) + 1)); + result = (NDBOX *) palloc0(size); + SET_VARSIZE(result, size); + SET_DIM(result, DIM(cube) + 1); + for (i = 0; i < DIM(cube); i++) + { + result->x[i] = cube->x[i]; + result->x[DIM(result) + i] = cube->x[DIM(cube) + i]; + } + result->x[DIM(result) - 1] = x; + result->x[2 * DIM(result) - 1] = x; + } + + PG_FREE_IF_COPY(cube, 0); + PG_RETURN_NDBOX_P(result); +} + +/* Add a dimension to an existing cube */ +Datum +cube_c_f8_f8(PG_FUNCTION_ARGS) +{ + NDBOX *cube = PG_GETARG_NDBOX_P(0); + double x1 = PG_GETARG_FLOAT8(1); + double x2 = PG_GETARG_FLOAT8(2); + NDBOX *result; + int size; + int i; + + if (DIM(cube) + 1 > CUBE_MAX_DIM) + ereport(ERROR, + (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), + errmsg("can't extend cube"), + errdetail("A cube cannot have more than %d dimensions.", + CUBE_MAX_DIM))); + + if (IS_POINT(cube) && (x1 == x2)) + { + size = POINT_SIZE((DIM(cube) + 1)); + result = (NDBOX *) palloc0(size); + SET_VARSIZE(result, size); + SET_DIM(result, DIM(cube) + 1); + SET_POINT_BIT(result); + for (i = 0; i < DIM(cube); i++) + result->x[i] = cube->x[i]; + result->x[DIM(result) - 1] = x1; + } + else + { + size = CUBE_SIZE((DIM(cube) + 1)); + result = (NDBOX *) palloc0(size); + SET_VARSIZE(result, size); + SET_DIM(result, DIM(cube) + 1); + for (i = 0; i < DIM(cube); i++) + { + result->x[i] = LL_COORD(cube, i); + result->x[DIM(result) + i] = UR_COORD(cube, i); + } + result->x[DIM(result) - 1] = x1; + result->x[2 * DIM(result) - 1] = x2; + } + + PG_FREE_IF_COPY(cube, 0); + PG_RETURN_NDBOX_P(result); +} |