diff options
Diffstat (limited to 'src/include/port/simd.h')
-rw-r--r-- | src/include/port/simd.h | 375 |
1 files changed, 375 insertions, 0 deletions
diff --git a/src/include/port/simd.h b/src/include/port/simd.h new file mode 100644 index 0000000..1fa6c3b --- /dev/null +++ b/src/include/port/simd.h @@ -0,0 +1,375 @@ +/*------------------------------------------------------------------------- + * + * simd.h + * Support for platform-specific vector operations. + * + * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group + * Portions Copyright (c) 1994, Regents of the University of California + * + * src/include/port/simd.h + * + * NOTES + * - VectorN in this file refers to a register where the element operands + * are N bits wide. The vector width is platform-specific, so users that care + * about that will need to inspect "sizeof(VectorN)". + * + *------------------------------------------------------------------------- + */ +#ifndef SIMD_H +#define SIMD_H + +#if (defined(__x86_64__) || defined(_M_AMD64)) +/* + * SSE2 instructions are part of the spec for the 64-bit x86 ISA. We assume + * that compilers targeting this architecture understand SSE2 intrinsics. + * + * We use emmintrin.h rather than the comprehensive header immintrin.h in + * order to exclude extensions beyond SSE2. This is because MSVC, at least, + * will allow the use of intrinsics that haven't been enabled at compile + * time. + */ +#include <emmintrin.h> +#define USE_SSE2 +typedef __m128i Vector8; +typedef __m128i Vector32; + +#elif defined(__aarch64__) && defined(__ARM_NEON) +/* + * We use the Neon instructions if the compiler provides access to them (as + * indicated by __ARM_NEON) and we are on aarch64. While Neon support is + * technically optional for aarch64, it appears that all available 64-bit + * hardware does have it. Neon exists in some 32-bit hardware too, but we + * could not realistically use it there without a run-time check, which seems + * not worth the trouble for now. + */ +#include <arm_neon.h> +#define USE_NEON +typedef uint8x16_t Vector8; +typedef uint32x4_t Vector32; + +#else +/* + * If no SIMD instructions are available, we can in some cases emulate vector + * operations using bitwise operations on unsigned integers. Note that many + * of the functions in this file presently do not have non-SIMD + * implementations. In particular, none of the functions involving Vector32 + * are implemented without SIMD since it's likely not worthwhile to represent + * two 32-bit integers using a uint64. + */ +#define USE_NO_SIMD +typedef uint64 Vector8; +#endif + +/* load/store operations */ +static inline void vector8_load(Vector8 *v, const uint8 *s); +#ifndef USE_NO_SIMD +static inline void vector32_load(Vector32 *v, const uint32 *s); +#endif + +/* assignment operations */ +static inline Vector8 vector8_broadcast(const uint8 c); +#ifndef USE_NO_SIMD +static inline Vector32 vector32_broadcast(const uint32 c); +#endif + +/* element-wise comparisons to a scalar */ +static inline bool vector8_has(const Vector8 v, const uint8 c); +static inline bool vector8_has_zero(const Vector8 v); +static inline bool vector8_has_le(const Vector8 v, const uint8 c); +static inline bool vector8_is_highbit_set(const Vector8 v); +#ifndef USE_NO_SIMD +static inline bool vector32_is_highbit_set(const Vector32 v); +#endif + +/* arithmetic operations */ +static inline Vector8 vector8_or(const Vector8 v1, const Vector8 v2); +#ifndef USE_NO_SIMD +static inline Vector32 vector32_or(const Vector32 v1, const Vector32 v2); +static inline Vector8 vector8_ssub(const Vector8 v1, const Vector8 v2); +#endif + +/* + * comparisons between vectors + * + * Note: These return a vector rather than boolean, which is why we don't + * have non-SIMD implementations. + */ +#ifndef USE_NO_SIMD +static inline Vector8 vector8_eq(const Vector8 v1, const Vector8 v2); +static inline Vector32 vector32_eq(const Vector32 v1, const Vector32 v2); +#endif + +/* + * Load a chunk of memory into the given vector. + */ +static inline void +vector8_load(Vector8 *v, const uint8 *s) +{ +#if defined(USE_SSE2) + *v = _mm_loadu_si128((const __m128i *) s); +#elif defined(USE_NEON) + *v = vld1q_u8(s); +#else + memcpy(v, s, sizeof(Vector8)); +#endif +} + +#ifndef USE_NO_SIMD +static inline void +vector32_load(Vector32 *v, const uint32 *s) +{ +#ifdef USE_SSE2 + *v = _mm_loadu_si128((const __m128i *) s); +#elif defined(USE_NEON) + *v = vld1q_u32(s); +#endif +} +#endif /* ! USE_NO_SIMD */ + +/* + * Create a vector with all elements set to the same value. + */ +static inline Vector8 +vector8_broadcast(const uint8 c) +{ +#if defined(USE_SSE2) + return _mm_set1_epi8(c); +#elif defined(USE_NEON) + return vdupq_n_u8(c); +#else + return ~UINT64CONST(0) / 0xFF * c; +#endif +} + +#ifndef USE_NO_SIMD +static inline Vector32 +vector32_broadcast(const uint32 c) +{ +#ifdef USE_SSE2 + return _mm_set1_epi32(c); +#elif defined(USE_NEON) + return vdupq_n_u32(c); +#endif +} +#endif /* ! USE_NO_SIMD */ + +/* + * Return true if any elements in the vector are equal to the given scalar. + */ +static inline bool +vector8_has(const Vector8 v, const uint8 c) +{ + bool result; + + /* pre-compute the result for assert checking */ +#ifdef USE_ASSERT_CHECKING + bool assert_result = false; + + for (Size i = 0; i < sizeof(Vector8); i++) + { + if (((const uint8 *) &v)[i] == c) + { + assert_result = true; + break; + } + } +#endif /* USE_ASSERT_CHECKING */ + +#if defined(USE_NO_SIMD) + /* any bytes in v equal to c will evaluate to zero via XOR */ + result = vector8_has_zero(v ^ vector8_broadcast(c)); +#else + result = vector8_is_highbit_set(vector8_eq(v, vector8_broadcast(c))); +#endif + + Assert(assert_result == result); + return result; +} + +/* + * Convenience function equivalent to vector8_has(v, 0) + */ +static inline bool +vector8_has_zero(const Vector8 v) +{ +#if defined(USE_NO_SIMD) + /* + * We cannot call vector8_has() here, because that would lead to a + * circular definition. + */ + return vector8_has_le(v, 0); +#else + return vector8_has(v, 0); +#endif +} + +/* + * Return true if any elements in the vector are less than or equal to the + * given scalar. + */ +static inline bool +vector8_has_le(const Vector8 v, const uint8 c) +{ + bool result = false; + + /* pre-compute the result for assert checking */ +#ifdef USE_ASSERT_CHECKING + bool assert_result = false; + + for (Size i = 0; i < sizeof(Vector8); i++) + { + if (((const uint8 *) &v)[i] <= c) + { + assert_result = true; + break; + } + } +#endif /* USE_ASSERT_CHECKING */ + +#if defined(USE_NO_SIMD) + + /* + * To find bytes <= c, we can use bitwise operations to find bytes < c+1, + * but it only works if c+1 <= 128 and if the highest bit in v is not set. + * Adapted from + * https://graphics.stanford.edu/~seander/bithacks.html#HasLessInWord + */ + if ((int64) v >= 0 && c < 0x80) + result = (v - vector8_broadcast(c + 1)) & ~v & vector8_broadcast(0x80); + else + { + /* one byte at a time */ + for (Size i = 0; i < sizeof(Vector8); i++) + { + if (((const uint8 *) &v)[i] <= c) + { + result = true; + break; + } + } + } +#else + + /* + * Use saturating subtraction to find bytes <= c, which will present as + * NUL bytes. This approach is a workaround for the lack of unsigned + * comparison instructions on some architectures. + */ + result = vector8_has_zero(vector8_ssub(v, vector8_broadcast(c))); +#endif + + Assert(assert_result == result); + return result; +} + +/* + * Return true if the high bit of any element is set + */ +static inline bool +vector8_is_highbit_set(const Vector8 v) +{ +#ifdef USE_SSE2 + return _mm_movemask_epi8(v) != 0; +#elif defined(USE_NEON) + return vmaxvq_u8(v) > 0x7F; +#else + return v & vector8_broadcast(0x80); +#endif +} + +/* + * Exactly like vector8_is_highbit_set except for the input type, so it + * looks at each byte separately. + * + * XXX x86 uses the same underlying type for 8-bit, 16-bit, and 32-bit + * integer elements, but Arm does not, hence the need for a separate + * function. We could instead adopt the behavior of Arm's vmaxvq_u32(), i.e. + * check each 32-bit element, but that would require an additional mask + * operation on x86. + */ +#ifndef USE_NO_SIMD +static inline bool +vector32_is_highbit_set(const Vector32 v) +{ +#if defined(USE_NEON) + return vector8_is_highbit_set((Vector8) v); +#else + return vector8_is_highbit_set(v); +#endif +} +#endif /* ! USE_NO_SIMD */ + +/* + * Return the bitwise OR of the inputs + */ +static inline Vector8 +vector8_or(const Vector8 v1, const Vector8 v2) +{ +#ifdef USE_SSE2 + return _mm_or_si128(v1, v2); +#elif defined(USE_NEON) + return vorrq_u8(v1, v2); +#else + return v1 | v2; +#endif +} + +#ifndef USE_NO_SIMD +static inline Vector32 +vector32_or(const Vector32 v1, const Vector32 v2) +{ +#ifdef USE_SSE2 + return _mm_or_si128(v1, v2); +#elif defined(USE_NEON) + return vorrq_u32(v1, v2); +#endif +} +#endif /* ! USE_NO_SIMD */ + +/* + * Return the result of subtracting the respective elements of the input + * vectors using saturation (i.e., if the operation would yield a value less + * than zero, zero is returned instead). For more information on saturation + * arithmetic, see https://en.wikipedia.org/wiki/Saturation_arithmetic + */ +#ifndef USE_NO_SIMD +static inline Vector8 +vector8_ssub(const Vector8 v1, const Vector8 v2) +{ +#ifdef USE_SSE2 + return _mm_subs_epu8(v1, v2); +#elif defined(USE_NEON) + return vqsubq_u8(v1, v2); +#endif +} +#endif /* ! USE_NO_SIMD */ + +/* + * Return a vector with all bits set in each lane where the corresponding + * lanes in the inputs are equal. + */ +#ifndef USE_NO_SIMD +static inline Vector8 +vector8_eq(const Vector8 v1, const Vector8 v2) +{ +#ifdef USE_SSE2 + return _mm_cmpeq_epi8(v1, v2); +#elif defined(USE_NEON) + return vceqq_u8(v1, v2); +#endif +} +#endif /* ! USE_NO_SIMD */ + +#ifndef USE_NO_SIMD +static inline Vector32 +vector32_eq(const Vector32 v1, const Vector32 v2) +{ +#ifdef USE_SSE2 + return _mm_cmpeq_epi32(v1, v2); +#elif defined(USE_NEON) + return vceqq_u32(v1, v2); +#endif +} +#endif /* ! USE_NO_SIMD */ + +#endif /* SIMD_H */ |