/*------------------------------------------------------------------------- * * parse_expr.c * handle expressions in parser * * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * src/backend/parser/parse_expr.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include "catalog/pg_aggregate.h" #include "catalog/pg_proc.h" #include "catalog/pg_type.h" #include "commands/dbcommands.h" #include "miscadmin.h" #include "nodes/makefuncs.h" #include "nodes/nodeFuncs.h" #include "optimizer/optimizer.h" #include "parser/analyze.h" #include "parser/parse_agg.h" #include "parser/parse_clause.h" #include "parser/parse_coerce.h" #include "parser/parse_collate.h" #include "parser/parse_expr.h" #include "parser/parse_func.h" #include "parser/parse_oper.h" #include "parser/parse_relation.h" #include "parser/parse_target.h" #include "parser/parse_type.h" #include "utils/builtins.h" #include "utils/date.h" #include "utils/fmgroids.h" #include "utils/lsyscache.h" #include "utils/timestamp.h" #include "utils/xml.h" /* GUC parameters */ bool Transform_null_equals = false; static Node *transformExprRecurse(ParseState *pstate, Node *expr); static Node *transformParamRef(ParseState *pstate, ParamRef *pref); static Node *transformAExprOp(ParseState *pstate, A_Expr *a); static Node *transformAExprOpAny(ParseState *pstate, A_Expr *a); static Node *transformAExprOpAll(ParseState *pstate, A_Expr *a); static Node *transformAExprDistinct(ParseState *pstate, A_Expr *a); static Node *transformAExprNullIf(ParseState *pstate, A_Expr *a); static Node *transformAExprIn(ParseState *pstate, A_Expr *a); static Node *transformAExprBetween(ParseState *pstate, A_Expr *a); static Node *transformBoolExpr(ParseState *pstate, BoolExpr *a); static Node *transformFuncCall(ParseState *pstate, FuncCall *fn); static Node *transformMultiAssignRef(ParseState *pstate, MultiAssignRef *maref); static Node *transformCaseExpr(ParseState *pstate, CaseExpr *c); static Node *transformSubLink(ParseState *pstate, SubLink *sublink); static Node *transformArrayExpr(ParseState *pstate, A_ArrayExpr *a, Oid array_type, Oid element_type, int32 typmod); static Node *transformRowExpr(ParseState *pstate, RowExpr *r, bool allowDefault); static Node *transformCoalesceExpr(ParseState *pstate, CoalesceExpr *c); static Node *transformMinMaxExpr(ParseState *pstate, MinMaxExpr *m); static Node *transformSQLValueFunction(ParseState *pstate, SQLValueFunction *svf); static Node *transformXmlExpr(ParseState *pstate, XmlExpr *x); static Node *transformXmlSerialize(ParseState *pstate, XmlSerialize *xs); static Node *transformBooleanTest(ParseState *pstate, BooleanTest *b); static Node *transformCurrentOfExpr(ParseState *pstate, CurrentOfExpr *cexpr); static Node *transformColumnRef(ParseState *pstate, ColumnRef *cref); static Node *transformWholeRowRef(ParseState *pstate, ParseNamespaceItem *nsitem, int sublevels_up, int location); static Node *transformIndirection(ParseState *pstate, A_Indirection *ind); static Node *transformTypeCast(ParseState *pstate, TypeCast *tc); static Node *transformCollateClause(ParseState *pstate, CollateClause *c); static Node *transformJsonObjectConstructor(ParseState *pstate, JsonObjectConstructor *ctor); static Node *transformJsonArrayConstructor(ParseState *pstate, JsonArrayConstructor *ctor); static Node *transformJsonArrayQueryConstructor(ParseState *pstate, JsonArrayQueryConstructor *ctor); static Node *transformJsonObjectAgg(ParseState *pstate, JsonObjectAgg *agg); static Node *transformJsonArrayAgg(ParseState *pstate, JsonArrayAgg *agg); static Node *transformJsonIsPredicate(ParseState *pstate, JsonIsPredicate *pred); static Node *make_row_comparison_op(ParseState *pstate, List *opname, List *largs, List *rargs, int location); static Node *make_row_distinct_op(ParseState *pstate, List *opname, RowExpr *lrow, RowExpr *rrow, int location); static Expr *make_distinct_op(ParseState *pstate, List *opname, Node *ltree, Node *rtree, int location); static Node *make_nulltest_from_distinct(ParseState *pstate, A_Expr *distincta, Node *arg); /* * transformExpr - * Analyze and transform expressions. Type checking and type casting is * done here. This processing converts the raw grammar output into * expression trees with fully determined semantics. */ Node * transformExpr(ParseState *pstate, Node *expr, ParseExprKind exprKind) { Node *result; ParseExprKind sv_expr_kind; /* Save and restore identity of expression type we're parsing */ Assert(exprKind != EXPR_KIND_NONE); sv_expr_kind = pstate->p_expr_kind; pstate->p_expr_kind = exprKind; result = transformExprRecurse(pstate, expr); pstate->p_expr_kind = sv_expr_kind; return result; } static Node * transformExprRecurse(ParseState *pstate, Node *expr) { Node *result; if (expr == NULL) return NULL; /* Guard against stack overflow due to overly complex expressions */ check_stack_depth(); switch (nodeTag(expr)) { case T_ColumnRef: result = transformColumnRef(pstate, (ColumnRef *) expr); break; case T_ParamRef: result = transformParamRef(pstate, (ParamRef *) expr); break; case T_A_Const: result = (Node *) make_const(pstate, (A_Const *) expr); break; case T_A_Indirection: result = transformIndirection(pstate, (A_Indirection *) expr); break; case T_A_ArrayExpr: result = transformArrayExpr(pstate, (A_ArrayExpr *) expr, InvalidOid, InvalidOid, -1); break; case T_TypeCast: result = transformTypeCast(pstate, (TypeCast *) expr); break; case T_CollateClause: result = transformCollateClause(pstate, (CollateClause *) expr); break; case T_A_Expr: { A_Expr *a = (A_Expr *) expr; switch (a->kind) { case AEXPR_OP: result = transformAExprOp(pstate, a); break; case AEXPR_OP_ANY: result = transformAExprOpAny(pstate, a); break; case AEXPR_OP_ALL: result = transformAExprOpAll(pstate, a); break; case AEXPR_DISTINCT: case AEXPR_NOT_DISTINCT: result = transformAExprDistinct(pstate, a); break; case AEXPR_NULLIF: result = transformAExprNullIf(pstate, a); break; case AEXPR_IN: result = transformAExprIn(pstate, a); break; case AEXPR_LIKE: case AEXPR_ILIKE: case AEXPR_SIMILAR: /* we can transform these just like AEXPR_OP */ result = transformAExprOp(pstate, a); break; case AEXPR_BETWEEN: case AEXPR_NOT_BETWEEN: case AEXPR_BETWEEN_SYM: case AEXPR_NOT_BETWEEN_SYM: result = transformAExprBetween(pstate, a); break; default: elog(ERROR, "unrecognized A_Expr kind: %d", a->kind); result = NULL; /* keep compiler quiet */ break; } break; } case T_BoolExpr: result = transformBoolExpr(pstate, (BoolExpr *) expr); break; case T_FuncCall: result = transformFuncCall(pstate, (FuncCall *) expr); break; case T_MultiAssignRef: result = transformMultiAssignRef(pstate, (MultiAssignRef *) expr); break; case T_GroupingFunc: result = transformGroupingFunc(pstate, (GroupingFunc *) expr); break; case T_NamedArgExpr: { NamedArgExpr *na = (NamedArgExpr *) expr; na->arg = (Expr *) transformExprRecurse(pstate, (Node *) na->arg); result = expr; break; } case T_SubLink: result = transformSubLink(pstate, (SubLink *) expr); break; case T_CaseExpr: result = transformCaseExpr(pstate, (CaseExpr *) expr); break; case T_RowExpr: result = transformRowExpr(pstate, (RowExpr *) expr, false); break; case T_CoalesceExpr: result = transformCoalesceExpr(pstate, (CoalesceExpr *) expr); break; case T_MinMaxExpr: result = transformMinMaxExpr(pstate, (MinMaxExpr *) expr); break; case T_SQLValueFunction: result = transformSQLValueFunction(pstate, (SQLValueFunction *) expr); break; case T_XmlExpr: result = transformXmlExpr(pstate, (XmlExpr *) expr); break; case T_XmlSerialize: result = transformXmlSerialize(pstate, (XmlSerialize *) expr); break; case T_NullTest: { NullTest *n = (NullTest *) expr; n->arg = (Expr *) transformExprRecurse(pstate, (Node *) n->arg); /* the argument can be any type, so don't coerce it */ n->argisrow = type_is_rowtype(exprType((Node *) n->arg)); result = expr; break; } case T_BooleanTest: result = transformBooleanTest(pstate, (BooleanTest *) expr); break; case T_CurrentOfExpr: result = transformCurrentOfExpr(pstate, (CurrentOfExpr *) expr); break; /* * In all places where DEFAULT is legal, the caller should have * processed it rather than passing it to transformExpr(). */ case T_SetToDefault: ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("DEFAULT is not allowed in this context"), parser_errposition(pstate, ((SetToDefault *) expr)->location))); break; /* * CaseTestExpr doesn't require any processing; it is only * injected into parse trees in a fully-formed state. * * Ordinarily we should not see a Var here, but it is convenient * for transformJoinUsingClause() to create untransformed operator * trees containing already-transformed Vars. The best * alternative would be to deconstruct and reconstruct column * references, which seems expensively pointless. So allow it. */ case T_CaseTestExpr: case T_Var: { result = (Node *) expr; break; } case T_JsonObjectConstructor: result = transformJsonObjectConstructor(pstate, (JsonObjectConstructor *) expr); break; case T_JsonArrayConstructor: result = transformJsonArrayConstructor(pstate, (JsonArrayConstructor *) expr); break; case T_JsonArrayQueryConstructor: result = transformJsonArrayQueryConstructor(pstate, (JsonArrayQueryConstructor *) expr); break; case T_JsonObjectAgg: result = transformJsonObjectAgg(pstate, (JsonObjectAgg *) expr); break; case T_JsonArrayAgg: result = transformJsonArrayAgg(pstate, (JsonArrayAgg *) expr); break; case T_JsonIsPredicate: result = transformJsonIsPredicate(pstate, (JsonIsPredicate *) expr); break; default: /* should not reach here */ elog(ERROR, "unrecognized node type: %d", (int) nodeTag(expr)); result = NULL; /* keep compiler quiet */ break; } return result; } /* * helper routine for delivering "column does not exist" error message * * (Usually we don't have to work this hard, but the general case of field * selection from an arbitrary node needs it.) */ static void unknown_attribute(ParseState *pstate, Node *relref, const char *attname, int location) { RangeTblEntry *rte; if (IsA(relref, Var) && ((Var *) relref)->varattno == InvalidAttrNumber) { /* Reference the RTE by alias not by actual table name */ rte = GetRTEByRangeTablePosn(pstate, ((Var *) relref)->varno, ((Var *) relref)->varlevelsup); ereport(ERROR, (errcode(ERRCODE_UNDEFINED_COLUMN), errmsg("column %s.%s does not exist", rte->eref->aliasname, attname), parser_errposition(pstate, location))); } else { /* Have to do it by reference to the type of the expression */ Oid relTypeId = exprType(relref); if (ISCOMPLEX(relTypeId)) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_COLUMN), errmsg("column \"%s\" not found in data type %s", attname, format_type_be(relTypeId)), parser_errposition(pstate, location))); else if (relTypeId == RECORDOID) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_COLUMN), errmsg("could not identify column \"%s\" in record data type", attname), parser_errposition(pstate, location))); else ereport(ERROR, (errcode(ERRCODE_WRONG_OBJECT_TYPE), errmsg("column notation .%s applied to type %s, " "which is not a composite type", attname, format_type_be(relTypeId)), parser_errposition(pstate, location))); } } static Node * transformIndirection(ParseState *pstate, A_Indirection *ind) { Node *last_srf = pstate->p_last_srf; Node *result = transformExprRecurse(pstate, ind->arg); List *subscripts = NIL; int location = exprLocation(result); ListCell *i; /* * We have to split any field-selection operations apart from * subscripting. Adjacent A_Indices nodes have to be treated as a single * multidimensional subscript operation. */ foreach(i, ind->indirection) { Node *n = lfirst(i); if (IsA(n, A_Indices)) subscripts = lappend(subscripts, n); else if (IsA(n, A_Star)) { ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("row expansion via \"*\" is not supported here"), parser_errposition(pstate, location))); } else { Node *newresult; Assert(IsA(n, String)); /* process subscripts before this field selection */ if (subscripts) result = (Node *) transformContainerSubscripts(pstate, result, exprType(result), exprTypmod(result), subscripts, false); subscripts = NIL; newresult = ParseFuncOrColumn(pstate, list_make1(n), list_make1(result), last_srf, NULL, false, location); if (newresult == NULL) unknown_attribute(pstate, result, strVal(n), location); result = newresult; } } /* process trailing subscripts, if any */ if (subscripts) result = (Node *) transformContainerSubscripts(pstate, result, exprType(result), exprTypmod(result), subscripts, false); return result; } /* * Transform a ColumnRef. * * If you find yourself changing this code, see also ExpandColumnRefStar. */ static Node * transformColumnRef(ParseState *pstate, ColumnRef *cref) { Node *node = NULL; char *nspname = NULL; char *relname = NULL; char *colname = NULL; ParseNamespaceItem *nsitem; int levels_up; enum { CRERR_NO_COLUMN, CRERR_NO_RTE, CRERR_WRONG_DB, CRERR_TOO_MANY } crerr = CRERR_NO_COLUMN; const char *err; /* * Check to see if the column reference is in an invalid place within the * query. We allow column references in most places, except in default * expressions and partition bound expressions. */ err = NULL; switch (pstate->p_expr_kind) { case EXPR_KIND_NONE: Assert(false); /* can't happen */ break; case EXPR_KIND_OTHER: case EXPR_KIND_JOIN_ON: case EXPR_KIND_JOIN_USING: case EXPR_KIND_FROM_SUBSELECT: case EXPR_KIND_FROM_FUNCTION: case EXPR_KIND_WHERE: case EXPR_KIND_POLICY: case EXPR_KIND_HAVING: case EXPR_KIND_FILTER: case EXPR_KIND_WINDOW_PARTITION: case EXPR_KIND_WINDOW_ORDER: case EXPR_KIND_WINDOW_FRAME_RANGE: case EXPR_KIND_WINDOW_FRAME_ROWS: case EXPR_KIND_WINDOW_FRAME_GROUPS: case EXPR_KIND_SELECT_TARGET: case EXPR_KIND_INSERT_TARGET: case EXPR_KIND_UPDATE_SOURCE: case EXPR_KIND_UPDATE_TARGET: case EXPR_KIND_MERGE_WHEN: case EXPR_KIND_GROUP_BY: case EXPR_KIND_ORDER_BY: case EXPR_KIND_DISTINCT_ON: case EXPR_KIND_LIMIT: case EXPR_KIND_OFFSET: case EXPR_KIND_RETURNING: case EXPR_KIND_VALUES: case EXPR_KIND_VALUES_SINGLE: case EXPR_KIND_CHECK_CONSTRAINT: case EXPR_KIND_DOMAIN_CHECK: case EXPR_KIND_FUNCTION_DEFAULT: case EXPR_KIND_INDEX_EXPRESSION: case EXPR_KIND_INDEX_PREDICATE: case EXPR_KIND_STATS_EXPRESSION: case EXPR_KIND_ALTER_COL_TRANSFORM: case EXPR_KIND_EXECUTE_PARAMETER: case EXPR_KIND_TRIGGER_WHEN: case EXPR_KIND_PARTITION_EXPRESSION: case EXPR_KIND_CALL_ARGUMENT: case EXPR_KIND_COPY_WHERE: case EXPR_KIND_GENERATED_COLUMN: case EXPR_KIND_CYCLE_MARK: /* okay */ break; case EXPR_KIND_COLUMN_DEFAULT: err = _("cannot use column reference in DEFAULT expression"); break; case EXPR_KIND_PARTITION_BOUND: err = _("cannot use column reference in partition bound expression"); break; /* * There is intentionally no default: case here, so that the * compiler will warn if we add a new ParseExprKind without * extending this switch. If we do see an unrecognized value at * runtime, the behavior will be the same as for EXPR_KIND_OTHER, * which is sane anyway. */ } if (err) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg_internal("%s", err), parser_errposition(pstate, cref->location))); /* * Give the PreParseColumnRefHook, if any, first shot. If it returns * non-null then that's all, folks. */ if (pstate->p_pre_columnref_hook != NULL) { node = pstate->p_pre_columnref_hook(pstate, cref); if (node != NULL) return node; } /*---------- * The allowed syntaxes are: * * A First try to resolve as unqualified column name; * if no luck, try to resolve as unqualified table name (A.*). * A.B A is an unqualified table name; B is either a * column or function name (trying column name first). * A.B.C schema A, table B, col or func name C. * A.B.C.D catalog A, schema B, table C, col or func D. * A.* A is an unqualified table name; means whole-row value. * A.B.* whole-row value of table B in schema A. * A.B.C.* whole-row value of table C in schema B in catalog A. * * We do not need to cope with bare "*"; that will only be accepted by * the grammar at the top level of a SELECT list, and transformTargetList * will take care of it before it ever gets here. Also, "A.*" etc will * be expanded by transformTargetList if they appear at SELECT top level, * so here we are only going to see them as function or operator inputs. * * Currently, if a catalog name is given then it must equal the current * database name; we check it here and then discard it. *---------- */ switch (list_length(cref->fields)) { case 1: { Node *field1 = (Node *) linitial(cref->fields); colname = strVal(field1); /* Try to identify as an unqualified column */ node = colNameToVar(pstate, colname, false, cref->location); if (node == NULL) { /* * Not known as a column of any range-table entry. * * Try to find the name as a relation. Note that only * relations already entered into the rangetable will be * recognized. * * This is a hack for backwards compatibility with * PostQUEL-inspired syntax. The preferred form now is * "rel.*". */ nsitem = refnameNamespaceItem(pstate, NULL, colname, cref->location, &levels_up); if (nsitem) node = transformWholeRowRef(pstate, nsitem, levels_up, cref->location); } break; } case 2: { Node *field1 = (Node *) linitial(cref->fields); Node *field2 = (Node *) lsecond(cref->fields); relname = strVal(field1); /* Locate the referenced nsitem */ nsitem = refnameNamespaceItem(pstate, nspname, relname, cref->location, &levels_up); if (nsitem == NULL) { crerr = CRERR_NO_RTE; break; } /* Whole-row reference? */ if (IsA(field2, A_Star)) { node = transformWholeRowRef(pstate, nsitem, levels_up, cref->location); break; } colname = strVal(field2); /* Try to identify as a column of the nsitem */ node = scanNSItemForColumn(pstate, nsitem, levels_up, colname, cref->location); if (node == NULL) { /* Try it as a function call on the whole row */ node = transformWholeRowRef(pstate, nsitem, levels_up, cref->location); node = ParseFuncOrColumn(pstate, list_make1(makeString(colname)), list_make1(node), pstate->p_last_srf, NULL, false, cref->location); } break; } case 3: { Node *field1 = (Node *) linitial(cref->fields); Node *field2 = (Node *) lsecond(cref->fields); Node *field3 = (Node *) lthird(cref->fields); nspname = strVal(field1); relname = strVal(field2); /* Locate the referenced nsitem */ nsitem = refnameNamespaceItem(pstate, nspname, relname, cref->location, &levels_up); if (nsitem == NULL) { crerr = CRERR_NO_RTE; break; } /* Whole-row reference? */ if (IsA(field3, A_Star)) { node = transformWholeRowRef(pstate, nsitem, levels_up, cref->location); break; } colname = strVal(field3); /* Try to identify as a column of the nsitem */ node = scanNSItemForColumn(pstate, nsitem, levels_up, colname, cref->location); if (node == NULL) { /* Try it as a function call on the whole row */ node = transformWholeRowRef(pstate, nsitem, levels_up, cref->location); node = ParseFuncOrColumn(pstate, list_make1(makeString(colname)), list_make1(node), pstate->p_last_srf, NULL, false, cref->location); } break; } case 4: { Node *field1 = (Node *) linitial(cref->fields); Node *field2 = (Node *) lsecond(cref->fields); Node *field3 = (Node *) lthird(cref->fields); Node *field4 = (Node *) lfourth(cref->fields); char *catname; catname = strVal(field1); nspname = strVal(field2); relname = strVal(field3); /* * We check the catalog name and then ignore it. */ if (strcmp(catname, get_database_name(MyDatabaseId)) != 0) { crerr = CRERR_WRONG_DB; break; } /* Locate the referenced nsitem */ nsitem = refnameNamespaceItem(pstate, nspname, relname, cref->location, &levels_up); if (nsitem == NULL) { crerr = CRERR_NO_RTE; break; } /* Whole-row reference? */ if (IsA(field4, A_Star)) { node = transformWholeRowRef(pstate, nsitem, levels_up, cref->location); break; } colname = strVal(field4); /* Try to identify as a column of the nsitem */ node = scanNSItemForColumn(pstate, nsitem, levels_up, colname, cref->location); if (node == NULL) { /* Try it as a function call on the whole row */ node = transformWholeRowRef(pstate, nsitem, levels_up, cref->location); node = ParseFuncOrColumn(pstate, list_make1(makeString(colname)), list_make1(node), pstate->p_last_srf, NULL, false, cref->location); } break; } default: crerr = CRERR_TOO_MANY; /* too many dotted names */ break; } /* * Now give the PostParseColumnRefHook, if any, a chance. We pass the * translation-so-far so that it can throw an error if it wishes in the * case that it has a conflicting interpretation of the ColumnRef. (If it * just translates anyway, we'll throw an error, because we can't undo * whatever effects the preceding steps may have had on the pstate.) If it * returns NULL, use the standard translation, or throw a suitable error * if there is none. */ if (pstate->p_post_columnref_hook != NULL) { Node *hookresult; hookresult = pstate->p_post_columnref_hook(pstate, cref, node); if (node == NULL) node = hookresult; else if (hookresult != NULL) ereport(ERROR, (errcode(ERRCODE_AMBIGUOUS_COLUMN), errmsg("column reference \"%s\" is ambiguous", NameListToString(cref->fields)), parser_errposition(pstate, cref->location))); } /* * Throw error if no translation found. */ if (node == NULL) { switch (crerr) { case CRERR_NO_COLUMN: errorMissingColumn(pstate, relname, colname, cref->location); break; case CRERR_NO_RTE: errorMissingRTE(pstate, makeRangeVar(nspname, relname, cref->location)); break; case CRERR_WRONG_DB: ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("cross-database references are not implemented: %s", NameListToString(cref->fields)), parser_errposition(pstate, cref->location))); break; case CRERR_TOO_MANY: ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("improper qualified name (too many dotted names): %s", NameListToString(cref->fields)), parser_errposition(pstate, cref->location))); break; } } return node; } static Node * transformParamRef(ParseState *pstate, ParamRef *pref) { Node *result; /* * The core parser knows nothing about Params. If a hook is supplied, * call it. If not, or if the hook returns NULL, throw a generic error. */ if (pstate->p_paramref_hook != NULL) result = pstate->p_paramref_hook(pstate, pref); else result = NULL; if (result == NULL) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_PARAMETER), errmsg("there is no parameter $%d", pref->number), parser_errposition(pstate, pref->location))); return result; } /* Test whether an a_expr is a plain NULL constant or not */ static bool exprIsNullConstant(Node *arg) { if (arg && IsA(arg, A_Const)) { A_Const *con = (A_Const *) arg; if (con->isnull) return true; } return false; } static Node * transformAExprOp(ParseState *pstate, A_Expr *a) { Node *lexpr = a->lexpr; Node *rexpr = a->rexpr; Node *result; /* * Special-case "foo = NULL" and "NULL = foo" for compatibility with * standards-broken products (like Microsoft's). Turn these into IS NULL * exprs. (If either side is a CaseTestExpr, then the expression was * generated internally from a CASE-WHEN expression, and * transform_null_equals does not apply.) */ if (Transform_null_equals && list_length(a->name) == 1 && strcmp(strVal(linitial(a->name)), "=") == 0 && (exprIsNullConstant(lexpr) || exprIsNullConstant(rexpr)) && (!IsA(lexpr, CaseTestExpr) && !IsA(rexpr, CaseTestExpr))) { NullTest *n = makeNode(NullTest); n->nulltesttype = IS_NULL; n->location = a->location; if (exprIsNullConstant(lexpr)) n->arg = (Expr *) rexpr; else n->arg = (Expr *) lexpr; result = transformExprRecurse(pstate, (Node *) n); } else if (lexpr && IsA(lexpr, RowExpr) && rexpr && IsA(rexpr, SubLink) && ((SubLink *) rexpr)->subLinkType == EXPR_SUBLINK) { /* * Convert "row op subselect" into a ROWCOMPARE sublink. Formerly the * grammar did this, but now that a row construct is allowed anywhere * in expressions, it's easier to do it here. */ SubLink *s = (SubLink *) rexpr; s->subLinkType = ROWCOMPARE_SUBLINK; s->testexpr = lexpr; s->operName = a->name; s->location = a->location; result = transformExprRecurse(pstate, (Node *) s); } else if (lexpr && IsA(lexpr, RowExpr) && rexpr && IsA(rexpr, RowExpr)) { /* ROW() op ROW() is handled specially */ lexpr = transformExprRecurse(pstate, lexpr); rexpr = transformExprRecurse(pstate, rexpr); result = make_row_comparison_op(pstate, a->name, castNode(RowExpr, lexpr)->args, castNode(RowExpr, rexpr)->args, a->location); } else { /* Ordinary scalar operator */ Node *last_srf = pstate->p_last_srf; lexpr = transformExprRecurse(pstate, lexpr); rexpr = transformExprRecurse(pstate, rexpr); result = (Node *) make_op(pstate, a->name, lexpr, rexpr, last_srf, a->location); } return result; } static Node * transformAExprOpAny(ParseState *pstate, A_Expr *a) { Node *lexpr = transformExprRecurse(pstate, a->lexpr); Node *rexpr = transformExprRecurse(pstate, a->rexpr); return (Node *) make_scalar_array_op(pstate, a->name, true, lexpr, rexpr, a->location); } static Node * transformAExprOpAll(ParseState *pstate, A_Expr *a) { Node *lexpr = transformExprRecurse(pstate, a->lexpr); Node *rexpr = transformExprRecurse(pstate, a->rexpr); return (Node *) make_scalar_array_op(pstate, a->name, false, lexpr, rexpr, a->location); } static Node * transformAExprDistinct(ParseState *pstate, A_Expr *a) { Node *lexpr = a->lexpr; Node *rexpr = a->rexpr; Node *result; /* * If either input is an undecorated NULL literal, transform to a NullTest * on the other input. That's simpler to process than a full DistinctExpr, * and it avoids needing to require that the datatype have an = operator. */ if (exprIsNullConstant(rexpr)) return make_nulltest_from_distinct(pstate, a, lexpr); if (exprIsNullConstant(lexpr)) return make_nulltest_from_distinct(pstate, a, rexpr); lexpr = transformExprRecurse(pstate, lexpr); rexpr = transformExprRecurse(pstate, rexpr); if (lexpr && IsA(lexpr, RowExpr) && rexpr && IsA(rexpr, RowExpr)) { /* ROW() op ROW() is handled specially */ result = make_row_distinct_op(pstate, a->name, (RowExpr *) lexpr, (RowExpr *) rexpr, a->location); } else { /* Ordinary scalar operator */ result = (Node *) make_distinct_op(pstate, a->name, lexpr, rexpr, a->location); } /* * If it's NOT DISTINCT, we first build a DistinctExpr and then stick a * NOT on top. */ if (a->kind == AEXPR_NOT_DISTINCT) result = (Node *) makeBoolExpr(NOT_EXPR, list_make1(result), a->location); return result; } static Node * transformAExprNullIf(ParseState *pstate, A_Expr *a) { Node *lexpr = transformExprRecurse(pstate, a->lexpr); Node *rexpr = transformExprRecurse(pstate, a->rexpr); OpExpr *result; result = (OpExpr *) make_op(pstate, a->name, lexpr, rexpr, pstate->p_last_srf, a->location); /* * The comparison operator itself should yield boolean ... */ if (result->opresulttype != BOOLOID) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("NULLIF requires = operator to yield boolean"), parser_errposition(pstate, a->location))); if (result->opretset) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), /* translator: %s is name of a SQL construct, eg NULLIF */ errmsg("%s must not return a set", "NULLIF"), parser_errposition(pstate, a->location))); /* * ... but the NullIfExpr will yield the first operand's type. */ result->opresulttype = exprType((Node *) linitial(result->args)); /* * We rely on NullIfExpr and OpExpr being the same struct */ NodeSetTag(result, T_NullIfExpr); return (Node *) result; } static Node * transformAExprIn(ParseState *pstate, A_Expr *a) { Node *result = NULL; Node *lexpr; List *rexprs; List *rvars; List *rnonvars; bool useOr; ListCell *l; /* * If the operator is <>, combine with AND not OR. */ if (strcmp(strVal(linitial(a->name)), "<>") == 0) useOr = false; else useOr = true; /* * We try to generate a ScalarArrayOpExpr from IN/NOT IN, but this is only * possible if there is a suitable array type available. If not, we fall * back to a boolean condition tree with multiple copies of the lefthand * expression. Also, any IN-list items that contain Vars are handled as * separate boolean conditions, because that gives the planner more scope * for optimization on such clauses. * * First step: transform all the inputs, and detect whether any contain * Vars. */ lexpr = transformExprRecurse(pstate, a->lexpr); rexprs = rvars = rnonvars = NIL; foreach(l, (List *) a->rexpr) { Node *rexpr = transformExprRecurse(pstate, lfirst(l)); rexprs = lappend(rexprs, rexpr); if (contain_vars_of_level(rexpr, 0)) rvars = lappend(rvars, rexpr); else rnonvars = lappend(rnonvars, rexpr); } /* * ScalarArrayOpExpr is only going to be useful if there's more than one * non-Var righthand item. */ if (list_length(rnonvars) > 1) { List *allexprs; Oid scalar_type; Oid array_type; /* * Try to select a common type for the array elements. Note that * since the LHS' type is first in the list, it will be preferred when * there is doubt (eg, when all the RHS items are unknown literals). * * Note: use list_concat here not lcons, to avoid damaging rnonvars. */ allexprs = list_concat(list_make1(lexpr), rnonvars); scalar_type = select_common_type(pstate, allexprs, NULL, NULL); /* We have to verify that the selected type actually works */ if (OidIsValid(scalar_type) && !verify_common_type(scalar_type, allexprs)) scalar_type = InvalidOid; /* * Do we have an array type to use? Aside from the case where there * isn't one, we don't risk using ScalarArrayOpExpr when the common * type is RECORD, because the RowExpr comparison logic below can cope * with some cases of non-identical row types. */ if (OidIsValid(scalar_type) && scalar_type != RECORDOID) array_type = get_array_type(scalar_type); else array_type = InvalidOid; if (array_type != InvalidOid) { /* * OK: coerce all the right-hand non-Var inputs to the common type * and build an ArrayExpr for them. */ List *aexprs; ArrayExpr *newa; aexprs = NIL; foreach(l, rnonvars) { Node *rexpr = (Node *) lfirst(l); rexpr = coerce_to_common_type(pstate, rexpr, scalar_type, "IN"); aexprs = lappend(aexprs, rexpr); } newa = makeNode(ArrayExpr); newa->array_typeid = array_type; /* array_collid will be set by parse_collate.c */ newa->element_typeid = scalar_type; newa->elements = aexprs; newa->multidims = false; newa->location = -1; result = (Node *) make_scalar_array_op(pstate, a->name, useOr, lexpr, (Node *) newa, a->location); /* Consider only the Vars (if any) in the loop below */ rexprs = rvars; } } /* * Must do it the hard way, ie, with a boolean expression tree. */ foreach(l, rexprs) { Node *rexpr = (Node *) lfirst(l); Node *cmp; if (IsA(lexpr, RowExpr) && IsA(rexpr, RowExpr)) { /* ROW() op ROW() is handled specially */ cmp = make_row_comparison_op(pstate, a->name, copyObject(((RowExpr *) lexpr)->args), ((RowExpr *) rexpr)->args, a->location); } else { /* Ordinary scalar operator */ cmp = (Node *) make_op(pstate, a->name, copyObject(lexpr), rexpr, pstate->p_last_srf, a->location); } cmp = coerce_to_boolean(pstate, cmp, "IN"); if (result == NULL) result = cmp; else result = (Node *) makeBoolExpr(useOr ? OR_EXPR : AND_EXPR, list_make2(result, cmp), a->location); } return result; } static Node * transformAExprBetween(ParseState *pstate, A_Expr *a) { Node *aexpr; Node *bexpr; Node *cexpr; Node *result; Node *sub1; Node *sub2; List *args; /* Deconstruct A_Expr into three subexprs */ aexpr = a->lexpr; args = castNode(List, a->rexpr); Assert(list_length(args) == 2); bexpr = (Node *) linitial(args); cexpr = (Node *) lsecond(args); /* * Build the equivalent comparison expression. Make copies of * multiply-referenced subexpressions for safety. (XXX this is really * wrong since it results in multiple runtime evaluations of what may be * volatile expressions ...) * * Ideally we would not use hard-wired operators here but instead use * opclasses. However, mixed data types and other issues make this * difficult: * http://archives.postgresql.org/pgsql-hackers/2008-08/msg01142.php */ switch (a->kind) { case AEXPR_BETWEEN: args = list_make2(makeSimpleA_Expr(AEXPR_OP, ">=", aexpr, bexpr, a->location), makeSimpleA_Expr(AEXPR_OP, "<=", copyObject(aexpr), cexpr, a->location)); result = (Node *) makeBoolExpr(AND_EXPR, args, a->location); break; case AEXPR_NOT_BETWEEN: args = list_make2(makeSimpleA_Expr(AEXPR_OP, "<", aexpr, bexpr, a->location), makeSimpleA_Expr(AEXPR_OP, ">", copyObject(aexpr), cexpr, a->location)); result = (Node *) makeBoolExpr(OR_EXPR, args, a->location); break; case AEXPR_BETWEEN_SYM: args = list_make2(makeSimpleA_Expr(AEXPR_OP, ">=", aexpr, bexpr, a->location), makeSimpleA_Expr(AEXPR_OP, "<=", copyObject(aexpr), cexpr, a->location)); sub1 = (Node *) makeBoolExpr(AND_EXPR, args, a->location); args = list_make2(makeSimpleA_Expr(AEXPR_OP, ">=", copyObject(aexpr), copyObject(cexpr), a->location), makeSimpleA_Expr(AEXPR_OP, "<=", copyObject(aexpr), copyObject(bexpr), a->location)); sub2 = (Node *) makeBoolExpr(AND_EXPR, args, a->location); args = list_make2(sub1, sub2); result = (Node *) makeBoolExpr(OR_EXPR, args, a->location); break; case AEXPR_NOT_BETWEEN_SYM: args = list_make2(makeSimpleA_Expr(AEXPR_OP, "<", aexpr, bexpr, a->location), makeSimpleA_Expr(AEXPR_OP, ">", copyObject(aexpr), cexpr, a->location)); sub1 = (Node *) makeBoolExpr(OR_EXPR, args, a->location); args = list_make2(makeSimpleA_Expr(AEXPR_OP, "<", copyObject(aexpr), copyObject(cexpr), a->location), makeSimpleA_Expr(AEXPR_OP, ">", copyObject(aexpr), copyObject(bexpr), a->location)); sub2 = (Node *) makeBoolExpr(OR_EXPR, args, a->location); args = list_make2(sub1, sub2); result = (Node *) makeBoolExpr(AND_EXPR, args, a->location); break; default: elog(ERROR, "unrecognized A_Expr kind: %d", a->kind); result = NULL; /* keep compiler quiet */ break; } return transformExprRecurse(pstate, result); } static Node * transformBoolExpr(ParseState *pstate, BoolExpr *a) { List *args = NIL; const char *opname; ListCell *lc; switch (a->boolop) { case AND_EXPR: opname = "AND"; break; case OR_EXPR: opname = "OR"; break; case NOT_EXPR: opname = "NOT"; break; default: elog(ERROR, "unrecognized boolop: %d", (int) a->boolop); opname = NULL; /* keep compiler quiet */ break; } foreach(lc, a->args) { Node *arg = (Node *) lfirst(lc); arg = transformExprRecurse(pstate, arg); arg = coerce_to_boolean(pstate, arg, opname); args = lappend(args, arg); } return (Node *) makeBoolExpr(a->boolop, args, a->location); } static Node * transformFuncCall(ParseState *pstate, FuncCall *fn) { Node *last_srf = pstate->p_last_srf; List *targs; ListCell *args; /* Transform the list of arguments ... */ targs = NIL; foreach(args, fn->args) { targs = lappend(targs, transformExprRecurse(pstate, (Node *) lfirst(args))); } /* * When WITHIN GROUP is used, we treat its ORDER BY expressions as * additional arguments to the function, for purposes of function lookup * and argument type coercion. So, transform each such expression and add * them to the targs list. We don't explicitly mark where each argument * came from, but ParseFuncOrColumn can tell what's what by reference to * list_length(fn->agg_order). */ if (fn->agg_within_group) { Assert(fn->agg_order != NIL); foreach(args, fn->agg_order) { SortBy *arg = (SortBy *) lfirst(args); targs = lappend(targs, transformExpr(pstate, arg->node, EXPR_KIND_ORDER_BY)); } } /* ... and hand off to ParseFuncOrColumn */ return ParseFuncOrColumn(pstate, fn->funcname, targs, last_srf, fn, false, fn->location); } static Node * transformMultiAssignRef(ParseState *pstate, MultiAssignRef *maref) { SubLink *sublink; RowExpr *rexpr; Query *qtree; TargetEntry *tle; /* We should only see this in first-stage processing of UPDATE tlists */ Assert(pstate->p_expr_kind == EXPR_KIND_UPDATE_SOURCE); /* We only need to transform the source if this is the first column */ if (maref->colno == 1) { /* * For now, we only allow EXPR SubLinks and RowExprs as the source of * an UPDATE multiassignment. This is sufficient to cover interesting * cases; at worst, someone would have to write (SELECT * FROM expr) * to expand a composite-returning expression of another form. */ if (IsA(maref->source, SubLink) && ((SubLink *) maref->source)->subLinkType == EXPR_SUBLINK) { /* Relabel it as a MULTIEXPR_SUBLINK */ sublink = (SubLink *) maref->source; sublink->subLinkType = MULTIEXPR_SUBLINK; /* And transform it */ sublink = (SubLink *) transformExprRecurse(pstate, (Node *) sublink); qtree = castNode(Query, sublink->subselect); /* Check subquery returns required number of columns */ if (count_nonjunk_tlist_entries(qtree->targetList) != maref->ncolumns) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("number of columns does not match number of values"), parser_errposition(pstate, sublink->location))); /* * Build a resjunk tlist item containing the MULTIEXPR SubLink, * and add it to pstate->p_multiassign_exprs, whence it will later * get appended to the completed targetlist. We needn't worry * about selecting a resno for it; transformUpdateStmt will do * that. */ tle = makeTargetEntry((Expr *) sublink, 0, NULL, true); pstate->p_multiassign_exprs = lappend(pstate->p_multiassign_exprs, tle); /* * Assign a unique-within-this-targetlist ID to the MULTIEXPR * SubLink. We can just use its position in the * p_multiassign_exprs list. */ sublink->subLinkId = list_length(pstate->p_multiassign_exprs); } else if (IsA(maref->source, RowExpr)) { /* Transform the RowExpr, allowing SetToDefault items */ rexpr = (RowExpr *) transformRowExpr(pstate, (RowExpr *) maref->source, true); /* Check it returns required number of columns */ if (list_length(rexpr->args) != maref->ncolumns) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("number of columns does not match number of values"), parser_errposition(pstate, rexpr->location))); /* * Temporarily append it to p_multiassign_exprs, so we can get it * back when we come back here for additional columns. */ tle = makeTargetEntry((Expr *) rexpr, 0, NULL, true); pstate->p_multiassign_exprs = lappend(pstate->p_multiassign_exprs, tle); } else ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("source for a multiple-column UPDATE item must be a sub-SELECT or ROW() expression"), parser_errposition(pstate, exprLocation(maref->source)))); } else { /* * Second or later column in a multiassignment. Re-fetch the * transformed SubLink or RowExpr, which we assume is still the last * entry in p_multiassign_exprs. */ Assert(pstate->p_multiassign_exprs != NIL); tle = (TargetEntry *) llast(pstate->p_multiassign_exprs); } /* * Emit the appropriate output expression for the current column */ if (IsA(tle->expr, SubLink)) { Param *param; sublink = (SubLink *) tle->expr; Assert(sublink->subLinkType == MULTIEXPR_SUBLINK); qtree = castNode(Query, sublink->subselect); /* Build a Param representing the current subquery output column */ tle = (TargetEntry *) list_nth(qtree->targetList, maref->colno - 1); Assert(!tle->resjunk); param = makeNode(Param); param->paramkind = PARAM_MULTIEXPR; param->paramid = (sublink->subLinkId << 16) | maref->colno; param->paramtype = exprType((Node *) tle->expr); param->paramtypmod = exprTypmod((Node *) tle->expr); param->paramcollid = exprCollation((Node *) tle->expr); param->location = exprLocation((Node *) tle->expr); return (Node *) param; } if (IsA(tle->expr, RowExpr)) { Node *result; rexpr = (RowExpr *) tle->expr; /* Just extract and return the next element of the RowExpr */ result = (Node *) list_nth(rexpr->args, maref->colno - 1); /* * If we're at the last column, delete the RowExpr from * p_multiassign_exprs; we don't need it anymore, and don't want it in * the finished UPDATE tlist. We assume this is still the last entry * in p_multiassign_exprs. */ if (maref->colno == maref->ncolumns) pstate->p_multiassign_exprs = list_delete_last(pstate->p_multiassign_exprs); return result; } elog(ERROR, "unexpected expr type in multiassign list"); return NULL; /* keep compiler quiet */ } static Node * transformCaseExpr(ParseState *pstate, CaseExpr *c) { CaseExpr *newc = makeNode(CaseExpr); Node *last_srf = pstate->p_last_srf; Node *arg; CaseTestExpr *placeholder; List *newargs; List *resultexprs; ListCell *l; Node *defresult; Oid ptype; /* transform the test expression, if any */ arg = transformExprRecurse(pstate, (Node *) c->arg); /* generate placeholder for test expression */ if (arg) { /* * If test expression is an untyped literal, force it to text. We have * to do something now because we won't be able to do this coercion on * the placeholder. This is not as flexible as what was done in 7.4 * and before, but it's good enough to handle the sort of silly coding * commonly seen. */ if (exprType(arg) == UNKNOWNOID) arg = coerce_to_common_type(pstate, arg, TEXTOID, "CASE"); /* * Run collation assignment on the test expression so that we know * what collation to mark the placeholder with. In principle we could * leave it to parse_collate.c to do that later, but propagating the * result to the CaseTestExpr would be unnecessarily complicated. */ assign_expr_collations(pstate, arg); placeholder = makeNode(CaseTestExpr); placeholder->typeId = exprType(arg); placeholder->typeMod = exprTypmod(arg); placeholder->collation = exprCollation(arg); } else placeholder = NULL; newc->arg = (Expr *) arg; /* transform the list of arguments */ newargs = NIL; resultexprs = NIL; foreach(l, c->args) { CaseWhen *w = lfirst_node(CaseWhen, l); CaseWhen *neww = makeNode(CaseWhen); Node *warg; warg = (Node *) w->expr; if (placeholder) { /* shorthand form was specified, so expand... */ warg = (Node *) makeSimpleA_Expr(AEXPR_OP, "=", (Node *) placeholder, warg, w->location); } neww->expr = (Expr *) transformExprRecurse(pstate, warg); neww->expr = (Expr *) coerce_to_boolean(pstate, (Node *) neww->expr, "CASE/WHEN"); warg = (Node *) w->result; neww->result = (Expr *) transformExprRecurse(pstate, warg); neww->location = w->location; newargs = lappend(newargs, neww); resultexprs = lappend(resultexprs, neww->result); } newc->args = newargs; /* transform the default clause */ defresult = (Node *) c->defresult; if (defresult == NULL) { A_Const *n = makeNode(A_Const); n->isnull = true; n->location = -1; defresult = (Node *) n; } newc->defresult = (Expr *) transformExprRecurse(pstate, defresult); /* * Note: default result is considered the most significant type in * determining preferred type. This is how the code worked before, but it * seems a little bogus to me --- tgl */ resultexprs = lcons(newc->defresult, resultexprs); ptype = select_common_type(pstate, resultexprs, "CASE", NULL); Assert(OidIsValid(ptype)); newc->casetype = ptype; /* casecollid will be set by parse_collate.c */ /* Convert default result clause, if necessary */ newc->defresult = (Expr *) coerce_to_common_type(pstate, (Node *) newc->defresult, ptype, "CASE/ELSE"); /* Convert when-clause results, if necessary */ foreach(l, newc->args) { CaseWhen *w = (CaseWhen *) lfirst(l); w->result = (Expr *) coerce_to_common_type(pstate, (Node *) w->result, ptype, "CASE/WHEN"); } /* if any subexpression contained a SRF, complain */ if (pstate->p_last_srf != last_srf) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), /* translator: %s is name of a SQL construct, eg GROUP BY */ errmsg("set-returning functions are not allowed in %s", "CASE"), errhint("You might be able to move the set-returning function into a LATERAL FROM item."), parser_errposition(pstate, exprLocation(pstate->p_last_srf)))); newc->location = c->location; return (Node *) newc; } static Node * transformSubLink(ParseState *pstate, SubLink *sublink) { Node *result = (Node *) sublink; Query *qtree; const char *err; /* * Check to see if the sublink is in an invalid place within the query. We * allow sublinks everywhere in SELECT/INSERT/UPDATE/DELETE/MERGE, but * generally not in utility statements. */ err = NULL; switch (pstate->p_expr_kind) { case EXPR_KIND_NONE: Assert(false); /* can't happen */ break; case EXPR_KIND_OTHER: /* Accept sublink here; caller must throw error if wanted */ break; case EXPR_KIND_JOIN_ON: case EXPR_KIND_JOIN_USING: case EXPR_KIND_FROM_SUBSELECT: case EXPR_KIND_FROM_FUNCTION: case EXPR_KIND_WHERE: case EXPR_KIND_POLICY: case EXPR_KIND_HAVING: case EXPR_KIND_FILTER: case EXPR_KIND_WINDOW_PARTITION: case EXPR_KIND_WINDOW_ORDER: case EXPR_KIND_WINDOW_FRAME_RANGE: case EXPR_KIND_WINDOW_FRAME_ROWS: case EXPR_KIND_WINDOW_FRAME_GROUPS: case EXPR_KIND_SELECT_TARGET: case EXPR_KIND_INSERT_TARGET: case EXPR_KIND_UPDATE_SOURCE: case EXPR_KIND_UPDATE_TARGET: case EXPR_KIND_MERGE_WHEN: case EXPR_KIND_GROUP_BY: case EXPR_KIND_ORDER_BY: case EXPR_KIND_DISTINCT_ON: case EXPR_KIND_LIMIT: case EXPR_KIND_OFFSET: case EXPR_KIND_RETURNING: case EXPR_KIND_VALUES: case EXPR_KIND_VALUES_SINGLE: case EXPR_KIND_CYCLE_MARK: /* okay */ break; case EXPR_KIND_CHECK_CONSTRAINT: case EXPR_KIND_DOMAIN_CHECK: err = _("cannot use subquery in check constraint"); break; case EXPR_KIND_COLUMN_DEFAULT: case EXPR_KIND_FUNCTION_DEFAULT: err = _("cannot use subquery in DEFAULT expression"); break; case EXPR_KIND_INDEX_EXPRESSION: err = _("cannot use subquery in index expression"); break; case EXPR_KIND_INDEX_PREDICATE: err = _("cannot use subquery in index predicate"); break; case EXPR_KIND_STATS_EXPRESSION: err = _("cannot use subquery in statistics expression"); break; case EXPR_KIND_ALTER_COL_TRANSFORM: err = _("cannot use subquery in transform expression"); break; case EXPR_KIND_EXECUTE_PARAMETER: err = _("cannot use subquery in EXECUTE parameter"); break; case EXPR_KIND_TRIGGER_WHEN: err = _("cannot use subquery in trigger WHEN condition"); break; case EXPR_KIND_PARTITION_BOUND: err = _("cannot use subquery in partition bound"); break; case EXPR_KIND_PARTITION_EXPRESSION: err = _("cannot use subquery in partition key expression"); break; case EXPR_KIND_CALL_ARGUMENT: err = _("cannot use subquery in CALL argument"); break; case EXPR_KIND_COPY_WHERE: err = _("cannot use subquery in COPY FROM WHERE condition"); break; case EXPR_KIND_GENERATED_COLUMN: err = _("cannot use subquery in column generation expression"); break; /* * There is intentionally no default: case here, so that the * compiler will warn if we add a new ParseExprKind without * extending this switch. If we do see an unrecognized value at * runtime, the behavior will be the same as for EXPR_KIND_OTHER, * which is sane anyway. */ } if (err) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg_internal("%s", err), parser_errposition(pstate, sublink->location))); pstate->p_hasSubLinks = true; /* * OK, let's transform the sub-SELECT. */ qtree = parse_sub_analyze(sublink->subselect, pstate, NULL, false, true); /* * Check that we got a SELECT. Anything else should be impossible given * restrictions of the grammar, but check anyway. */ if (!IsA(qtree, Query) || qtree->commandType != CMD_SELECT) elog(ERROR, "unexpected non-SELECT command in SubLink"); sublink->subselect = (Node *) qtree; if (sublink->subLinkType == EXISTS_SUBLINK) { /* * EXISTS needs no test expression or combining operator. These fields * should be null already, but make sure. */ sublink->testexpr = NULL; sublink->operName = NIL; } else if (sublink->subLinkType == EXPR_SUBLINK || sublink->subLinkType == ARRAY_SUBLINK) { /* * Make sure the subselect delivers a single column (ignoring resjunk * targets). */ if (count_nonjunk_tlist_entries(qtree->targetList) != 1) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("subquery must return only one column"), parser_errposition(pstate, sublink->location))); /* * EXPR and ARRAY need no test expression or combining operator. These * fields should be null already, but make sure. */ sublink->testexpr = NULL; sublink->operName = NIL; } else if (sublink->subLinkType == MULTIEXPR_SUBLINK) { /* Same as EXPR case, except no restriction on number of columns */ sublink->testexpr = NULL; sublink->operName = NIL; } else { /* ALL, ANY, or ROWCOMPARE: generate row-comparing expression */ Node *lefthand; List *left_list; List *right_list; ListCell *l; /* * If the source was "x IN (select)", convert to "x = ANY (select)". */ if (sublink->operName == NIL) sublink->operName = list_make1(makeString("=")); /* * Transform lefthand expression, and convert to a list */ lefthand = transformExprRecurse(pstate, sublink->testexpr); if (lefthand && IsA(lefthand, RowExpr)) left_list = ((RowExpr *) lefthand)->args; else left_list = list_make1(lefthand); /* * Build a list of PARAM_SUBLINK nodes representing the output columns * of the subquery. */ right_list = NIL; foreach(l, qtree->targetList) { TargetEntry *tent = (TargetEntry *) lfirst(l); Param *param; if (tent->resjunk) continue; param = makeNode(Param); param->paramkind = PARAM_SUBLINK; param->paramid = tent->resno; param->paramtype = exprType((Node *) tent->expr); param->paramtypmod = exprTypmod((Node *) tent->expr); param->paramcollid = exprCollation((Node *) tent->expr); param->location = -1; right_list = lappend(right_list, param); } /* * We could rely on make_row_comparison_op to complain if the list * lengths differ, but we prefer to generate a more specific error * message. */ if (list_length(left_list) < list_length(right_list)) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("subquery has too many columns"), parser_errposition(pstate, sublink->location))); if (list_length(left_list) > list_length(right_list)) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("subquery has too few columns"), parser_errposition(pstate, sublink->location))); /* * Identify the combining operator(s) and generate a suitable * row-comparison expression. */ sublink->testexpr = make_row_comparison_op(pstate, sublink->operName, left_list, right_list, sublink->location); } return result; } /* * transformArrayExpr * * If the caller specifies the target type, the resulting array will * be of exactly that type. Otherwise we try to infer a common type * for the elements using select_common_type(). */ static Node * transformArrayExpr(ParseState *pstate, A_ArrayExpr *a, Oid array_type, Oid element_type, int32 typmod) { ArrayExpr *newa = makeNode(ArrayExpr); List *newelems = NIL; List *newcoercedelems = NIL; ListCell *element; Oid coerce_type; bool coerce_hard; /* * Transform the element expressions * * Assume that the array is one-dimensional unless we find an array-type * element expression. */ newa->multidims = false; foreach(element, a->elements) { Node *e = (Node *) lfirst(element); Node *newe; /* * If an element is itself an A_ArrayExpr, recurse directly so that we * can pass down any target type we were given. */ if (IsA(e, A_ArrayExpr)) { newe = transformArrayExpr(pstate, (A_ArrayExpr *) e, array_type, element_type, typmod); /* we certainly have an array here */ Assert(array_type == InvalidOid || array_type == exprType(newe)); newa->multidims = true; } else { newe = transformExprRecurse(pstate, e); /* * Check for sub-array expressions, if we haven't already found * one. */ if (!newa->multidims && type_is_array(exprType(newe))) newa->multidims = true; } newelems = lappend(newelems, newe); } /* * Select a target type for the elements. * * If we haven't been given a target array type, we must try to deduce a * common type based on the types of the individual elements present. */ if (OidIsValid(array_type)) { /* Caller must ensure array_type matches element_type */ Assert(OidIsValid(element_type)); coerce_type = (newa->multidims ? array_type : element_type); coerce_hard = true; } else { /* Can't handle an empty array without a target type */ if (newelems == NIL) ereport(ERROR, (errcode(ERRCODE_INDETERMINATE_DATATYPE), errmsg("cannot determine type of empty array"), errhint("Explicitly cast to the desired type, " "for example ARRAY[]::integer[]."), parser_errposition(pstate, a->location))); /* Select a common type for the elements */ coerce_type = select_common_type(pstate, newelems, "ARRAY", NULL); if (newa->multidims) { array_type = coerce_type; element_type = get_element_type(array_type); if (!OidIsValid(element_type)) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_OBJECT), errmsg("could not find element type for data type %s", format_type_be(array_type)), parser_errposition(pstate, a->location))); } else { element_type = coerce_type; array_type = get_array_type(element_type); if (!OidIsValid(array_type)) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_OBJECT), errmsg("could not find array type for data type %s", format_type_be(element_type)), parser_errposition(pstate, a->location))); } coerce_hard = false; } /* * Coerce elements to target type * * If the array has been explicitly cast, then the elements are in turn * explicitly coerced. * * If the array's type was merely derived from the common type of its * elements, then the elements are implicitly coerced to the common type. * This is consistent with other uses of select_common_type(). */ foreach(element, newelems) { Node *e = (Node *) lfirst(element); Node *newe; if (coerce_hard) { newe = coerce_to_target_type(pstate, e, exprType(e), coerce_type, typmod, COERCION_EXPLICIT, COERCE_EXPLICIT_CAST, -1); if (newe == NULL) ereport(ERROR, (errcode(ERRCODE_CANNOT_COERCE), errmsg("cannot cast type %s to %s", format_type_be(exprType(e)), format_type_be(coerce_type)), parser_errposition(pstate, exprLocation(e)))); } else newe = coerce_to_common_type(pstate, e, coerce_type, "ARRAY"); newcoercedelems = lappend(newcoercedelems, newe); } newa->array_typeid = array_type; /* array_collid will be set by parse_collate.c */ newa->element_typeid = element_type; newa->elements = newcoercedelems; newa->location = a->location; return (Node *) newa; } static Node * transformRowExpr(ParseState *pstate, RowExpr *r, bool allowDefault) { RowExpr *newr; char fname[16]; int fnum; newr = makeNode(RowExpr); /* Transform the field expressions */ newr->args = transformExpressionList(pstate, r->args, pstate->p_expr_kind, allowDefault); /* Disallow more columns than will fit in a tuple */ if (list_length(newr->args) > MaxTupleAttributeNumber) ereport(ERROR, (errcode(ERRCODE_TOO_MANY_COLUMNS), errmsg("ROW expressions can have at most %d entries", MaxTupleAttributeNumber), parser_errposition(pstate, r->location))); /* Barring later casting, we consider the type RECORD */ newr->row_typeid = RECORDOID; newr->row_format = COERCE_IMPLICIT_CAST; /* ROW() has anonymous columns, so invent some field names */ newr->colnames = NIL; for (fnum = 1; fnum <= list_length(newr->args); fnum++) { snprintf(fname, sizeof(fname), "f%d", fnum); newr->colnames = lappend(newr->colnames, makeString(pstrdup(fname))); } newr->location = r->location; return (Node *) newr; } static Node * transformCoalesceExpr(ParseState *pstate, CoalesceExpr *c) { CoalesceExpr *newc = makeNode(CoalesceExpr); Node *last_srf = pstate->p_last_srf; List *newargs = NIL; List *newcoercedargs = NIL; ListCell *args; foreach(args, c->args) { Node *e = (Node *) lfirst(args); Node *newe; newe = transformExprRecurse(pstate, e); newargs = lappend(newargs, newe); } newc->coalescetype = select_common_type(pstate, newargs, "COALESCE", NULL); /* coalescecollid will be set by parse_collate.c */ /* Convert arguments if necessary */ foreach(args, newargs) { Node *e = (Node *) lfirst(args); Node *newe; newe = coerce_to_common_type(pstate, e, newc->coalescetype, "COALESCE"); newcoercedargs = lappend(newcoercedargs, newe); } /* if any subexpression contained a SRF, complain */ if (pstate->p_last_srf != last_srf) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), /* translator: %s is name of a SQL construct, eg GROUP BY */ errmsg("set-returning functions are not allowed in %s", "COALESCE"), errhint("You might be able to move the set-returning function into a LATERAL FROM item."), parser_errposition(pstate, exprLocation(pstate->p_last_srf)))); newc->args = newcoercedargs; newc->location = c->location; return (Node *) newc; } static Node * transformMinMaxExpr(ParseState *pstate, MinMaxExpr *m) { MinMaxExpr *newm = makeNode(MinMaxExpr); List *newargs = NIL; List *newcoercedargs = NIL; const char *funcname = (m->op == IS_GREATEST) ? "GREATEST" : "LEAST"; ListCell *args; newm->op = m->op; foreach(args, m->args) { Node *e = (Node *) lfirst(args); Node *newe; newe = transformExprRecurse(pstate, e); newargs = lappend(newargs, newe); } newm->minmaxtype = select_common_type(pstate, newargs, funcname, NULL); /* minmaxcollid and inputcollid will be set by parse_collate.c */ /* Convert arguments if necessary */ foreach(args, newargs) { Node *e = (Node *) lfirst(args); Node *newe; newe = coerce_to_common_type(pstate, e, newm->minmaxtype, funcname); newcoercedargs = lappend(newcoercedargs, newe); } newm->args = newcoercedargs; newm->location = m->location; return (Node *) newm; } static Node * transformSQLValueFunction(ParseState *pstate, SQLValueFunction *svf) { /* * All we need to do is insert the correct result type and (where needed) * validate the typmod, so we just modify the node in-place. */ switch (svf->op) { case SVFOP_CURRENT_DATE: svf->type = DATEOID; break; case SVFOP_CURRENT_TIME: svf->type = TIMETZOID; break; case SVFOP_CURRENT_TIME_N: svf->type = TIMETZOID; svf->typmod = anytime_typmod_check(true, svf->typmod); break; case SVFOP_CURRENT_TIMESTAMP: svf->type = TIMESTAMPTZOID; break; case SVFOP_CURRENT_TIMESTAMP_N: svf->type = TIMESTAMPTZOID; svf->typmod = anytimestamp_typmod_check(true, svf->typmod); break; case SVFOP_LOCALTIME: svf->type = TIMEOID; break; case SVFOP_LOCALTIME_N: svf->type = TIMEOID; svf->typmod = anytime_typmod_check(false, svf->typmod); break; case SVFOP_LOCALTIMESTAMP: svf->type = TIMESTAMPOID; break; case SVFOP_LOCALTIMESTAMP_N: svf->type = TIMESTAMPOID; svf->typmod = anytimestamp_typmod_check(false, svf->typmod); break; case SVFOP_CURRENT_ROLE: case SVFOP_CURRENT_USER: case SVFOP_USER: case SVFOP_SESSION_USER: case SVFOP_CURRENT_CATALOG: case SVFOP_CURRENT_SCHEMA: svf->type = NAMEOID; break; } return (Node *) svf; } static Node * transformXmlExpr(ParseState *pstate, XmlExpr *x) { XmlExpr *newx; ListCell *lc; int i; newx = makeNode(XmlExpr); newx->op = x->op; if (x->name) newx->name = map_sql_identifier_to_xml_name(x->name, false, false); else newx->name = NULL; newx->xmloption = x->xmloption; newx->type = XMLOID; /* this just marks the node as transformed */ newx->typmod = -1; newx->location = x->location; /* * gram.y built the named args as a list of ResTarget. Transform each, * and break the names out as a separate list. */ newx->named_args = NIL; newx->arg_names = NIL; foreach(lc, x->named_args) { ResTarget *r = lfirst_node(ResTarget, lc); Node *expr; char *argname; expr = transformExprRecurse(pstate, r->val); if (r->name) argname = map_sql_identifier_to_xml_name(r->name, false, false); else if (IsA(r->val, ColumnRef)) argname = map_sql_identifier_to_xml_name(FigureColname(r->val), true, false); else { ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), x->op == IS_XMLELEMENT ? errmsg("unnamed XML attribute value must be a column reference") : errmsg("unnamed XML element value must be a column reference"), parser_errposition(pstate, r->location))); argname = NULL; /* keep compiler quiet */ } /* reject duplicate argnames in XMLELEMENT only */ if (x->op == IS_XMLELEMENT) { ListCell *lc2; foreach(lc2, newx->arg_names) { if (strcmp(argname, strVal(lfirst(lc2))) == 0) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("XML attribute name \"%s\" appears more than once", argname), parser_errposition(pstate, r->location))); } } newx->named_args = lappend(newx->named_args, expr); newx->arg_names = lappend(newx->arg_names, makeString(argname)); } /* The other arguments are of varying types depending on the function */ newx->args = NIL; i = 0; foreach(lc, x->args) { Node *e = (Node *) lfirst(lc); Node *newe; newe = transformExprRecurse(pstate, e); switch (x->op) { case IS_XMLCONCAT: newe = coerce_to_specific_type(pstate, newe, XMLOID, "XMLCONCAT"); break; case IS_XMLELEMENT: /* no coercion necessary */ break; case IS_XMLFOREST: newe = coerce_to_specific_type(pstate, newe, XMLOID, "XMLFOREST"); break; case IS_XMLPARSE: if (i == 0) newe = coerce_to_specific_type(pstate, newe, TEXTOID, "XMLPARSE"); else newe = coerce_to_boolean(pstate, newe, "XMLPARSE"); break; case IS_XMLPI: newe = coerce_to_specific_type(pstate, newe, TEXTOID, "XMLPI"); break; case IS_XMLROOT: if (i == 0) newe = coerce_to_specific_type(pstate, newe, XMLOID, "XMLROOT"); else if (i == 1) newe = coerce_to_specific_type(pstate, newe, TEXTOID, "XMLROOT"); else newe = coerce_to_specific_type(pstate, newe, INT4OID, "XMLROOT"); break; case IS_XMLSERIALIZE: /* not handled here */ Assert(false); break; case IS_DOCUMENT: newe = coerce_to_specific_type(pstate, newe, XMLOID, "IS DOCUMENT"); break; } newx->args = lappend(newx->args, newe); i++; } return (Node *) newx; } static Node * transformXmlSerialize(ParseState *pstate, XmlSerialize *xs) { Node *result; XmlExpr *xexpr; Oid targetType; int32 targetTypmod; xexpr = makeNode(XmlExpr); xexpr->op = IS_XMLSERIALIZE; xexpr->args = list_make1(coerce_to_specific_type(pstate, transformExprRecurse(pstate, xs->expr), XMLOID, "XMLSERIALIZE")); typenameTypeIdAndMod(pstate, xs->typeName, &targetType, &targetTypmod); xexpr->xmloption = xs->xmloption; xexpr->indent = xs->indent; xexpr->location = xs->location; /* We actually only need these to be able to parse back the expression. */ xexpr->type = targetType; xexpr->typmod = targetTypmod; /* * The actual target type is determined this way. SQL allows char and * varchar as target types. We allow anything that can be cast implicitly * from text. This way, user-defined text-like data types automatically * fit in. */ result = coerce_to_target_type(pstate, (Node *) xexpr, TEXTOID, targetType, targetTypmod, COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1); if (result == NULL) ereport(ERROR, (errcode(ERRCODE_CANNOT_COERCE), errmsg("cannot cast XMLSERIALIZE result to %s", format_type_be(targetType)), parser_errposition(pstate, xexpr->location))); return result; } static Node * transformBooleanTest(ParseState *pstate, BooleanTest *b) { const char *clausename; switch (b->booltesttype) { case IS_TRUE: clausename = "IS TRUE"; break; case IS_NOT_TRUE: clausename = "IS NOT TRUE"; break; case IS_FALSE: clausename = "IS FALSE"; break; case IS_NOT_FALSE: clausename = "IS NOT FALSE"; break; case IS_UNKNOWN: clausename = "IS UNKNOWN"; break; case IS_NOT_UNKNOWN: clausename = "IS NOT UNKNOWN"; break; default: elog(ERROR, "unrecognized booltesttype: %d", (int) b->booltesttype); clausename = NULL; /* keep compiler quiet */ } b->arg = (Expr *) transformExprRecurse(pstate, (Node *) b->arg); b->arg = (Expr *) coerce_to_boolean(pstate, (Node *) b->arg, clausename); return (Node *) b; } static Node * transformCurrentOfExpr(ParseState *pstate, CurrentOfExpr *cexpr) { /* CURRENT OF can only appear at top level of UPDATE/DELETE */ Assert(pstate->p_target_nsitem != NULL); cexpr->cvarno = pstate->p_target_nsitem->p_rtindex; /* * Check to see if the cursor name matches a parameter of type REFCURSOR. * If so, replace the raw name reference with a parameter reference. (This * is a hack for the convenience of plpgsql.) */ if (cexpr->cursor_name != NULL) /* in case already transformed */ { ColumnRef *cref = makeNode(ColumnRef); Node *node = NULL; /* Build an unqualified ColumnRef with the given name */ cref->fields = list_make1(makeString(cexpr->cursor_name)); cref->location = -1; /* See if there is a translation available from a parser hook */ if (pstate->p_pre_columnref_hook != NULL) node = pstate->p_pre_columnref_hook(pstate, cref); if (node == NULL && pstate->p_post_columnref_hook != NULL) node = pstate->p_post_columnref_hook(pstate, cref, NULL); /* * XXX Should we throw an error if we get a translation that isn't a * refcursor Param? For now it seems best to silently ignore false * matches. */ if (node != NULL && IsA(node, Param)) { Param *p = (Param *) node; if (p->paramkind == PARAM_EXTERN && p->paramtype == REFCURSOROID) { /* Matches, so convert CURRENT OF to a param reference */ cexpr->cursor_name = NULL; cexpr->cursor_param = p->paramid; } } } return (Node *) cexpr; } /* * Construct a whole-row reference to represent the notation "relation.*". */ static Node * transformWholeRowRef(ParseState *pstate, ParseNamespaceItem *nsitem, int sublevels_up, int location) { /* * Build the appropriate referencing node. Normally this can be a * whole-row Var, but if the nsitem is a JOIN USING alias then it contains * only a subset of the columns of the underlying join RTE, so that will * not work. Instead we immediately expand the reference into a RowExpr. * Since the JOIN USING's common columns are fully determined at this * point, there seems no harm in expanding it now rather than during * planning. * * Note that if the RTE is a function returning scalar, we create just a * plain reference to the function value, not a composite containing a * single column. This is pretty inconsistent at first sight, but it's * what we've done historically. One argument for it is that "rel" and * "rel.*" mean the same thing for composite relations, so why not for * scalar functions... */ if (nsitem->p_names == nsitem->p_rte->eref) { Var *result; result = makeWholeRowVar(nsitem->p_rte, nsitem->p_rtindex, sublevels_up, true); /* location is not filled in by makeWholeRowVar */ result->location = location; /* mark Var if it's nulled by any outer joins */ markNullableIfNeeded(pstate, result); /* mark relation as requiring whole-row SELECT access */ markVarForSelectPriv(pstate, result); return (Node *) result; } else { RowExpr *rowexpr; List *fields; /* * We want only as many columns as are listed in p_names->colnames, * and we should use those names not whatever possibly-aliased names * are in the RTE. We needn't worry about marking the RTE for SELECT * access, as the common columns are surely so marked already. */ expandRTE(nsitem->p_rte, nsitem->p_rtindex, sublevels_up, location, false, NULL, &fields); rowexpr = makeNode(RowExpr); rowexpr->args = list_truncate(fields, list_length(nsitem->p_names->colnames)); rowexpr->row_typeid = RECORDOID; rowexpr->row_format = COERCE_IMPLICIT_CAST; rowexpr->colnames = copyObject(nsitem->p_names->colnames); rowexpr->location = location; /* XXX we ought to mark the row as possibly nullable */ return (Node *) rowexpr; } } /* * Handle an explicit CAST construct. * * Transform the argument, look up the type name, and apply any necessary * coercion function(s). */ static Node * transformTypeCast(ParseState *pstate, TypeCast *tc) { Node *result; Node *arg = tc->arg; Node *expr; Oid inputType; Oid targetType; int32 targetTypmod; int location; /* Look up the type name first */ typenameTypeIdAndMod(pstate, tc->typeName, &targetType, &targetTypmod); /* * If the subject of the typecast is an ARRAY[] construct and the target * type is an array type, we invoke transformArrayExpr() directly so that * we can pass down the type information. This avoids some cases where * transformArrayExpr() might not infer the correct type. Otherwise, just * transform the argument normally. */ if (IsA(arg, A_ArrayExpr)) { Oid targetBaseType; int32 targetBaseTypmod; Oid elementType; /* * If target is a domain over array, work with the base array type * here. Below, we'll cast the array type to the domain. In the * usual case that the target is not a domain, the remaining steps * will be a no-op. */ targetBaseTypmod = targetTypmod; targetBaseType = getBaseTypeAndTypmod(targetType, &targetBaseTypmod); elementType = get_element_type(targetBaseType); if (OidIsValid(elementType)) { expr = transformArrayExpr(pstate, (A_ArrayExpr *) arg, targetBaseType, elementType, targetBaseTypmod); } else expr = transformExprRecurse(pstate, arg); } else expr = transformExprRecurse(pstate, arg); inputType = exprType(expr); if (inputType == InvalidOid) return expr; /* do nothing if NULL input */ /* * Location of the coercion is preferentially the location of the :: or * CAST symbol, but if there is none then use the location of the type * name (this can happen in TypeName 'string' syntax, for instance). */ location = tc->location; if (location < 0) location = tc->typeName->location; result = coerce_to_target_type(pstate, expr, inputType, targetType, targetTypmod, COERCION_EXPLICIT, COERCE_EXPLICIT_CAST, location); if (result == NULL) ereport(ERROR, (errcode(ERRCODE_CANNOT_COERCE), errmsg("cannot cast type %s to %s", format_type_be(inputType), format_type_be(targetType)), parser_coercion_errposition(pstate, location, expr))); return result; } /* * Handle an explicit COLLATE clause. * * Transform the argument, and look up the collation name. */ static Node * transformCollateClause(ParseState *pstate, CollateClause *c) { CollateExpr *newc; Oid argtype; newc = makeNode(CollateExpr); newc->arg = (Expr *) transformExprRecurse(pstate, c->arg); argtype = exprType((Node *) newc->arg); /* * The unknown type is not collatable, but coerce_type() takes care of it * separately, so we'll let it go here. */ if (!type_is_collatable(argtype) && argtype != UNKNOWNOID) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("collations are not supported by type %s", format_type_be(argtype)), parser_errposition(pstate, c->location))); newc->collOid = LookupCollation(pstate, c->collname, c->location); newc->location = c->location; return (Node *) newc; } /* * Transform a "row compare-op row" construct * * The inputs are lists of already-transformed expressions. * As with coerce_type, pstate may be NULL if no special unknown-Param * processing is wanted. * * The output may be a single OpExpr, an AND or OR combination of OpExprs, * or a RowCompareExpr. In all cases it is guaranteed to return boolean. * The AND, OR, and RowCompareExpr cases further imply things about the * behavior of the operators (ie, they behave as =, <>, or < <= > >=). */ static Node * make_row_comparison_op(ParseState *pstate, List *opname, List *largs, List *rargs, int location) { RowCompareExpr *rcexpr; RowCompareType rctype; List *opexprs; List *opnos; List *opfamilies; ListCell *l, *r; List **opinfo_lists; Bitmapset *strats; int nopers; int i; nopers = list_length(largs); if (nopers != list_length(rargs)) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("unequal number of entries in row expressions"), parser_errposition(pstate, location))); /* * We can't compare zero-length rows because there is no principled basis * for figuring out what the operator is. */ if (nopers == 0) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("cannot compare rows of zero length"), parser_errposition(pstate, location))); /* * Identify all the pairwise operators, using make_op so that behavior is * the same as in the simple scalar case. */ opexprs = NIL; forboth(l, largs, r, rargs) { Node *larg = (Node *) lfirst(l); Node *rarg = (Node *) lfirst(r); OpExpr *cmp; cmp = castNode(OpExpr, make_op(pstate, opname, larg, rarg, pstate->p_last_srf, location)); /* * We don't use coerce_to_boolean here because we insist on the * operator yielding boolean directly, not via coercion. If it * doesn't yield bool it won't be in any index opfamilies... */ if (cmp->opresulttype != BOOLOID) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("row comparison operator must yield type boolean, " "not type %s", format_type_be(cmp->opresulttype)), parser_errposition(pstate, location))); if (expression_returns_set((Node *) cmp)) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("row comparison operator must not return a set"), parser_errposition(pstate, location))); opexprs = lappend(opexprs, cmp); } /* * If rows are length 1, just return the single operator. In this case we * don't insist on identifying btree semantics for the operator (but we * still require it to return boolean). */ if (nopers == 1) return (Node *) linitial(opexprs); /* * Now we must determine which row comparison semantics (= <> < <= > >=) * apply to this set of operators. We look for btree opfamilies * containing the operators, and see which interpretations (strategy * numbers) exist for each operator. */ opinfo_lists = (List **) palloc(nopers * sizeof(List *)); strats = NULL; i = 0; foreach(l, opexprs) { Oid opno = ((OpExpr *) lfirst(l))->opno; Bitmapset *this_strats; ListCell *j; opinfo_lists[i] = get_op_btree_interpretation(opno); /* * convert strategy numbers into a Bitmapset to make the intersection * calculation easy. */ this_strats = NULL; foreach(j, opinfo_lists[i]) { OpBtreeInterpretation *opinfo = lfirst(j); this_strats = bms_add_member(this_strats, opinfo->strategy); } if (i == 0) strats = this_strats; else strats = bms_int_members(strats, this_strats); i++; } /* * If there are multiple common interpretations, we may use any one of * them ... this coding arbitrarily picks the lowest btree strategy * number. */ i = bms_next_member(strats, -1); if (i < 0) { /* No common interpretation, so fail */ ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("could not determine interpretation of row comparison operator %s", strVal(llast(opname))), errhint("Row comparison operators must be associated with btree operator families."), parser_errposition(pstate, location))); } rctype = (RowCompareType) i; /* * For = and <> cases, we just combine the pairwise operators with AND or * OR respectively. */ if (rctype == ROWCOMPARE_EQ) return (Node *) makeBoolExpr(AND_EXPR, opexprs, location); if (rctype == ROWCOMPARE_NE) return (Node *) makeBoolExpr(OR_EXPR, opexprs, location); /* * Otherwise we need to choose exactly which opfamily to associate with * each operator. */ opfamilies = NIL; for (i = 0; i < nopers; i++) { Oid opfamily = InvalidOid; ListCell *j; foreach(j, opinfo_lists[i]) { OpBtreeInterpretation *opinfo = lfirst(j); if (opinfo->strategy == rctype) { opfamily = opinfo->opfamily_id; break; } } if (OidIsValid(opfamily)) opfamilies = lappend_oid(opfamilies, opfamily); else /* should not happen */ ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("could not determine interpretation of row comparison operator %s", strVal(llast(opname))), errdetail("There are multiple equally-plausible candidates."), parser_errposition(pstate, location))); } /* * Now deconstruct the OpExprs and create a RowCompareExpr. * * Note: can't just reuse the passed largs/rargs lists, because of * possibility that make_op inserted coercion operations. */ opnos = NIL; largs = NIL; rargs = NIL; foreach(l, opexprs) { OpExpr *cmp = (OpExpr *) lfirst(l); opnos = lappend_oid(opnos, cmp->opno); largs = lappend(largs, linitial(cmp->args)); rargs = lappend(rargs, lsecond(cmp->args)); } rcexpr = makeNode(RowCompareExpr); rcexpr->rctype = rctype; rcexpr->opnos = opnos; rcexpr->opfamilies = opfamilies; rcexpr->inputcollids = NIL; /* assign_expr_collations will fix this */ rcexpr->largs = largs; rcexpr->rargs = rargs; return (Node *) rcexpr; } /* * Transform a "row IS DISTINCT FROM row" construct * * The input RowExprs are already transformed */ static Node * make_row_distinct_op(ParseState *pstate, List *opname, RowExpr *lrow, RowExpr *rrow, int location) { Node *result = NULL; List *largs = lrow->args; List *rargs = rrow->args; ListCell *l, *r; if (list_length(largs) != list_length(rargs)) ereport(ERROR, (errcode(ERRCODE_SYNTAX_ERROR), errmsg("unequal number of entries in row expressions"), parser_errposition(pstate, location))); forboth(l, largs, r, rargs) { Node *larg = (Node *) lfirst(l); Node *rarg = (Node *) lfirst(r); Node *cmp; cmp = (Node *) make_distinct_op(pstate, opname, larg, rarg, location); if (result == NULL) result = cmp; else result = (Node *) makeBoolExpr(OR_EXPR, list_make2(result, cmp), location); } if (result == NULL) { /* zero-length rows? Generate constant FALSE */ result = makeBoolConst(false, false); } return result; } /* * make the node for an IS DISTINCT FROM operator */ static Expr * make_distinct_op(ParseState *pstate, List *opname, Node *ltree, Node *rtree, int location) { Expr *result; result = make_op(pstate, opname, ltree, rtree, pstate->p_last_srf, location); if (((OpExpr *) result)->opresulttype != BOOLOID) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("IS DISTINCT FROM requires = operator to yield boolean"), parser_errposition(pstate, location))); if (((OpExpr *) result)->opretset) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), /* translator: %s is name of a SQL construct, eg NULLIF */ errmsg("%s must not return a set", "IS DISTINCT FROM"), parser_errposition(pstate, location))); /* * We rely on DistinctExpr and OpExpr being same struct */ NodeSetTag(result, T_DistinctExpr); return result; } /* * Produce a NullTest node from an IS [NOT] DISTINCT FROM NULL construct * * "arg" is the untransformed other argument */ static Node * make_nulltest_from_distinct(ParseState *pstate, A_Expr *distincta, Node *arg) { NullTest *nt = makeNode(NullTest); nt->arg = (Expr *) transformExprRecurse(pstate, arg); /* the argument can be any type, so don't coerce it */ if (distincta->kind == AEXPR_NOT_DISTINCT) nt->nulltesttype = IS_NULL; else nt->nulltesttype = IS_NOT_NULL; /* argisrow = false is correct whether or not arg is composite */ nt->argisrow = false; nt->location = distincta->location; return (Node *) nt; } /* * Produce a string identifying an expression by kind. * * Note: when practical, use a simple SQL keyword for the result. If that * doesn't work well, check call sites to see whether custom error message * strings are required. */ const char * ParseExprKindName(ParseExprKind exprKind) { switch (exprKind) { case EXPR_KIND_NONE: return "invalid expression context"; case EXPR_KIND_OTHER: return "extension expression"; case EXPR_KIND_JOIN_ON: return "JOIN/ON"; case EXPR_KIND_JOIN_USING: return "JOIN/USING"; case EXPR_KIND_FROM_SUBSELECT: return "sub-SELECT in FROM"; case EXPR_KIND_FROM_FUNCTION: return "function in FROM"; case EXPR_KIND_WHERE: return "WHERE"; case EXPR_KIND_POLICY: return "POLICY"; case EXPR_KIND_HAVING: return "HAVING"; case EXPR_KIND_FILTER: return "FILTER"; case EXPR_KIND_WINDOW_PARTITION: return "window PARTITION BY"; case EXPR_KIND_WINDOW_ORDER: return "window ORDER BY"; case EXPR_KIND_WINDOW_FRAME_RANGE: return "window RANGE"; case EXPR_KIND_WINDOW_FRAME_ROWS: return "window ROWS"; case EXPR_KIND_WINDOW_FRAME_GROUPS: return "window GROUPS"; case EXPR_KIND_SELECT_TARGET: return "SELECT"; case EXPR_KIND_INSERT_TARGET: return "INSERT"; case EXPR_KIND_UPDATE_SOURCE: case EXPR_KIND_UPDATE_TARGET: return "UPDATE"; case EXPR_KIND_MERGE_WHEN: return "MERGE WHEN"; case EXPR_KIND_GROUP_BY: return "GROUP BY"; case EXPR_KIND_ORDER_BY: return "ORDER BY"; case EXPR_KIND_DISTINCT_ON: return "DISTINCT ON"; case EXPR_KIND_LIMIT: return "LIMIT"; case EXPR_KIND_OFFSET: return "OFFSET"; case EXPR_KIND_RETURNING: return "RETURNING"; case EXPR_KIND_VALUES: case EXPR_KIND_VALUES_SINGLE: return "VALUES"; case EXPR_KIND_CHECK_CONSTRAINT: case EXPR_KIND_DOMAIN_CHECK: return "CHECK"; case EXPR_KIND_COLUMN_DEFAULT: case EXPR_KIND_FUNCTION_DEFAULT: return "DEFAULT"; case EXPR_KIND_INDEX_EXPRESSION: return "index expression"; case EXPR_KIND_INDEX_PREDICATE: return "index predicate"; case EXPR_KIND_STATS_EXPRESSION: return "statistics expression"; case EXPR_KIND_ALTER_COL_TRANSFORM: return "USING"; case EXPR_KIND_EXECUTE_PARAMETER: return "EXECUTE"; case EXPR_KIND_TRIGGER_WHEN: return "WHEN"; case EXPR_KIND_PARTITION_BOUND: return "partition bound"; case EXPR_KIND_PARTITION_EXPRESSION: return "PARTITION BY"; case EXPR_KIND_CALL_ARGUMENT: return "CALL"; case EXPR_KIND_COPY_WHERE: return "WHERE"; case EXPR_KIND_GENERATED_COLUMN: return "GENERATED AS"; case EXPR_KIND_CYCLE_MARK: return "CYCLE"; /* * There is intentionally no default: case here, so that the * compiler will warn if we add a new ParseExprKind without * extending this switch. If we do see an unrecognized value at * runtime, we'll fall through to the "unrecognized" return. */ } return "unrecognized expression kind"; } /* * Make string Const node from JSON encoding name. * * UTF8 is default encoding. */ static Const * getJsonEncodingConst(JsonFormat *format) { JsonEncoding encoding; const char *enc; Name encname = palloc(sizeof(NameData)); if (!format || format->format_type == JS_FORMAT_DEFAULT || format->encoding == JS_ENC_DEFAULT) encoding = JS_ENC_UTF8; else encoding = format->encoding; switch (encoding) { case JS_ENC_UTF16: enc = "UTF16"; break; case JS_ENC_UTF32: enc = "UTF32"; break; case JS_ENC_UTF8: enc = "UTF8"; break; default: elog(ERROR, "invalid JSON encoding: %d", encoding); break; } namestrcpy(encname, enc); return makeConst(NAMEOID, -1, InvalidOid, NAMEDATALEN, NameGetDatum(encname), false, false); } /* * Make bytea => text conversion using specified JSON format encoding. */ static Node * makeJsonByteaToTextConversion(Node *expr, JsonFormat *format, int location) { Const *encoding = getJsonEncodingConst(format); FuncExpr *fexpr = makeFuncExpr(F_CONVERT_FROM, TEXTOID, list_make2(expr, encoding), InvalidOid, InvalidOid, COERCE_EXPLICIT_CALL); fexpr->location = location; return (Node *) fexpr; } /* * Transform JSON value expression using specified input JSON format or * default format otherwise. * * Returned expression is either ve->raw_expr coerced to text (if needed) or * a JsonValueExpr with formatted_expr set to the coerced copy of raw_expr * if the specified format requires it. */ static Node * transformJsonValueExpr(ParseState *pstate, const char *constructName, JsonValueExpr *ve, JsonFormatType default_format) { Node *expr = transformExprRecurse(pstate, (Node *) ve->raw_expr); Node *rawexpr; JsonFormatType format; Oid exprtype; int location; char typcategory; bool typispreferred; if (exprType(expr) == UNKNOWNOID) expr = coerce_to_specific_type(pstate, expr, TEXTOID, constructName); rawexpr = expr; exprtype = exprType(expr); location = exprLocation(expr); get_type_category_preferred(exprtype, &typcategory, &typispreferred); if (ve->format->format_type != JS_FORMAT_DEFAULT) { if (ve->format->encoding != JS_ENC_DEFAULT && exprtype != BYTEAOID) ereport(ERROR, errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("JSON ENCODING clause is only allowed for bytea input type"), parser_errposition(pstate, ve->format->location)); if (exprtype == JSONOID || exprtype == JSONBOID) format = JS_FORMAT_DEFAULT; /* do not format json[b] types */ else format = ve->format->format_type; } else if (exprtype == JSONOID || exprtype == JSONBOID) format = JS_FORMAT_DEFAULT; /* do not format json[b] types */ else format = default_format; if (format != JS_FORMAT_DEFAULT) { Oid targettype = format == JS_FORMAT_JSONB ? JSONBOID : JSONOID; Node *coerced; if (exprtype != BYTEAOID && typcategory != TYPCATEGORY_STRING) ereport(ERROR, errcode(ERRCODE_DATATYPE_MISMATCH), ve->format->format_type == JS_FORMAT_DEFAULT ? errmsg("cannot use non-string types with implicit FORMAT JSON clause") : errmsg("cannot use non-string types with explicit FORMAT JSON clause"), parser_errposition(pstate, ve->format->location >= 0 ? ve->format->location : location)); /* Convert encoded JSON text from bytea. */ if (format == JS_FORMAT_JSON && exprtype == BYTEAOID) { expr = makeJsonByteaToTextConversion(expr, ve->format, location); exprtype = TEXTOID; } /* Try to coerce to the target type. */ coerced = coerce_to_target_type(pstate, expr, exprtype, targettype, -1, COERCION_EXPLICIT, COERCE_EXPLICIT_CAST, location); if (!coerced) { /* If coercion failed, use to_json()/to_jsonb() functions. */ Oid fnoid = targettype == JSONOID ? F_TO_JSON : F_TO_JSONB; FuncExpr *fexpr = makeFuncExpr(fnoid, targettype, list_make1(expr), InvalidOid, InvalidOid, COERCE_EXPLICIT_CALL); fexpr->location = location; coerced = (Node *) fexpr; } if (coerced == expr) expr = rawexpr; else { ve = copyObject(ve); ve->raw_expr = (Expr *) rawexpr; ve->formatted_expr = (Expr *) coerced; expr = (Node *) ve; } } /* If returning a JsonValueExpr, formatted_expr must have been set. */ Assert(!IsA(expr, JsonValueExpr) || ((JsonValueExpr *) expr)->formatted_expr != NULL); return expr; } /* * Checks specified output format for its applicability to the target type. */ static void checkJsonOutputFormat(ParseState *pstate, const JsonFormat *format, Oid targettype, bool allow_format_for_non_strings) { if (!allow_format_for_non_strings && format->format_type != JS_FORMAT_DEFAULT && (targettype != BYTEAOID && targettype != JSONOID && targettype != JSONBOID)) { char typcategory; bool typispreferred; get_type_category_preferred(targettype, &typcategory, &typispreferred); if (typcategory != TYPCATEGORY_STRING) ereport(ERROR, errcode(ERRCODE_FEATURE_NOT_SUPPORTED), parser_errposition(pstate, format->location), errmsg("cannot use JSON format with non-string output types")); } if (format->format_type == JS_FORMAT_JSON) { JsonEncoding enc = format->encoding != JS_ENC_DEFAULT ? format->encoding : JS_ENC_UTF8; if (targettype != BYTEAOID && format->encoding != JS_ENC_DEFAULT) ereport(ERROR, errcode(ERRCODE_FEATURE_NOT_SUPPORTED), parser_errposition(pstate, format->location), errmsg("cannot set JSON encoding for non-bytea output types")); if (enc != JS_ENC_UTF8) ereport(ERROR, errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("unsupported JSON encoding"), errhint("Only UTF8 JSON encoding is supported."), parser_errposition(pstate, format->location)); } } /* * Transform JSON output clause. * * Assigns target type oid and modifier. * Assigns default format or checks specified format for its applicability to * the target type. */ static JsonReturning * transformJsonOutput(ParseState *pstate, const JsonOutput *output, bool allow_format) { JsonReturning *ret; /* if output clause is not specified, make default clause value */ if (!output) { ret = makeNode(JsonReturning); ret->format = makeJsonFormat(JS_FORMAT_DEFAULT, JS_ENC_DEFAULT, -1); ret->typid = InvalidOid; ret->typmod = -1; return ret; } ret = copyObject(output->returning); typenameTypeIdAndMod(pstate, output->typeName, &ret->typid, &ret->typmod); if (output->typeName->setof) ereport(ERROR, errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("returning SETOF types is not supported in SQL/JSON functions")); if (ret->format->format_type == JS_FORMAT_DEFAULT) /* assign JSONB format when returning jsonb, or JSON format otherwise */ ret->format->format_type = ret->typid == JSONBOID ? JS_FORMAT_JSONB : JS_FORMAT_JSON; else checkJsonOutputFormat(pstate, ret->format, ret->typid, allow_format); return ret; } /* * Transform JSON output clause of JSON constructor functions. * * Derive RETURNING type, if not specified, from argument types. */ static JsonReturning * transformJsonConstructorOutput(ParseState *pstate, JsonOutput *output, List *args) { JsonReturning *returning = transformJsonOutput(pstate, output, true); if (!OidIsValid(returning->typid)) { ListCell *lc; bool have_jsonb = false; foreach(lc, args) { Node *expr = lfirst(lc); Oid typid = exprType(expr); have_jsonb |= typid == JSONBOID; if (have_jsonb) break; } if (have_jsonb) { returning->typid = JSONBOID; returning->format->format_type = JS_FORMAT_JSONB; } else { /* XXX TEXT is default by the standard, but we return JSON */ returning->typid = JSONOID; returning->format->format_type = JS_FORMAT_JSON; } returning->typmod = -1; } return returning; } /* * Coerce json[b]-valued function expression to the output type. */ static Node * coerceJsonFuncExpr(ParseState *pstate, Node *expr, const JsonReturning *returning, bool report_error) { Node *res; int location; Oid exprtype = exprType(expr); /* if output type is not specified or equals to function type, return */ if (!OidIsValid(returning->typid) || returning->typid == exprtype) return expr; location = exprLocation(expr); if (location < 0) location = returning->format->location; /* special case for RETURNING bytea FORMAT json */ if (returning->format->format_type == JS_FORMAT_JSON && returning->typid == BYTEAOID) { /* encode json text into bytea using pg_convert_to() */ Node *texpr = coerce_to_specific_type(pstate, expr, TEXTOID, "JSON_FUNCTION"); Const *enc = getJsonEncodingConst(returning->format); FuncExpr *fexpr = makeFuncExpr(F_CONVERT_TO, BYTEAOID, list_make2(texpr, enc), InvalidOid, InvalidOid, COERCE_EXPLICIT_CALL); fexpr->location = location; return (Node *) fexpr; } /* try to coerce expression to the output type */ res = coerce_to_target_type(pstate, expr, exprtype, returning->typid, returning->typmod, /* XXX throwing errors when casting to char(N) */ COERCION_EXPLICIT, COERCE_EXPLICIT_CAST, location); if (!res && report_error) ereport(ERROR, errcode(ERRCODE_CANNOT_COERCE), errmsg("cannot cast type %s to %s", format_type_be(exprtype), format_type_be(returning->typid)), parser_coercion_errposition(pstate, location, expr)); return res; } /* * Make a JsonConstructorExpr node. */ static Node * makeJsonConstructorExpr(ParseState *pstate, JsonConstructorType type, List *args, Expr *fexpr, JsonReturning *returning, bool unique, bool absent_on_null, int location) { JsonConstructorExpr *jsctor = makeNode(JsonConstructorExpr); Node *placeholder; Node *coercion; jsctor->args = args; jsctor->func = fexpr; jsctor->type = type; jsctor->returning = returning; jsctor->unique = unique; jsctor->absent_on_null = absent_on_null; jsctor->location = location; /* * Coerce to the RETURNING type and format, if needed. We abuse * CaseTestExpr here as placeholder to pass the result of either * evaluating 'fexpr' or whatever is produced by ExecEvalJsonConstructor() * that is of type JSON or JSONB to the coercion function. */ if (fexpr) { CaseTestExpr *cte = makeNode(CaseTestExpr); cte->typeId = exprType((Node *) fexpr); cte->typeMod = exprTypmod((Node *) fexpr); cte->collation = exprCollation((Node *) fexpr); placeholder = (Node *) cte; } else { CaseTestExpr *cte = makeNode(CaseTestExpr); cte->typeId = returning->format->format_type == JS_FORMAT_JSONB ? JSONBOID : JSONOID; cte->typeMod = -1; cte->collation = InvalidOid; placeholder = (Node *) cte; } coercion = coerceJsonFuncExpr(pstate, placeholder, returning, true); if (coercion != placeholder) jsctor->coercion = (Expr *) coercion; return (Node *) jsctor; } /* * Transform JSON_OBJECT() constructor. * * JSON_OBJECT() is transformed into json[b]_build_object[_ext]() call * depending on the output JSON format. The first two arguments of * json[b]_build_object_ext() are absent_on_null and check_unique. * * Then function call result is coerced to the target type. */ static Node * transformJsonObjectConstructor(ParseState *pstate, JsonObjectConstructor *ctor) { JsonReturning *returning; List *args = NIL; /* transform key-value pairs, if any */ if (ctor->exprs) { ListCell *lc; /* transform and append key-value arguments */ foreach(lc, ctor->exprs) { JsonKeyValue *kv = castNode(JsonKeyValue, lfirst(lc)); Node *key = transformExprRecurse(pstate, (Node *) kv->key); Node *val = transformJsonValueExpr(pstate, "JSON_OBJECT()", kv->value, JS_FORMAT_DEFAULT); args = lappend(args, key); args = lappend(args, val); } } returning = transformJsonConstructorOutput(pstate, ctor->output, args); return makeJsonConstructorExpr(pstate, JSCTOR_JSON_OBJECT, args, NULL, returning, ctor->unique, ctor->absent_on_null, ctor->location); } /* * Transform JSON_ARRAY(query [FORMAT] [RETURNING] [ON NULL]) into * (SELECT JSON_ARRAYAGG(a [FORMAT] [RETURNING] [ON NULL]) FROM (query) q(a)) */ static Node * transformJsonArrayQueryConstructor(ParseState *pstate, JsonArrayQueryConstructor *ctor) { SubLink *sublink = makeNode(SubLink); SelectStmt *select = makeNode(SelectStmt); RangeSubselect *range = makeNode(RangeSubselect); Alias *alias = makeNode(Alias); ResTarget *target = makeNode(ResTarget); JsonArrayAgg *agg = makeNode(JsonArrayAgg); ColumnRef *colref = makeNode(ColumnRef); Query *query; ParseState *qpstate; /* Transform query only for counting target list entries. */ qpstate = make_parsestate(pstate); query = transformStmt(qpstate, ctor->query); if (count_nonjunk_tlist_entries(query->targetList) != 1) ereport(ERROR, errcode(ERRCODE_SYNTAX_ERROR), errmsg("subquery must return only one column"), parser_errposition(pstate, ctor->location)); free_parsestate(qpstate); colref->fields = list_make2(makeString(pstrdup("q")), makeString(pstrdup("a"))); colref->location = ctor->location; /* * No formatting necessary, so set formatted_expr to be the same as * raw_expr. */ agg->arg = makeJsonValueExpr((Expr *) colref, (Expr *) colref, ctor->format); agg->absent_on_null = ctor->absent_on_null; agg->constructor = makeNode(JsonAggConstructor); agg->constructor->agg_order = NIL; agg->constructor->output = ctor->output; agg->constructor->location = ctor->location; target->name = NULL; target->indirection = NIL; target->val = (Node *) agg; target->location = ctor->location; alias->aliasname = pstrdup("q"); alias->colnames = list_make1(makeString(pstrdup("a"))); range->lateral = false; range->subquery = ctor->query; range->alias = alias; select->targetList = list_make1(target); select->fromClause = list_make1(range); sublink->subLinkType = EXPR_SUBLINK; sublink->subLinkId = 0; sublink->testexpr = NULL; sublink->operName = NIL; sublink->subselect = (Node *) select; sublink->location = ctor->location; return transformExprRecurse(pstate, (Node *) sublink); } /* * Common code for JSON_OBJECTAGG and JSON_ARRAYAGG transformation. */ static Node * transformJsonAggConstructor(ParseState *pstate, JsonAggConstructor *agg_ctor, JsonReturning *returning, List *args, Oid aggfnoid, Oid aggtype, JsonConstructorType ctor_type, bool unique, bool absent_on_null) { Node *node; Expr *aggfilter; aggfilter = agg_ctor->agg_filter ? (Expr *) transformWhereClause(pstate, agg_ctor->agg_filter, EXPR_KIND_FILTER, "FILTER") : NULL; if (agg_ctor->over) { /* window function */ WindowFunc *wfunc = makeNode(WindowFunc); wfunc->winfnoid = aggfnoid; wfunc->wintype = aggtype; /* wincollid and inputcollid will be set by parse_collate.c */ wfunc->args = args; wfunc->aggfilter = aggfilter; /* winref will be set by transformWindowFuncCall */ wfunc->winstar = false; wfunc->winagg = true; wfunc->location = agg_ctor->location; /* * ordered aggs not allowed in windows yet */ if (agg_ctor->agg_order != NIL) ereport(ERROR, errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("aggregate ORDER BY is not implemented for window functions"), parser_errposition(pstate, agg_ctor->location)); /* parse_agg.c does additional window-func-specific processing */ transformWindowFuncCall(pstate, wfunc, agg_ctor->over); node = (Node *) wfunc; } else { Aggref *aggref = makeNode(Aggref); aggref->aggfnoid = aggfnoid; aggref->aggtype = aggtype; /* aggcollid and inputcollid will be set by parse_collate.c */ /* aggtranstype will be set by planner */ /* aggargtypes will be set by transformAggregateCall */ /* aggdirectargs and args will be set by transformAggregateCall */ /* aggorder and aggdistinct will be set by transformAggregateCall */ aggref->aggfilter = aggfilter; aggref->aggstar = false; aggref->aggvariadic = false; aggref->aggkind = AGGKIND_NORMAL; aggref->aggpresorted = false; /* agglevelsup will be set by transformAggregateCall */ aggref->aggsplit = AGGSPLIT_SIMPLE; /* planner might change this */ aggref->aggno = -1; /* planner will set aggno and aggtransno */ aggref->aggtransno = -1; aggref->location = agg_ctor->location; transformAggregateCall(pstate, aggref, args, agg_ctor->agg_order, false); node = (Node *) aggref; } return makeJsonConstructorExpr(pstate, ctor_type, NIL, (Expr *) node, returning, unique, absent_on_null, agg_ctor->location); } /* * Transform JSON_OBJECTAGG() aggregate function. * * JSON_OBJECTAGG() is transformed into * json[b]_objectagg[_unique][_strict](key, value) call depending on * the output JSON format. Then the function call result is coerced to the * target output type. */ static Node * transformJsonObjectAgg(ParseState *pstate, JsonObjectAgg *agg) { JsonReturning *returning; Node *key; Node *val; List *args; Oid aggfnoid; Oid aggtype; key = transformExprRecurse(pstate, (Node *) agg->arg->key); val = transformJsonValueExpr(pstate, "JSON_OBJECTAGG()", agg->arg->value, JS_FORMAT_DEFAULT); args = list_make2(key, val); returning = transformJsonConstructorOutput(pstate, agg->constructor->output, args); if (returning->format->format_type == JS_FORMAT_JSONB) { if (agg->absent_on_null) if (agg->unique) aggfnoid = F_JSONB_OBJECT_AGG_UNIQUE_STRICT; else aggfnoid = F_JSONB_OBJECT_AGG_STRICT; else if (agg->unique) aggfnoid = F_JSONB_OBJECT_AGG_UNIQUE; else aggfnoid = F_JSONB_OBJECT_AGG; aggtype = JSONBOID; } else { if (agg->absent_on_null) if (agg->unique) aggfnoid = F_JSON_OBJECT_AGG_UNIQUE_STRICT; else aggfnoid = F_JSON_OBJECT_AGG_STRICT; else if (agg->unique) aggfnoid = F_JSON_OBJECT_AGG_UNIQUE; else aggfnoid = F_JSON_OBJECT_AGG; aggtype = JSONOID; } return transformJsonAggConstructor(pstate, agg->constructor, returning, args, aggfnoid, aggtype, JSCTOR_JSON_OBJECTAGG, agg->unique, agg->absent_on_null); } /* * Transform JSON_ARRAYAGG() aggregate function. * * JSON_ARRAYAGG() is transformed into json[b]_agg[_strict]() call depending * on the output JSON format and absent_on_null. Then the function call result * is coerced to the target output type. */ static Node * transformJsonArrayAgg(ParseState *pstate, JsonArrayAgg *agg) { JsonReturning *returning; Node *arg; Oid aggfnoid; Oid aggtype; arg = transformJsonValueExpr(pstate, "JSON_ARRAYAGG()", agg->arg, JS_FORMAT_DEFAULT); returning = transformJsonConstructorOutput(pstate, agg->constructor->output, list_make1(arg)); if (returning->format->format_type == JS_FORMAT_JSONB) { aggfnoid = agg->absent_on_null ? F_JSONB_AGG_STRICT : F_JSONB_AGG; aggtype = JSONBOID; } else { aggfnoid = agg->absent_on_null ? F_JSON_AGG_STRICT : F_JSON_AGG; aggtype = JSONOID; } return transformJsonAggConstructor(pstate, agg->constructor, returning, list_make1(arg), aggfnoid, aggtype, JSCTOR_JSON_ARRAYAGG, false, agg->absent_on_null); } /* * Transform JSON_ARRAY() constructor. * * JSON_ARRAY() is transformed into json[b]_build_array[_ext]() call * depending on the output JSON format. The first argument of * json[b]_build_array_ext() is absent_on_null. * * Then function call result is coerced to the target type. */ static Node * transformJsonArrayConstructor(ParseState *pstate, JsonArrayConstructor *ctor) { JsonReturning *returning; List *args = NIL; /* transform element expressions, if any */ if (ctor->exprs) { ListCell *lc; /* transform and append element arguments */ foreach(lc, ctor->exprs) { JsonValueExpr *jsval = castNode(JsonValueExpr, lfirst(lc)); Node *val = transformJsonValueExpr(pstate, "JSON_ARRAY()", jsval, JS_FORMAT_DEFAULT); args = lappend(args, val); } } returning = transformJsonConstructorOutput(pstate, ctor->output, args); return makeJsonConstructorExpr(pstate, JSCTOR_JSON_ARRAY, args, NULL, returning, false, ctor->absent_on_null, ctor->location); } static Node * transformJsonParseArg(ParseState *pstate, Node *jsexpr, JsonFormat *format, Oid *exprtype) { Node *raw_expr = transformExprRecurse(pstate, jsexpr); Node *expr = raw_expr; *exprtype = exprType(expr); /* prepare input document */ if (*exprtype == BYTEAOID) { JsonValueExpr *jve; expr = raw_expr; expr = makeJsonByteaToTextConversion(expr, format, exprLocation(expr)); *exprtype = TEXTOID; jve = makeJsonValueExpr((Expr *) raw_expr, (Expr *) expr, format); expr = (Node *) jve; } else { char typcategory; bool typispreferred; get_type_category_preferred(*exprtype, &typcategory, &typispreferred); if (*exprtype == UNKNOWNOID || typcategory == TYPCATEGORY_STRING) { expr = coerce_to_target_type(pstate, (Node *) expr, *exprtype, TEXTOID, -1, COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1); *exprtype = TEXTOID; } if (format->encoding != JS_ENC_DEFAULT) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), parser_errposition(pstate, format->location), errmsg("cannot use JSON FORMAT ENCODING clause for non-bytea input types"))); } return expr; } /* * Transform IS JSON predicate. */ static Node * transformJsonIsPredicate(ParseState *pstate, JsonIsPredicate *pred) { Oid exprtype; Node *expr = transformJsonParseArg(pstate, pred->expr, pred->format, &exprtype); /* make resulting expression */ if (exprtype != TEXTOID && exprtype != JSONOID && exprtype != JSONBOID) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("cannot use type %s in IS JSON predicate", format_type_be(exprtype)))); /* This intentionally(?) drops the format clause. */ return makeJsonIsPredicate(expr, NULL, pred->item_type, pred->unique_keys, pred->location); }