/*------------------------------------------------------------------------- * * arrayfuncs.c * Support functions for arrays. * * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * src/backend/utils/adt/arrayfuncs.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include #include #include "access/htup_details.h" #include "catalog/pg_type.h" #include "common/int.h" #include "funcapi.h" #include "libpq/pqformat.h" #include "nodes/nodeFuncs.h" #include "nodes/supportnodes.h" #include "optimizer/optimizer.h" #include "port/pg_bitutils.h" #include "utils/array.h" #include "utils/arrayaccess.h" #include "utils/builtins.h" #include "utils/datum.h" #include "utils/fmgroids.h" #include "utils/lsyscache.h" #include "utils/memutils.h" #include "utils/selfuncs.h" #include "utils/typcache.h" /* * GUC parameter */ bool Array_nulls = true; /* * Local definitions */ #define ASSGN "=" #define AARR_FREE_IF_COPY(array,n) \ do { \ if (!VARATT_IS_EXPANDED_HEADER(array)) \ PG_FREE_IF_COPY(array, n); \ } while (0) typedef enum { ARRAY_NO_LEVEL, ARRAY_LEVEL_STARTED, ARRAY_ELEM_STARTED, ARRAY_ELEM_COMPLETED, ARRAY_QUOTED_ELEM_STARTED, ARRAY_QUOTED_ELEM_COMPLETED, ARRAY_ELEM_DELIMITED, ARRAY_LEVEL_COMPLETED, ARRAY_LEVEL_DELIMITED } ArrayParseState; /* Working state for array_iterate() */ typedef struct ArrayIteratorData { /* basic info about the array, set up during array_create_iterator() */ ArrayType *arr; /* array we're iterating through */ bits8 *nullbitmap; /* its null bitmap, if any */ int nitems; /* total number of elements in array */ int16 typlen; /* element type's length */ bool typbyval; /* element type's byval property */ char typalign; /* element type's align property */ /* information about the requested slice size */ int slice_ndim; /* slice dimension, or 0 if not slicing */ int slice_len; /* number of elements per slice */ int *slice_dims; /* slice dims array */ int *slice_lbound; /* slice lbound array */ Datum *slice_values; /* workspace of length slice_len */ bool *slice_nulls; /* workspace of length slice_len */ /* current position information, updated on each iteration */ char *data_ptr; /* our current position in the array */ int current_item; /* the item # we're at in the array */ } ArrayIteratorData; static bool array_isspace(char ch); static int ArrayCount(const char *str, int *dim, char typdelim, Node *escontext); static bool ReadArrayStr(char *arrayStr, const char *origStr, int nitems, int ndim, int *dim, FmgrInfo *inputproc, Oid typioparam, int32 typmod, char typdelim, int typlen, bool typbyval, char typalign, Datum *values, bool *nulls, bool *hasnulls, int32 *nbytes, Node *escontext); static void ReadArrayBinary(StringInfo buf, int nitems, FmgrInfo *receiveproc, Oid typioparam, int32 typmod, int typlen, bool typbyval, char typalign, Datum *values, bool *nulls, bool *hasnulls, int32 *nbytes); static Datum array_get_element_expanded(Datum arraydatum, int nSubscripts, int *indx, int arraytyplen, int elmlen, bool elmbyval, char elmalign, bool *isNull); static Datum array_set_element_expanded(Datum arraydatum, int nSubscripts, int *indx, Datum dataValue, bool isNull, int arraytyplen, int elmlen, bool elmbyval, char elmalign); static bool array_get_isnull(const bits8 *nullbitmap, int offset); static void array_set_isnull(bits8 *nullbitmap, int offset, bool isNull); static Datum ArrayCast(char *value, bool byval, int len); static int ArrayCastAndSet(Datum src, int typlen, bool typbyval, char typalign, char *dest); static char *array_seek(char *ptr, int offset, bits8 *nullbitmap, int nitems, int typlen, bool typbyval, char typalign); static int array_nelems_size(char *ptr, int offset, bits8 *nullbitmap, int nitems, int typlen, bool typbyval, char typalign); static int array_copy(char *destptr, int nitems, char *srcptr, int offset, bits8 *nullbitmap, int typlen, bool typbyval, char typalign); static int array_slice_size(char *arraydataptr, bits8 *arraynullsptr, int ndim, int *dim, int *lb, int *st, int *endp, int typlen, bool typbyval, char typalign); static void array_extract_slice(ArrayType *newarray, int ndim, int *dim, int *lb, char *arraydataptr, bits8 *arraynullsptr, int *st, int *endp, int typlen, bool typbyval, char typalign); static void array_insert_slice(ArrayType *destArray, ArrayType *origArray, ArrayType *srcArray, int ndim, int *dim, int *lb, int *st, int *endp, int typlen, bool typbyval, char typalign); static int array_cmp(FunctionCallInfo fcinfo); static ArrayType *create_array_envelope(int ndims, int *dimv, int *lbsv, int nbytes, Oid elmtype, int dataoffset); static ArrayType *array_fill_internal(ArrayType *dims, ArrayType *lbs, Datum value, bool isnull, Oid elmtype, FunctionCallInfo fcinfo); static ArrayType *array_replace_internal(ArrayType *array, Datum search, bool search_isnull, Datum replace, bool replace_isnull, bool remove, Oid collation, FunctionCallInfo fcinfo); static int width_bucket_array_float8(Datum operand, ArrayType *thresholds); static int width_bucket_array_fixed(Datum operand, ArrayType *thresholds, Oid collation, TypeCacheEntry *typentry); static int width_bucket_array_variable(Datum operand, ArrayType *thresholds, Oid collation, TypeCacheEntry *typentry); /* * array_in : * converts an array from the external format in "string" to * its internal format. * * return value : * the internal representation of the input array */ Datum array_in(PG_FUNCTION_ARGS) { char *string = PG_GETARG_CSTRING(0); /* external form */ Oid element_type = PG_GETARG_OID(1); /* type of an array * element */ int32 typmod = PG_GETARG_INT32(2); /* typmod for array elements */ Node *escontext = fcinfo->context; int typlen; bool typbyval; char typalign; char typdelim; Oid typioparam; char *string_save, *p; int i, nitems; Datum *dataPtr; bool *nullsPtr; bool hasnulls; int32 nbytes; int32 dataoffset; ArrayType *retval; int ndim, dim[MAXDIM], lBound[MAXDIM]; ArrayMetaState *my_extra; /* * We arrange to look up info about element type, including its input * conversion proc, only once per series of calls, assuming the element * type doesn't change underneath us. */ my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; if (my_extra == NULL) { fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, sizeof(ArrayMetaState)); my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; my_extra->element_type = ~element_type; } if (my_extra->element_type != element_type) { /* * Get info about element type, including its input conversion proc */ get_type_io_data(element_type, IOFunc_input, &my_extra->typlen, &my_extra->typbyval, &my_extra->typalign, &my_extra->typdelim, &my_extra->typioparam, &my_extra->typiofunc); fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc, fcinfo->flinfo->fn_mcxt); my_extra->element_type = element_type; } typlen = my_extra->typlen; typbyval = my_extra->typbyval; typalign = my_extra->typalign; typdelim = my_extra->typdelim; typioparam = my_extra->typioparam; /* Make a modifiable copy of the input */ string_save = pstrdup(string); /* * If the input string starts with dimension info, read and use that. * Otherwise, we require the input to be in curly-brace style, and we * prescan the input to determine dimensions. * * Dimension info takes the form of one or more [n] or [m:n] items. The * outer loop iterates once per dimension item. */ p = string_save; ndim = 0; for (;;) { char *q; int ub; /* * Note: we currently allow whitespace between, but not within, * dimension items. */ while (array_isspace(*p)) p++; if (*p != '[') break; /* no more dimension items */ p++; if (ndim >= MAXDIM) ereturn(escontext, (Datum) 0, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)", ndim + 1, MAXDIM))); for (q = p; isdigit((unsigned char) *q) || (*q == '-') || (*q == '+'); q++) /* skip */ ; if (q == p) /* no digits? */ ereturn(escontext, (Datum) 0, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", string), errdetail("\"[\" must introduce explicitly-specified array dimensions."))); if (*q == ':') { /* [m:n] format */ *q = '\0'; lBound[ndim] = atoi(p); p = q + 1; for (q = p; isdigit((unsigned char) *q) || (*q == '-') || (*q == '+'); q++) /* skip */ ; if (q == p) /* no digits? */ ereturn(escontext, (Datum) 0, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", string), errdetail("Missing array dimension value."))); } else { /* [n] format */ lBound[ndim] = 1; } if (*q != ']') ereturn(escontext, (Datum) 0, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", string), errdetail("Missing \"%s\" after array dimensions.", "]"))); *q = '\0'; ub = atoi(p); p = q + 1; if (ub < lBound[ndim]) ereturn(escontext, (Datum) 0, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("upper bound cannot be less than lower bound"))); dim[ndim] = ub - lBound[ndim] + 1; ndim++; } if (ndim == 0) { /* No array dimensions, so intuit dimensions from brace structure */ if (*p != '{') ereturn(escontext, (Datum) 0, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", string), errdetail("Array value must start with \"{\" or dimension information."))); ndim = ArrayCount(p, dim, typdelim, escontext); if (ndim < 0) PG_RETURN_NULL(); for (i = 0; i < ndim; i++) lBound[i] = 1; } else { int ndim_braces, dim_braces[MAXDIM]; /* If array dimensions are given, expect '=' operator */ if (strncmp(p, ASSGN, strlen(ASSGN)) != 0) ereturn(escontext, (Datum) 0, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", string), errdetail("Missing \"%s\" after array dimensions.", ASSGN))); p += strlen(ASSGN); while (array_isspace(*p)) p++; /* * intuit dimensions from brace structure -- it better match what we * were given */ if (*p != '{') ereturn(escontext, (Datum) 0, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", string), errdetail("Array contents must start with \"{\"."))); ndim_braces = ArrayCount(p, dim_braces, typdelim, escontext); if (ndim_braces < 0) PG_RETURN_NULL(); if (ndim_braces != ndim) ereturn(escontext, (Datum) 0, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", string), errdetail("Specified array dimensions do not match array contents."))); for (i = 0; i < ndim; ++i) { if (dim[i] != dim_braces[i]) ereturn(escontext, (Datum) 0, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", string), errdetail("Specified array dimensions do not match array contents."))); } } #ifdef ARRAYDEBUG printf("array_in- ndim %d (", ndim); for (i = 0; i < ndim; i++) { printf(" %d", dim[i]); }; printf(") for %s\n", string); #endif /* This checks for overflow of the array dimensions */ nitems = ArrayGetNItemsSafe(ndim, dim, escontext); if (nitems < 0) PG_RETURN_NULL(); if (!ArrayCheckBoundsSafe(ndim, dim, lBound, escontext)) PG_RETURN_NULL(); /* Empty array? */ if (nitems == 0) PG_RETURN_ARRAYTYPE_P(construct_empty_array(element_type)); dataPtr = (Datum *) palloc(nitems * sizeof(Datum)); nullsPtr = (bool *) palloc(nitems * sizeof(bool)); if (!ReadArrayStr(p, string, nitems, ndim, dim, &my_extra->proc, typioparam, typmod, typdelim, typlen, typbyval, typalign, dataPtr, nullsPtr, &hasnulls, &nbytes, escontext)) PG_RETURN_NULL(); if (hasnulls) { dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, nitems); nbytes += dataoffset; } else { dataoffset = 0; /* marker for no null bitmap */ nbytes += ARR_OVERHEAD_NONULLS(ndim); } retval = (ArrayType *) palloc0(nbytes); SET_VARSIZE(retval, nbytes); retval->ndim = ndim; retval->dataoffset = dataoffset; /* * This comes from the array's pg_type.typelem (which points to the base * data type's pg_type.oid) and stores system oids in user tables. This * oid must be preserved by binary upgrades. */ retval->elemtype = element_type; memcpy(ARR_DIMS(retval), dim, ndim * sizeof(int)); memcpy(ARR_LBOUND(retval), lBound, ndim * sizeof(int)); CopyArrayEls(retval, dataPtr, nullsPtr, nitems, typlen, typbyval, typalign, true); pfree(dataPtr); pfree(nullsPtr); pfree(string_save); PG_RETURN_ARRAYTYPE_P(retval); } /* * array_isspace() --- a non-locale-dependent isspace() * * We used to use isspace() for parsing array values, but that has * undesirable results: an array value might be silently interpreted * differently depending on the locale setting. Now we just hard-wire * the traditional ASCII definition of isspace(). */ static bool array_isspace(char ch) { if (ch == ' ' || ch == '\t' || ch == '\n' || ch == '\r' || ch == '\v' || ch == '\f') return true; return false; } /* * ArrayCount * Determines the dimensions for an array string. * * Returns number of dimensions as function result. The axis lengths are * returned in dim[], which must be of size MAXDIM. * * If we detect an error, fill *escontext with error details and return -1 * (unless escontext isn't provided, in which case errors will be thrown). */ static int ArrayCount(const char *str, int *dim, char typdelim, Node *escontext) { int nest_level = 0, i; int ndim = 1, temp[MAXDIM], nelems[MAXDIM], nelems_last[MAXDIM]; bool in_quotes = false; bool eoArray = false; bool empty_array = true; const char *ptr; ArrayParseState parse_state = ARRAY_NO_LEVEL; for (i = 0; i < MAXDIM; ++i) { temp[i] = dim[i] = nelems_last[i] = 0; nelems[i] = 1; } ptr = str; while (!eoArray) { bool itemdone = false; while (!itemdone) { if (parse_state == ARRAY_ELEM_STARTED || parse_state == ARRAY_QUOTED_ELEM_STARTED) empty_array = false; switch (*ptr) { case '\0': /* Signal a premature end of the string */ ereturn(escontext, -1, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str), errdetail("Unexpected end of input."))); case '\\': /* * An escape must be after a level start, after an element * start, or after an element delimiter. In any case we * now must be past an element start. */ if (parse_state != ARRAY_LEVEL_STARTED && parse_state != ARRAY_ELEM_STARTED && parse_state != ARRAY_QUOTED_ELEM_STARTED && parse_state != ARRAY_ELEM_DELIMITED) ereturn(escontext, -1, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str), errdetail("Unexpected \"%c\" character.", '\\'))); if (parse_state != ARRAY_QUOTED_ELEM_STARTED) parse_state = ARRAY_ELEM_STARTED; /* skip the escaped character */ if (*(ptr + 1)) ptr++; else ereturn(escontext, -1, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str), errdetail("Unexpected end of input."))); break; case '"': /* * A quote must be after a level start, after a quoted * element start, or after an element delimiter. In any * case we now must be past an element start. */ if (parse_state != ARRAY_LEVEL_STARTED && parse_state != ARRAY_QUOTED_ELEM_STARTED && parse_state != ARRAY_ELEM_DELIMITED) ereturn(escontext, -1, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str), errdetail("Unexpected array element."))); in_quotes = !in_quotes; if (in_quotes) parse_state = ARRAY_QUOTED_ELEM_STARTED; else parse_state = ARRAY_QUOTED_ELEM_COMPLETED; break; case '{': if (!in_quotes) { /* * A left brace can occur if no nesting has occurred * yet, after a level start, or after a level * delimiter. */ if (parse_state != ARRAY_NO_LEVEL && parse_state != ARRAY_LEVEL_STARTED && parse_state != ARRAY_LEVEL_DELIMITED) ereturn(escontext, -1, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str), errdetail("Unexpected \"%c\" character.", '{'))); parse_state = ARRAY_LEVEL_STARTED; if (nest_level >= MAXDIM) ereturn(escontext, -1, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)", nest_level + 1, MAXDIM))); temp[nest_level] = 0; nest_level++; if (ndim < nest_level) ndim = nest_level; } break; case '}': if (!in_quotes) { /* * A right brace can occur after an element start, an * element completion, a quoted element completion, or * a level completion. */ if (parse_state != ARRAY_ELEM_STARTED && parse_state != ARRAY_ELEM_COMPLETED && parse_state != ARRAY_QUOTED_ELEM_COMPLETED && parse_state != ARRAY_LEVEL_COMPLETED && !(nest_level == 1 && parse_state == ARRAY_LEVEL_STARTED)) ereturn(escontext, -1, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str), errdetail("Unexpected \"%c\" character.", '}'))); parse_state = ARRAY_LEVEL_COMPLETED; if (nest_level == 0) ereturn(escontext, -1, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str), errdetail("Unmatched \"%c\" character.", '}'))); nest_level--; if (nelems_last[nest_level] != 0 && nelems[nest_level] != nelems_last[nest_level]) ereturn(escontext, -1, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str), errdetail("Multidimensional arrays must have " "sub-arrays with matching " "dimensions."))); nelems_last[nest_level] = nelems[nest_level]; nelems[nest_level] = 1; if (nest_level == 0) eoArray = itemdone = true; else { /* * We don't set itemdone here; see comments in * ReadArrayStr */ temp[nest_level - 1]++; } } break; default: if (!in_quotes) { if (*ptr == typdelim) { /* * Delimiters can occur after an element start, an * element completion, a quoted element * completion, or a level completion. */ if (parse_state != ARRAY_ELEM_STARTED && parse_state != ARRAY_ELEM_COMPLETED && parse_state != ARRAY_QUOTED_ELEM_COMPLETED && parse_state != ARRAY_LEVEL_COMPLETED) ereturn(escontext, -1, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str), errdetail("Unexpected \"%c\" character.", typdelim))); if (parse_state == ARRAY_LEVEL_COMPLETED) parse_state = ARRAY_LEVEL_DELIMITED; else parse_state = ARRAY_ELEM_DELIMITED; itemdone = true; nelems[nest_level - 1]++; } else if (!array_isspace(*ptr)) { /* * Other non-space characters must be after a * level start, after an element start, or after * an element delimiter. In any case we now must * be past an element start. */ if (parse_state != ARRAY_LEVEL_STARTED && parse_state != ARRAY_ELEM_STARTED && parse_state != ARRAY_ELEM_DELIMITED) ereturn(escontext, -1, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str), errdetail("Unexpected array element."))); parse_state = ARRAY_ELEM_STARTED; } } break; } if (!itemdone) ptr++; } temp[ndim - 1]++; ptr++; } /* only whitespace is allowed after the closing brace */ while (*ptr) { if (!array_isspace(*ptr++)) ereturn(escontext, -1, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", str), errdetail("Junk after closing right brace."))); } /* special case for an empty array */ if (empty_array) return 0; for (i = 0; i < ndim; ++i) dim[i] = temp[i]; return ndim; } /* * ReadArrayStr : * parses the array string pointed to by "arrayStr" and converts the values * to internal format. Unspecified elements are initialized to nulls. * The array dimensions must already have been determined. * * Inputs: * arrayStr: the string to parse. * CAUTION: the contents of "arrayStr" will be modified! * origStr: the unmodified input string, used only in error messages. * nitems: total number of array elements, as already determined. * ndim: number of array dimensions * dim[]: array axis lengths * inputproc: type-specific input procedure for element datatype. * typioparam, typmod: auxiliary values to pass to inputproc. * typdelim: the value delimiter (type-specific). * typlen, typbyval, typalign: storage parameters of element datatype. * * Outputs: * values[]: filled with converted data values. * nulls[]: filled with is-null markers. * *hasnulls: set true iff there are any null elements. * *nbytes: set to total size of data area needed (including alignment * padding but not including array header overhead). * *escontext: if this points to an ErrorSaveContext, details of * any error are reported there. * * Result: * true for success, false for failure (if escontext is provided). * * Note that values[] and nulls[] are allocated by the caller, and must have * nitems elements. */ static bool ReadArrayStr(char *arrayStr, const char *origStr, int nitems, int ndim, int *dim, FmgrInfo *inputproc, Oid typioparam, int32 typmod, char typdelim, int typlen, bool typbyval, char typalign, Datum *values, bool *nulls, bool *hasnulls, int32 *nbytes, Node *escontext) { int i, nest_level = 0; char *srcptr; bool in_quotes = false; bool eoArray = false; bool hasnull; int32 totbytes; int indx[MAXDIM] = {0}, prod[MAXDIM]; mda_get_prod(ndim, dim, prod); /* Initialize is-null markers to true */ memset(nulls, true, nitems * sizeof(bool)); /* * We have to remove " and \ characters to create a clean item value to * pass to the datatype input routine. We overwrite each item value * in-place within arrayStr to do this. srcptr is the current scan point, * and dstptr is where we are copying to. * * We also want to suppress leading and trailing unquoted whitespace. We * use the leadingspace flag to suppress leading space. Trailing space is * tracked by using dstendptr to point to the last significant output * character. * * The error checking in this routine is mostly pro-forma, since we expect * that ArrayCount() already validated the string. So we don't bother * with errdetail messages. */ srcptr = arrayStr; while (!eoArray) { bool itemdone = false; bool leadingspace = true; bool hasquoting = false; char *itemstart; char *dstptr; char *dstendptr; i = -1; itemstart = dstptr = dstendptr = srcptr; while (!itemdone) { switch (*srcptr) { case '\0': /* Signal a premature end of the string */ ereturn(escontext, false, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", origStr))); break; case '\\': /* Skip backslash, copy next character as-is. */ srcptr++; if (*srcptr == '\0') ereturn(escontext, false, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", origStr))); *dstptr++ = *srcptr++; /* Treat the escaped character as non-whitespace */ leadingspace = false; dstendptr = dstptr; hasquoting = true; /* can't be a NULL marker */ break; case '"': in_quotes = !in_quotes; if (in_quotes) leadingspace = false; else { /* * Advance dstendptr when we exit in_quotes; this * saves having to do it in all the other in_quotes * cases. */ dstendptr = dstptr; } hasquoting = true; /* can't be a NULL marker */ srcptr++; break; case '{': if (!in_quotes) { if (nest_level >= ndim) ereturn(escontext, false, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", origStr))); nest_level++; indx[nest_level - 1] = 0; srcptr++; } else *dstptr++ = *srcptr++; break; case '}': if (!in_quotes) { if (nest_level == 0) ereturn(escontext, false, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", origStr))); if (i == -1) i = ArrayGetOffset0(ndim, indx, prod); indx[nest_level - 1] = 0; nest_level--; if (nest_level == 0) eoArray = itemdone = true; else indx[nest_level - 1]++; srcptr++; } else *dstptr++ = *srcptr++; break; default: if (in_quotes) *dstptr++ = *srcptr++; else if (*srcptr == typdelim) { if (i == -1) i = ArrayGetOffset0(ndim, indx, prod); itemdone = true; indx[ndim - 1]++; srcptr++; } else if (array_isspace(*srcptr)) { /* * If leading space, drop it immediately. Else, copy * but don't advance dstendptr. */ if (leadingspace) srcptr++; else *dstptr++ = *srcptr++; } else { *dstptr++ = *srcptr++; leadingspace = false; dstendptr = dstptr; } break; } } Assert(dstptr < srcptr); *dstendptr = '\0'; if (i < 0 || i >= nitems) ereturn(escontext, false, (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), errmsg("malformed array literal: \"%s\"", origStr))); if (Array_nulls && !hasquoting && pg_strcasecmp(itemstart, "NULL") == 0) { /* it's a NULL item */ if (!InputFunctionCallSafe(inputproc, NULL, typioparam, typmod, escontext, &values[i])) return false; nulls[i] = true; } else { if (!InputFunctionCallSafe(inputproc, itemstart, typioparam, typmod, escontext, &values[i])) return false; nulls[i] = false; } } /* * Check for nulls, compute total data space needed */ hasnull = false; totbytes = 0; for (i = 0; i < nitems; i++) { if (nulls[i]) hasnull = true; else { /* let's just make sure data is not toasted */ if (typlen == -1) values[i] = PointerGetDatum(PG_DETOAST_DATUM(values[i])); totbytes = att_addlength_datum(totbytes, typlen, values[i]); totbytes = att_align_nominal(totbytes, typalign); /* check for overflow of total request */ if (!AllocSizeIsValid(totbytes)) ereturn(escontext, false, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("array size exceeds the maximum allowed (%d)", (int) MaxAllocSize))); } } *hasnulls = hasnull; *nbytes = totbytes; return true; } /* * Copy data into an array object from a temporary array of Datums. * * array: array object (with header fields already filled in) * values: array of Datums to be copied * nulls: array of is-null flags (can be NULL if no nulls) * nitems: number of Datums to be copied * typbyval, typlen, typalign: info about element datatype * freedata: if true and element type is pass-by-ref, pfree data values * referenced by Datums after copying them. * * If the input data is of varlena type, the caller must have ensured that * the values are not toasted. (Doing it here doesn't work since the * caller has already allocated space for the array...) */ void CopyArrayEls(ArrayType *array, Datum *values, bool *nulls, int nitems, int typlen, bool typbyval, char typalign, bool freedata) { char *p = ARR_DATA_PTR(array); bits8 *bitmap = ARR_NULLBITMAP(array); int bitval = 0; int bitmask = 1; int i; if (typbyval) freedata = false; for (i = 0; i < nitems; i++) { if (nulls && nulls[i]) { if (!bitmap) /* shouldn't happen */ elog(ERROR, "null array element where not supported"); /* bitmap bit stays 0 */ } else { bitval |= bitmask; p += ArrayCastAndSet(values[i], typlen, typbyval, typalign, p); if (freedata) pfree(DatumGetPointer(values[i])); } if (bitmap) { bitmask <<= 1; if (bitmask == 0x100) { *bitmap++ = bitval; bitval = 0; bitmask = 1; } } } if (bitmap && bitmask != 1) *bitmap = bitval; } /* * array_out : * takes the internal representation of an array and returns a string * containing the array in its external format. */ Datum array_out(PG_FUNCTION_ARGS) { AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); Oid element_type = AARR_ELEMTYPE(v); int typlen; bool typbyval; char typalign; char typdelim; char *p, *tmp, *retval, **values, dims_str[(MAXDIM * 33) + 2]; /* * 33 per dim since we assume 15 digits per number + ':' +'[]' * * +2 allows for assignment operator + trailing null */ bool *needquotes, needdims = false; size_t overall_length; int nitems, i, j, k, indx[MAXDIM]; int ndim, *dims, *lb; array_iter iter; ArrayMetaState *my_extra; /* * We arrange to look up info about element type, including its output * conversion proc, only once per series of calls, assuming the element * type doesn't change underneath us. */ my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; if (my_extra == NULL) { fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, sizeof(ArrayMetaState)); my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; my_extra->element_type = ~element_type; } if (my_extra->element_type != element_type) { /* * Get info about element type, including its output conversion proc */ get_type_io_data(element_type, IOFunc_output, &my_extra->typlen, &my_extra->typbyval, &my_extra->typalign, &my_extra->typdelim, &my_extra->typioparam, &my_extra->typiofunc); fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc, fcinfo->flinfo->fn_mcxt); my_extra->element_type = element_type; } typlen = my_extra->typlen; typbyval = my_extra->typbyval; typalign = my_extra->typalign; typdelim = my_extra->typdelim; ndim = AARR_NDIM(v); dims = AARR_DIMS(v); lb = AARR_LBOUND(v); nitems = ArrayGetNItems(ndim, dims); if (nitems == 0) { retval = pstrdup("{}"); PG_RETURN_CSTRING(retval); } /* * we will need to add explicit dimensions if any dimension has a lower * bound other than one */ for (i = 0; i < ndim; i++) { if (lb[i] != 1) { needdims = true; break; } } /* * Convert all values to string form, count total space needed (including * any overhead such as escaping backslashes), and detect whether each * item needs double quotes. */ values = (char **) palloc(nitems * sizeof(char *)); needquotes = (bool *) palloc(nitems * sizeof(bool)); overall_length = 0; array_iter_setup(&iter, v); for (i = 0; i < nitems; i++) { Datum itemvalue; bool isnull; bool needquote; /* Get source element, checking for NULL */ itemvalue = array_iter_next(&iter, &isnull, i, typlen, typbyval, typalign); if (isnull) { values[i] = pstrdup("NULL"); overall_length += 4; needquote = false; } else { values[i] = OutputFunctionCall(&my_extra->proc, itemvalue); /* count data plus backslashes; detect chars needing quotes */ if (values[i][0] == '\0') needquote = true; /* force quotes for empty string */ else if (pg_strcasecmp(values[i], "NULL") == 0) needquote = true; /* force quotes for literal NULL */ else needquote = false; for (tmp = values[i]; *tmp != '\0'; tmp++) { char ch = *tmp; overall_length += 1; if (ch == '"' || ch == '\\') { needquote = true; overall_length += 1; } else if (ch == '{' || ch == '}' || ch == typdelim || array_isspace(ch)) needquote = true; } } needquotes[i] = needquote; /* Count the pair of double quotes, if needed */ if (needquote) overall_length += 2; /* and the comma (or other typdelim delimiter) */ overall_length += 1; } /* * The very last array element doesn't have a typdelim delimiter after it, * but that's OK; that space is needed for the trailing '\0'. * * Now count total number of curly brace pairs in output string. */ for (i = j = 0, k = 1; i < ndim; i++) { j += k, k *= dims[i]; } overall_length += 2 * j; /* Format explicit dimensions if required */ dims_str[0] = '\0'; if (needdims) { char *ptr = dims_str; for (i = 0; i < ndim; i++) { sprintf(ptr, "[%d:%d]", lb[i], lb[i] + dims[i] - 1); ptr += strlen(ptr); } *ptr++ = *ASSGN; *ptr = '\0'; overall_length += ptr - dims_str; } /* Now construct the output string */ retval = (char *) palloc(overall_length); p = retval; #define APPENDSTR(str) (strcpy(p, (str)), p += strlen(p)) #define APPENDCHAR(ch) (*p++ = (ch), *p = '\0') if (needdims) APPENDSTR(dims_str); APPENDCHAR('{'); for (i = 0; i < ndim; i++) indx[i] = 0; j = 0; k = 0; do { for (i = j; i < ndim - 1; i++) APPENDCHAR('{'); if (needquotes[k]) { APPENDCHAR('"'); for (tmp = values[k]; *tmp; tmp++) { char ch = *tmp; if (ch == '"' || ch == '\\') *p++ = '\\'; *p++ = ch; } *p = '\0'; APPENDCHAR('"'); } else APPENDSTR(values[k]); pfree(values[k++]); for (i = ndim - 1; i >= 0; i--) { if (++(indx[i]) < dims[i]) { APPENDCHAR(typdelim); break; } else { indx[i] = 0; APPENDCHAR('}'); } } j = i; } while (j != -1); #undef APPENDSTR #undef APPENDCHAR /* Assert that we calculated the string length accurately */ Assert(overall_length == (p - retval + 1)); pfree(values); pfree(needquotes); PG_RETURN_CSTRING(retval); } /* * array_recv : * converts an array from the external binary format to * its internal format. * * return value : * the internal representation of the input array */ Datum array_recv(PG_FUNCTION_ARGS) { StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); Oid spec_element_type = PG_GETARG_OID(1); /* type of an array * element */ int32 typmod = PG_GETARG_INT32(2); /* typmod for array elements */ Oid element_type; int typlen; bool typbyval; char typalign; Oid typioparam; int i, nitems; Datum *dataPtr; bool *nullsPtr; bool hasnulls; int32 nbytes; int32 dataoffset; ArrayType *retval; int ndim, flags, dim[MAXDIM], lBound[MAXDIM]; ArrayMetaState *my_extra; /* Get the array header information */ ndim = pq_getmsgint(buf, 4); if (ndim < 0) /* we do allow zero-dimension arrays */ ereport(ERROR, (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), errmsg("invalid number of dimensions: %d", ndim))); if (ndim > MAXDIM) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)", ndim, MAXDIM))); flags = pq_getmsgint(buf, 4); if (flags != 0 && flags != 1) ereport(ERROR, (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), errmsg("invalid array flags"))); /* Check element type recorded in the data */ element_type = pq_getmsgint(buf, sizeof(Oid)); /* * From a security standpoint, it doesn't matter whether the input's * element type matches what we expect: the element type's receive * function has to be robust enough to cope with invalid data. However, * from a user-friendliness standpoint, it's nicer to complain about type * mismatches than to throw "improper binary format" errors. But there's * a problem: only built-in types have OIDs that are stable enough to * believe that a mismatch is a real issue. So complain only if both OIDs * are in the built-in range. Otherwise, carry on with the element type * we "should" be getting. */ if (element_type != spec_element_type) { if (element_type < FirstGenbkiObjectId && spec_element_type < FirstGenbkiObjectId) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("binary data has array element type %u (%s) instead of expected %u (%s)", element_type, format_type_extended(element_type, -1, FORMAT_TYPE_ALLOW_INVALID), spec_element_type, format_type_extended(spec_element_type, -1, FORMAT_TYPE_ALLOW_INVALID)))); element_type = spec_element_type; } for (i = 0; i < ndim; i++) { dim[i] = pq_getmsgint(buf, 4); lBound[i] = pq_getmsgint(buf, 4); } /* This checks for overflow of array dimensions */ nitems = ArrayGetNItems(ndim, dim); ArrayCheckBounds(ndim, dim, lBound); /* * We arrange to look up info about element type, including its receive * conversion proc, only once per series of calls, assuming the element * type doesn't change underneath us. */ my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; if (my_extra == NULL) { fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, sizeof(ArrayMetaState)); my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; my_extra->element_type = ~element_type; } if (my_extra->element_type != element_type) { /* Get info about element type, including its receive proc */ get_type_io_data(element_type, IOFunc_receive, &my_extra->typlen, &my_extra->typbyval, &my_extra->typalign, &my_extra->typdelim, &my_extra->typioparam, &my_extra->typiofunc); if (!OidIsValid(my_extra->typiofunc)) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_FUNCTION), errmsg("no binary input function available for type %s", format_type_be(element_type)))); fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc, fcinfo->flinfo->fn_mcxt); my_extra->element_type = element_type; } if (nitems == 0) { /* Return empty array ... but not till we've validated element_type */ PG_RETURN_ARRAYTYPE_P(construct_empty_array(element_type)); } typlen = my_extra->typlen; typbyval = my_extra->typbyval; typalign = my_extra->typalign; typioparam = my_extra->typioparam; dataPtr = (Datum *) palloc(nitems * sizeof(Datum)); nullsPtr = (bool *) palloc(nitems * sizeof(bool)); ReadArrayBinary(buf, nitems, &my_extra->proc, typioparam, typmod, typlen, typbyval, typalign, dataPtr, nullsPtr, &hasnulls, &nbytes); if (hasnulls) { dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, nitems); nbytes += dataoffset; } else { dataoffset = 0; /* marker for no null bitmap */ nbytes += ARR_OVERHEAD_NONULLS(ndim); } retval = (ArrayType *) palloc0(nbytes); SET_VARSIZE(retval, nbytes); retval->ndim = ndim; retval->dataoffset = dataoffset; retval->elemtype = element_type; memcpy(ARR_DIMS(retval), dim, ndim * sizeof(int)); memcpy(ARR_LBOUND(retval), lBound, ndim * sizeof(int)); CopyArrayEls(retval, dataPtr, nullsPtr, nitems, typlen, typbyval, typalign, true); pfree(dataPtr); pfree(nullsPtr); PG_RETURN_ARRAYTYPE_P(retval); } /* * ReadArrayBinary: * collect the data elements of an array being read in binary style. * * Inputs: * buf: the data buffer to read from. * nitems: total number of array elements (already read). * receiveproc: type-specific receive procedure for element datatype. * typioparam, typmod: auxiliary values to pass to receiveproc. * typlen, typbyval, typalign: storage parameters of element datatype. * * Outputs: * values[]: filled with converted data values. * nulls[]: filled with is-null markers. * *hasnulls: set true iff there are any null elements. * *nbytes: set to total size of data area needed (including alignment * padding but not including array header overhead). * * Note that values[] and nulls[] are allocated by the caller, and must have * nitems elements. */ static void ReadArrayBinary(StringInfo buf, int nitems, FmgrInfo *receiveproc, Oid typioparam, int32 typmod, int typlen, bool typbyval, char typalign, Datum *values, bool *nulls, bool *hasnulls, int32 *nbytes) { int i; bool hasnull; int32 totbytes; for (i = 0; i < nitems; i++) { int itemlen; StringInfoData elem_buf; char csave; /* Get and check the item length */ itemlen = pq_getmsgint(buf, 4); if (itemlen < -1 || itemlen > (buf->len - buf->cursor)) ereport(ERROR, (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), errmsg("insufficient data left in message"))); if (itemlen == -1) { /* -1 length means NULL */ values[i] = ReceiveFunctionCall(receiveproc, NULL, typioparam, typmod); nulls[i] = true; continue; } /* * Rather than copying data around, we just set up a phony StringInfo * pointing to the correct portion of the input buffer. We assume we * can scribble on the input buffer so as to maintain the convention * that StringInfos have a trailing null. */ elem_buf.data = &buf->data[buf->cursor]; elem_buf.maxlen = itemlen + 1; elem_buf.len = itemlen; elem_buf.cursor = 0; buf->cursor += itemlen; csave = buf->data[buf->cursor]; buf->data[buf->cursor] = '\0'; /* Now call the element's receiveproc */ values[i] = ReceiveFunctionCall(receiveproc, &elem_buf, typioparam, typmod); nulls[i] = false; /* Trouble if it didn't eat the whole buffer */ if (elem_buf.cursor != itemlen) ereport(ERROR, (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), errmsg("improper binary format in array element %d", i + 1))); buf->data[buf->cursor] = csave; } /* * Check for nulls, compute total data space needed */ hasnull = false; totbytes = 0; for (i = 0; i < nitems; i++) { if (nulls[i]) hasnull = true; else { /* let's just make sure data is not toasted */ if (typlen == -1) values[i] = PointerGetDatum(PG_DETOAST_DATUM(values[i])); totbytes = att_addlength_datum(totbytes, typlen, values[i]); totbytes = att_align_nominal(totbytes, typalign); /* check for overflow of total request */ if (!AllocSizeIsValid(totbytes)) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("array size exceeds the maximum allowed (%d)", (int) MaxAllocSize))); } } *hasnulls = hasnull; *nbytes = totbytes; } /* * array_send : * takes the internal representation of an array and returns a bytea * containing the array in its external binary format. */ Datum array_send(PG_FUNCTION_ARGS) { AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); Oid element_type = AARR_ELEMTYPE(v); int typlen; bool typbyval; char typalign; int nitems, i; int ndim, *dim, *lb; StringInfoData buf; array_iter iter; ArrayMetaState *my_extra; /* * We arrange to look up info about element type, including its send * conversion proc, only once per series of calls, assuming the element * type doesn't change underneath us. */ my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; if (my_extra == NULL) { fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, sizeof(ArrayMetaState)); my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; my_extra->element_type = ~element_type; } if (my_extra->element_type != element_type) { /* Get info about element type, including its send proc */ get_type_io_data(element_type, IOFunc_send, &my_extra->typlen, &my_extra->typbyval, &my_extra->typalign, &my_extra->typdelim, &my_extra->typioparam, &my_extra->typiofunc); if (!OidIsValid(my_extra->typiofunc)) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_FUNCTION), errmsg("no binary output function available for type %s", format_type_be(element_type)))); fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc, fcinfo->flinfo->fn_mcxt); my_extra->element_type = element_type; } typlen = my_extra->typlen; typbyval = my_extra->typbyval; typalign = my_extra->typalign; ndim = AARR_NDIM(v); dim = AARR_DIMS(v); lb = AARR_LBOUND(v); nitems = ArrayGetNItems(ndim, dim); pq_begintypsend(&buf); /* Send the array header information */ pq_sendint32(&buf, ndim); pq_sendint32(&buf, AARR_HASNULL(v) ? 1 : 0); pq_sendint32(&buf, element_type); for (i = 0; i < ndim; i++) { pq_sendint32(&buf, dim[i]); pq_sendint32(&buf, lb[i]); } /* Send the array elements using the element's own sendproc */ array_iter_setup(&iter, v); for (i = 0; i < nitems; i++) { Datum itemvalue; bool isnull; /* Get source element, checking for NULL */ itemvalue = array_iter_next(&iter, &isnull, i, typlen, typbyval, typalign); if (isnull) { /* -1 length means a NULL */ pq_sendint32(&buf, -1); } else { bytea *outputbytes; outputbytes = SendFunctionCall(&my_extra->proc, itemvalue); pq_sendint32(&buf, VARSIZE(outputbytes) - VARHDRSZ); pq_sendbytes(&buf, VARDATA(outputbytes), VARSIZE(outputbytes) - VARHDRSZ); pfree(outputbytes); } } PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); } /* * array_ndims : * returns the number of dimensions of the array pointed to by "v" */ Datum array_ndims(PG_FUNCTION_ARGS) { AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); /* Sanity check: does it look like an array at all? */ if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM) PG_RETURN_NULL(); PG_RETURN_INT32(AARR_NDIM(v)); } /* * array_dims : * returns the dimensions of the array pointed to by "v", as a "text" */ Datum array_dims(PG_FUNCTION_ARGS) { AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); char *p; int i; int *dimv, *lb; /* * 33 since we assume 15 digits per number + ':' +'[]' * * +1 for trailing null */ char buf[MAXDIM * 33 + 1]; /* Sanity check: does it look like an array at all? */ if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM) PG_RETURN_NULL(); dimv = AARR_DIMS(v); lb = AARR_LBOUND(v); p = buf; for (i = 0; i < AARR_NDIM(v); i++) { sprintf(p, "[%d:%d]", lb[i], dimv[i] + lb[i] - 1); p += strlen(p); } PG_RETURN_TEXT_P(cstring_to_text(buf)); } /* * array_lower : * returns the lower dimension, of the DIM requested, for * the array pointed to by "v", as an int4 */ Datum array_lower(PG_FUNCTION_ARGS) { AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); int reqdim = PG_GETARG_INT32(1); int *lb; int result; /* Sanity check: does it look like an array at all? */ if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM) PG_RETURN_NULL(); /* Sanity check: was the requested dim valid */ if (reqdim <= 0 || reqdim > AARR_NDIM(v)) PG_RETURN_NULL(); lb = AARR_LBOUND(v); result = lb[reqdim - 1]; PG_RETURN_INT32(result); } /* * array_upper : * returns the upper dimension, of the DIM requested, for * the array pointed to by "v", as an int4 */ Datum array_upper(PG_FUNCTION_ARGS) { AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); int reqdim = PG_GETARG_INT32(1); int *dimv, *lb; int result; /* Sanity check: does it look like an array at all? */ if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM) PG_RETURN_NULL(); /* Sanity check: was the requested dim valid */ if (reqdim <= 0 || reqdim > AARR_NDIM(v)) PG_RETURN_NULL(); lb = AARR_LBOUND(v); dimv = AARR_DIMS(v); result = dimv[reqdim - 1] + lb[reqdim - 1] - 1; PG_RETURN_INT32(result); } /* * array_length : * returns the length, of the dimension requested, for * the array pointed to by "v", as an int4 */ Datum array_length(PG_FUNCTION_ARGS) { AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); int reqdim = PG_GETARG_INT32(1); int *dimv; int result; /* Sanity check: does it look like an array at all? */ if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM) PG_RETURN_NULL(); /* Sanity check: was the requested dim valid */ if (reqdim <= 0 || reqdim > AARR_NDIM(v)) PG_RETURN_NULL(); dimv = AARR_DIMS(v); result = dimv[reqdim - 1]; PG_RETURN_INT32(result); } /* * array_cardinality: * returns the total number of elements in an array */ Datum array_cardinality(PG_FUNCTION_ARGS) { AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); PG_RETURN_INT32(ArrayGetNItems(AARR_NDIM(v), AARR_DIMS(v))); } /* * array_get_element : * This routine takes an array datum and a subscript array and returns * the referenced item as a Datum. Note that for a pass-by-reference * datatype, the returned Datum is a pointer into the array object. * * This handles both ordinary varlena arrays and fixed-length arrays. * * Inputs: * arraydatum: the array object (mustn't be NULL) * nSubscripts: number of subscripts supplied * indx[]: the subscript values * arraytyplen: pg_type.typlen for the array type * elmlen: pg_type.typlen for the array's element type * elmbyval: pg_type.typbyval for the array's element type * elmalign: pg_type.typalign for the array's element type * * Outputs: * The return value is the element Datum. * *isNull is set to indicate whether the element is NULL. */ Datum array_get_element(Datum arraydatum, int nSubscripts, int *indx, int arraytyplen, int elmlen, bool elmbyval, char elmalign, bool *isNull) { int i, ndim, *dim, *lb, offset, fixedDim[1], fixedLb[1]; char *arraydataptr, *retptr; bits8 *arraynullsptr; if (arraytyplen > 0) { /* * fixed-length arrays -- these are assumed to be 1-d, 0-based */ ndim = 1; fixedDim[0] = arraytyplen / elmlen; fixedLb[0] = 0; dim = fixedDim; lb = fixedLb; arraydataptr = (char *) DatumGetPointer(arraydatum); arraynullsptr = NULL; } else if (VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(arraydatum))) { /* expanded array: let's do this in a separate function */ return array_get_element_expanded(arraydatum, nSubscripts, indx, arraytyplen, elmlen, elmbyval, elmalign, isNull); } else { /* detoast array if necessary, producing normal varlena input */ ArrayType *array = DatumGetArrayTypeP(arraydatum); ndim = ARR_NDIM(array); dim = ARR_DIMS(array); lb = ARR_LBOUND(array); arraydataptr = ARR_DATA_PTR(array); arraynullsptr = ARR_NULLBITMAP(array); } /* * Return NULL for invalid subscript */ if (ndim != nSubscripts || ndim <= 0 || ndim > MAXDIM) { *isNull = true; return (Datum) 0; } for (i = 0; i < ndim; i++) { if (indx[i] < lb[i] || indx[i] >= (dim[i] + lb[i])) { *isNull = true; return (Datum) 0; } } /* * Calculate the element number */ offset = ArrayGetOffset(nSubscripts, dim, lb, indx); /* * Check for NULL array element */ if (array_get_isnull(arraynullsptr, offset)) { *isNull = true; return (Datum) 0; } /* * OK, get the element */ *isNull = false; retptr = array_seek(arraydataptr, 0, arraynullsptr, offset, elmlen, elmbyval, elmalign); return ArrayCast(retptr, elmbyval, elmlen); } /* * Implementation of array_get_element() for an expanded array */ static Datum array_get_element_expanded(Datum arraydatum, int nSubscripts, int *indx, int arraytyplen, int elmlen, bool elmbyval, char elmalign, bool *isNull) { ExpandedArrayHeader *eah; int i, ndim, *dim, *lb, offset; Datum *dvalues; bool *dnulls; eah = (ExpandedArrayHeader *) DatumGetEOHP(arraydatum); Assert(eah->ea_magic == EA_MAGIC); /* sanity-check caller's info against object */ Assert(arraytyplen == -1); Assert(elmlen == eah->typlen); Assert(elmbyval == eah->typbyval); Assert(elmalign == eah->typalign); ndim = eah->ndims; dim = eah->dims; lb = eah->lbound; /* * Return NULL for invalid subscript */ if (ndim != nSubscripts || ndim <= 0 || ndim > MAXDIM) { *isNull = true; return (Datum) 0; } for (i = 0; i < ndim; i++) { if (indx[i] < lb[i] || indx[i] >= (dim[i] + lb[i])) { *isNull = true; return (Datum) 0; } } /* * Calculate the element number */ offset = ArrayGetOffset(nSubscripts, dim, lb, indx); /* * Deconstruct array if we didn't already. Note that we apply this even * if the input is nominally read-only: it should be safe enough. */ deconstruct_expanded_array(eah); dvalues = eah->dvalues; dnulls = eah->dnulls; /* * Check for NULL array element */ if (dnulls && dnulls[offset]) { *isNull = true; return (Datum) 0; } /* * OK, get the element. It's OK to return a pass-by-ref value as a * pointer into the expanded array, for the same reason that regular * array_get_element can return a pointer into flat arrays: the value is * assumed not to change for as long as the Datum reference can exist. */ *isNull = false; return dvalues[offset]; } /* * array_get_slice : * This routine takes an array and a range of indices (upperIndx and * lowerIndx), creates a new array structure for the referred elements * and returns a pointer to it. * * This handles both ordinary varlena arrays and fixed-length arrays. * * Inputs: * arraydatum: the array object (mustn't be NULL) * nSubscripts: number of subscripts supplied (must be same for upper/lower) * upperIndx[]: the upper subscript values * lowerIndx[]: the lower subscript values * upperProvided[]: true for provided upper subscript values * lowerProvided[]: true for provided lower subscript values * arraytyplen: pg_type.typlen for the array type * elmlen: pg_type.typlen for the array's element type * elmbyval: pg_type.typbyval for the array's element type * elmalign: pg_type.typalign for the array's element type * * Outputs: * The return value is the new array Datum (it's never NULL) * * Omitted upper and lower subscript values are replaced by the corresponding * array bound. * * NOTE: we assume it is OK to scribble on the provided subscript arrays * lowerIndx[] and upperIndx[]; also, these arrays must be of size MAXDIM * even when nSubscripts is less. These are generally just temporaries. */ Datum array_get_slice(Datum arraydatum, int nSubscripts, int *upperIndx, int *lowerIndx, bool *upperProvided, bool *lowerProvided, int arraytyplen, int elmlen, bool elmbyval, char elmalign) { ArrayType *array; ArrayType *newarray; int i, ndim, *dim, *lb, *newlb; int fixedDim[1], fixedLb[1]; Oid elemtype; char *arraydataptr; bits8 *arraynullsptr; int32 dataoffset; int bytes, span[MAXDIM]; if (arraytyplen > 0) { /* * fixed-length arrays -- currently, cannot slice these because parser * labels output as being of the fixed-length array type! Code below * shows how we could support it if the parser were changed to label * output as a suitable varlena array type. */ ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("slices of fixed-length arrays not implemented"))); /* * fixed-length arrays -- these are assumed to be 1-d, 0-based * * XXX where would we get the correct ELEMTYPE from? */ ndim = 1; fixedDim[0] = arraytyplen / elmlen; fixedLb[0] = 0; dim = fixedDim; lb = fixedLb; elemtype = InvalidOid; /* XXX */ arraydataptr = (char *) DatumGetPointer(arraydatum); arraynullsptr = NULL; } else { /* detoast input array if necessary */ array = DatumGetArrayTypeP(arraydatum); ndim = ARR_NDIM(array); dim = ARR_DIMS(array); lb = ARR_LBOUND(array); elemtype = ARR_ELEMTYPE(array); arraydataptr = ARR_DATA_PTR(array); arraynullsptr = ARR_NULLBITMAP(array); } /* * Check provided subscripts. A slice exceeding the current array limits * is silently truncated to the array limits. If we end up with an empty * slice, return an empty array. */ if (ndim < nSubscripts || ndim <= 0 || ndim > MAXDIM) return PointerGetDatum(construct_empty_array(elemtype)); for (i = 0; i < nSubscripts; i++) { if (!lowerProvided[i] || lowerIndx[i] < lb[i]) lowerIndx[i] = lb[i]; if (!upperProvided[i] || upperIndx[i] >= (dim[i] + lb[i])) upperIndx[i] = dim[i] + lb[i] - 1; if (lowerIndx[i] > upperIndx[i]) return PointerGetDatum(construct_empty_array(elemtype)); } /* fill any missing subscript positions with full array range */ for (; i < ndim; i++) { lowerIndx[i] = lb[i]; upperIndx[i] = dim[i] + lb[i] - 1; if (lowerIndx[i] > upperIndx[i]) return PointerGetDatum(construct_empty_array(elemtype)); } mda_get_range(ndim, span, lowerIndx, upperIndx); bytes = array_slice_size(arraydataptr, arraynullsptr, ndim, dim, lb, lowerIndx, upperIndx, elmlen, elmbyval, elmalign); /* * Currently, we put a null bitmap in the result if the source has one; * could be smarter ... */ if (arraynullsptr) { dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, ArrayGetNItems(ndim, span)); bytes += dataoffset; } else { dataoffset = 0; /* marker for no null bitmap */ bytes += ARR_OVERHEAD_NONULLS(ndim); } newarray = (ArrayType *) palloc0(bytes); SET_VARSIZE(newarray, bytes); newarray->ndim = ndim; newarray->dataoffset = dataoffset; newarray->elemtype = elemtype; memcpy(ARR_DIMS(newarray), span, ndim * sizeof(int)); /* * Lower bounds of the new array are set to 1. Formerly (before 7.3) we * copied the given lowerIndx values ... but that seems confusing. */ newlb = ARR_LBOUND(newarray); for (i = 0; i < ndim; i++) newlb[i] = 1; array_extract_slice(newarray, ndim, dim, lb, arraydataptr, arraynullsptr, lowerIndx, upperIndx, elmlen, elmbyval, elmalign); return PointerGetDatum(newarray); } /* * array_set_element : * This routine sets the value of one array element (specified by * a subscript array) to a new value specified by "dataValue". * * This handles both ordinary varlena arrays and fixed-length arrays. * * Inputs: * arraydatum: the initial array object (mustn't be NULL) * nSubscripts: number of subscripts supplied * indx[]: the subscript values * dataValue: the datum to be inserted at the given position * isNull: whether dataValue is NULL * arraytyplen: pg_type.typlen for the array type * elmlen: pg_type.typlen for the array's element type * elmbyval: pg_type.typbyval for the array's element type * elmalign: pg_type.typalign for the array's element type * * Result: * A new array is returned, just like the old except for the one * modified entry. The original array object is not changed, * unless what is passed is a read-write reference to an expanded * array object; in that case the expanded array is updated in-place. * * For one-dimensional arrays only, we allow the array to be extended * by assigning to a position outside the existing subscript range; any * positions between the existing elements and the new one are set to NULLs. * (XXX TODO: allow a corresponding behavior for multidimensional arrays) * * NOTE: For assignments, we throw an error for invalid subscripts etc, * rather than returning a NULL as the fetch operations do. */ Datum array_set_element(Datum arraydatum, int nSubscripts, int *indx, Datum dataValue, bool isNull, int arraytyplen, int elmlen, bool elmbyval, char elmalign) { ArrayType *array; ArrayType *newarray; int i, ndim, dim[MAXDIM], lb[MAXDIM], offset; char *elt_ptr; bool newhasnulls; bits8 *oldnullbitmap; int oldnitems, newnitems, olddatasize, newsize, olditemlen, newitemlen, overheadlen, oldoverheadlen, addedbefore, addedafter, lenbefore, lenafter; if (arraytyplen > 0) { /* * fixed-length arrays -- these are assumed to be 1-d, 0-based. We * cannot extend them, either. */ char *resultarray; if (nSubscripts != 1) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("wrong number of array subscripts"))); if (indx[0] < 0 || indx[0] >= arraytyplen / elmlen) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("array subscript out of range"))); if (isNull) ereport(ERROR, (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), errmsg("cannot assign null value to an element of a fixed-length array"))); resultarray = (char *) palloc(arraytyplen); memcpy(resultarray, DatumGetPointer(arraydatum), arraytyplen); elt_ptr = (char *) resultarray + indx[0] * elmlen; ArrayCastAndSet(dataValue, elmlen, elmbyval, elmalign, elt_ptr); return PointerGetDatum(resultarray); } if (nSubscripts <= 0 || nSubscripts > MAXDIM) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("wrong number of array subscripts"))); /* make sure item to be inserted is not toasted */ if (elmlen == -1 && !isNull) dataValue = PointerGetDatum(PG_DETOAST_DATUM(dataValue)); if (VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(arraydatum))) { /* expanded array: let's do this in a separate function */ return array_set_element_expanded(arraydatum, nSubscripts, indx, dataValue, isNull, arraytyplen, elmlen, elmbyval, elmalign); } /* detoast input array if necessary */ array = DatumGetArrayTypeP(arraydatum); ndim = ARR_NDIM(array); /* * if number of dims is zero, i.e. an empty array, create an array with * nSubscripts dimensions, and set the lower bounds to the supplied * subscripts */ if (ndim == 0) { Oid elmtype = ARR_ELEMTYPE(array); for (i = 0; i < nSubscripts; i++) { dim[i] = 1; lb[i] = indx[i]; } return PointerGetDatum(construct_md_array(&dataValue, &isNull, nSubscripts, dim, lb, elmtype, elmlen, elmbyval, elmalign)); } if (ndim != nSubscripts) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("wrong number of array subscripts"))); /* copy dim/lb since we may modify them */ memcpy(dim, ARR_DIMS(array), ndim * sizeof(int)); memcpy(lb, ARR_LBOUND(array), ndim * sizeof(int)); newhasnulls = (ARR_HASNULL(array) || isNull); addedbefore = addedafter = 0; /* * Check subscripts. We assume the existing subscripts passed * ArrayCheckBounds, so that dim[i] + lb[i] can be computed without * overflow. But we must beware of other overflows in our calculations of * new dim[] values. */ if (ndim == 1) { if (indx[0] < lb[0]) { /* addedbefore = lb[0] - indx[0]; */ /* dim[0] += addedbefore; */ if (pg_sub_s32_overflow(lb[0], indx[0], &addedbefore) || pg_add_s32_overflow(dim[0], addedbefore, &dim[0])) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("array size exceeds the maximum allowed (%d)", (int) MaxArraySize))); lb[0] = indx[0]; if (addedbefore > 1) newhasnulls = true; /* will insert nulls */ } if (indx[0] >= (dim[0] + lb[0])) { /* addedafter = indx[0] - (dim[0] + lb[0]) + 1; */ /* dim[0] += addedafter; */ if (pg_sub_s32_overflow(indx[0], dim[0] + lb[0], &addedafter) || pg_add_s32_overflow(addedafter, 1, &addedafter) || pg_add_s32_overflow(dim[0], addedafter, &dim[0])) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("array size exceeds the maximum allowed (%d)", (int) MaxArraySize))); if (addedafter > 1) newhasnulls = true; /* will insert nulls */ } } else { /* * XXX currently we do not support extending multi-dimensional arrays * during assignment */ for (i = 0; i < ndim; i++) { if (indx[i] < lb[i] || indx[i] >= (dim[i] + lb[i])) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("array subscript out of range"))); } } /* This checks for overflow of the array dimensions */ newnitems = ArrayGetNItems(ndim, dim); ArrayCheckBounds(ndim, dim, lb); /* * Compute sizes of items and areas to copy */ if (newhasnulls) overheadlen = ARR_OVERHEAD_WITHNULLS(ndim, newnitems); else overheadlen = ARR_OVERHEAD_NONULLS(ndim); oldnitems = ArrayGetNItems(ndim, ARR_DIMS(array)); oldnullbitmap = ARR_NULLBITMAP(array); oldoverheadlen = ARR_DATA_OFFSET(array); olddatasize = ARR_SIZE(array) - oldoverheadlen; if (addedbefore) { offset = 0; lenbefore = 0; olditemlen = 0; lenafter = olddatasize; } else if (addedafter) { offset = oldnitems; lenbefore = olddatasize; olditemlen = 0; lenafter = 0; } else { offset = ArrayGetOffset(nSubscripts, dim, lb, indx); elt_ptr = array_seek(ARR_DATA_PTR(array), 0, oldnullbitmap, offset, elmlen, elmbyval, elmalign); lenbefore = (int) (elt_ptr - ARR_DATA_PTR(array)); if (array_get_isnull(oldnullbitmap, offset)) olditemlen = 0; else { olditemlen = att_addlength_pointer(0, elmlen, elt_ptr); olditemlen = att_align_nominal(olditemlen, elmalign); } lenafter = (int) (olddatasize - lenbefore - olditemlen); } if (isNull) newitemlen = 0; else { newitemlen = att_addlength_datum(0, elmlen, dataValue); newitemlen = att_align_nominal(newitemlen, elmalign); } newsize = overheadlen + lenbefore + newitemlen + lenafter; /* * OK, create the new array and fill in header/dimensions */ newarray = (ArrayType *) palloc0(newsize); SET_VARSIZE(newarray, newsize); newarray->ndim = ndim; newarray->dataoffset = newhasnulls ? overheadlen : 0; newarray->elemtype = ARR_ELEMTYPE(array); memcpy(ARR_DIMS(newarray), dim, ndim * sizeof(int)); memcpy(ARR_LBOUND(newarray), lb, ndim * sizeof(int)); /* * Fill in data */ memcpy((char *) newarray + overheadlen, (char *) array + oldoverheadlen, lenbefore); if (!isNull) ArrayCastAndSet(dataValue, elmlen, elmbyval, elmalign, (char *) newarray + overheadlen + lenbefore); memcpy((char *) newarray + overheadlen + lenbefore + newitemlen, (char *) array + oldoverheadlen + lenbefore + olditemlen, lenafter); /* * Fill in nulls bitmap if needed * * Note: it's possible we just replaced the last NULL with a non-NULL, and * could get rid of the bitmap. Seems not worth testing for though. */ if (newhasnulls) { bits8 *newnullbitmap = ARR_NULLBITMAP(newarray); /* palloc0 above already marked any inserted positions as nulls */ /* Fix the inserted value */ if (addedafter) array_set_isnull(newnullbitmap, newnitems - 1, isNull); else array_set_isnull(newnullbitmap, offset, isNull); /* Fix the copied range(s) */ if (addedbefore) array_bitmap_copy(newnullbitmap, addedbefore, oldnullbitmap, 0, oldnitems); else { array_bitmap_copy(newnullbitmap, 0, oldnullbitmap, 0, offset); if (addedafter == 0) array_bitmap_copy(newnullbitmap, offset + 1, oldnullbitmap, offset + 1, oldnitems - offset - 1); } } return PointerGetDatum(newarray); } /* * Implementation of array_set_element() for an expanded array * * Note: as with any operation on a read/write expanded object, we must * take pains not to leave the object in a corrupt state if we fail partway * through. */ static Datum array_set_element_expanded(Datum arraydatum, int nSubscripts, int *indx, Datum dataValue, bool isNull, int arraytyplen, int elmlen, bool elmbyval, char elmalign) { ExpandedArrayHeader *eah; Datum *dvalues; bool *dnulls; int i, ndim, dim[MAXDIM], lb[MAXDIM], offset; bool dimschanged, newhasnulls; int addedbefore, addedafter; char *oldValue; /* Convert to R/W object if not so already */ eah = DatumGetExpandedArray(arraydatum); /* Sanity-check caller's info against object; we don't use it otherwise */ Assert(arraytyplen == -1); Assert(elmlen == eah->typlen); Assert(elmbyval == eah->typbyval); Assert(elmalign == eah->typalign); /* * Copy dimension info into local storage. This allows us to modify the * dimensions if needed, while not messing up the expanded value if we * fail partway through. */ ndim = eah->ndims; Assert(ndim >= 0 && ndim <= MAXDIM); memcpy(dim, eah->dims, ndim * sizeof(int)); memcpy(lb, eah->lbound, ndim * sizeof(int)); dimschanged = false; /* * if number of dims is zero, i.e. an empty array, create an array with * nSubscripts dimensions, and set the lower bounds to the supplied * subscripts. */ if (ndim == 0) { /* * Allocate adequate space for new dimension info. This is harmless * if we fail later. */ Assert(nSubscripts > 0 && nSubscripts <= MAXDIM); eah->dims = (int *) MemoryContextAllocZero(eah->hdr.eoh_context, nSubscripts * sizeof(int)); eah->lbound = (int *) MemoryContextAllocZero(eah->hdr.eoh_context, nSubscripts * sizeof(int)); /* Update local copies of dimension info */ ndim = nSubscripts; for (i = 0; i < nSubscripts; i++) { dim[i] = 0; lb[i] = indx[i]; } dimschanged = true; } else if (ndim != nSubscripts) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("wrong number of array subscripts"))); /* * Deconstruct array if we didn't already. (Someday maybe add a special * case path for fixed-length, no-nulls cases, where we can overwrite an * element in place without ever deconstructing. But today is not that * day.) */ deconstruct_expanded_array(eah); /* * Copy new element into array's context, if needed (we assume it's * already detoasted, so no junk should be created). Doing this before * we've made any significant changes ensures that our behavior is sane * even when the source is a reference to some element of this same array. * If we fail further down, this memory is leaked, but that's reasonably * harmless. */ if (!eah->typbyval && !isNull) { MemoryContext oldcxt = MemoryContextSwitchTo(eah->hdr.eoh_context); dataValue = datumCopy(dataValue, false, eah->typlen); MemoryContextSwitchTo(oldcxt); } dvalues = eah->dvalues; dnulls = eah->dnulls; newhasnulls = ((dnulls != NULL) || isNull); addedbefore = addedafter = 0; /* * Check subscripts (this logic must match array_set_element). We assume * the existing subscripts passed ArrayCheckBounds, so that dim[i] + lb[i] * can be computed without overflow. But we must beware of other * overflows in our calculations of new dim[] values. */ if (ndim == 1) { if (indx[0] < lb[0]) { /* addedbefore = lb[0] - indx[0]; */ /* dim[0] += addedbefore; */ if (pg_sub_s32_overflow(lb[0], indx[0], &addedbefore) || pg_add_s32_overflow(dim[0], addedbefore, &dim[0])) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("array size exceeds the maximum allowed (%d)", (int) MaxArraySize))); lb[0] = indx[0]; dimschanged = true; if (addedbefore > 1) newhasnulls = true; /* will insert nulls */ } if (indx[0] >= (dim[0] + lb[0])) { /* addedafter = indx[0] - (dim[0] + lb[0]) + 1; */ /* dim[0] += addedafter; */ if (pg_sub_s32_overflow(indx[0], dim[0] + lb[0], &addedafter) || pg_add_s32_overflow(addedafter, 1, &addedafter) || pg_add_s32_overflow(dim[0], addedafter, &dim[0])) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("array size exceeds the maximum allowed (%d)", (int) MaxArraySize))); dimschanged = true; if (addedafter > 1) newhasnulls = true; /* will insert nulls */ } } else { /* * XXX currently we do not support extending multi-dimensional arrays * during assignment */ for (i = 0; i < ndim; i++) { if (indx[i] < lb[i] || indx[i] >= (dim[i] + lb[i])) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("array subscript out of range"))); } } /* Check for overflow of the array dimensions */ if (dimschanged) { (void) ArrayGetNItems(ndim, dim); ArrayCheckBounds(ndim, dim, lb); } /* Now we can calculate linear offset of target item in array */ offset = ArrayGetOffset(nSubscripts, dim, lb, indx); /* Physically enlarge existing dvalues/dnulls arrays if needed */ if (dim[0] > eah->dvalueslen) { /* We want some extra space if we're enlarging */ int newlen = dim[0] + dim[0] / 8; newlen = Max(newlen, dim[0]); /* integer overflow guard */ eah->dvalues = dvalues = (Datum *) repalloc(dvalues, newlen * sizeof(Datum)); if (dnulls) eah->dnulls = dnulls = (bool *) repalloc(dnulls, newlen * sizeof(bool)); eah->dvalueslen = newlen; } /* * If we need a nulls bitmap and don't already have one, create it, being * sure to mark all existing entries as not null. */ if (newhasnulls && dnulls == NULL) eah->dnulls = dnulls = (bool *) MemoryContextAllocZero(eah->hdr.eoh_context, eah->dvalueslen * sizeof(bool)); /* * We now have all the needed space allocated, so we're ready to make * irreversible changes. Be very wary of allowing failure below here. */ /* Flattened value will no longer represent array accurately */ eah->fvalue = NULL; /* And we don't know the flattened size either */ eah->flat_size = 0; /* Update dimensionality info if needed */ if (dimschanged) { eah->ndims = ndim; memcpy(eah->dims, dim, ndim * sizeof(int)); memcpy(eah->lbound, lb, ndim * sizeof(int)); } /* Reposition items if needed, and fill addedbefore items with nulls */ if (addedbefore > 0) { memmove(dvalues + addedbefore, dvalues, eah->nelems * sizeof(Datum)); for (i = 0; i < addedbefore; i++) dvalues[i] = (Datum) 0; if (dnulls) { memmove(dnulls + addedbefore, dnulls, eah->nelems * sizeof(bool)); for (i = 0; i < addedbefore; i++) dnulls[i] = true; } eah->nelems += addedbefore; } /* fill addedafter items with nulls */ if (addedafter > 0) { for (i = 0; i < addedafter; i++) dvalues[eah->nelems + i] = (Datum) 0; if (dnulls) { for (i = 0; i < addedafter; i++) dnulls[eah->nelems + i] = true; } eah->nelems += addedafter; } /* Grab old element value for pfree'ing, if needed. */ if (!eah->typbyval && (dnulls == NULL || !dnulls[offset])) oldValue = (char *) DatumGetPointer(dvalues[offset]); else oldValue = NULL; /* And finally we can insert the new element. */ dvalues[offset] = dataValue; if (dnulls) dnulls[offset] = isNull; /* * Free old element if needed; this keeps repeated element replacements * from bloating the array's storage. If the pfree somehow fails, it * won't corrupt the array. */ if (oldValue) { /* Don't try to pfree a part of the original flat array */ if (oldValue < eah->fstartptr || oldValue >= eah->fendptr) pfree(oldValue); } /* Done, return standard TOAST pointer for object */ return EOHPGetRWDatum(&eah->hdr); } /* * array_set_slice : * This routine sets the value of a range of array locations (specified * by upper and lower subscript values) to new values passed as * another array. * * This handles both ordinary varlena arrays and fixed-length arrays. * * Inputs: * arraydatum: the initial array object (mustn't be NULL) * nSubscripts: number of subscripts supplied (must be same for upper/lower) * upperIndx[]: the upper subscript values * lowerIndx[]: the lower subscript values * upperProvided[]: true for provided upper subscript values * lowerProvided[]: true for provided lower subscript values * srcArrayDatum: the source for the inserted values * isNull: indicates whether srcArrayDatum is NULL * arraytyplen: pg_type.typlen for the array type * elmlen: pg_type.typlen for the array's element type * elmbyval: pg_type.typbyval for the array's element type * elmalign: pg_type.typalign for the array's element type * * Result: * A new array is returned, just like the old except for the * modified range. The original array object is not changed. * * Omitted upper and lower subscript values are replaced by the corresponding * array bound. * * For one-dimensional arrays only, we allow the array to be extended * by assigning to positions outside the existing subscript range; any * positions between the existing elements and the new ones are set to NULLs. * (XXX TODO: allow a corresponding behavior for multidimensional arrays) * * NOTE: we assume it is OK to scribble on the provided index arrays * lowerIndx[] and upperIndx[]; also, these arrays must be of size MAXDIM * even when nSubscripts is less. These are generally just temporaries. * * NOTE: For assignments, we throw an error for silly subscripts etc, * rather than returning a NULL or empty array as the fetch operations do. */ Datum array_set_slice(Datum arraydatum, int nSubscripts, int *upperIndx, int *lowerIndx, bool *upperProvided, bool *lowerProvided, Datum srcArrayDatum, bool isNull, int arraytyplen, int elmlen, bool elmbyval, char elmalign) { ArrayType *array; ArrayType *srcArray; ArrayType *newarray; int i, ndim, dim[MAXDIM], lb[MAXDIM], span[MAXDIM]; bool newhasnulls; int nitems, nsrcitems, olddatasize, newsize, olditemsize, newitemsize, overheadlen, oldoverheadlen, addedbefore, addedafter, lenbefore, lenafter, itemsbefore, itemsafter, nolditems; /* Currently, assignment from a NULL source array is a no-op */ if (isNull) return arraydatum; if (arraytyplen > 0) { /* * fixed-length arrays -- not got round to doing this... */ ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("updates on slices of fixed-length arrays not implemented"))); } /* detoast arrays if necessary */ array = DatumGetArrayTypeP(arraydatum); srcArray = DatumGetArrayTypeP(srcArrayDatum); /* note: we assume srcArray contains no toasted elements */ ndim = ARR_NDIM(array); /* * if number of dims is zero, i.e. an empty array, create an array with * nSubscripts dimensions, and set the upper and lower bounds to the * supplied subscripts */ if (ndim == 0) { Datum *dvalues; bool *dnulls; int nelems; Oid elmtype = ARR_ELEMTYPE(array); deconstruct_array(srcArray, elmtype, elmlen, elmbyval, elmalign, &dvalues, &dnulls, &nelems); for (i = 0; i < nSubscripts; i++) { if (!upperProvided[i] || !lowerProvided[i]) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("array slice subscript must provide both boundaries"), errdetail("When assigning to a slice of an empty array value," " slice boundaries must be fully specified."))); dim[i] = 1 + upperIndx[i] - lowerIndx[i]; lb[i] = lowerIndx[i]; } /* complain if too few source items; we ignore extras, however */ if (nelems < ArrayGetNItems(nSubscripts, dim)) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("source array too small"))); return PointerGetDatum(construct_md_array(dvalues, dnulls, nSubscripts, dim, lb, elmtype, elmlen, elmbyval, elmalign)); } if (ndim < nSubscripts || ndim <= 0 || ndim > MAXDIM) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("wrong number of array subscripts"))); /* copy dim/lb since we may modify them */ memcpy(dim, ARR_DIMS(array), ndim * sizeof(int)); memcpy(lb, ARR_LBOUND(array), ndim * sizeof(int)); newhasnulls = (ARR_HASNULL(array) || ARR_HASNULL(srcArray)); addedbefore = addedafter = 0; /* * Check subscripts. We assume the existing subscripts passed * ArrayCheckBounds, so that dim[i] + lb[i] can be computed without * overflow. But we must beware of other overflows in our calculations of * new dim[] values. */ if (ndim == 1) { Assert(nSubscripts == 1); if (!lowerProvided[0]) lowerIndx[0] = lb[0]; if (!upperProvided[0]) upperIndx[0] = dim[0] + lb[0] - 1; if (lowerIndx[0] > upperIndx[0]) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("upper bound cannot be less than lower bound"))); if (lowerIndx[0] < lb[0]) { /* addedbefore = lb[0] - lowerIndx[0]; */ /* dim[0] += addedbefore; */ if (pg_sub_s32_overflow(lb[0], lowerIndx[0], &addedbefore) || pg_add_s32_overflow(dim[0], addedbefore, &dim[0])) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("array size exceeds the maximum allowed (%d)", (int) MaxArraySize))); lb[0] = lowerIndx[0]; if (addedbefore > 1) newhasnulls = true; /* will insert nulls */ } if (upperIndx[0] >= (dim[0] + lb[0])) { /* addedafter = upperIndx[0] - (dim[0] + lb[0]) + 1; */ /* dim[0] += addedafter; */ if (pg_sub_s32_overflow(upperIndx[0], dim[0] + lb[0], &addedafter) || pg_add_s32_overflow(addedafter, 1, &addedafter) || pg_add_s32_overflow(dim[0], addedafter, &dim[0])) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("array size exceeds the maximum allowed (%d)", (int) MaxArraySize))); if (addedafter > 1) newhasnulls = true; /* will insert nulls */ } } else { /* * XXX currently we do not support extending multi-dimensional arrays * during assignment */ for (i = 0; i < nSubscripts; i++) { if (!lowerProvided[i]) lowerIndx[i] = lb[i]; if (!upperProvided[i]) upperIndx[i] = dim[i] + lb[i] - 1; if (lowerIndx[i] > upperIndx[i]) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("upper bound cannot be less than lower bound"))); if (lowerIndx[i] < lb[i] || upperIndx[i] >= (dim[i] + lb[i])) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("array subscript out of range"))); } /* fill any missing subscript positions with full array range */ for (; i < ndim; i++) { lowerIndx[i] = lb[i]; upperIndx[i] = dim[i] + lb[i] - 1; if (lowerIndx[i] > upperIndx[i]) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("upper bound cannot be less than lower bound"))); } } /* Do this mainly to check for overflow */ nitems = ArrayGetNItems(ndim, dim); ArrayCheckBounds(ndim, dim, lb); /* * Make sure source array has enough entries. Note we ignore the shape of * the source array and just read entries serially. */ mda_get_range(ndim, span, lowerIndx, upperIndx); nsrcitems = ArrayGetNItems(ndim, span); if (nsrcitems > ArrayGetNItems(ARR_NDIM(srcArray), ARR_DIMS(srcArray))) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("source array too small"))); /* * Compute space occupied by new entries, space occupied by replaced * entries, and required space for new array. */ if (newhasnulls) overheadlen = ARR_OVERHEAD_WITHNULLS(ndim, nitems); else overheadlen = ARR_OVERHEAD_NONULLS(ndim); newitemsize = array_nelems_size(ARR_DATA_PTR(srcArray), 0, ARR_NULLBITMAP(srcArray), nsrcitems, elmlen, elmbyval, elmalign); oldoverheadlen = ARR_DATA_OFFSET(array); olddatasize = ARR_SIZE(array) - oldoverheadlen; if (ndim > 1) { /* * here we do not need to cope with extension of the array; it would * be a lot more complicated if we had to do so... */ olditemsize = array_slice_size(ARR_DATA_PTR(array), ARR_NULLBITMAP(array), ndim, dim, lb, lowerIndx, upperIndx, elmlen, elmbyval, elmalign); lenbefore = lenafter = 0; /* keep compiler quiet */ itemsbefore = itemsafter = nolditems = 0; } else { /* * here we must allow for possibility of slice larger than orig array * and/or not adjacent to orig array subscripts */ int oldlb = ARR_LBOUND(array)[0]; int oldub = oldlb + ARR_DIMS(array)[0] - 1; int slicelb = Max(oldlb, lowerIndx[0]); int sliceub = Min(oldub, upperIndx[0]); char *oldarraydata = ARR_DATA_PTR(array); bits8 *oldarraybitmap = ARR_NULLBITMAP(array); /* count/size of old array entries that will go before the slice */ itemsbefore = Min(slicelb, oldub + 1) - oldlb; lenbefore = array_nelems_size(oldarraydata, 0, oldarraybitmap, itemsbefore, elmlen, elmbyval, elmalign); /* count/size of old array entries that will be replaced by slice */ if (slicelb > sliceub) { nolditems = 0; olditemsize = 0; } else { nolditems = sliceub - slicelb + 1; olditemsize = array_nelems_size(oldarraydata + lenbefore, itemsbefore, oldarraybitmap, nolditems, elmlen, elmbyval, elmalign); } /* count/size of old array entries that will go after the slice */ itemsafter = oldub + 1 - Max(sliceub + 1, oldlb); lenafter = olddatasize - lenbefore - olditemsize; } newsize = overheadlen + olddatasize - olditemsize + newitemsize; newarray = (ArrayType *) palloc0(newsize); SET_VARSIZE(newarray, newsize); newarray->ndim = ndim; newarray->dataoffset = newhasnulls ? overheadlen : 0; newarray->elemtype = ARR_ELEMTYPE(array); memcpy(ARR_DIMS(newarray), dim, ndim * sizeof(int)); memcpy(ARR_LBOUND(newarray), lb, ndim * sizeof(int)); if (ndim > 1) { /* * here we do not need to cope with extension of the array; it would * be a lot more complicated if we had to do so... */ array_insert_slice(newarray, array, srcArray, ndim, dim, lb, lowerIndx, upperIndx, elmlen, elmbyval, elmalign); } else { /* fill in data */ memcpy((char *) newarray + overheadlen, (char *) array + oldoverheadlen, lenbefore); memcpy((char *) newarray + overheadlen + lenbefore, ARR_DATA_PTR(srcArray), newitemsize); memcpy((char *) newarray + overheadlen + lenbefore + newitemsize, (char *) array + oldoverheadlen + lenbefore + olditemsize, lenafter); /* fill in nulls bitmap if needed */ if (newhasnulls) { bits8 *newnullbitmap = ARR_NULLBITMAP(newarray); bits8 *oldnullbitmap = ARR_NULLBITMAP(array); /* palloc0 above already marked any inserted positions as nulls */ array_bitmap_copy(newnullbitmap, addedbefore, oldnullbitmap, 0, itemsbefore); array_bitmap_copy(newnullbitmap, lowerIndx[0] - lb[0], ARR_NULLBITMAP(srcArray), 0, nsrcitems); array_bitmap_copy(newnullbitmap, addedbefore + itemsbefore + nolditems, oldnullbitmap, itemsbefore + nolditems, itemsafter); } } return PointerGetDatum(newarray); } /* * array_ref : backwards compatibility wrapper for array_get_element * * This only works for detoasted/flattened varlena arrays, since the array * argument is declared as "ArrayType *". However there's enough code like * that to justify preserving this API. */ Datum array_ref(ArrayType *array, int nSubscripts, int *indx, int arraytyplen, int elmlen, bool elmbyval, char elmalign, bool *isNull) { return array_get_element(PointerGetDatum(array), nSubscripts, indx, arraytyplen, elmlen, elmbyval, elmalign, isNull); } /* * array_set : backwards compatibility wrapper for array_set_element * * This only works for detoasted/flattened varlena arrays, since the array * argument and result are declared as "ArrayType *". However there's enough * code like that to justify preserving this API. */ ArrayType * array_set(ArrayType *array, int nSubscripts, int *indx, Datum dataValue, bool isNull, int arraytyplen, int elmlen, bool elmbyval, char elmalign) { return DatumGetArrayTypeP(array_set_element(PointerGetDatum(array), nSubscripts, indx, dataValue, isNull, arraytyplen, elmlen, elmbyval, elmalign)); } /* * array_map() * * Map an array through an arbitrary expression. Return a new array with * the same dimensions and each source element transformed by the given, * already-compiled expression. Each source element is placed in the * innermost_caseval/innermost_casenull fields of the ExprState. * * Parameters are: * * arrayd: Datum representing array argument. * * exprstate: ExprState representing the per-element transformation. * * econtext: context for expression evaluation. * * retType: OID of element type of output array. This must be the same as, * or binary-compatible with, the result type of the expression. It might * be different from the input array's element type. * * amstate: workspace for array_map. Must be zeroed by caller before * first call, and not touched after that. * * It is legitimate to pass a freshly-zeroed ArrayMapState on each call, * but better performance can be had if the state can be preserved across * a series of calls. * * NB: caller must assure that input array is not NULL. NULL elements in * the array are OK however. * NB: caller should be running in econtext's per-tuple memory context. */ Datum array_map(Datum arrayd, ExprState *exprstate, ExprContext *econtext, Oid retType, ArrayMapState *amstate) { AnyArrayType *v = DatumGetAnyArrayP(arrayd); ArrayType *result; Datum *values; bool *nulls; int *dim; int ndim; int nitems; int i; int32 nbytes = 0; int32 dataoffset; bool hasnulls; Oid inpType; int inp_typlen; bool inp_typbyval; char inp_typalign; int typlen; bool typbyval; char typalign; array_iter iter; ArrayMetaState *inp_extra; ArrayMetaState *ret_extra; Datum *transform_source = exprstate->innermost_caseval; bool *transform_source_isnull = exprstate->innermost_casenull; inpType = AARR_ELEMTYPE(v); ndim = AARR_NDIM(v); dim = AARR_DIMS(v); nitems = ArrayGetNItems(ndim, dim); /* Check for empty array */ if (nitems <= 0) { /* Return empty array */ return PointerGetDatum(construct_empty_array(retType)); } /* * We arrange to look up info about input and return element types only * once per series of calls, assuming the element type doesn't change * underneath us. */ inp_extra = &amstate->inp_extra; ret_extra = &amstate->ret_extra; if (inp_extra->element_type != inpType) { get_typlenbyvalalign(inpType, &inp_extra->typlen, &inp_extra->typbyval, &inp_extra->typalign); inp_extra->element_type = inpType; } inp_typlen = inp_extra->typlen; inp_typbyval = inp_extra->typbyval; inp_typalign = inp_extra->typalign; if (ret_extra->element_type != retType) { get_typlenbyvalalign(retType, &ret_extra->typlen, &ret_extra->typbyval, &ret_extra->typalign); ret_extra->element_type = retType; } typlen = ret_extra->typlen; typbyval = ret_extra->typbyval; typalign = ret_extra->typalign; /* Allocate temporary arrays for new values */ values = (Datum *) palloc(nitems * sizeof(Datum)); nulls = (bool *) palloc(nitems * sizeof(bool)); /* Loop over source data */ array_iter_setup(&iter, v); hasnulls = false; for (i = 0; i < nitems; i++) { /* Get source element, checking for NULL */ *transform_source = array_iter_next(&iter, transform_source_isnull, i, inp_typlen, inp_typbyval, inp_typalign); /* Apply the given expression to source element */ values[i] = ExecEvalExpr(exprstate, econtext, &nulls[i]); if (nulls[i]) hasnulls = true; else { /* Ensure data is not toasted */ if (typlen == -1) values[i] = PointerGetDatum(PG_DETOAST_DATUM(values[i])); /* Update total result size */ nbytes = att_addlength_datum(nbytes, typlen, values[i]); nbytes = att_align_nominal(nbytes, typalign); /* check for overflow of total request */ if (!AllocSizeIsValid(nbytes)) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("array size exceeds the maximum allowed (%d)", (int) MaxAllocSize))); } } /* Allocate and fill the result array */ if (hasnulls) { dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, nitems); nbytes += dataoffset; } else { dataoffset = 0; /* marker for no null bitmap */ nbytes += ARR_OVERHEAD_NONULLS(ndim); } result = (ArrayType *) palloc0(nbytes); SET_VARSIZE(result, nbytes); result->ndim = ndim; result->dataoffset = dataoffset; result->elemtype = retType; memcpy(ARR_DIMS(result), AARR_DIMS(v), ndim * sizeof(int)); memcpy(ARR_LBOUND(result), AARR_LBOUND(v), ndim * sizeof(int)); CopyArrayEls(result, values, nulls, nitems, typlen, typbyval, typalign, false); /* * Note: do not risk trying to pfree the results of the called expression */ pfree(values); pfree(nulls); return PointerGetDatum(result); } /* * construct_array --- simple method for constructing an array object * * elems: array of Datum items to become the array contents * (NULL element values are not supported). * nelems: number of items * elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items * * A palloc'd 1-D array object is constructed and returned. Note that * elem values will be copied into the object even if pass-by-ref type. * Also note the result will be 0-D not 1-D if nelems = 0. * * NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info * from the system catalogs, given the elmtype. However, the caller is * in a better position to cache this info across multiple uses, or even * to hard-wire values if the element type is hard-wired. */ ArrayType * construct_array(Datum *elems, int nelems, Oid elmtype, int elmlen, bool elmbyval, char elmalign) { int dims[1]; int lbs[1]; dims[0] = nelems; lbs[0] = 1; return construct_md_array(elems, NULL, 1, dims, lbs, elmtype, elmlen, elmbyval, elmalign); } /* * Like construct_array(), where elmtype must be a built-in type, and * elmlen/elmbyval/elmalign is looked up from hardcoded data. This is often * useful when manipulating arrays from/for system catalogs. */ ArrayType * construct_array_builtin(Datum *elems, int nelems, Oid elmtype) { int elmlen; bool elmbyval; char elmalign; switch (elmtype) { case CHAROID: elmlen = 1; elmbyval = true; elmalign = TYPALIGN_CHAR; break; case CSTRINGOID: elmlen = -2; elmbyval = false; elmalign = TYPALIGN_CHAR; break; case FLOAT4OID: elmlen = sizeof(float4); elmbyval = true; elmalign = TYPALIGN_INT; break; case INT2OID: elmlen = sizeof(int16); elmbyval = true; elmalign = TYPALIGN_SHORT; break; case INT4OID: elmlen = sizeof(int32); elmbyval = true; elmalign = TYPALIGN_INT; break; case INT8OID: elmlen = sizeof(int64); elmbyval = FLOAT8PASSBYVAL; elmalign = TYPALIGN_DOUBLE; break; case NAMEOID: elmlen = NAMEDATALEN; elmbyval = false; elmalign = TYPALIGN_CHAR; break; case OIDOID: case REGTYPEOID: elmlen = sizeof(Oid); elmbyval = true; elmalign = TYPALIGN_INT; break; case TEXTOID: elmlen = -1; elmbyval = false; elmalign = TYPALIGN_INT; break; case TIDOID: elmlen = sizeof(ItemPointerData); elmbyval = false; elmalign = TYPALIGN_SHORT; break; default: elog(ERROR, "type %u not supported by construct_array_builtin()", elmtype); /* keep compiler quiet */ elmlen = 0; elmbyval = false; elmalign = 0; } return construct_array(elems, nelems, elmtype, elmlen, elmbyval, elmalign); } /* * construct_md_array --- simple method for constructing an array object * with arbitrary dimensions and possible NULLs * * elems: array of Datum items to become the array contents * nulls: array of is-null flags (can be NULL if no nulls) * ndims: number of dimensions * dims: integer array with size of each dimension * lbs: integer array with lower bound of each dimension * elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items * * A palloc'd ndims-D array object is constructed and returned. Note that * elem values will be copied into the object even if pass-by-ref type. * Also note the result will be 0-D not ndims-D if any dims[i] = 0. * * NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info * from the system catalogs, given the elmtype. However, the caller is * in a better position to cache this info across multiple uses, or even * to hard-wire values if the element type is hard-wired. */ ArrayType * construct_md_array(Datum *elems, bool *nulls, int ndims, int *dims, int *lbs, Oid elmtype, int elmlen, bool elmbyval, char elmalign) { ArrayType *result; bool hasnulls; int32 nbytes; int32 dataoffset; int i; int nelems; if (ndims < 0) /* we do allow zero-dimension arrays */ ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid number of dimensions: %d", ndims))); if (ndims > MAXDIM) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)", ndims, MAXDIM))); /* This checks for overflow of the array dimensions */ nelems = ArrayGetNItems(ndims, dims); ArrayCheckBounds(ndims, dims, lbs); /* if ndims <= 0 or any dims[i] == 0, return empty array */ if (nelems <= 0) return construct_empty_array(elmtype); /* compute required space */ nbytes = 0; hasnulls = false; for (i = 0; i < nelems; i++) { if (nulls && nulls[i]) { hasnulls = true; continue; } /* make sure data is not toasted */ if (elmlen == -1) elems[i] = PointerGetDatum(PG_DETOAST_DATUM(elems[i])); nbytes = att_addlength_datum(nbytes, elmlen, elems[i]); nbytes = att_align_nominal(nbytes, elmalign); /* check for overflow of total request */ if (!AllocSizeIsValid(nbytes)) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("array size exceeds the maximum allowed (%d)", (int) MaxAllocSize))); } /* Allocate and initialize result array */ if (hasnulls) { dataoffset = ARR_OVERHEAD_WITHNULLS(ndims, nelems); nbytes += dataoffset; } else { dataoffset = 0; /* marker for no null bitmap */ nbytes += ARR_OVERHEAD_NONULLS(ndims); } result = (ArrayType *) palloc0(nbytes); SET_VARSIZE(result, nbytes); result->ndim = ndims; result->dataoffset = dataoffset; result->elemtype = elmtype; memcpy(ARR_DIMS(result), dims, ndims * sizeof(int)); memcpy(ARR_LBOUND(result), lbs, ndims * sizeof(int)); CopyArrayEls(result, elems, nulls, nelems, elmlen, elmbyval, elmalign, false); return result; } /* * construct_empty_array --- make a zero-dimensional array of given type */ ArrayType * construct_empty_array(Oid elmtype) { ArrayType *result; result = (ArrayType *) palloc0(sizeof(ArrayType)); SET_VARSIZE(result, sizeof(ArrayType)); result->ndim = 0; result->dataoffset = 0; result->elemtype = elmtype; return result; } /* * construct_empty_expanded_array: make an empty expanded array * given only type information. (metacache can be NULL if not needed.) */ ExpandedArrayHeader * construct_empty_expanded_array(Oid element_type, MemoryContext parentcontext, ArrayMetaState *metacache) { ArrayType *array = construct_empty_array(element_type); Datum d; d = expand_array(PointerGetDatum(array), parentcontext, metacache); pfree(array); return (ExpandedArrayHeader *) DatumGetEOHP(d); } /* * deconstruct_array --- simple method for extracting data from an array * * array: array object to examine (must not be NULL) * elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items * elemsp: return value, set to point to palloc'd array of Datum values * nullsp: return value, set to point to palloc'd array of isnull markers * nelemsp: return value, set to number of extracted values * * The caller may pass nullsp == NULL if it does not support NULLs in the * array. Note that this produces a very uninformative error message, * so do it only in cases where a NULL is really not expected. * * If array elements are pass-by-ref data type, the returned Datums will * be pointers into the array object. * * NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info * from the system catalogs, given the elmtype. However, the caller is * in a better position to cache this info across multiple uses, or even * to hard-wire values if the element type is hard-wired. */ void deconstruct_array(ArrayType *array, Oid elmtype, int elmlen, bool elmbyval, char elmalign, Datum **elemsp, bool **nullsp, int *nelemsp) { Datum *elems; bool *nulls; int nelems; char *p; bits8 *bitmap; int bitmask; int i; Assert(ARR_ELEMTYPE(array) == elmtype); nelems = ArrayGetNItems(ARR_NDIM(array), ARR_DIMS(array)); *elemsp = elems = (Datum *) palloc(nelems * sizeof(Datum)); if (nullsp) *nullsp = nulls = (bool *) palloc0(nelems * sizeof(bool)); else nulls = NULL; *nelemsp = nelems; p = ARR_DATA_PTR(array); bitmap = ARR_NULLBITMAP(array); bitmask = 1; for (i = 0; i < nelems; i++) { /* Get source element, checking for NULL */ if (bitmap && (*bitmap & bitmask) == 0) { elems[i] = (Datum) 0; if (nulls) nulls[i] = true; else ereport(ERROR, (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), errmsg("null array element not allowed in this context"))); } else { elems[i] = fetch_att(p, elmbyval, elmlen); p = att_addlength_pointer(p, elmlen, p); p = (char *) att_align_nominal(p, elmalign); } /* advance bitmap pointer if any */ if (bitmap) { bitmask <<= 1; if (bitmask == 0x100) { bitmap++; bitmask = 1; } } } } /* * Like deconstruct_array(), where elmtype must be a built-in type, and * elmlen/elmbyval/elmalign is looked up from hardcoded data. This is often * useful when manipulating arrays from/for system catalogs. */ void deconstruct_array_builtin(ArrayType *array, Oid elmtype, Datum **elemsp, bool **nullsp, int *nelemsp) { int elmlen; bool elmbyval; char elmalign; switch (elmtype) { case CHAROID: elmlen = 1; elmbyval = true; elmalign = TYPALIGN_CHAR; break; case CSTRINGOID: elmlen = -2; elmbyval = false; elmalign = TYPALIGN_CHAR; break; case FLOAT8OID: elmlen = sizeof(float8); elmbyval = FLOAT8PASSBYVAL; elmalign = TYPALIGN_DOUBLE; break; case INT2OID: elmlen = sizeof(int16); elmbyval = true; elmalign = TYPALIGN_SHORT; break; case OIDOID: elmlen = sizeof(Oid); elmbyval = true; elmalign = TYPALIGN_INT; break; case TEXTOID: elmlen = -1; elmbyval = false; elmalign = TYPALIGN_INT; break; case TIDOID: elmlen = sizeof(ItemPointerData); elmbyval = false; elmalign = TYPALIGN_SHORT; break; default: elog(ERROR, "type %u not supported by deconstruct_array_builtin()", elmtype); /* keep compiler quiet */ elmlen = 0; elmbyval = false; elmalign = 0; } deconstruct_array(array, elmtype, elmlen, elmbyval, elmalign, elemsp, nullsp, nelemsp); } /* * array_contains_nulls --- detect whether an array has any null elements * * This gives an accurate answer, whereas testing ARR_HASNULL only tells * if the array *might* contain a null. */ bool array_contains_nulls(ArrayType *array) { int nelems; bits8 *bitmap; int bitmask; /* Easy answer if there's no null bitmap */ if (!ARR_HASNULL(array)) return false; nelems = ArrayGetNItems(ARR_NDIM(array), ARR_DIMS(array)); bitmap = ARR_NULLBITMAP(array); /* check whole bytes of the bitmap byte-at-a-time */ while (nelems >= 8) { if (*bitmap != 0xFF) return true; bitmap++; nelems -= 8; } /* check last partial byte */ bitmask = 1; while (nelems > 0) { if ((*bitmap & bitmask) == 0) return true; bitmask <<= 1; nelems--; } return false; } /* * array_eq : * compares two arrays for equality * result : * returns true if the arrays are equal, false otherwise. * * Note: we do not use array_cmp here, since equality may be meaningful in * datatypes that don't have a total ordering (and hence no btree support). */ Datum array_eq(PG_FUNCTION_ARGS) { LOCAL_FCINFO(locfcinfo, 2); AnyArrayType *array1 = PG_GETARG_ANY_ARRAY_P(0); AnyArrayType *array2 = PG_GETARG_ANY_ARRAY_P(1); Oid collation = PG_GET_COLLATION(); int ndims1 = AARR_NDIM(array1); int ndims2 = AARR_NDIM(array2); int *dims1 = AARR_DIMS(array1); int *dims2 = AARR_DIMS(array2); int *lbs1 = AARR_LBOUND(array1); int *lbs2 = AARR_LBOUND(array2); Oid element_type = AARR_ELEMTYPE(array1); bool result = true; int nitems; TypeCacheEntry *typentry; int typlen; bool typbyval; char typalign; array_iter it1; array_iter it2; int i; if (element_type != AARR_ELEMTYPE(array2)) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("cannot compare arrays of different element types"))); /* fast path if the arrays do not have the same dimensionality */ if (ndims1 != ndims2 || memcmp(dims1, dims2, ndims1 * sizeof(int)) != 0 || memcmp(lbs1, lbs2, ndims1 * sizeof(int)) != 0) result = false; else { /* * We arrange to look up the equality function only once per series of * calls, assuming the element type doesn't change underneath us. The * typcache is used so that we have no memory leakage when being used * as an index support function. */ typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; if (typentry == NULL || typentry->type_id != element_type) { typentry = lookup_type_cache(element_type, TYPECACHE_EQ_OPR_FINFO); if (!OidIsValid(typentry->eq_opr_finfo.fn_oid)) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_FUNCTION), errmsg("could not identify an equality operator for type %s", format_type_be(element_type)))); fcinfo->flinfo->fn_extra = (void *) typentry; } typlen = typentry->typlen; typbyval = typentry->typbyval; typalign = typentry->typalign; /* * apply the operator to each pair of array elements. */ InitFunctionCallInfoData(*locfcinfo, &typentry->eq_opr_finfo, 2, collation, NULL, NULL); /* Loop over source data */ nitems = ArrayGetNItems(ndims1, dims1); array_iter_setup(&it1, array1); array_iter_setup(&it2, array2); for (i = 0; i < nitems; i++) { Datum elt1; Datum elt2; bool isnull1; bool isnull2; bool oprresult; /* Get elements, checking for NULL */ elt1 = array_iter_next(&it1, &isnull1, i, typlen, typbyval, typalign); elt2 = array_iter_next(&it2, &isnull2, i, typlen, typbyval, typalign); /* * We consider two NULLs equal; NULL and not-NULL are unequal. */ if (isnull1 && isnull2) continue; if (isnull1 || isnull2) { result = false; break; } /* * Apply the operator to the element pair; treat NULL as false */ locfcinfo->args[0].value = elt1; locfcinfo->args[0].isnull = false; locfcinfo->args[1].value = elt2; locfcinfo->args[1].isnull = false; locfcinfo->isnull = false; oprresult = DatumGetBool(FunctionCallInvoke(locfcinfo)); if (locfcinfo->isnull || !oprresult) { result = false; break; } } } /* Avoid leaking memory when handed toasted input. */ AARR_FREE_IF_COPY(array1, 0); AARR_FREE_IF_COPY(array2, 1); PG_RETURN_BOOL(result); } /*----------------------------------------------------------------------------- * array-array bool operators: * Given two arrays, iterate comparison operators * over the array. Uses logic similar to text comparison * functions, except element-by-element instead of * character-by-character. *---------------------------------------------------------------------------- */ Datum array_ne(PG_FUNCTION_ARGS) { PG_RETURN_BOOL(!DatumGetBool(array_eq(fcinfo))); } Datum array_lt(PG_FUNCTION_ARGS) { PG_RETURN_BOOL(array_cmp(fcinfo) < 0); } Datum array_gt(PG_FUNCTION_ARGS) { PG_RETURN_BOOL(array_cmp(fcinfo) > 0); } Datum array_le(PG_FUNCTION_ARGS) { PG_RETURN_BOOL(array_cmp(fcinfo) <= 0); } Datum array_ge(PG_FUNCTION_ARGS) { PG_RETURN_BOOL(array_cmp(fcinfo) >= 0); } Datum btarraycmp(PG_FUNCTION_ARGS) { PG_RETURN_INT32(array_cmp(fcinfo)); } /* * array_cmp() * Internal comparison function for arrays. * * Returns -1, 0 or 1 */ static int array_cmp(FunctionCallInfo fcinfo) { LOCAL_FCINFO(locfcinfo, 2); AnyArrayType *array1 = PG_GETARG_ANY_ARRAY_P(0); AnyArrayType *array2 = PG_GETARG_ANY_ARRAY_P(1); Oid collation = PG_GET_COLLATION(); int ndims1 = AARR_NDIM(array1); int ndims2 = AARR_NDIM(array2); int *dims1 = AARR_DIMS(array1); int *dims2 = AARR_DIMS(array2); int nitems1 = ArrayGetNItems(ndims1, dims1); int nitems2 = ArrayGetNItems(ndims2, dims2); Oid element_type = AARR_ELEMTYPE(array1); int result = 0; TypeCacheEntry *typentry; int typlen; bool typbyval; char typalign; int min_nitems; array_iter it1; array_iter it2; int i; if (element_type != AARR_ELEMTYPE(array2)) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("cannot compare arrays of different element types"))); /* * We arrange to look up the comparison function only once per series of * calls, assuming the element type doesn't change underneath us. The * typcache is used so that we have no memory leakage when being used as * an index support function. */ typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; if (typentry == NULL || typentry->type_id != element_type) { typentry = lookup_type_cache(element_type, TYPECACHE_CMP_PROC_FINFO); if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid)) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_FUNCTION), errmsg("could not identify a comparison function for type %s", format_type_be(element_type)))); fcinfo->flinfo->fn_extra = (void *) typentry; } typlen = typentry->typlen; typbyval = typentry->typbyval; typalign = typentry->typalign; /* * apply the operator to each pair of array elements. */ InitFunctionCallInfoData(*locfcinfo, &typentry->cmp_proc_finfo, 2, collation, NULL, NULL); /* Loop over source data */ min_nitems = Min(nitems1, nitems2); array_iter_setup(&it1, array1); array_iter_setup(&it2, array2); for (i = 0; i < min_nitems; i++) { Datum elt1; Datum elt2; bool isnull1; bool isnull2; int32 cmpresult; /* Get elements, checking for NULL */ elt1 = array_iter_next(&it1, &isnull1, i, typlen, typbyval, typalign); elt2 = array_iter_next(&it2, &isnull2, i, typlen, typbyval, typalign); /* * We consider two NULLs equal; NULL > not-NULL. */ if (isnull1 && isnull2) continue; if (isnull1) { /* arg1 is greater than arg2 */ result = 1; break; } if (isnull2) { /* arg1 is less than arg2 */ result = -1; break; } /* Compare the pair of elements */ locfcinfo->args[0].value = elt1; locfcinfo->args[0].isnull = false; locfcinfo->args[1].value = elt2; locfcinfo->args[1].isnull = false; cmpresult = DatumGetInt32(FunctionCallInvoke(locfcinfo)); /* We don't expect comparison support functions to return null */ Assert(!locfcinfo->isnull); if (cmpresult == 0) continue; /* equal */ if (cmpresult < 0) { /* arg1 is less than arg2 */ result = -1; break; } else { /* arg1 is greater than arg2 */ result = 1; break; } } /* * If arrays contain same data (up to end of shorter one), apply * additional rules to sort by dimensionality. The relative significance * of the different bits of information is historical; mainly we just care * that we don't say "equal" for arrays of different dimensionality. */ if (result == 0) { if (nitems1 != nitems2) result = (nitems1 < nitems2) ? -1 : 1; else if (ndims1 != ndims2) result = (ndims1 < ndims2) ? -1 : 1; else { for (i = 0; i < ndims1; i++) { if (dims1[i] != dims2[i]) { result = (dims1[i] < dims2[i]) ? -1 : 1; break; } } if (result == 0) { int *lbound1 = AARR_LBOUND(array1); int *lbound2 = AARR_LBOUND(array2); for (i = 0; i < ndims1; i++) { if (lbound1[i] != lbound2[i]) { result = (lbound1[i] < lbound2[i]) ? -1 : 1; break; } } } } } /* Avoid leaking memory when handed toasted input. */ AARR_FREE_IF_COPY(array1, 0); AARR_FREE_IF_COPY(array2, 1); return result; } /*----------------------------------------------------------------------------- * array hashing * Hash the elements and combine the results. *---------------------------------------------------------------------------- */ Datum hash_array(PG_FUNCTION_ARGS) { LOCAL_FCINFO(locfcinfo, 1); AnyArrayType *array = PG_GETARG_ANY_ARRAY_P(0); int ndims = AARR_NDIM(array); int *dims = AARR_DIMS(array); Oid element_type = AARR_ELEMTYPE(array); uint32 result = 1; int nitems; TypeCacheEntry *typentry; int typlen; bool typbyval; char typalign; int i; array_iter iter; /* * We arrange to look up the hash function only once per series of calls, * assuming the element type doesn't change underneath us. The typcache * is used so that we have no memory leakage when being used as an index * support function. */ typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; if (typentry == NULL || typentry->type_id != element_type) { typentry = lookup_type_cache(element_type, TYPECACHE_HASH_PROC_FINFO); if (!OidIsValid(typentry->hash_proc_finfo.fn_oid) && element_type != RECORDOID) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_FUNCTION), errmsg("could not identify a hash function for type %s", format_type_be(element_type)))); /* * The type cache doesn't believe that record is hashable (see * cache_record_field_properties()), but since we're here, we're * committed to hashing, so we can assume it does. Worst case, if any * components of the record don't support hashing, we will fail at * execution. */ if (element_type == RECORDOID) { MemoryContext oldcontext; TypeCacheEntry *record_typentry; oldcontext = MemoryContextSwitchTo(fcinfo->flinfo->fn_mcxt); /* * Make fake type cache entry structure. Note that we can't just * modify typentry, since that points directly into the type * cache. */ record_typentry = palloc0(sizeof(*record_typentry)); record_typentry->type_id = element_type; /* fill in what we need below */ record_typentry->typlen = typentry->typlen; record_typentry->typbyval = typentry->typbyval; record_typentry->typalign = typentry->typalign; fmgr_info(F_HASH_RECORD, &record_typentry->hash_proc_finfo); MemoryContextSwitchTo(oldcontext); typentry = record_typentry; } fcinfo->flinfo->fn_extra = (void *) typentry; } typlen = typentry->typlen; typbyval = typentry->typbyval; typalign = typentry->typalign; /* * apply the hash function to each array element. */ InitFunctionCallInfoData(*locfcinfo, &typentry->hash_proc_finfo, 1, PG_GET_COLLATION(), NULL, NULL); /* Loop over source data */ nitems = ArrayGetNItems(ndims, dims); array_iter_setup(&iter, array); for (i = 0; i < nitems; i++) { Datum elt; bool isnull; uint32 elthash; /* Get element, checking for NULL */ elt = array_iter_next(&iter, &isnull, i, typlen, typbyval, typalign); if (isnull) { /* Treat nulls as having hashvalue 0 */ elthash = 0; } else { /* Apply the hash function */ locfcinfo->args[0].value = elt; locfcinfo->args[0].isnull = false; elthash = DatumGetUInt32(FunctionCallInvoke(locfcinfo)); /* We don't expect hash functions to return null */ Assert(!locfcinfo->isnull); } /* * Combine hash values of successive elements by multiplying the * current value by 31 and adding on the new element's hash value. * * The result is a sum in which each element's hash value is * multiplied by a different power of 31. This is modulo 2^32 * arithmetic, and the powers of 31 modulo 2^32 form a cyclic group of * order 2^27. So for arrays of up to 2^27 elements, each element's * hash value is multiplied by a different (odd) number, resulting in * a good mixing of all the elements' hash values. */ result = (result << 5) - result + elthash; } /* Avoid leaking memory when handed toasted input. */ AARR_FREE_IF_COPY(array, 0); PG_RETURN_UINT32(result); } /* * Returns 64-bit value by hashing a value to a 64-bit value, with a seed. * Otherwise, similar to hash_array. */ Datum hash_array_extended(PG_FUNCTION_ARGS) { LOCAL_FCINFO(locfcinfo, 2); AnyArrayType *array = PG_GETARG_ANY_ARRAY_P(0); uint64 seed = PG_GETARG_INT64(1); int ndims = AARR_NDIM(array); int *dims = AARR_DIMS(array); Oid element_type = AARR_ELEMTYPE(array); uint64 result = 1; int nitems; TypeCacheEntry *typentry; int typlen; bool typbyval; char typalign; int i; array_iter iter; typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; if (typentry == NULL || typentry->type_id != element_type) { typentry = lookup_type_cache(element_type, TYPECACHE_HASH_EXTENDED_PROC_FINFO); if (!OidIsValid(typentry->hash_extended_proc_finfo.fn_oid)) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_FUNCTION), errmsg("could not identify an extended hash function for type %s", format_type_be(element_type)))); fcinfo->flinfo->fn_extra = (void *) typentry; } typlen = typentry->typlen; typbyval = typentry->typbyval; typalign = typentry->typalign; InitFunctionCallInfoData(*locfcinfo, &typentry->hash_extended_proc_finfo, 2, PG_GET_COLLATION(), NULL, NULL); /* Loop over source data */ nitems = ArrayGetNItems(ndims, dims); array_iter_setup(&iter, array); for (i = 0; i < nitems; i++) { Datum elt; bool isnull; uint64 elthash; /* Get element, checking for NULL */ elt = array_iter_next(&iter, &isnull, i, typlen, typbyval, typalign); if (isnull) { elthash = 0; } else { /* Apply the hash function */ locfcinfo->args[0].value = elt; locfcinfo->args[0].isnull = false; locfcinfo->args[1].value = Int64GetDatum(seed); locfcinfo->args[1].isnull = false; elthash = DatumGetUInt64(FunctionCallInvoke(locfcinfo)); /* We don't expect hash functions to return null */ Assert(!locfcinfo->isnull); } result = (result << 5) - result + elthash; } AARR_FREE_IF_COPY(array, 0); PG_RETURN_UINT64(result); } /*----------------------------------------------------------------------------- * array overlap/containment comparisons * These use the same methods of comparing array elements as array_eq. * We consider only the elements of the arrays, ignoring dimensionality. *---------------------------------------------------------------------------- */ /* * array_contain_compare : * compares two arrays for overlap/containment * * When matchall is true, return true if all members of array1 are in array2. * When matchall is false, return true if any members of array1 are in array2. */ static bool array_contain_compare(AnyArrayType *array1, AnyArrayType *array2, Oid collation, bool matchall, void **fn_extra) { LOCAL_FCINFO(locfcinfo, 2); bool result = matchall; Oid element_type = AARR_ELEMTYPE(array1); TypeCacheEntry *typentry; int nelems1; Datum *values2; bool *nulls2; int nelems2; int typlen; bool typbyval; char typalign; int i; int j; array_iter it1; if (element_type != AARR_ELEMTYPE(array2)) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("cannot compare arrays of different element types"))); /* * We arrange to look up the equality function only once per series of * calls, assuming the element type doesn't change underneath us. The * typcache is used so that we have no memory leakage when being used as * an index support function. */ typentry = (TypeCacheEntry *) *fn_extra; if (typentry == NULL || typentry->type_id != element_type) { typentry = lookup_type_cache(element_type, TYPECACHE_EQ_OPR_FINFO); if (!OidIsValid(typentry->eq_opr_finfo.fn_oid)) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_FUNCTION), errmsg("could not identify an equality operator for type %s", format_type_be(element_type)))); *fn_extra = (void *) typentry; } typlen = typentry->typlen; typbyval = typentry->typbyval; typalign = typentry->typalign; /* * Since we probably will need to scan array2 multiple times, it's * worthwhile to use deconstruct_array on it. We scan array1 the hard way * however, since we very likely won't need to look at all of it. */ if (VARATT_IS_EXPANDED_HEADER(array2)) { /* This should be safe even if input is read-only */ deconstruct_expanded_array(&(array2->xpn)); values2 = array2->xpn.dvalues; nulls2 = array2->xpn.dnulls; nelems2 = array2->xpn.nelems; } else deconstruct_array((ArrayType *) array2, element_type, typlen, typbyval, typalign, &values2, &nulls2, &nelems2); /* * Apply the comparison operator to each pair of array elements. */ InitFunctionCallInfoData(*locfcinfo, &typentry->eq_opr_finfo, 2, collation, NULL, NULL); /* Loop over source data */ nelems1 = ArrayGetNItems(AARR_NDIM(array1), AARR_DIMS(array1)); array_iter_setup(&it1, array1); for (i = 0; i < nelems1; i++) { Datum elt1; bool isnull1; /* Get element, checking for NULL */ elt1 = array_iter_next(&it1, &isnull1, i, typlen, typbyval, typalign); /* * We assume that the comparison operator is strict, so a NULL can't * match anything. XXX this diverges from the "NULL=NULL" behavior of * array_eq, should we act like that? */ if (isnull1) { if (matchall) { result = false; break; } continue; } for (j = 0; j < nelems2; j++) { Datum elt2 = values2[j]; bool isnull2 = nulls2 ? nulls2[j] : false; bool oprresult; if (isnull2) continue; /* can't match */ /* * Apply the operator to the element pair; treat NULL as false */ locfcinfo->args[0].value = elt1; locfcinfo->args[0].isnull = false; locfcinfo->args[1].value = elt2; locfcinfo->args[1].isnull = false; locfcinfo->isnull = false; oprresult = DatumGetBool(FunctionCallInvoke(locfcinfo)); if (!locfcinfo->isnull && oprresult) break; } if (j < nelems2) { /* found a match for elt1 */ if (!matchall) { result = true; break; } } else { /* no match for elt1 */ if (matchall) { result = false; break; } } } return result; } Datum arrayoverlap(PG_FUNCTION_ARGS) { AnyArrayType *array1 = PG_GETARG_ANY_ARRAY_P(0); AnyArrayType *array2 = PG_GETARG_ANY_ARRAY_P(1); Oid collation = PG_GET_COLLATION(); bool result; result = array_contain_compare(array1, array2, collation, false, &fcinfo->flinfo->fn_extra); /* Avoid leaking memory when handed toasted input. */ AARR_FREE_IF_COPY(array1, 0); AARR_FREE_IF_COPY(array2, 1); PG_RETURN_BOOL(result); } Datum arraycontains(PG_FUNCTION_ARGS) { AnyArrayType *array1 = PG_GETARG_ANY_ARRAY_P(0); AnyArrayType *array2 = PG_GETARG_ANY_ARRAY_P(1); Oid collation = PG_GET_COLLATION(); bool result; result = array_contain_compare(array2, array1, collation, true, &fcinfo->flinfo->fn_extra); /* Avoid leaking memory when handed toasted input. */ AARR_FREE_IF_COPY(array1, 0); AARR_FREE_IF_COPY(array2, 1); PG_RETURN_BOOL(result); } Datum arraycontained(PG_FUNCTION_ARGS) { AnyArrayType *array1 = PG_GETARG_ANY_ARRAY_P(0); AnyArrayType *array2 = PG_GETARG_ANY_ARRAY_P(1); Oid collation = PG_GET_COLLATION(); bool result; result = array_contain_compare(array1, array2, collation, true, &fcinfo->flinfo->fn_extra); /* Avoid leaking memory when handed toasted input. */ AARR_FREE_IF_COPY(array1, 0); AARR_FREE_IF_COPY(array2, 1); PG_RETURN_BOOL(result); } /*----------------------------------------------------------------------------- * Array iteration functions * These functions are used to iterate efficiently through arrays *----------------------------------------------------------------------------- */ /* * array_create_iterator --- set up to iterate through an array * * If slice_ndim is zero, we will iterate element-by-element; the returned * datums are of the array's element type. * * If slice_ndim is 1..ARR_NDIM(arr), we will iterate by slices: the * returned datums are of the same array type as 'arr', but of size * equal to the rightmost N dimensions of 'arr'. * * The passed-in array must remain valid for the lifetime of the iterator. */ ArrayIterator array_create_iterator(ArrayType *arr, int slice_ndim, ArrayMetaState *mstate) { ArrayIterator iterator = palloc0(sizeof(ArrayIteratorData)); /* * Sanity-check inputs --- caller should have got this right already */ Assert(PointerIsValid(arr)); if (slice_ndim < 0 || slice_ndim > ARR_NDIM(arr)) elog(ERROR, "invalid arguments to array_create_iterator"); /* * Remember basic info about the array and its element type */ iterator->arr = arr; iterator->nullbitmap = ARR_NULLBITMAP(arr); iterator->nitems = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr)); if (mstate != NULL) { Assert(mstate->element_type == ARR_ELEMTYPE(arr)); iterator->typlen = mstate->typlen; iterator->typbyval = mstate->typbyval; iterator->typalign = mstate->typalign; } else get_typlenbyvalalign(ARR_ELEMTYPE(arr), &iterator->typlen, &iterator->typbyval, &iterator->typalign); /* * Remember the slicing parameters. */ iterator->slice_ndim = slice_ndim; if (slice_ndim > 0) { /* * Get pointers into the array's dims and lbound arrays to represent * the dims/lbound arrays of a slice. These are the same as the * rightmost N dimensions of the array. */ iterator->slice_dims = ARR_DIMS(arr) + ARR_NDIM(arr) - slice_ndim; iterator->slice_lbound = ARR_LBOUND(arr) + ARR_NDIM(arr) - slice_ndim; /* * Compute number of elements in a slice. */ iterator->slice_len = ArrayGetNItems(slice_ndim, iterator->slice_dims); /* * Create workspace for building sub-arrays. */ iterator->slice_values = (Datum *) palloc(iterator->slice_len * sizeof(Datum)); iterator->slice_nulls = (bool *) palloc(iterator->slice_len * sizeof(bool)); } /* * Initialize our data pointer and linear element number. These will * advance through the array during array_iterate(). */ iterator->data_ptr = ARR_DATA_PTR(arr); iterator->current_item = 0; return iterator; } /* * Iterate through the array referenced by 'iterator'. * * As long as there is another element (or slice), return it into * *value / *isnull, and return true. Return false when no more data. */ bool array_iterate(ArrayIterator iterator, Datum *value, bool *isnull) { /* Done if we have reached the end of the array */ if (iterator->current_item >= iterator->nitems) return false; if (iterator->slice_ndim == 0) { /* * Scalar case: return one element. */ if (array_get_isnull(iterator->nullbitmap, iterator->current_item++)) { *isnull = true; *value = (Datum) 0; } else { /* non-NULL, so fetch the individual Datum to return */ char *p = iterator->data_ptr; *isnull = false; *value = fetch_att(p, iterator->typbyval, iterator->typlen); /* Move our data pointer forward to the next element */ p = att_addlength_pointer(p, iterator->typlen, p); p = (char *) att_align_nominal(p, iterator->typalign); iterator->data_ptr = p; } } else { /* * Slice case: build and return an array of the requested size. */ ArrayType *result; Datum *values = iterator->slice_values; bool *nulls = iterator->slice_nulls; char *p = iterator->data_ptr; int i; for (i = 0; i < iterator->slice_len; i++) { if (array_get_isnull(iterator->nullbitmap, iterator->current_item++)) { nulls[i] = true; values[i] = (Datum) 0; } else { nulls[i] = false; values[i] = fetch_att(p, iterator->typbyval, iterator->typlen); /* Move our data pointer forward to the next element */ p = att_addlength_pointer(p, iterator->typlen, p); p = (char *) att_align_nominal(p, iterator->typalign); } } iterator->data_ptr = p; result = construct_md_array(values, nulls, iterator->slice_ndim, iterator->slice_dims, iterator->slice_lbound, ARR_ELEMTYPE(iterator->arr), iterator->typlen, iterator->typbyval, iterator->typalign); *isnull = false; *value = PointerGetDatum(result); } return true; } /* * Release an ArrayIterator data structure */ void array_free_iterator(ArrayIterator iterator) { if (iterator->slice_ndim > 0) { pfree(iterator->slice_values); pfree(iterator->slice_nulls); } pfree(iterator); } /***************************************************************************/ /******************| Support Routines |*****************/ /***************************************************************************/ /* * Check whether a specific array element is NULL * * nullbitmap: pointer to array's null bitmap (NULL if none) * offset: 0-based linear element number of array element */ static bool array_get_isnull(const bits8 *nullbitmap, int offset) { if (nullbitmap == NULL) return false; /* assume not null */ if (nullbitmap[offset / 8] & (1 << (offset % 8))) return false; /* not null */ return true; } /* * Set a specific array element's null-bitmap entry * * nullbitmap: pointer to array's null bitmap (mustn't be NULL) * offset: 0-based linear element number of array element * isNull: null status to set */ static void array_set_isnull(bits8 *nullbitmap, int offset, bool isNull) { int bitmask; nullbitmap += offset / 8; bitmask = 1 << (offset % 8); if (isNull) *nullbitmap &= ~bitmask; else *nullbitmap |= bitmask; } /* * Fetch array element at pointer, converted correctly to a Datum * * Caller must have handled case of NULL element */ static Datum ArrayCast(char *value, bool byval, int len) { return fetch_att(value, byval, len); } /* * Copy datum to *dest and return total space used (including align padding) * * Caller must have handled case of NULL element */ static int ArrayCastAndSet(Datum src, int typlen, bool typbyval, char typalign, char *dest) { int inc; if (typlen > 0) { if (typbyval) store_att_byval(dest, src, typlen); else memmove(dest, DatumGetPointer(src), typlen); inc = att_align_nominal(typlen, typalign); } else { Assert(!typbyval); inc = att_addlength_datum(0, typlen, src); memmove(dest, DatumGetPointer(src), inc); inc = att_align_nominal(inc, typalign); } return inc; } /* * Advance ptr over nitems array elements * * ptr: starting location in array * offset: 0-based linear element number of first element (the one at *ptr) * nullbitmap: start of array's null bitmap, or NULL if none * nitems: number of array elements to advance over (>= 0) * typlen, typbyval, typalign: storage parameters of array element datatype * * It is caller's responsibility to ensure that nitems is within range */ static char * array_seek(char *ptr, int offset, bits8 *nullbitmap, int nitems, int typlen, bool typbyval, char typalign) { int bitmask; int i; /* easy if fixed-size elements and no NULLs */ if (typlen > 0 && !nullbitmap) return ptr + nitems * ((Size) att_align_nominal(typlen, typalign)); /* seems worth having separate loops for NULL and no-NULLs cases */ if (nullbitmap) { nullbitmap += offset / 8; bitmask = 1 << (offset % 8); for (i = 0; i < nitems; i++) { if (*nullbitmap & bitmask) { ptr = att_addlength_pointer(ptr, typlen, ptr); ptr = (char *) att_align_nominal(ptr, typalign); } bitmask <<= 1; if (bitmask == 0x100) { nullbitmap++; bitmask = 1; } } } else { for (i = 0; i < nitems; i++) { ptr = att_addlength_pointer(ptr, typlen, ptr); ptr = (char *) att_align_nominal(ptr, typalign); } } return ptr; } /* * Compute total size of the nitems array elements starting at *ptr * * Parameters same as for array_seek */ static int array_nelems_size(char *ptr, int offset, bits8 *nullbitmap, int nitems, int typlen, bool typbyval, char typalign) { return array_seek(ptr, offset, nullbitmap, nitems, typlen, typbyval, typalign) - ptr; } /* * Copy nitems array elements from srcptr to destptr * * destptr: starting destination location (must be enough room!) * nitems: number of array elements to copy (>= 0) * srcptr: starting location in source array * offset: 0-based linear element number of first element (the one at *srcptr) * nullbitmap: start of source array's null bitmap, or NULL if none * typlen, typbyval, typalign: storage parameters of array element datatype * * Returns number of bytes copied * * NB: this does not take care of setting up the destination's null bitmap! */ static int array_copy(char *destptr, int nitems, char *srcptr, int offset, bits8 *nullbitmap, int typlen, bool typbyval, char typalign) { int numbytes; numbytes = array_nelems_size(srcptr, offset, nullbitmap, nitems, typlen, typbyval, typalign); memcpy(destptr, srcptr, numbytes); return numbytes; } /* * Copy nitems null-bitmap bits from source to destination * * destbitmap: start of destination array's null bitmap (mustn't be NULL) * destoffset: 0-based linear element number of first dest element * srcbitmap: start of source array's null bitmap, or NULL if none * srcoffset: 0-based linear element number of first source element * nitems: number of bits to copy (>= 0) * * If srcbitmap is NULL then we assume the source is all-non-NULL and * fill 1's into the destination bitmap. Note that only the specified * bits in the destination map are changed, not any before or after. * * Note: this could certainly be optimized using standard bitblt methods. * However, it's not clear that the typical Postgres array has enough elements * to make it worth worrying too much. For the moment, KISS. */ void array_bitmap_copy(bits8 *destbitmap, int destoffset, const bits8 *srcbitmap, int srcoffset, int nitems) { int destbitmask, destbitval, srcbitmask, srcbitval; Assert(destbitmap); if (nitems <= 0) return; /* don't risk fetch off end of memory */ destbitmap += destoffset / 8; destbitmask = 1 << (destoffset % 8); destbitval = *destbitmap; if (srcbitmap) { srcbitmap += srcoffset / 8; srcbitmask = 1 << (srcoffset % 8); srcbitval = *srcbitmap; while (nitems-- > 0) { if (srcbitval & srcbitmask) destbitval |= destbitmask; else destbitval &= ~destbitmask; destbitmask <<= 1; if (destbitmask == 0x100) { *destbitmap++ = destbitval; destbitmask = 1; if (nitems > 0) destbitval = *destbitmap; } srcbitmask <<= 1; if (srcbitmask == 0x100) { srcbitmap++; srcbitmask = 1; if (nitems > 0) srcbitval = *srcbitmap; } } if (destbitmask != 1) *destbitmap = destbitval; } else { while (nitems-- > 0) { destbitval |= destbitmask; destbitmask <<= 1; if (destbitmask == 0x100) { *destbitmap++ = destbitval; destbitmask = 1; if (nitems > 0) destbitval = *destbitmap; } } if (destbitmask != 1) *destbitmap = destbitval; } } /* * Compute space needed for a slice of an array * * We assume the caller has verified that the slice coordinates are valid. */ static int array_slice_size(char *arraydataptr, bits8 *arraynullsptr, int ndim, int *dim, int *lb, int *st, int *endp, int typlen, bool typbyval, char typalign) { int src_offset, span[MAXDIM], prod[MAXDIM], dist[MAXDIM], indx[MAXDIM]; char *ptr; int i, j, inc; int count = 0; mda_get_range(ndim, span, st, endp); /* Pretty easy for fixed element length without nulls ... */ if (typlen > 0 && !arraynullsptr) return ArrayGetNItems(ndim, span) * att_align_nominal(typlen, typalign); /* Else gotta do it the hard way */ src_offset = ArrayGetOffset(ndim, dim, lb, st); ptr = array_seek(arraydataptr, 0, arraynullsptr, src_offset, typlen, typbyval, typalign); mda_get_prod(ndim, dim, prod); mda_get_offset_values(ndim, dist, prod, span); for (i = 0; i < ndim; i++) indx[i] = 0; j = ndim - 1; do { if (dist[j]) { ptr = array_seek(ptr, src_offset, arraynullsptr, dist[j], typlen, typbyval, typalign); src_offset += dist[j]; } if (!array_get_isnull(arraynullsptr, src_offset)) { inc = att_addlength_pointer(0, typlen, ptr); inc = att_align_nominal(inc, typalign); ptr += inc; count += inc; } src_offset++; } while ((j = mda_next_tuple(ndim, indx, span)) != -1); return count; } /* * Extract a slice of an array into consecutive elements in the destination * array. * * We assume the caller has verified that the slice coordinates are valid, * allocated enough storage for the result, and initialized the header * of the new array. */ static void array_extract_slice(ArrayType *newarray, int ndim, int *dim, int *lb, char *arraydataptr, bits8 *arraynullsptr, int *st, int *endp, int typlen, bool typbyval, char typalign) { char *destdataptr = ARR_DATA_PTR(newarray); bits8 *destnullsptr = ARR_NULLBITMAP(newarray); char *srcdataptr; int src_offset, dest_offset, prod[MAXDIM], span[MAXDIM], dist[MAXDIM], indx[MAXDIM]; int i, j, inc; src_offset = ArrayGetOffset(ndim, dim, lb, st); srcdataptr = array_seek(arraydataptr, 0, arraynullsptr, src_offset, typlen, typbyval, typalign); mda_get_prod(ndim, dim, prod); mda_get_range(ndim, span, st, endp); mda_get_offset_values(ndim, dist, prod, span); for (i = 0; i < ndim; i++) indx[i] = 0; dest_offset = 0; j = ndim - 1; do { if (dist[j]) { /* skip unwanted elements */ srcdataptr = array_seek(srcdataptr, src_offset, arraynullsptr, dist[j], typlen, typbyval, typalign); src_offset += dist[j]; } inc = array_copy(destdataptr, 1, srcdataptr, src_offset, arraynullsptr, typlen, typbyval, typalign); if (destnullsptr) array_bitmap_copy(destnullsptr, dest_offset, arraynullsptr, src_offset, 1); destdataptr += inc; srcdataptr += inc; src_offset++; dest_offset++; } while ((j = mda_next_tuple(ndim, indx, span)) != -1); } /* * Insert a slice into an array. * * ndim/dim[]/lb[] are dimensions of the original array. A new array with * those same dimensions is to be constructed. destArray must already * have been allocated and its header initialized. * * st[]/endp[] identify the slice to be replaced. Elements within the slice * volume are taken from consecutive elements of the srcArray; elements * outside it are copied from origArray. * * We assume the caller has verified that the slice coordinates are valid. */ static void array_insert_slice(ArrayType *destArray, ArrayType *origArray, ArrayType *srcArray, int ndim, int *dim, int *lb, int *st, int *endp, int typlen, bool typbyval, char typalign) { char *destPtr = ARR_DATA_PTR(destArray); char *origPtr = ARR_DATA_PTR(origArray); char *srcPtr = ARR_DATA_PTR(srcArray); bits8 *destBitmap = ARR_NULLBITMAP(destArray); bits8 *origBitmap = ARR_NULLBITMAP(origArray); bits8 *srcBitmap = ARR_NULLBITMAP(srcArray); int orignitems = ArrayGetNItems(ARR_NDIM(origArray), ARR_DIMS(origArray)); int dest_offset, orig_offset, src_offset, prod[MAXDIM], span[MAXDIM], dist[MAXDIM], indx[MAXDIM]; int i, j, inc; dest_offset = ArrayGetOffset(ndim, dim, lb, st); /* copy items before the slice start */ inc = array_copy(destPtr, dest_offset, origPtr, 0, origBitmap, typlen, typbyval, typalign); destPtr += inc; origPtr += inc; if (destBitmap) array_bitmap_copy(destBitmap, 0, origBitmap, 0, dest_offset); orig_offset = dest_offset; mda_get_prod(ndim, dim, prod); mda_get_range(ndim, span, st, endp); mda_get_offset_values(ndim, dist, prod, span); for (i = 0; i < ndim; i++) indx[i] = 0; src_offset = 0; j = ndim - 1; do { /* Copy/advance over elements between here and next part of slice */ if (dist[j]) { inc = array_copy(destPtr, dist[j], origPtr, orig_offset, origBitmap, typlen, typbyval, typalign); destPtr += inc; origPtr += inc; if (destBitmap) array_bitmap_copy(destBitmap, dest_offset, origBitmap, orig_offset, dist[j]); dest_offset += dist[j]; orig_offset += dist[j]; } /* Copy new element at this slice position */ inc = array_copy(destPtr, 1, srcPtr, src_offset, srcBitmap, typlen, typbyval, typalign); if (destBitmap) array_bitmap_copy(destBitmap, dest_offset, srcBitmap, src_offset, 1); destPtr += inc; srcPtr += inc; dest_offset++; src_offset++; /* Advance over old element at this slice position */ origPtr = array_seek(origPtr, orig_offset, origBitmap, 1, typlen, typbyval, typalign); orig_offset++; } while ((j = mda_next_tuple(ndim, indx, span)) != -1); /* don't miss any data at the end */ array_copy(destPtr, orignitems - orig_offset, origPtr, orig_offset, origBitmap, typlen, typbyval, typalign); if (destBitmap) array_bitmap_copy(destBitmap, dest_offset, origBitmap, orig_offset, orignitems - orig_offset); } /* * initArrayResult - initialize an empty ArrayBuildState * * element_type is the array element type (must be a valid array element type) * rcontext is where to keep working state * subcontext is a flag determining whether to use a separate memory context * * Note: there are two common schemes for using accumArrayResult(). * In the older scheme, you start with a NULL ArrayBuildState pointer, and * call accumArrayResult once per element. In this scheme you end up with * a NULL pointer if there were no elements, which you need to special-case. * In the newer scheme, call initArrayResult and then call accumArrayResult * once per element. In this scheme you always end with a non-NULL pointer * that you can pass to makeArrayResult; you get an empty array if there * were no elements. This is preferred if an empty array is what you want. * * It's possible to choose whether to create a separate memory context for the * array build state, or whether to allocate it directly within rcontext. * * When there are many concurrent small states (e.g. array_agg() using hash * aggregation of many small groups), using a separate memory context for each * one may result in severe memory bloat. In such cases, use the same memory * context to initialize all such array build states, and pass * subcontext=false. * * In cases when the array build states have different lifetimes, using a * single memory context is impractical. Instead, pass subcontext=true so that * the array build states can be freed individually. */ ArrayBuildState * initArrayResult(Oid element_type, MemoryContext rcontext, bool subcontext) { /* * When using a subcontext, we can afford to start with a somewhat larger * initial array size. Without subcontexts, we'd better hope that most of * the states stay small ... */ return initArrayResultWithSize(element_type, rcontext, subcontext, subcontext ? 64 : 8); } /* * initArrayResultWithSize * As initArrayResult, but allow the initial size of the allocated arrays * to be specified. */ ArrayBuildState * initArrayResultWithSize(Oid element_type, MemoryContext rcontext, bool subcontext, int initsize) { ArrayBuildState *astate; MemoryContext arr_context = rcontext; /* Make a temporary context to hold all the junk */ if (subcontext) arr_context = AllocSetContextCreate(rcontext, "accumArrayResult", ALLOCSET_DEFAULT_SIZES); astate = (ArrayBuildState *) MemoryContextAlloc(arr_context, sizeof(ArrayBuildState)); astate->mcontext = arr_context; astate->private_cxt = subcontext; astate->alen = initsize; astate->dvalues = (Datum *) MemoryContextAlloc(arr_context, astate->alen * sizeof(Datum)); astate->dnulls = (bool *) MemoryContextAlloc(arr_context, astate->alen * sizeof(bool)); astate->nelems = 0; astate->element_type = element_type; get_typlenbyvalalign(element_type, &astate->typlen, &astate->typbyval, &astate->typalign); return astate; } /* * accumArrayResult - accumulate one (more) Datum for an array result * * astate is working state (can be NULL on first call) * dvalue/disnull represent the new Datum to append to the array * element_type is the Datum's type (must be a valid array element type) * rcontext is where to keep working state */ ArrayBuildState * accumArrayResult(ArrayBuildState *astate, Datum dvalue, bool disnull, Oid element_type, MemoryContext rcontext) { MemoryContext oldcontext; if (astate == NULL) { /* First time through --- initialize */ astate = initArrayResult(element_type, rcontext, true); } else { Assert(astate->element_type == element_type); } oldcontext = MemoryContextSwitchTo(astate->mcontext); /* enlarge dvalues[]/dnulls[] if needed */ if (astate->nelems >= astate->alen) { astate->alen *= 2; astate->dvalues = (Datum *) repalloc(astate->dvalues, astate->alen * sizeof(Datum)); astate->dnulls = (bool *) repalloc(astate->dnulls, astate->alen * sizeof(bool)); } /* * Ensure pass-by-ref stuff is copied into mcontext; and detoast it too if * it's varlena. (You might think that detoasting is not needed here * because construct_md_array can detoast the array elements later. * However, we must not let construct_md_array modify the ArrayBuildState * because that would mean array_agg_finalfn damages its input, which is * verboten. Also, this way frequently saves one copying step.) */ if (!disnull && !astate->typbyval) { if (astate->typlen == -1) dvalue = PointerGetDatum(PG_DETOAST_DATUM_COPY(dvalue)); else dvalue = datumCopy(dvalue, astate->typbyval, astate->typlen); } astate->dvalues[astate->nelems] = dvalue; astate->dnulls[astate->nelems] = disnull; astate->nelems++; MemoryContextSwitchTo(oldcontext); return astate; } /* * makeArrayResult - produce 1-D final result of accumArrayResult * * Note: only releases astate if it was initialized within a separate memory * context (i.e. using subcontext=true when calling initArrayResult). * * astate is working state (must not be NULL) * rcontext is where to construct result */ Datum makeArrayResult(ArrayBuildState *astate, MemoryContext rcontext) { int ndims; int dims[1]; int lbs[1]; /* If no elements were presented, we want to create an empty array */ ndims = (astate->nelems > 0) ? 1 : 0; dims[0] = astate->nelems; lbs[0] = 1; return makeMdArrayResult(astate, ndims, dims, lbs, rcontext, astate->private_cxt); } /* * makeMdArrayResult - produce multi-D final result of accumArrayResult * * beware: no check that specified dimensions match the number of values * accumulated. * * Note: if the astate was not initialized within a separate memory context * (that is, initArrayResult was called with subcontext=false), then using * release=true is illegal. Instead, release astate along with the rest of its * context when appropriate. * * astate is working state (must not be NULL) * rcontext is where to construct result * release is true if okay to release working state */ Datum makeMdArrayResult(ArrayBuildState *astate, int ndims, int *dims, int *lbs, MemoryContext rcontext, bool release) { ArrayType *result; MemoryContext oldcontext; /* Build the final array result in rcontext */ oldcontext = MemoryContextSwitchTo(rcontext); result = construct_md_array(astate->dvalues, astate->dnulls, ndims, dims, lbs, astate->element_type, astate->typlen, astate->typbyval, astate->typalign); MemoryContextSwitchTo(oldcontext); /* Clean up all the junk */ if (release) { Assert(astate->private_cxt); MemoryContextDelete(astate->mcontext); } return PointerGetDatum(result); } /* * The following three functions provide essentially the same API as * initArrayResult/accumArrayResult/makeArrayResult, but instead of accepting * inputs that are array elements, they accept inputs that are arrays and * produce an output array having N+1 dimensions. The inputs must all have * identical dimensionality as well as element type. */ /* * initArrayResultArr - initialize an empty ArrayBuildStateArr * * array_type is the array type (must be a valid varlena array type) * element_type is the type of the array's elements (lookup if InvalidOid) * rcontext is where to keep working state * subcontext is a flag determining whether to use a separate memory context */ ArrayBuildStateArr * initArrayResultArr(Oid array_type, Oid element_type, MemoryContext rcontext, bool subcontext) { ArrayBuildStateArr *astate; MemoryContext arr_context = rcontext; /* by default use the parent ctx */ /* Lookup element type, unless element_type already provided */ if (!OidIsValid(element_type)) { element_type = get_element_type(array_type); if (!OidIsValid(element_type)) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("data type %s is not an array type", format_type_be(array_type)))); } /* Make a temporary context to hold all the junk */ if (subcontext) arr_context = AllocSetContextCreate(rcontext, "accumArrayResultArr", ALLOCSET_DEFAULT_SIZES); /* Note we initialize all fields to zero */ astate = (ArrayBuildStateArr *) MemoryContextAllocZero(arr_context, sizeof(ArrayBuildStateArr)); astate->mcontext = arr_context; astate->private_cxt = subcontext; /* Save relevant datatype information */ astate->array_type = array_type; astate->element_type = element_type; return astate; } /* * accumArrayResultArr - accumulate one (more) sub-array for an array result * * astate is working state (can be NULL on first call) * dvalue/disnull represent the new sub-array to append to the array * array_type is the array type (must be a valid varlena array type) * rcontext is where to keep working state */ ArrayBuildStateArr * accumArrayResultArr(ArrayBuildStateArr *astate, Datum dvalue, bool disnull, Oid array_type, MemoryContext rcontext) { ArrayType *arg; MemoryContext oldcontext; int *dims, *lbs, ndims, nitems, ndatabytes; char *data; int i; /* * We disallow accumulating null subarrays. Another plausible definition * is to ignore them, but callers that want that can just skip calling * this function. */ if (disnull) ereport(ERROR, (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), errmsg("cannot accumulate null arrays"))); /* Detoast input array in caller's context */ arg = DatumGetArrayTypeP(dvalue); if (astate == NULL) astate = initArrayResultArr(array_type, InvalidOid, rcontext, true); else Assert(astate->array_type == array_type); oldcontext = MemoryContextSwitchTo(astate->mcontext); /* Collect this input's dimensions */ ndims = ARR_NDIM(arg); dims = ARR_DIMS(arg); lbs = ARR_LBOUND(arg); data = ARR_DATA_PTR(arg); nitems = ArrayGetNItems(ndims, dims); ndatabytes = ARR_SIZE(arg) - ARR_DATA_OFFSET(arg); if (astate->ndims == 0) { /* First input; check/save the dimensionality info */ /* Should we allow empty inputs and just produce an empty output? */ if (ndims == 0) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("cannot accumulate empty arrays"))); if (ndims + 1 > MAXDIM) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)", ndims + 1, MAXDIM))); /* * The output array will have n+1 dimensions, with the ones after the * first matching the input's dimensions. */ astate->ndims = ndims + 1; astate->dims[0] = 0; memcpy(&astate->dims[1], dims, ndims * sizeof(int)); astate->lbs[0] = 1; memcpy(&astate->lbs[1], lbs, ndims * sizeof(int)); /* Allocate at least enough data space for this item */ astate->abytes = pg_nextpower2_32(Max(1024, ndatabytes + 1)); astate->data = (char *) palloc(astate->abytes); } else { /* Second or later input: must match first input's dimensionality */ if (astate->ndims != ndims + 1) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("cannot accumulate arrays of different dimensionality"))); for (i = 0; i < ndims; i++) { if (astate->dims[i + 1] != dims[i] || astate->lbs[i + 1] != lbs[i]) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("cannot accumulate arrays of different dimensionality"))); } /* Enlarge data space if needed */ if (astate->nbytes + ndatabytes > astate->abytes) { astate->abytes = Max(astate->abytes * 2, astate->nbytes + ndatabytes); astate->data = (char *) repalloc(astate->data, astate->abytes); } } /* * Copy the data portion of the sub-array. Note we assume that the * advertised data length of the sub-array is properly aligned. We do not * have to worry about detoasting elements since whatever's in the * sub-array should be OK already. */ memcpy(astate->data + astate->nbytes, data, ndatabytes); astate->nbytes += ndatabytes; /* Deal with null bitmap if needed */ if (astate->nullbitmap || ARR_HASNULL(arg)) { int newnitems = astate->nitems + nitems; if (astate->nullbitmap == NULL) { /* * First input with nulls; we must retrospectively handle any * previous inputs by marking all their items non-null. */ astate->aitems = pg_nextpower2_32(Max(256, newnitems + 1)); astate->nullbitmap = (bits8 *) palloc((astate->aitems + 7) / 8); array_bitmap_copy(astate->nullbitmap, 0, NULL, 0, astate->nitems); } else if (newnitems > astate->aitems) { astate->aitems = Max(astate->aitems * 2, newnitems); astate->nullbitmap = (bits8 *) repalloc(astate->nullbitmap, (astate->aitems + 7) / 8); } array_bitmap_copy(astate->nullbitmap, astate->nitems, ARR_NULLBITMAP(arg), 0, nitems); } astate->nitems += nitems; astate->dims[0] += 1; MemoryContextSwitchTo(oldcontext); /* Release detoasted copy if any */ if ((Pointer) arg != DatumGetPointer(dvalue)) pfree(arg); return astate; } /* * makeArrayResultArr - produce N+1-D final result of accumArrayResultArr * * astate is working state (must not be NULL) * rcontext is where to construct result * release is true if okay to release working state */ Datum makeArrayResultArr(ArrayBuildStateArr *astate, MemoryContext rcontext, bool release) { ArrayType *result; MemoryContext oldcontext; /* Build the final array result in rcontext */ oldcontext = MemoryContextSwitchTo(rcontext); if (astate->ndims == 0) { /* No inputs, return empty array */ result = construct_empty_array(astate->element_type); } else { int dataoffset, nbytes; /* Check for overflow of the array dimensions */ (void) ArrayGetNItems(astate->ndims, astate->dims); ArrayCheckBounds(astate->ndims, astate->dims, astate->lbs); /* Compute required space */ nbytes = astate->nbytes; if (astate->nullbitmap != NULL) { dataoffset = ARR_OVERHEAD_WITHNULLS(astate->ndims, astate->nitems); nbytes += dataoffset; } else { dataoffset = 0; nbytes += ARR_OVERHEAD_NONULLS(astate->ndims); } result = (ArrayType *) palloc0(nbytes); SET_VARSIZE(result, nbytes); result->ndim = astate->ndims; result->dataoffset = dataoffset; result->elemtype = astate->element_type; memcpy(ARR_DIMS(result), astate->dims, astate->ndims * sizeof(int)); memcpy(ARR_LBOUND(result), astate->lbs, astate->ndims * sizeof(int)); memcpy(ARR_DATA_PTR(result), astate->data, astate->nbytes); if (astate->nullbitmap != NULL) array_bitmap_copy(ARR_NULLBITMAP(result), 0, astate->nullbitmap, 0, astate->nitems); } MemoryContextSwitchTo(oldcontext); /* Clean up all the junk */ if (release) { Assert(astate->private_cxt); MemoryContextDelete(astate->mcontext); } return PointerGetDatum(result); } /* * The following three functions provide essentially the same API as * initArrayResult/accumArrayResult/makeArrayResult, but can accept either * scalar or array inputs, invoking the appropriate set of functions above. */ /* * initArrayResultAny - initialize an empty ArrayBuildStateAny * * input_type is the input datatype (either element or array type) * rcontext is where to keep working state * subcontext is a flag determining whether to use a separate memory context */ ArrayBuildStateAny * initArrayResultAny(Oid input_type, MemoryContext rcontext, bool subcontext) { ArrayBuildStateAny *astate; Oid element_type = get_element_type(input_type); if (OidIsValid(element_type)) { /* Array case */ ArrayBuildStateArr *arraystate; arraystate = initArrayResultArr(input_type, InvalidOid, rcontext, subcontext); astate = (ArrayBuildStateAny *) MemoryContextAlloc(arraystate->mcontext, sizeof(ArrayBuildStateAny)); astate->scalarstate = NULL; astate->arraystate = arraystate; } else { /* Scalar case */ ArrayBuildState *scalarstate; /* Let's just check that we have a type that can be put into arrays */ Assert(OidIsValid(get_array_type(input_type))); scalarstate = initArrayResult(input_type, rcontext, subcontext); astate = (ArrayBuildStateAny *) MemoryContextAlloc(scalarstate->mcontext, sizeof(ArrayBuildStateAny)); astate->scalarstate = scalarstate; astate->arraystate = NULL; } return astate; } /* * accumArrayResultAny - accumulate one (more) input for an array result * * astate is working state (can be NULL on first call) * dvalue/disnull represent the new input to append to the array * input_type is the input datatype (either element or array type) * rcontext is where to keep working state */ ArrayBuildStateAny * accumArrayResultAny(ArrayBuildStateAny *astate, Datum dvalue, bool disnull, Oid input_type, MemoryContext rcontext) { if (astate == NULL) astate = initArrayResultAny(input_type, rcontext, true); if (astate->scalarstate) (void) accumArrayResult(astate->scalarstate, dvalue, disnull, input_type, rcontext); else (void) accumArrayResultArr(astate->arraystate, dvalue, disnull, input_type, rcontext); return astate; } /* * makeArrayResultAny - produce final result of accumArrayResultAny * * astate is working state (must not be NULL) * rcontext is where to construct result * release is true if okay to release working state */ Datum makeArrayResultAny(ArrayBuildStateAny *astate, MemoryContext rcontext, bool release) { Datum result; if (astate->scalarstate) { /* Must use makeMdArrayResult to support "release" parameter */ int ndims; int dims[1]; int lbs[1]; /* If no elements were presented, we want to create an empty array */ ndims = (astate->scalarstate->nelems > 0) ? 1 : 0; dims[0] = astate->scalarstate->nelems; lbs[0] = 1; result = makeMdArrayResult(astate->scalarstate, ndims, dims, lbs, rcontext, release); } else { result = makeArrayResultArr(astate->arraystate, rcontext, release); } return result; } Datum array_larger(PG_FUNCTION_ARGS) { if (array_cmp(fcinfo) > 0) PG_RETURN_DATUM(PG_GETARG_DATUM(0)); else PG_RETURN_DATUM(PG_GETARG_DATUM(1)); } Datum array_smaller(PG_FUNCTION_ARGS) { if (array_cmp(fcinfo) < 0) PG_RETURN_DATUM(PG_GETARG_DATUM(0)); else PG_RETURN_DATUM(PG_GETARG_DATUM(1)); } typedef struct generate_subscripts_fctx { int32 lower; int32 upper; bool reverse; } generate_subscripts_fctx; /* * generate_subscripts(array anyarray, dim int [, reverse bool]) * Returns all subscripts of the array for any dimension */ Datum generate_subscripts(PG_FUNCTION_ARGS) { FuncCallContext *funcctx; MemoryContext oldcontext; generate_subscripts_fctx *fctx; /* stuff done only on the first call of the function */ if (SRF_IS_FIRSTCALL()) { AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); int reqdim = PG_GETARG_INT32(1); int *lb, *dimv; /* create a function context for cross-call persistence */ funcctx = SRF_FIRSTCALL_INIT(); /* Sanity check: does it look like an array at all? */ if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM) SRF_RETURN_DONE(funcctx); /* Sanity check: was the requested dim valid */ if (reqdim <= 0 || reqdim > AARR_NDIM(v)) SRF_RETURN_DONE(funcctx); /* * switch to memory context appropriate for multiple function calls */ oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); fctx = (generate_subscripts_fctx *) palloc(sizeof(generate_subscripts_fctx)); lb = AARR_LBOUND(v); dimv = AARR_DIMS(v); fctx->lower = lb[reqdim - 1]; fctx->upper = dimv[reqdim - 1] + lb[reqdim - 1] - 1; fctx->reverse = (PG_NARGS() < 3) ? false : PG_GETARG_BOOL(2); funcctx->user_fctx = fctx; MemoryContextSwitchTo(oldcontext); } funcctx = SRF_PERCALL_SETUP(); fctx = funcctx->user_fctx; if (fctx->lower <= fctx->upper) { if (!fctx->reverse) SRF_RETURN_NEXT(funcctx, Int32GetDatum(fctx->lower++)); else SRF_RETURN_NEXT(funcctx, Int32GetDatum(fctx->upper--)); } else /* done when there are no more elements left */ SRF_RETURN_DONE(funcctx); } /* * generate_subscripts_nodir * Implements the 2-argument version of generate_subscripts */ Datum generate_subscripts_nodir(PG_FUNCTION_ARGS) { /* just call the other one -- it can handle both cases */ return generate_subscripts(fcinfo); } /* * array_fill_with_lower_bounds * Create and fill array with defined lower bounds. */ Datum array_fill_with_lower_bounds(PG_FUNCTION_ARGS) { ArrayType *dims; ArrayType *lbs; ArrayType *result; Oid elmtype; Datum value; bool isnull; if (PG_ARGISNULL(1) || PG_ARGISNULL(2)) ereport(ERROR, (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), errmsg("dimension array or low bound array cannot be null"))); dims = PG_GETARG_ARRAYTYPE_P(1); lbs = PG_GETARG_ARRAYTYPE_P(2); if (!PG_ARGISNULL(0)) { value = PG_GETARG_DATUM(0); isnull = false; } else { value = 0; isnull = true; } elmtype = get_fn_expr_argtype(fcinfo->flinfo, 0); if (!OidIsValid(elmtype)) elog(ERROR, "could not determine data type of input"); result = array_fill_internal(dims, lbs, value, isnull, elmtype, fcinfo); PG_RETURN_ARRAYTYPE_P(result); } /* * array_fill * Create and fill array with default lower bounds. */ Datum array_fill(PG_FUNCTION_ARGS) { ArrayType *dims; ArrayType *result; Oid elmtype; Datum value; bool isnull; if (PG_ARGISNULL(1)) ereport(ERROR, (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), errmsg("dimension array or low bound array cannot be null"))); dims = PG_GETARG_ARRAYTYPE_P(1); if (!PG_ARGISNULL(0)) { value = PG_GETARG_DATUM(0); isnull = false; } else { value = 0; isnull = true; } elmtype = get_fn_expr_argtype(fcinfo->flinfo, 0); if (!OidIsValid(elmtype)) elog(ERROR, "could not determine data type of input"); result = array_fill_internal(dims, NULL, value, isnull, elmtype, fcinfo); PG_RETURN_ARRAYTYPE_P(result); } static ArrayType * create_array_envelope(int ndims, int *dimv, int *lbsv, int nbytes, Oid elmtype, int dataoffset) { ArrayType *result; result = (ArrayType *) palloc0(nbytes); SET_VARSIZE(result, nbytes); result->ndim = ndims; result->dataoffset = dataoffset; result->elemtype = elmtype; memcpy(ARR_DIMS(result), dimv, ndims * sizeof(int)); memcpy(ARR_LBOUND(result), lbsv, ndims * sizeof(int)); return result; } static ArrayType * array_fill_internal(ArrayType *dims, ArrayType *lbs, Datum value, bool isnull, Oid elmtype, FunctionCallInfo fcinfo) { ArrayType *result; int *dimv; int *lbsv; int ndims; int nitems; int deflbs[MAXDIM]; int16 elmlen; bool elmbyval; char elmalign; ArrayMetaState *my_extra; /* * Params checks */ if (ARR_NDIM(dims) > 1) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("wrong number of array subscripts"), errdetail("Dimension array must be one dimensional."))); if (array_contains_nulls(dims)) ereport(ERROR, (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), errmsg("dimension values cannot be null"))); dimv = (int *) ARR_DATA_PTR(dims); ndims = (ARR_NDIM(dims) > 0) ? ARR_DIMS(dims)[0] : 0; if (ndims < 0) /* we do allow zero-dimension arrays */ ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE), errmsg("invalid number of dimensions: %d", ndims))); if (ndims > MAXDIM) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)", ndims, MAXDIM))); if (lbs != NULL) { if (ARR_NDIM(lbs) > 1) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("wrong number of array subscripts"), errdetail("Dimension array must be one dimensional."))); if (array_contains_nulls(lbs)) ereport(ERROR, (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), errmsg("dimension values cannot be null"))); if (ndims != ((ARR_NDIM(lbs) > 0) ? ARR_DIMS(lbs)[0] : 0)) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("wrong number of array subscripts"), errdetail("Low bound array has different size than dimensions array."))); lbsv = (int *) ARR_DATA_PTR(lbs); } else { int i; for (i = 0; i < MAXDIM; i++) deflbs[i] = 1; lbsv = deflbs; } /* This checks for overflow of the array dimensions */ nitems = ArrayGetNItems(ndims, dimv); ArrayCheckBounds(ndims, dimv, lbsv); /* fast track for empty array */ if (nitems <= 0) return construct_empty_array(elmtype); /* * We arrange to look up info about element type only once per series of * calls, assuming the element type doesn't change underneath us. */ my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; if (my_extra == NULL) { fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, sizeof(ArrayMetaState)); my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; my_extra->element_type = InvalidOid; } if (my_extra->element_type != elmtype) { /* Get info about element type */ get_typlenbyvalalign(elmtype, &my_extra->typlen, &my_extra->typbyval, &my_extra->typalign); my_extra->element_type = elmtype; } elmlen = my_extra->typlen; elmbyval = my_extra->typbyval; elmalign = my_extra->typalign; /* compute required space */ if (!isnull) { int i; char *p; int nbytes; int totbytes; /* make sure data is not toasted */ if (elmlen == -1) value = PointerGetDatum(PG_DETOAST_DATUM(value)); nbytes = att_addlength_datum(0, elmlen, value); nbytes = att_align_nominal(nbytes, elmalign); Assert(nbytes > 0); totbytes = nbytes * nitems; /* check for overflow of multiplication or total request */ if (totbytes / nbytes != nitems || !AllocSizeIsValid(totbytes)) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("array size exceeds the maximum allowed (%d)", (int) MaxAllocSize))); /* * This addition can't overflow, but it might cause us to go past * MaxAllocSize. We leave it to palloc to complain in that case. */ totbytes += ARR_OVERHEAD_NONULLS(ndims); result = create_array_envelope(ndims, dimv, lbsv, totbytes, elmtype, 0); p = ARR_DATA_PTR(result); for (i = 0; i < nitems; i++) p += ArrayCastAndSet(value, elmlen, elmbyval, elmalign, p); } else { int nbytes; int dataoffset; dataoffset = ARR_OVERHEAD_WITHNULLS(ndims, nitems); nbytes = dataoffset; result = create_array_envelope(ndims, dimv, lbsv, nbytes, elmtype, dataoffset); /* create_array_envelope already zeroed the bitmap, so we're done */ } return result; } /* * UNNEST */ Datum array_unnest(PG_FUNCTION_ARGS) { typedef struct { array_iter iter; int nextelem; int numelems; int16 elmlen; bool elmbyval; char elmalign; } array_unnest_fctx; FuncCallContext *funcctx; array_unnest_fctx *fctx; MemoryContext oldcontext; /* stuff done only on the first call of the function */ if (SRF_IS_FIRSTCALL()) { AnyArrayType *arr; /* create a function context for cross-call persistence */ funcctx = SRF_FIRSTCALL_INIT(); /* * switch to memory context appropriate for multiple function calls */ oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); /* * Get the array value and detoast if needed. We can't do this * earlier because if we have to detoast, we want the detoasted copy * to be in multi_call_memory_ctx, so it will go away when we're done * and not before. (If no detoast happens, we assume the originally * passed array will stick around till then.) */ arr = PG_GETARG_ANY_ARRAY_P(0); /* allocate memory for user context */ fctx = (array_unnest_fctx *) palloc(sizeof(array_unnest_fctx)); /* initialize state */ array_iter_setup(&fctx->iter, arr); fctx->nextelem = 0; fctx->numelems = ArrayGetNItems(AARR_NDIM(arr), AARR_DIMS(arr)); if (VARATT_IS_EXPANDED_HEADER(arr)) { /* we can just grab the type data from expanded array */ fctx->elmlen = arr->xpn.typlen; fctx->elmbyval = arr->xpn.typbyval; fctx->elmalign = arr->xpn.typalign; } else get_typlenbyvalalign(AARR_ELEMTYPE(arr), &fctx->elmlen, &fctx->elmbyval, &fctx->elmalign); funcctx->user_fctx = fctx; MemoryContextSwitchTo(oldcontext); } /* stuff done on every call of the function */ funcctx = SRF_PERCALL_SETUP(); fctx = funcctx->user_fctx; if (fctx->nextelem < fctx->numelems) { int offset = fctx->nextelem++; Datum elem; elem = array_iter_next(&fctx->iter, &fcinfo->isnull, offset, fctx->elmlen, fctx->elmbyval, fctx->elmalign); SRF_RETURN_NEXT(funcctx, elem); } else { /* do when there is no more left */ SRF_RETURN_DONE(funcctx); } } /* * Planner support function for array_unnest(anyarray) */ Datum array_unnest_support(PG_FUNCTION_ARGS) { Node *rawreq = (Node *) PG_GETARG_POINTER(0); Node *ret = NULL; if (IsA(rawreq, SupportRequestRows)) { /* Try to estimate the number of rows returned */ SupportRequestRows *req = (SupportRequestRows *) rawreq; if (is_funcclause(req->node)) /* be paranoid */ { List *args = ((FuncExpr *) req->node)->args; Node *arg1; /* We can use estimated argument values here */ arg1 = estimate_expression_value(req->root, linitial(args)); req->rows = estimate_array_length(arg1); ret = (Node *) req; } } PG_RETURN_POINTER(ret); } /* * array_replace/array_remove support * * Find all array entries matching (not distinct from) search/search_isnull, * and delete them if remove is true, else replace them with * replace/replace_isnull. Comparisons are done using the specified * collation. fcinfo is passed only for caching purposes. */ static ArrayType * array_replace_internal(ArrayType *array, Datum search, bool search_isnull, Datum replace, bool replace_isnull, bool remove, Oid collation, FunctionCallInfo fcinfo) { LOCAL_FCINFO(locfcinfo, 2); ArrayType *result; Oid element_type; Datum *values; bool *nulls; int *dim; int ndim; int nitems, nresult; int i; int32 nbytes = 0; int32 dataoffset; bool hasnulls; int typlen; bool typbyval; char typalign; char *arraydataptr; bits8 *bitmap; int bitmask; bool changed = false; TypeCacheEntry *typentry; element_type = ARR_ELEMTYPE(array); ndim = ARR_NDIM(array); dim = ARR_DIMS(array); nitems = ArrayGetNItems(ndim, dim); /* Return input array unmodified if it is empty */ if (nitems <= 0) return array; /* * We can't remove elements from multi-dimensional arrays, since the * result might not be rectangular. */ if (remove && ndim > 1) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), errmsg("removing elements from multidimensional arrays is not supported"))); /* * We arrange to look up the equality function only once per series of * calls, assuming the element type doesn't change underneath us. */ typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; if (typentry == NULL || typentry->type_id != element_type) { typentry = lookup_type_cache(element_type, TYPECACHE_EQ_OPR_FINFO); if (!OidIsValid(typentry->eq_opr_finfo.fn_oid)) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_FUNCTION), errmsg("could not identify an equality operator for type %s", format_type_be(element_type)))); fcinfo->flinfo->fn_extra = (void *) typentry; } typlen = typentry->typlen; typbyval = typentry->typbyval; typalign = typentry->typalign; /* * Detoast values if they are toasted. The replacement value must be * detoasted for insertion into the result array, while detoasting the * search value only once saves cycles. */ if (typlen == -1) { if (!search_isnull) search = PointerGetDatum(PG_DETOAST_DATUM(search)); if (!replace_isnull) replace = PointerGetDatum(PG_DETOAST_DATUM(replace)); } /* Prepare to apply the comparison operator */ InitFunctionCallInfoData(*locfcinfo, &typentry->eq_opr_finfo, 2, collation, NULL, NULL); /* Allocate temporary arrays for new values */ values = (Datum *) palloc(nitems * sizeof(Datum)); nulls = (bool *) palloc(nitems * sizeof(bool)); /* Loop over source data */ arraydataptr = ARR_DATA_PTR(array); bitmap = ARR_NULLBITMAP(array); bitmask = 1; hasnulls = false; nresult = 0; for (i = 0; i < nitems; i++) { Datum elt; bool isNull; bool oprresult; bool skip = false; /* Get source element, checking for NULL */ if (bitmap && (*bitmap & bitmask) == 0) { isNull = true; /* If searching for NULL, we have a match */ if (search_isnull) { if (remove) { skip = true; changed = true; } else if (!replace_isnull) { values[nresult] = replace; isNull = false; changed = true; } } } else { isNull = false; elt = fetch_att(arraydataptr, typbyval, typlen); arraydataptr = att_addlength_datum(arraydataptr, typlen, elt); arraydataptr = (char *) att_align_nominal(arraydataptr, typalign); if (search_isnull) { /* no match possible, keep element */ values[nresult] = elt; } else { /* * Apply the operator to the element pair; treat NULL as false */ locfcinfo->args[0].value = elt; locfcinfo->args[0].isnull = false; locfcinfo->args[1].value = search; locfcinfo->args[1].isnull = false; locfcinfo->isnull = false; oprresult = DatumGetBool(FunctionCallInvoke(locfcinfo)); if (locfcinfo->isnull || !oprresult) { /* no match, keep element */ values[nresult] = elt; } else { /* match, so replace or delete */ changed = true; if (remove) skip = true; else { values[nresult] = replace; isNull = replace_isnull; } } } } if (!skip) { nulls[nresult] = isNull; if (isNull) hasnulls = true; else { /* Update total result size */ nbytes = att_addlength_datum(nbytes, typlen, values[nresult]); nbytes = att_align_nominal(nbytes, typalign); /* check for overflow of total request */ if (!AllocSizeIsValid(nbytes)) ereport(ERROR, (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), errmsg("array size exceeds the maximum allowed (%d)", (int) MaxAllocSize))); } nresult++; } /* advance bitmap pointer if any */ if (bitmap) { bitmask <<= 1; if (bitmask == 0x100) { bitmap++; bitmask = 1; } } } /* * If not changed just return the original array */ if (!changed) { pfree(values); pfree(nulls); return array; } /* If all elements were removed return an empty array */ if (nresult == 0) { pfree(values); pfree(nulls); return construct_empty_array(element_type); } /* Allocate and initialize the result array */ if (hasnulls) { dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, nresult); nbytes += dataoffset; } else { dataoffset = 0; /* marker for no null bitmap */ nbytes += ARR_OVERHEAD_NONULLS(ndim); } result = (ArrayType *) palloc0(nbytes); SET_VARSIZE(result, nbytes); result->ndim = ndim; result->dataoffset = dataoffset; result->elemtype = element_type; memcpy(ARR_DIMS(result), ARR_DIMS(array), ndim * sizeof(int)); memcpy(ARR_LBOUND(result), ARR_LBOUND(array), ndim * sizeof(int)); if (remove) { /* Adjust the result length */ ARR_DIMS(result)[0] = nresult; } /* Insert data into result array */ CopyArrayEls(result, values, nulls, nresult, typlen, typbyval, typalign, false); pfree(values); pfree(nulls); return result; } /* * Remove any occurrences of an element from an array * * If used on a multi-dimensional array this will raise an error. */ Datum array_remove(PG_FUNCTION_ARGS) { ArrayType *array; Datum search = PG_GETARG_DATUM(1); bool search_isnull = PG_ARGISNULL(1); if (PG_ARGISNULL(0)) PG_RETURN_NULL(); array = PG_GETARG_ARRAYTYPE_P(0); array = array_replace_internal(array, search, search_isnull, (Datum) 0, true, true, PG_GET_COLLATION(), fcinfo); PG_RETURN_ARRAYTYPE_P(array); } /* * Replace any occurrences of an element in an array */ Datum array_replace(PG_FUNCTION_ARGS) { ArrayType *array; Datum search = PG_GETARG_DATUM(1); bool search_isnull = PG_ARGISNULL(1); Datum replace = PG_GETARG_DATUM(2); bool replace_isnull = PG_ARGISNULL(2); if (PG_ARGISNULL(0)) PG_RETURN_NULL(); array = PG_GETARG_ARRAYTYPE_P(0); array = array_replace_internal(array, search, search_isnull, replace, replace_isnull, false, PG_GET_COLLATION(), fcinfo); PG_RETURN_ARRAYTYPE_P(array); } /* * Implements width_bucket(anyelement, anyarray). * * 'thresholds' is an array containing lower bound values for each bucket; * these must be sorted from smallest to largest, or bogus results will be * produced. If N thresholds are supplied, the output is from 0 to N: * 0 is for inputs < first threshold, N is for inputs >= last threshold. */ Datum width_bucket_array(PG_FUNCTION_ARGS) { Datum operand = PG_GETARG_DATUM(0); ArrayType *thresholds = PG_GETARG_ARRAYTYPE_P(1); Oid collation = PG_GET_COLLATION(); Oid element_type = ARR_ELEMTYPE(thresholds); int result; /* Check input */ if (ARR_NDIM(thresholds) > 1) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("thresholds must be one-dimensional array"))); if (array_contains_nulls(thresholds)) ereport(ERROR, (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), errmsg("thresholds array must not contain NULLs"))); /* We have a dedicated implementation for float8 data */ if (element_type == FLOAT8OID) result = width_bucket_array_float8(operand, thresholds); else { TypeCacheEntry *typentry; /* Cache information about the input type */ typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; if (typentry == NULL || typentry->type_id != element_type) { typentry = lookup_type_cache(element_type, TYPECACHE_CMP_PROC_FINFO); if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid)) ereport(ERROR, (errcode(ERRCODE_UNDEFINED_FUNCTION), errmsg("could not identify a comparison function for type %s", format_type_be(element_type)))); fcinfo->flinfo->fn_extra = (void *) typentry; } /* * We have separate implementation paths for fixed- and variable-width * types, since indexing the array is a lot cheaper in the first case. */ if (typentry->typlen > 0) result = width_bucket_array_fixed(operand, thresholds, collation, typentry); else result = width_bucket_array_variable(operand, thresholds, collation, typentry); } /* Avoid leaking memory when handed toasted input. */ PG_FREE_IF_COPY(thresholds, 1); PG_RETURN_INT32(result); } /* * width_bucket_array for float8 data. */ static int width_bucket_array_float8(Datum operand, ArrayType *thresholds) { float8 op = DatumGetFloat8(operand); float8 *thresholds_data; int left; int right; /* * Since we know the array contains no NULLs, we can just index it * directly. */ thresholds_data = (float8 *) ARR_DATA_PTR(thresholds); left = 0; right = ArrayGetNItems(ARR_NDIM(thresholds), ARR_DIMS(thresholds)); /* * If the probe value is a NaN, it's greater than or equal to all possible * threshold values (including other NaNs), so we need not search. Note * that this would give the same result as searching even if the array * contains multiple NaNs (as long as they're correctly sorted), since the * loop logic will find the rightmost of multiple equal threshold values. */ if (isnan(op)) return right; /* Find the bucket */ while (left < right) { int mid = (left + right) / 2; if (isnan(thresholds_data[mid]) || op < thresholds_data[mid]) right = mid; else left = mid + 1; } return left; } /* * width_bucket_array for generic fixed-width data types. */ static int width_bucket_array_fixed(Datum operand, ArrayType *thresholds, Oid collation, TypeCacheEntry *typentry) { LOCAL_FCINFO(locfcinfo, 2); char *thresholds_data; int typlen = typentry->typlen; bool typbyval = typentry->typbyval; int left; int right; /* * Since we know the array contains no NULLs, we can just index it * directly. */ thresholds_data = (char *) ARR_DATA_PTR(thresholds); InitFunctionCallInfoData(*locfcinfo, &typentry->cmp_proc_finfo, 2, collation, NULL, NULL); /* Find the bucket */ left = 0; right = ArrayGetNItems(ARR_NDIM(thresholds), ARR_DIMS(thresholds)); while (left < right) { int mid = (left + right) / 2; char *ptr; int32 cmpresult; ptr = thresholds_data + mid * typlen; locfcinfo->args[0].value = operand; locfcinfo->args[0].isnull = false; locfcinfo->args[1].value = fetch_att(ptr, typbyval, typlen); locfcinfo->args[1].isnull = false; cmpresult = DatumGetInt32(FunctionCallInvoke(locfcinfo)); /* We don't expect comparison support functions to return null */ Assert(!locfcinfo->isnull); if (cmpresult < 0) right = mid; else left = mid + 1; } return left; } /* * width_bucket_array for generic variable-width data types. */ static int width_bucket_array_variable(Datum operand, ArrayType *thresholds, Oid collation, TypeCacheEntry *typentry) { LOCAL_FCINFO(locfcinfo, 2); char *thresholds_data; int typlen = typentry->typlen; bool typbyval = typentry->typbyval; char typalign = typentry->typalign; int left; int right; thresholds_data = (char *) ARR_DATA_PTR(thresholds); InitFunctionCallInfoData(*locfcinfo, &typentry->cmp_proc_finfo, 2, collation, NULL, NULL); /* Find the bucket */ left = 0; right = ArrayGetNItems(ARR_NDIM(thresholds), ARR_DIMS(thresholds)); while (left < right) { int mid = (left + right) / 2; char *ptr; int i; int32 cmpresult; /* Locate mid'th array element by advancing from left element */ ptr = thresholds_data; for (i = left; i < mid; i++) { ptr = att_addlength_pointer(ptr, typlen, ptr); ptr = (char *) att_align_nominal(ptr, typalign); } locfcinfo->args[0].value = operand; locfcinfo->args[0].isnull = false; locfcinfo->args[1].value = fetch_att(ptr, typbyval, typlen); locfcinfo->args[1].isnull = false; cmpresult = DatumGetInt32(FunctionCallInvoke(locfcinfo)); /* We don't expect comparison support functions to return null */ Assert(!locfcinfo->isnull); if (cmpresult < 0) right = mid; else { left = mid + 1; /* * Move the thresholds pointer to match new "left" index, so we * don't have to seek over those elements again. This trick * ensures we do only O(N) array indexing work, not O(N^2). */ ptr = att_addlength_pointer(ptr, typlen, ptr); thresholds_data = (char *) att_align_nominal(ptr, typalign); } } return left; } /* * Trim the last N elements from an array by building an appropriate slice. * Only the first dimension is trimmed. */ Datum trim_array(PG_FUNCTION_ARGS) { ArrayType *v = PG_GETARG_ARRAYTYPE_P(0); int n = PG_GETARG_INT32(1); int array_length = (ARR_NDIM(v) > 0) ? ARR_DIMS(v)[0] : 0; int16 elmlen; bool elmbyval; char elmalign; int lower[MAXDIM]; int upper[MAXDIM]; bool lowerProvided[MAXDIM]; bool upperProvided[MAXDIM]; Datum result; /* Per spec, throw an error if out of bounds */ if (n < 0 || n > array_length) ereport(ERROR, (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), errmsg("number of elements to trim must be between 0 and %d", array_length))); /* Set all the bounds as unprovided except the first upper bound */ memset(lowerProvided, false, sizeof(lowerProvided)); memset(upperProvided, false, sizeof(upperProvided)); if (ARR_NDIM(v) > 0) { upper[0] = ARR_LBOUND(v)[0] + array_length - n - 1; upperProvided[0] = true; } /* Fetch the needed information about the element type */ get_typlenbyvalalign(ARR_ELEMTYPE(v), &elmlen, &elmbyval, &elmalign); /* Get the slice */ result = array_get_slice(PointerGetDatum(v), 1, upper, lower, upperProvided, lowerProvided, -1, elmlen, elmbyval, elmalign); PG_RETURN_DATUM(result); }