1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
/*-------------------------------------------------------------------------
*
* pg_prewarm.c
* prewarming utilities
*
* Copyright (c) 2010-2023, PostgreSQL Global Development Group
*
* IDENTIFICATION
* contrib/pg_prewarm/pg_prewarm.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <sys/stat.h>
#include <unistd.h>
#include "access/relation.h"
#include "fmgr.h"
#include "miscadmin.h"
#include "storage/bufmgr.h"
#include "storage/smgr.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/rel.h"
PG_MODULE_MAGIC;
PG_FUNCTION_INFO_V1(pg_prewarm);
typedef enum
{
PREWARM_PREFETCH,
PREWARM_READ,
PREWARM_BUFFER
} PrewarmType;
static PGIOAlignedBlock blockbuffer;
/*
* pg_prewarm(regclass, mode text, fork text,
* first_block int8, last_block int8)
*
* The first argument is the relation to be prewarmed; the second controls
* how prewarming is done; legal options are 'prefetch', 'read', and 'buffer'.
* The third is the name of the relation fork to be prewarmed. The fourth
* and fifth arguments specify the first and last block to be prewarmed.
* If the fourth argument is NULL, it will be taken as 0; if the fifth argument
* is NULL, it will be taken as the number of blocks in the relation. The
* return value is the number of blocks successfully prewarmed.
*/
Datum
pg_prewarm(PG_FUNCTION_ARGS)
{
Oid relOid;
text *forkName;
text *type;
int64 first_block;
int64 last_block;
int64 nblocks;
int64 blocks_done = 0;
int64 block;
Relation rel;
ForkNumber forkNumber;
char *forkString;
char *ttype;
PrewarmType ptype;
AclResult aclresult;
/* Basic sanity checking. */
if (PG_ARGISNULL(0))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("relation cannot be null")));
relOid = PG_GETARG_OID(0);
if (PG_ARGISNULL(1))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("prewarm type cannot be null")));
type = PG_GETARG_TEXT_PP(1);
ttype = text_to_cstring(type);
if (strcmp(ttype, "prefetch") == 0)
ptype = PREWARM_PREFETCH;
else if (strcmp(ttype, "read") == 0)
ptype = PREWARM_READ;
else if (strcmp(ttype, "buffer") == 0)
ptype = PREWARM_BUFFER;
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid prewarm type"),
errhint("Valid prewarm types are \"prefetch\", \"read\", and \"buffer\".")));
PG_RETURN_INT64(0); /* Placate compiler. */
}
if (PG_ARGISNULL(2))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("relation fork cannot be null")));
forkName = PG_GETARG_TEXT_PP(2);
forkString = text_to_cstring(forkName);
forkNumber = forkname_to_number(forkString);
/* Open relation and check privileges. */
rel = relation_open(relOid, AccessShareLock);
aclresult = pg_class_aclcheck(relOid, GetUserId(), ACL_SELECT);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, get_relkind_objtype(rel->rd_rel->relkind), get_rel_name(relOid));
/* Check that the fork exists. */
if (!smgrexists(RelationGetSmgr(rel), forkNumber))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("fork \"%s\" does not exist for this relation",
forkString)));
/* Validate block numbers, or handle nulls. */
nblocks = RelationGetNumberOfBlocksInFork(rel, forkNumber);
if (PG_ARGISNULL(3))
first_block = 0;
else
{
first_block = PG_GETARG_INT64(3);
if (first_block < 0 || first_block >= nblocks)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("starting block number must be between 0 and %lld",
(long long) (nblocks - 1))));
}
if (PG_ARGISNULL(4))
last_block = nblocks - 1;
else
{
last_block = PG_GETARG_INT64(4);
if (last_block < 0 || last_block >= nblocks)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("ending block number must be between 0 and %lld",
(long long) (nblocks - 1))));
}
/* Now we're ready to do the real work. */
if (ptype == PREWARM_PREFETCH)
{
#ifdef USE_PREFETCH
/*
* In prefetch mode, we just hint the OS to read the blocks, but we
* don't know whether it really does it, and we don't wait for it to
* finish.
*
* It would probably be better to pass our prefetch requests in chunks
* of a megabyte or maybe even a whole segment at a time, but there's
* no practical way to do that at present without a gross modularity
* violation, so we just do this.
*/
for (block = first_block; block <= last_block; ++block)
{
CHECK_FOR_INTERRUPTS();
PrefetchBuffer(rel, forkNumber, block);
++blocks_done;
}
#else
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("prefetch is not supported by this build")));
#endif
}
else if (ptype == PREWARM_READ)
{
/*
* In read mode, we actually read the blocks, but not into shared
* buffers. This is more portable than prefetch mode (it works
* everywhere) and is synchronous.
*/
for (block = first_block; block <= last_block; ++block)
{
CHECK_FOR_INTERRUPTS();
smgrread(RelationGetSmgr(rel), forkNumber, block, blockbuffer.data);
++blocks_done;
}
}
else if (ptype == PREWARM_BUFFER)
{
/*
* In buffer mode, we actually pull the data into shared_buffers.
*/
for (block = first_block; block <= last_block; ++block)
{
Buffer buf;
CHECK_FOR_INTERRUPTS();
buf = ReadBufferExtended(rel, forkNumber, block, RBM_NORMAL, NULL);
ReleaseBuffer(buf);
++blocks_done;
}
}
/* Close relation, release lock. */
relation_close(rel, AccessShareLock);
PG_RETURN_INT64(blocks_done);
}
|