summaryrefslogtreecommitdiffstats
path: root/src/backend/access/nbtree/nbtree.c
blob: 6c5b5c69ce558838a53ea704326e1ba6d745b12e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
/*-------------------------------------------------------------------------
 *
 * nbtree.c
 *	  Implementation of Lehman and Yao's btree management algorithm for
 *	  Postgres.
 *
 * NOTES
 *	  This file contains only the public interface routines.
 *
 *
 * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * IDENTIFICATION
 *	  src/backend/access/nbtree/nbtree.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/nbtree.h"
#include "access/nbtxlog.h"
#include "access/relscan.h"
#include "access/xlog.h"
#include "access/xloginsert.h"
#include "commands/progress.h"
#include "commands/vacuum.h"
#include "miscadmin.h"
#include "nodes/execnodes.h"
#include "pgstat.h"
#include "postmaster/autovacuum.h"
#include "storage/condition_variable.h"
#include "storage/indexfsm.h"
#include "storage/ipc.h"
#include "storage/lmgr.h"
#include "storage/smgr.h"
#include "utils/builtins.h"
#include "utils/index_selfuncs.h"
#include "utils/memutils.h"


/*
 * BTPARALLEL_NOT_INITIALIZED indicates that the scan has not started.
 *
 * BTPARALLEL_ADVANCING indicates that some process is advancing the scan to
 * a new page; others must wait.
 *
 * BTPARALLEL_IDLE indicates that no backend is currently advancing the scan
 * to a new page; some process can start doing that.
 *
 * BTPARALLEL_DONE indicates that the scan is complete (including error exit).
 * We reach this state once for every distinct combination of array keys.
 */
typedef enum
{
	BTPARALLEL_NOT_INITIALIZED,
	BTPARALLEL_ADVANCING,
	BTPARALLEL_IDLE,
	BTPARALLEL_DONE
} BTPS_State;

/*
 * BTParallelScanDescData contains btree specific shared information required
 * for parallel scan.
 */
typedef struct BTParallelScanDescData
{
	BlockNumber btps_scanPage;	/* latest or next page to be scanned */
	BTPS_State	btps_pageStatus;	/* indicates whether next page is
									 * available for scan. see above for
									 * possible states of parallel scan. */
	int			btps_arrayKeyCount; /* count indicating number of array scan
									 * keys processed by parallel scan */
	slock_t		btps_mutex;		/* protects above variables */
	ConditionVariable btps_cv;	/* used to synchronize parallel scan */
}			BTParallelScanDescData;

typedef struct BTParallelScanDescData *BTParallelScanDesc;


static void btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
						 IndexBulkDeleteCallback callback, void *callback_state,
						 BTCycleId cycleid);
static void btvacuumpage(BTVacState *vstate, BlockNumber scanblkno);
static BTVacuumPosting btreevacuumposting(BTVacState *vstate,
										  IndexTuple posting,
										  OffsetNumber updatedoffset,
										  int *nremaining);


/*
 * Btree handler function: return IndexAmRoutine with access method parameters
 * and callbacks.
 */
Datum
bthandler(PG_FUNCTION_ARGS)
{
	IndexAmRoutine *amroutine = makeNode(IndexAmRoutine);

	amroutine->amstrategies = BTMaxStrategyNumber;
	amroutine->amsupport = BTNProcs;
	amroutine->amoptsprocnum = BTOPTIONS_PROC;
	amroutine->amcanorder = true;
	amroutine->amcanorderbyop = false;
	amroutine->amcanbackward = true;
	amroutine->amcanunique = true;
	amroutine->amcanmulticol = true;
	amroutine->amoptionalkey = true;
	amroutine->amsearcharray = true;
	amroutine->amsearchnulls = true;
	amroutine->amstorage = false;
	amroutine->amclusterable = true;
	amroutine->ampredlocks = true;
	amroutine->amcanparallel = true;
	amroutine->amcaninclude = true;
	amroutine->amusemaintenanceworkmem = false;
	amroutine->amsummarizing = false;
	amroutine->amparallelvacuumoptions =
		VACUUM_OPTION_PARALLEL_BULKDEL | VACUUM_OPTION_PARALLEL_COND_CLEANUP;
	amroutine->amkeytype = InvalidOid;

	amroutine->ambuild = btbuild;
	amroutine->ambuildempty = btbuildempty;
	amroutine->aminsert = btinsert;
	amroutine->ambulkdelete = btbulkdelete;
	amroutine->amvacuumcleanup = btvacuumcleanup;
	amroutine->amcanreturn = btcanreturn;
	amroutine->amcostestimate = btcostestimate;
	amroutine->amoptions = btoptions;
	amroutine->amproperty = btproperty;
	amroutine->ambuildphasename = btbuildphasename;
	amroutine->amvalidate = btvalidate;
	amroutine->amadjustmembers = btadjustmembers;
	amroutine->ambeginscan = btbeginscan;
	amroutine->amrescan = btrescan;
	amroutine->amgettuple = btgettuple;
	amroutine->amgetbitmap = btgetbitmap;
	amroutine->amendscan = btendscan;
	amroutine->ammarkpos = btmarkpos;
	amroutine->amrestrpos = btrestrpos;
	amroutine->amestimateparallelscan = btestimateparallelscan;
	amroutine->aminitparallelscan = btinitparallelscan;
	amroutine->amparallelrescan = btparallelrescan;

	PG_RETURN_POINTER(amroutine);
}

/*
 *	btbuildempty() -- build an empty btree index in the initialization fork
 */
void
btbuildempty(Relation index)
{
	bool		allequalimage = _bt_allequalimage(index, false);
	Buffer		metabuf;
	Page		metapage;

	/*
	 * Initalize the metapage.
	 *
	 * Regular index build bypasses the buffer manager and uses smgr functions
	 * directly, with an smgrimmedsync() call at the end.  That makes sense
	 * when the index is large, but for an empty index, it's better to use the
	 * buffer cache to avoid the smgrimmedsync().
	 */
	metabuf = ReadBufferExtended(index, INIT_FORKNUM, P_NEW, RBM_NORMAL, NULL);
	Assert(BufferGetBlockNumber(metabuf) == BTREE_METAPAGE);
	_bt_lockbuf(index, metabuf, BT_WRITE);

	START_CRIT_SECTION();

	metapage = BufferGetPage(metabuf);
	_bt_initmetapage(metapage, P_NONE, 0, allequalimage);
	MarkBufferDirty(metabuf);
	log_newpage_buffer(metabuf, true);

	END_CRIT_SECTION();

	_bt_unlockbuf(index, metabuf);
	ReleaseBuffer(metabuf);
}

/*
 *	btinsert() -- insert an index tuple into a btree.
 *
 *		Descend the tree recursively, find the appropriate location for our
 *		new tuple, and put it there.
 */
bool
btinsert(Relation rel, Datum *values, bool *isnull,
		 ItemPointer ht_ctid, Relation heapRel,
		 IndexUniqueCheck checkUnique,
		 bool indexUnchanged,
		 IndexInfo *indexInfo)
{
	bool		result;
	IndexTuple	itup;

	/* generate an index tuple */
	itup = index_form_tuple(RelationGetDescr(rel), values, isnull);
	itup->t_tid = *ht_ctid;

	result = _bt_doinsert(rel, itup, checkUnique, indexUnchanged, heapRel);

	pfree(itup);

	return result;
}

/*
 *	btgettuple() -- Get the next tuple in the scan.
 */
bool
btgettuple(IndexScanDesc scan, ScanDirection dir)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	bool		res;

	/* btree indexes are never lossy */
	scan->xs_recheck = false;

	/*
	 * If we have any array keys, initialize them during first call for a
	 * scan.  We can't do this in btrescan because we don't know the scan
	 * direction at that time.
	 */
	if (so->numArrayKeys && !BTScanPosIsValid(so->currPos))
	{
		/* punt if we have any unsatisfiable array keys */
		if (so->numArrayKeys < 0)
			return false;

		_bt_start_array_keys(scan, dir);
	}

	/* This loop handles advancing to the next array elements, if any */
	do
	{
		/*
		 * If we've already initialized this scan, we can just advance it in
		 * the appropriate direction.  If we haven't done so yet, we call
		 * _bt_first() to get the first item in the scan.
		 */
		if (!BTScanPosIsValid(so->currPos))
			res = _bt_first(scan, dir);
		else
		{
			/*
			 * Check to see if we should kill the previously-fetched tuple.
			 */
			if (scan->kill_prior_tuple)
			{
				/*
				 * Yes, remember it for later. (We'll deal with all such
				 * tuples at once right before leaving the index page.)  The
				 * test for numKilled overrun is not just paranoia: if the
				 * caller reverses direction in the indexscan then the same
				 * item might get entered multiple times. It's not worth
				 * trying to optimize that, so we don't detect it, but instead
				 * just forget any excess entries.
				 */
				if (so->killedItems == NULL)
					so->killedItems = (int *)
						palloc(MaxTIDsPerBTreePage * sizeof(int));
				if (so->numKilled < MaxTIDsPerBTreePage)
					so->killedItems[so->numKilled++] = so->currPos.itemIndex;
			}

			/*
			 * Now continue the scan.
			 */
			res = _bt_next(scan, dir);
		}

		/* If we have a tuple, return it ... */
		if (res)
			break;
		/* ... otherwise see if we have more array keys to deal with */
	} while (so->numArrayKeys && _bt_advance_array_keys(scan, dir));

	return res;
}

/*
 * btgetbitmap() -- gets all matching tuples, and adds them to a bitmap
 */
int64
btgetbitmap(IndexScanDesc scan, TIDBitmap *tbm)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	int64		ntids = 0;
	ItemPointer heapTid;

	/*
	 * If we have any array keys, initialize them.
	 */
	if (so->numArrayKeys)
	{
		/* punt if we have any unsatisfiable array keys */
		if (so->numArrayKeys < 0)
			return ntids;

		_bt_start_array_keys(scan, ForwardScanDirection);
	}

	/* This loop handles advancing to the next array elements, if any */
	do
	{
		/* Fetch the first page & tuple */
		if (_bt_first(scan, ForwardScanDirection))
		{
			/* Save tuple ID, and continue scanning */
			heapTid = &scan->xs_heaptid;
			tbm_add_tuples(tbm, heapTid, 1, false);
			ntids++;

			for (;;)
			{
				/*
				 * Advance to next tuple within page.  This is the same as the
				 * easy case in _bt_next().
				 */
				if (++so->currPos.itemIndex > so->currPos.lastItem)
				{
					/* let _bt_next do the heavy lifting */
					if (!_bt_next(scan, ForwardScanDirection))
						break;
				}

				/* Save tuple ID, and continue scanning */
				heapTid = &so->currPos.items[so->currPos.itemIndex].heapTid;
				tbm_add_tuples(tbm, heapTid, 1, false);
				ntids++;
			}
		}
		/* Now see if we have more array keys to deal with */
	} while (so->numArrayKeys && _bt_advance_array_keys(scan, ForwardScanDirection));

	return ntids;
}

/*
 *	btbeginscan() -- start a scan on a btree index
 */
IndexScanDesc
btbeginscan(Relation rel, int nkeys, int norderbys)
{
	IndexScanDesc scan;
	BTScanOpaque so;

	/* no order by operators allowed */
	Assert(norderbys == 0);

	/* get the scan */
	scan = RelationGetIndexScan(rel, nkeys, norderbys);

	/* allocate private workspace */
	so = (BTScanOpaque) palloc(sizeof(BTScanOpaqueData));
	BTScanPosInvalidate(so->currPos);
	BTScanPosInvalidate(so->markPos);
	if (scan->numberOfKeys > 0)
		so->keyData = (ScanKey) palloc(scan->numberOfKeys * sizeof(ScanKeyData));
	else
		so->keyData = NULL;

	so->arrayKeyData = NULL;	/* assume no array keys for now */
	so->arraysStarted = false;
	so->numArrayKeys = 0;
	so->arrayKeys = NULL;
	so->arrayContext = NULL;

	so->killedItems = NULL;		/* until needed */
	so->numKilled = 0;

	/*
	 * We don't know yet whether the scan will be index-only, so we do not
	 * allocate the tuple workspace arrays until btrescan.  However, we set up
	 * scan->xs_itupdesc whether we'll need it or not, since that's so cheap.
	 */
	so->currTuples = so->markTuples = NULL;

	scan->xs_itupdesc = RelationGetDescr(rel);

	scan->opaque = so;

	return scan;
}

/*
 *	btrescan() -- rescan an index relation
 */
void
btrescan(IndexScanDesc scan, ScanKey scankey, int nscankeys,
		 ScanKey orderbys, int norderbys)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;

	/* we aren't holding any read locks, but gotta drop the pins */
	if (BTScanPosIsValid(so->currPos))
	{
		/* Before leaving current page, deal with any killed items */
		if (so->numKilled > 0)
			_bt_killitems(scan);
		BTScanPosUnpinIfPinned(so->currPos);
		BTScanPosInvalidate(so->currPos);
	}

	so->markItemIndex = -1;
	so->arrayKeyCount = 0;
	BTScanPosUnpinIfPinned(so->markPos);
	BTScanPosInvalidate(so->markPos);

	/*
	 * Allocate tuple workspace arrays, if needed for an index-only scan and
	 * not already done in a previous rescan call.  To save on palloc
	 * overhead, both workspaces are allocated as one palloc block; only this
	 * function and btendscan know that.
	 *
	 * NOTE: this data structure also makes it safe to return data from a
	 * "name" column, even though btree name_ops uses an underlying storage
	 * datatype of cstring.  The risk there is that "name" is supposed to be
	 * padded to NAMEDATALEN, but the actual index tuple is probably shorter.
	 * However, since we only return data out of tuples sitting in the
	 * currTuples array, a fetch of NAMEDATALEN bytes can at worst pull some
	 * data out of the markTuples array --- running off the end of memory for
	 * a SIGSEGV is not possible.  Yeah, this is ugly as sin, but it beats
	 * adding special-case treatment for name_ops elsewhere.
	 */
	if (scan->xs_want_itup && so->currTuples == NULL)
	{
		so->currTuples = (char *) palloc(BLCKSZ * 2);
		so->markTuples = so->currTuples + BLCKSZ;
	}

	/*
	 * Reset the scan keys
	 */
	if (scankey && scan->numberOfKeys > 0)
		memmove(scan->keyData,
				scankey,
				scan->numberOfKeys * sizeof(ScanKeyData));
	so->numberOfKeys = 0;		/* until _bt_preprocess_keys sets it */

	/* If any keys are SK_SEARCHARRAY type, set up array-key info */
	_bt_preprocess_array_keys(scan);
}

/*
 *	btendscan() -- close down a scan
 */
void
btendscan(IndexScanDesc scan)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;

	/* we aren't holding any read locks, but gotta drop the pins */
	if (BTScanPosIsValid(so->currPos))
	{
		/* Before leaving current page, deal with any killed items */
		if (so->numKilled > 0)
			_bt_killitems(scan);
		BTScanPosUnpinIfPinned(so->currPos);
	}

	so->markItemIndex = -1;
	BTScanPosUnpinIfPinned(so->markPos);

	/* No need to invalidate positions, the RAM is about to be freed. */

	/* Release storage */
	if (so->keyData != NULL)
		pfree(so->keyData);
	/* so->arrayKeyData and so->arrayKeys are in arrayContext */
	if (so->arrayContext != NULL)
		MemoryContextDelete(so->arrayContext);
	if (so->killedItems != NULL)
		pfree(so->killedItems);
	if (so->currTuples != NULL)
		pfree(so->currTuples);
	/* so->markTuples should not be pfree'd, see btrescan */
	pfree(so);
}

/*
 *	btmarkpos() -- save current scan position
 */
void
btmarkpos(IndexScanDesc scan)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;

	/* There may be an old mark with a pin (but no lock). */
	BTScanPosUnpinIfPinned(so->markPos);

	/*
	 * Just record the current itemIndex.  If we later step to next page
	 * before releasing the marked position, _bt_steppage makes a full copy of
	 * the currPos struct in markPos.  If (as often happens) the mark is moved
	 * before we leave the page, we don't have to do that work.
	 */
	if (BTScanPosIsValid(so->currPos))
		so->markItemIndex = so->currPos.itemIndex;
	else
	{
		BTScanPosInvalidate(so->markPos);
		so->markItemIndex = -1;
	}

	/* Also record the current positions of any array keys */
	if (so->numArrayKeys)
		_bt_mark_array_keys(scan);
}

/*
 *	btrestrpos() -- restore scan to last saved position
 */
void
btrestrpos(IndexScanDesc scan)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;

	/* Restore the marked positions of any array keys */
	if (so->numArrayKeys)
		_bt_restore_array_keys(scan);

	if (so->markItemIndex >= 0)
	{
		/*
		 * The scan has never moved to a new page since the last mark.  Just
		 * restore the itemIndex.
		 *
		 * NB: In this case we can't count on anything in so->markPos to be
		 * accurate.
		 */
		so->currPos.itemIndex = so->markItemIndex;
	}
	else
	{
		/*
		 * The scan moved to a new page after last mark or restore, and we are
		 * now restoring to the marked page.  We aren't holding any read
		 * locks, but if we're still holding the pin for the current position,
		 * we must drop it.
		 */
		if (BTScanPosIsValid(so->currPos))
		{
			/* Before leaving current page, deal with any killed items */
			if (so->numKilled > 0)
				_bt_killitems(scan);
			BTScanPosUnpinIfPinned(so->currPos);
		}

		if (BTScanPosIsValid(so->markPos))
		{
			/* bump pin on mark buffer for assignment to current buffer */
			if (BTScanPosIsPinned(so->markPos))
				IncrBufferRefCount(so->markPos.buf);
			memcpy(&so->currPos, &so->markPos,
				   offsetof(BTScanPosData, items[1]) +
				   so->markPos.lastItem * sizeof(BTScanPosItem));
			if (so->currTuples)
				memcpy(so->currTuples, so->markTuples,
					   so->markPos.nextTupleOffset);
		}
		else
			BTScanPosInvalidate(so->currPos);
	}
}

/*
 * btestimateparallelscan -- estimate storage for BTParallelScanDescData
 */
Size
btestimateparallelscan(void)
{
	return sizeof(BTParallelScanDescData);
}

/*
 * btinitparallelscan -- initialize BTParallelScanDesc for parallel btree scan
 */
void
btinitparallelscan(void *target)
{
	BTParallelScanDesc bt_target = (BTParallelScanDesc) target;

	SpinLockInit(&bt_target->btps_mutex);
	bt_target->btps_scanPage = InvalidBlockNumber;
	bt_target->btps_pageStatus = BTPARALLEL_NOT_INITIALIZED;
	bt_target->btps_arrayKeyCount = 0;
	ConditionVariableInit(&bt_target->btps_cv);
}

/*
 *	btparallelrescan() -- reset parallel scan
 */
void
btparallelrescan(IndexScanDesc scan)
{
	BTParallelScanDesc btscan;
	ParallelIndexScanDesc parallel_scan = scan->parallel_scan;

	Assert(parallel_scan);

	btscan = (BTParallelScanDesc) OffsetToPointer((void *) parallel_scan,
												  parallel_scan->ps_offset);

	/*
	 * In theory, we don't need to acquire the spinlock here, because there
	 * shouldn't be any other workers running at this point, but we do so for
	 * consistency.
	 */
	SpinLockAcquire(&btscan->btps_mutex);
	btscan->btps_scanPage = InvalidBlockNumber;
	btscan->btps_pageStatus = BTPARALLEL_NOT_INITIALIZED;
	btscan->btps_arrayKeyCount = 0;
	SpinLockRelease(&btscan->btps_mutex);
}

/*
 * _bt_parallel_seize() -- Begin the process of advancing the scan to a new
 *		page.  Other scans must wait until we call _bt_parallel_release()
 *		or _bt_parallel_done().
 *
 * The return value is true if we successfully seized the scan and false
 * if we did not.  The latter case occurs if no pages remain for the current
 * set of scankeys.
 *
 * If the return value is true, *pageno returns the next or current page
 * of the scan (depending on the scan direction).  An invalid block number
 * means the scan hasn't yet started, and P_NONE means we've reached the end.
 * The first time a participating process reaches the last page, it will return
 * true and set *pageno to P_NONE; after that, further attempts to seize the
 * scan will return false.
 *
 * Callers should ignore the value of pageno if the return value is false.
 */
bool
_bt_parallel_seize(IndexScanDesc scan, BlockNumber *pageno)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	BTPS_State	pageStatus;
	bool		exit_loop = false;
	bool		status = true;
	ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
	BTParallelScanDesc btscan;

	*pageno = P_NONE;

	btscan = (BTParallelScanDesc) OffsetToPointer((void *) parallel_scan,
												  parallel_scan->ps_offset);

	while (1)
	{
		SpinLockAcquire(&btscan->btps_mutex);
		pageStatus = btscan->btps_pageStatus;

		if (so->arrayKeyCount < btscan->btps_arrayKeyCount)
		{
			/* Parallel scan has already advanced to a new set of scankeys. */
			status = false;
		}
		else if (pageStatus == BTPARALLEL_DONE)
		{
			/*
			 * We're done with this set of scankeys.  This may be the end, or
			 * there could be more sets to try.
			 */
			status = false;
		}
		else if (pageStatus != BTPARALLEL_ADVANCING)
		{
			/*
			 * We have successfully seized control of the scan for the purpose
			 * of advancing it to a new page!
			 */
			btscan->btps_pageStatus = BTPARALLEL_ADVANCING;
			*pageno = btscan->btps_scanPage;
			exit_loop = true;
		}
		SpinLockRelease(&btscan->btps_mutex);
		if (exit_loop || !status)
			break;
		ConditionVariableSleep(&btscan->btps_cv, WAIT_EVENT_BTREE_PAGE);
	}
	ConditionVariableCancelSleep();

	return status;
}

/*
 * _bt_parallel_release() -- Complete the process of advancing the scan to a
 *		new page.  We now have the new value btps_scanPage; some other backend
 *		can now begin advancing the scan.
 */
void
_bt_parallel_release(IndexScanDesc scan, BlockNumber scan_page)
{
	ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
	BTParallelScanDesc btscan;

	btscan = (BTParallelScanDesc) OffsetToPointer((void *) parallel_scan,
												  parallel_scan->ps_offset);

	SpinLockAcquire(&btscan->btps_mutex);
	btscan->btps_scanPage = scan_page;
	btscan->btps_pageStatus = BTPARALLEL_IDLE;
	SpinLockRelease(&btscan->btps_mutex);
	ConditionVariableSignal(&btscan->btps_cv);
}

/*
 * _bt_parallel_done() -- Mark the parallel scan as complete.
 *
 * When there are no pages left to scan, this function should be called to
 * notify other workers.  Otherwise, they might wait forever for the scan to
 * advance to the next page.
 */
void
_bt_parallel_done(IndexScanDesc scan)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
	BTParallelScanDesc btscan;
	bool		status_changed = false;

	/* Do nothing, for non-parallel scans */
	if (parallel_scan == NULL)
		return;

	btscan = (BTParallelScanDesc) OffsetToPointer((void *) parallel_scan,
												  parallel_scan->ps_offset);

	/*
	 * Mark the parallel scan as done for this combination of scan keys,
	 * unless some other process already did so.  See also
	 * _bt_advance_array_keys.
	 */
	SpinLockAcquire(&btscan->btps_mutex);
	if (so->arrayKeyCount >= btscan->btps_arrayKeyCount &&
		btscan->btps_pageStatus != BTPARALLEL_DONE)
	{
		btscan->btps_pageStatus = BTPARALLEL_DONE;
		status_changed = true;
	}
	SpinLockRelease(&btscan->btps_mutex);

	/* wake up all the workers associated with this parallel scan */
	if (status_changed)
		ConditionVariableBroadcast(&btscan->btps_cv);
}

/*
 * _bt_parallel_advance_array_keys() -- Advances the parallel scan for array
 *			keys.
 *
 * Updates the count of array keys processed for both local and parallel
 * scans.
 */
void
_bt_parallel_advance_array_keys(IndexScanDesc scan)
{
	BTScanOpaque so = (BTScanOpaque) scan->opaque;
	ParallelIndexScanDesc parallel_scan = scan->parallel_scan;
	BTParallelScanDesc btscan;

	btscan = (BTParallelScanDesc) OffsetToPointer((void *) parallel_scan,
												  parallel_scan->ps_offset);

	so->arrayKeyCount++;
	SpinLockAcquire(&btscan->btps_mutex);
	if (btscan->btps_pageStatus == BTPARALLEL_DONE)
	{
		btscan->btps_scanPage = InvalidBlockNumber;
		btscan->btps_pageStatus = BTPARALLEL_NOT_INITIALIZED;
		btscan->btps_arrayKeyCount++;
	}
	SpinLockRelease(&btscan->btps_mutex);
}

/*
 * Bulk deletion of all index entries pointing to a set of heap tuples.
 * The set of target tuples is specified via a callback routine that tells
 * whether any given heap tuple (identified by ItemPointer) is being deleted.
 *
 * Result: a palloc'd struct containing statistical info for VACUUM displays.
 */
IndexBulkDeleteResult *
btbulkdelete(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
			 IndexBulkDeleteCallback callback, void *callback_state)
{
	Relation	rel = info->index;
	BTCycleId	cycleid;

	/* allocate stats if first time through, else re-use existing struct */
	if (stats == NULL)
		stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));

	/* Establish the vacuum cycle ID to use for this scan */
	/* The ENSURE stuff ensures we clean up shared memory on failure */
	PG_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel));
	{
		cycleid = _bt_start_vacuum(rel);

		btvacuumscan(info, stats, callback, callback_state, cycleid);
	}
	PG_END_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel));
	_bt_end_vacuum(rel);

	return stats;
}

/*
 * Post-VACUUM cleanup.
 *
 * Result: a palloc'd struct containing statistical info for VACUUM displays.
 */
IndexBulkDeleteResult *
btvacuumcleanup(IndexVacuumInfo *info, IndexBulkDeleteResult *stats)
{
	BlockNumber num_delpages;

	/* No-op in ANALYZE ONLY mode */
	if (info->analyze_only)
		return stats;

	/*
	 * If btbulkdelete was called, we need not do anything (we just maintain
	 * the information used within _bt_vacuum_needs_cleanup() by calling
	 * _bt_set_cleanup_info() below).
	 *
	 * If btbulkdelete was _not_ called, then we have a choice to make: we
	 * must decide whether or not a btvacuumscan() call is needed now (i.e.
	 * whether the ongoing VACUUM operation can entirely avoid a physical scan
	 * of the index).  A call to _bt_vacuum_needs_cleanup() decides it for us
	 * now.
	 */
	if (stats == NULL)
	{
		/* Check if VACUUM operation can entirely avoid btvacuumscan() call */
		if (!_bt_vacuum_needs_cleanup(info->index))
			return NULL;

		/*
		 * Since we aren't going to actually delete any leaf items, there's no
		 * need to go through all the vacuum-cycle-ID pushups here.
		 *
		 * Posting list tuples are a source of inaccuracy for cleanup-only
		 * scans.  btvacuumscan() will assume that the number of index tuples
		 * from each page can be used as num_index_tuples, even though
		 * num_index_tuples is supposed to represent the number of TIDs in the
		 * index.  This naive approach can underestimate the number of tuples
		 * in the index significantly.
		 *
		 * We handle the problem by making num_index_tuples an estimate in
		 * cleanup-only case.
		 */
		stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
		btvacuumscan(info, stats, NULL, NULL, 0);
		stats->estimated_count = true;
	}

	/*
	 * Maintain num_delpages value in metapage for _bt_vacuum_needs_cleanup().
	 *
	 * num_delpages is the number of deleted pages now in the index that were
	 * not safe to place in the FSM to be recycled just yet.  num_delpages is
	 * greater than 0 only when _bt_pagedel() actually deleted pages during
	 * our call to btvacuumscan().  Even then, _bt_pendingfsm_finalize() must
	 * have failed to place any newly deleted pages in the FSM just moments
	 * ago.  (Actually, there are edge cases where recycling of the current
	 * VACUUM's newly deleted pages does not even become safe by the time the
	 * next VACUUM comes around.  See nbtree/README.)
	 */
	Assert(stats->pages_deleted >= stats->pages_free);
	num_delpages = stats->pages_deleted - stats->pages_free;
	_bt_set_cleanup_info(info->index, num_delpages);

	/*
	 * It's quite possible for us to be fooled by concurrent page splits into
	 * double-counting some index tuples, so disbelieve any total that exceeds
	 * the underlying heap's count ... if we know that accurately.  Otherwise
	 * this might just make matters worse.
	 */
	if (!info->estimated_count)
	{
		if (stats->num_index_tuples > info->num_heap_tuples)
			stats->num_index_tuples = info->num_heap_tuples;
	}

	return stats;
}

/*
 * btvacuumscan --- scan the index for VACUUMing purposes
 *
 * This combines the functions of looking for leaf tuples that are deletable
 * according to the vacuum callback, looking for empty pages that can be
 * deleted, and looking for old deleted pages that can be recycled.  Both
 * btbulkdelete and btvacuumcleanup invoke this (the latter only if no
 * btbulkdelete call occurred and _bt_vacuum_needs_cleanup returned true).
 *
 * The caller is responsible for initially allocating/zeroing a stats struct
 * and for obtaining a vacuum cycle ID if necessary.
 */
static void
btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
			 IndexBulkDeleteCallback callback, void *callback_state,
			 BTCycleId cycleid)
{
	Relation	rel = info->index;
	BTVacState	vstate;
	BlockNumber num_pages;
	BlockNumber scanblkno;
	bool		needLock;

	/*
	 * Reset fields that track information about the entire index now.  This
	 * avoids double-counting in the case where a single VACUUM command
	 * requires multiple scans of the index.
	 *
	 * Avoid resetting the tuples_removed and pages_newly_deleted fields here,
	 * since they track information about the VACUUM command, and so must last
	 * across each call to btvacuumscan().
	 *
	 * (Note that pages_free is treated as state about the whole index, not
	 * the current VACUUM.  This is appropriate because RecordFreeIndexPage()
	 * calls are idempotent, and get repeated for the same deleted pages in
	 * some scenarios.  The point for us is to track the number of recyclable
	 * pages in the index at the end of the VACUUM command.)
	 */
	stats->num_pages = 0;
	stats->num_index_tuples = 0;
	stats->pages_deleted = 0;
	stats->pages_free = 0;

	/* Set up info to pass down to btvacuumpage */
	vstate.info = info;
	vstate.stats = stats;
	vstate.callback = callback;
	vstate.callback_state = callback_state;
	vstate.cycleid = cycleid;

	/* Create a temporary memory context to run _bt_pagedel in */
	vstate.pagedelcontext = AllocSetContextCreate(CurrentMemoryContext,
												  "_bt_pagedel",
												  ALLOCSET_DEFAULT_SIZES);

	/* Initialize vstate fields used by _bt_pendingfsm_finalize */
	vstate.bufsize = 0;
	vstate.maxbufsize = 0;
	vstate.pendingpages = NULL;
	vstate.npendingpages = 0;
	/* Consider applying _bt_pendingfsm_finalize optimization */
	_bt_pendingfsm_init(rel, &vstate, (callback == NULL));

	/*
	 * The outer loop iterates over all index pages except the metapage, in
	 * physical order (we hope the kernel will cooperate in providing
	 * read-ahead for speed).  It is critical that we visit all leaf pages,
	 * including ones added after we start the scan, else we might fail to
	 * delete some deletable tuples.  Hence, we must repeatedly check the
	 * relation length.  We must acquire the relation-extension lock while
	 * doing so to avoid a race condition: if someone else is extending the
	 * relation, there is a window where bufmgr/smgr have created a new
	 * all-zero page but it hasn't yet been write-locked by _bt_getbuf(). If
	 * we manage to scan such a page here, we'll improperly assume it can be
	 * recycled.  Taking the lock synchronizes things enough to prevent a
	 * problem: either num_pages won't include the new page, or _bt_getbuf
	 * already has write lock on the buffer and it will be fully initialized
	 * before we can examine it.  Also, we need not worry if a page is added
	 * immediately after we look; the page splitting code already has
	 * write-lock on the left page before it adds a right page, so we must
	 * already have processed any tuples due to be moved into such a page.
	 *
	 * XXX: Now that new pages are locked with RBM_ZERO_AND_LOCK, I don't
	 * think the use of the extension lock is still required.
	 *
	 * We can skip locking for new or temp relations, however, since no one
	 * else could be accessing them.
	 */
	needLock = !RELATION_IS_LOCAL(rel);

	scanblkno = BTREE_METAPAGE + 1;
	for (;;)
	{
		/* Get the current relation length */
		if (needLock)
			LockRelationForExtension(rel, ExclusiveLock);
		num_pages = RelationGetNumberOfBlocks(rel);
		if (needLock)
			UnlockRelationForExtension(rel, ExclusiveLock);

		if (info->report_progress)
			pgstat_progress_update_param(PROGRESS_SCAN_BLOCKS_TOTAL,
										 num_pages);

		/* Quit if we've scanned the whole relation */
		if (scanblkno >= num_pages)
			break;
		/* Iterate over pages, then loop back to recheck length */
		for (; scanblkno < num_pages; scanblkno++)
		{
			btvacuumpage(&vstate, scanblkno);
			if (info->report_progress)
				pgstat_progress_update_param(PROGRESS_SCAN_BLOCKS_DONE,
											 scanblkno);
		}
	}

	/* Set statistics num_pages field to final size of index */
	stats->num_pages = num_pages;

	MemoryContextDelete(vstate.pagedelcontext);

	/*
	 * If there were any calls to _bt_pagedel() during scan of the index then
	 * see if any of the resulting pages can be placed in the FSM now.  When
	 * it's not safe we'll have to leave it up to a future VACUUM operation.
	 *
	 * Finally, if we placed any pages in the FSM (either just now or during
	 * the scan), forcibly update the upper-level FSM pages to ensure that
	 * searchers can find them.
	 */
	_bt_pendingfsm_finalize(rel, &vstate);
	if (stats->pages_free > 0)
		IndexFreeSpaceMapVacuum(rel);
}

/*
 * btvacuumpage --- VACUUM one page
 *
 * This processes a single page for btvacuumscan().  In some cases we must
 * backtrack to re-examine and VACUUM pages that were the scanblkno during
 * a previous call here.  This is how we handle page splits (that happened
 * after our cycleid was acquired) whose right half page happened to reuse
 * a block that we might have processed at some point before it was
 * recycled (i.e. before the page split).
 */
static void
btvacuumpage(BTVacState *vstate, BlockNumber scanblkno)
{
	IndexVacuumInfo *info = vstate->info;
	IndexBulkDeleteResult *stats = vstate->stats;
	IndexBulkDeleteCallback callback = vstate->callback;
	void	   *callback_state = vstate->callback_state;
	Relation	rel = info->index;
	Relation	heaprel = info->heaprel;
	bool		attempt_pagedel;
	BlockNumber blkno,
				backtrack_to;
	Buffer		buf;
	Page		page;
	BTPageOpaque opaque;

	blkno = scanblkno;

backtrack:

	attempt_pagedel = false;
	backtrack_to = P_NONE;

	/* call vacuum_delay_point while not holding any buffer lock */
	vacuum_delay_point();

	/*
	 * We can't use _bt_getbuf() here because it always applies
	 * _bt_checkpage(), which will barf on an all-zero page. We want to
	 * recycle all-zero pages, not fail.  Also, we want to use a nondefault
	 * buffer access strategy.
	 */
	buf = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL,
							 info->strategy);
	_bt_lockbuf(rel, buf, BT_READ);
	page = BufferGetPage(buf);
	opaque = NULL;
	if (!PageIsNew(page))
	{
		_bt_checkpage(rel, buf);
		opaque = BTPageGetOpaque(page);
	}

	Assert(blkno <= scanblkno);
	if (blkno != scanblkno)
	{
		/*
		 * We're backtracking.
		 *
		 * We followed a right link to a sibling leaf page (a page that
		 * happens to be from a block located before scanblkno).  The only
		 * case we want to do anything with is a live leaf page having the
		 * current vacuum cycle ID.
		 *
		 * The page had better be in a state that's consistent with what we
		 * expect.  Check for conditions that imply corruption in passing.  It
		 * can't be half-dead because only an interrupted VACUUM process can
		 * leave pages in that state, so we'd definitely have dealt with it
		 * back when the page was the scanblkno page (half-dead pages are
		 * always marked fully deleted by _bt_pagedel(), barring corruption).
		 */
		if (!opaque || !P_ISLEAF(opaque) || P_ISHALFDEAD(opaque))
		{
			Assert(false);
			ereport(LOG,
					(errcode(ERRCODE_INDEX_CORRUPTED),
					 errmsg_internal("right sibling %u of scanblkno %u unexpectedly in an inconsistent state in index \"%s\"",
									 blkno, scanblkno, RelationGetRelationName(rel))));
			_bt_relbuf(rel, buf);
			return;
		}

		/*
		 * We may have already processed the page in an earlier call, when the
		 * page was scanblkno.  This happens when the leaf page split occurred
		 * after the scan began, but before the right sibling page became the
		 * scanblkno.
		 *
		 * Page may also have been deleted by current btvacuumpage() call,
		 * since _bt_pagedel() sometimes deletes the right sibling page of
		 * scanblkno in passing (it does so after we decided where to
		 * backtrack to).  We don't need to process this page as a deleted
		 * page a second time now (in fact, it would be wrong to count it as a
		 * deleted page in the bulk delete statistics a second time).
		 */
		if (opaque->btpo_cycleid != vstate->cycleid || P_ISDELETED(opaque))
		{
			/* Done with current scanblkno (and all lower split pages) */
			_bt_relbuf(rel, buf);
			return;
		}
	}

	if (!opaque || BTPageIsRecyclable(page, heaprel))
	{
		/* Okay to recycle this page (which could be leaf or internal) */
		RecordFreeIndexPage(rel, blkno);
		stats->pages_deleted++;
		stats->pages_free++;
	}
	else if (P_ISDELETED(opaque))
	{
		/*
		 * Already deleted page (which could be leaf or internal).  Can't
		 * recycle yet.
		 */
		stats->pages_deleted++;
	}
	else if (P_ISHALFDEAD(opaque))
	{
		/* Half-dead leaf page (from interrupted VACUUM) -- finish deleting */
		attempt_pagedel = true;

		/*
		 * _bt_pagedel() will increment both pages_newly_deleted and
		 * pages_deleted stats in all cases (barring corruption)
		 */
	}
	else if (P_ISLEAF(opaque))
	{
		OffsetNumber deletable[MaxIndexTuplesPerPage];
		int			ndeletable;
		BTVacuumPosting updatable[MaxIndexTuplesPerPage];
		int			nupdatable;
		OffsetNumber offnum,
					minoff,
					maxoff;
		int			nhtidsdead,
					nhtidslive;

		/*
		 * Trade in the initial read lock for a full cleanup lock on this
		 * page.  We must get such a lock on every leaf page over the course
		 * of the vacuum scan, whether or not it actually contains any
		 * deletable tuples --- see nbtree/README.
		 */
		_bt_upgradelockbufcleanup(rel, buf);

		/*
		 * Check whether we need to backtrack to earlier pages.  What we are
		 * concerned about is a page split that happened since we started the
		 * vacuum scan.  If the split moved tuples on the right half of the
		 * split (i.e. the tuples that sort high) to a block that we already
		 * passed over, then we might have missed the tuples.  We need to
		 * backtrack now.  (Must do this before possibly clearing btpo_cycleid
		 * or deleting scanblkno page below!)
		 */
		if (vstate->cycleid != 0 &&
			opaque->btpo_cycleid == vstate->cycleid &&
			!(opaque->btpo_flags & BTP_SPLIT_END) &&
			!P_RIGHTMOST(opaque) &&
			opaque->btpo_next < scanblkno)
			backtrack_to = opaque->btpo_next;

		ndeletable = 0;
		nupdatable = 0;
		minoff = P_FIRSTDATAKEY(opaque);
		maxoff = PageGetMaxOffsetNumber(page);
		nhtidsdead = 0;
		nhtidslive = 0;
		if (callback)
		{
			/* btbulkdelete callback tells us what to delete (or update) */
			for (offnum = minoff;
				 offnum <= maxoff;
				 offnum = OffsetNumberNext(offnum))
			{
				IndexTuple	itup;

				itup = (IndexTuple) PageGetItem(page,
												PageGetItemId(page, offnum));

				Assert(!BTreeTupleIsPivot(itup));
				if (!BTreeTupleIsPosting(itup))
				{
					/* Regular tuple, standard table TID representation */
					if (callback(&itup->t_tid, callback_state))
					{
						deletable[ndeletable++] = offnum;
						nhtidsdead++;
					}
					else
						nhtidslive++;
				}
				else
				{
					BTVacuumPosting vacposting;
					int			nremaining;

					/* Posting list tuple */
					vacposting = btreevacuumposting(vstate, itup, offnum,
													&nremaining);
					if (vacposting == NULL)
					{
						/*
						 * All table TIDs from the posting tuple remain, so no
						 * delete or update required
						 */
						Assert(nremaining == BTreeTupleGetNPosting(itup));
					}
					else if (nremaining > 0)
					{

						/*
						 * Store metadata about posting list tuple in
						 * updatable array for entire page.  Existing tuple
						 * will be updated during the later call to
						 * _bt_delitems_vacuum().
						 */
						Assert(nremaining < BTreeTupleGetNPosting(itup));
						updatable[nupdatable++] = vacposting;
						nhtidsdead += BTreeTupleGetNPosting(itup) - nremaining;
					}
					else
					{
						/*
						 * All table TIDs from the posting list must be
						 * deleted.  We'll delete the index tuple completely
						 * (no update required).
						 */
						Assert(nremaining == 0);
						deletable[ndeletable++] = offnum;
						nhtidsdead += BTreeTupleGetNPosting(itup);
						pfree(vacposting);
					}

					nhtidslive += nremaining;
				}
			}
		}

		/*
		 * Apply any needed deletes or updates.  We issue just one
		 * _bt_delitems_vacuum() call per page, so as to minimize WAL traffic.
		 */
		if (ndeletable > 0 || nupdatable > 0)
		{
			Assert(nhtidsdead >= ndeletable + nupdatable);
			_bt_delitems_vacuum(rel, buf, deletable, ndeletable, updatable,
								nupdatable);

			stats->tuples_removed += nhtidsdead;
			/* must recompute maxoff */
			maxoff = PageGetMaxOffsetNumber(page);

			/* can't leak memory here */
			for (int i = 0; i < nupdatable; i++)
				pfree(updatable[i]);
		}
		else
		{
			/*
			 * If the leaf page has been split during this vacuum cycle, it
			 * seems worth expending a write to clear btpo_cycleid even if we
			 * don't have any deletions to do.  (If we do, _bt_delitems_vacuum
			 * takes care of this.)  This ensures we won't process the page
			 * again.
			 *
			 * We treat this like a hint-bit update because there's no need to
			 * WAL-log it.
			 */
			Assert(nhtidsdead == 0);
			if (vstate->cycleid != 0 &&
				opaque->btpo_cycleid == vstate->cycleid)
			{
				opaque->btpo_cycleid = 0;
				MarkBufferDirtyHint(buf, true);
			}
		}

		/*
		 * If the leaf page is now empty, try to delete it; else count the
		 * live tuples (live table TIDs in posting lists are counted as
		 * separate live tuples).  We don't delete when backtracking, though,
		 * since that would require teaching _bt_pagedel() about backtracking
		 * (doesn't seem worth adding more complexity to deal with that).
		 *
		 * We don't count the number of live TIDs during cleanup-only calls to
		 * btvacuumscan (i.e. when callback is not set).  We count the number
		 * of index tuples directly instead.  This avoids the expense of
		 * directly examining all of the tuples on each page.  VACUUM will
		 * treat num_index_tuples as an estimate in cleanup-only case, so it
		 * doesn't matter that this underestimates num_index_tuples
		 * significantly in some cases.
		 */
		if (minoff > maxoff)
			attempt_pagedel = (blkno == scanblkno);
		else if (callback)
			stats->num_index_tuples += nhtidslive;
		else
			stats->num_index_tuples += maxoff - minoff + 1;

		Assert(!attempt_pagedel || nhtidslive == 0);
	}

	if (attempt_pagedel)
	{
		MemoryContext oldcontext;

		/* Run pagedel in a temp context to avoid memory leakage */
		MemoryContextReset(vstate->pagedelcontext);
		oldcontext = MemoryContextSwitchTo(vstate->pagedelcontext);

		/*
		 * _bt_pagedel maintains the bulk delete stats on our behalf;
		 * pages_newly_deleted and pages_deleted are likely to be incremented
		 * during call
		 */
		Assert(blkno == scanblkno);
		_bt_pagedel(rel, buf, vstate);

		MemoryContextSwitchTo(oldcontext);
		/* pagedel released buffer, so we shouldn't */
	}
	else
		_bt_relbuf(rel, buf);

	if (backtrack_to != P_NONE)
	{
		blkno = backtrack_to;
		goto backtrack;
	}
}

/*
 * btreevacuumposting --- determine TIDs still needed in posting list
 *
 * Returns metadata describing how to build replacement tuple without the TIDs
 * that VACUUM needs to delete.  Returned value is NULL in the common case
 * where no changes are needed to caller's posting list tuple (we avoid
 * allocating memory here as an optimization).
 *
 * The number of TIDs that should remain in the posting list tuple is set for
 * caller in *nremaining.
 */
static BTVacuumPosting
btreevacuumposting(BTVacState *vstate, IndexTuple posting,
				   OffsetNumber updatedoffset, int *nremaining)
{
	int			live = 0;
	int			nitem = BTreeTupleGetNPosting(posting);
	ItemPointer items = BTreeTupleGetPosting(posting);
	BTVacuumPosting vacposting = NULL;

	for (int i = 0; i < nitem; i++)
	{
		if (!vstate->callback(items + i, vstate->callback_state))
		{
			/* Live table TID */
			live++;
		}
		else if (vacposting == NULL)
		{
			/*
			 * First dead table TID encountered.
			 *
			 * It's now clear that we need to delete one or more dead table
			 * TIDs, so start maintaining metadata describing how to update
			 * existing posting list tuple.
			 */
			vacposting = palloc(offsetof(BTVacuumPostingData, deletetids) +
								nitem * sizeof(uint16));

			vacposting->itup = posting;
			vacposting->updatedoffset = updatedoffset;
			vacposting->ndeletedtids = 0;
			vacposting->deletetids[vacposting->ndeletedtids++] = i;
		}
		else
		{
			/* Second or subsequent dead table TID */
			vacposting->deletetids[vacposting->ndeletedtids++] = i;
		}
	}

	*nremaining = live;
	return vacposting;
}

/*
 *	btcanreturn() -- Check whether btree indexes support index-only scans.
 *
 * btrees always do, so this is trivial.
 */
bool
btcanreturn(Relation index, int attno)
{
	return true;
}