1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
|
/*-------------------------------------------------------------------------
*
* execPartition.c
* Support routines for partitioning.
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/executor/execPartition.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/table.h"
#include "access/tableam.h"
#include "catalog/partition.h"
#include "catalog/pg_inherits.h"
#include "catalog/pg_type.h"
#include "executor/execPartition.h"
#include "executor/executor.h"
#include "executor/nodeModifyTable.h"
#include "foreign/fdwapi.h"
#include "mb/pg_wchar.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "partitioning/partbounds.h"
#include "partitioning/partdesc.h"
#include "partitioning/partprune.h"
#include "rewrite/rewriteManip.h"
#include "utils/acl.h"
#include "utils/lsyscache.h"
#include "utils/partcache.h"
#include "utils/rls.h"
#include "utils/ruleutils.h"
/*-----------------------
* PartitionTupleRouting - Encapsulates all information required to
* route a tuple inserted into a partitioned table to one of its leaf
* partitions.
*
* partition_root
* The partitioned table that's the target of the command.
*
* partition_dispatch_info
* Array of 'max_dispatch' elements containing a pointer to a
* PartitionDispatch object for every partitioned table touched by tuple
* routing. The entry for the target partitioned table is *always*
* present in the 0th element of this array. See comment for
* PartitionDispatchData->indexes for details on how this array is
* indexed.
*
* nonleaf_partitions
* Array of 'max_dispatch' elements containing pointers to fake
* ResultRelInfo objects for nonleaf partitions, useful for checking
* the partition constraint.
*
* num_dispatch
* The current number of items stored in the 'partition_dispatch_info'
* array. Also serves as the index of the next free array element for
* new PartitionDispatch objects that need to be stored.
*
* max_dispatch
* The current allocated size of the 'partition_dispatch_info' array.
*
* partitions
* Array of 'max_partitions' elements containing a pointer to a
* ResultRelInfo for every leaf partition touched by tuple routing.
* Some of these are pointers to ResultRelInfos which are borrowed out of
* the owning ModifyTableState node. The remainder have been built
* especially for tuple routing. See comment for
* PartitionDispatchData->indexes for details on how this array is
* indexed.
*
* is_borrowed_rel
* Array of 'max_partitions' booleans recording whether a given entry
* in 'partitions' is a ResultRelInfo pointer borrowed from the owning
* ModifyTableState node, rather than being built here.
*
* num_partitions
* The current number of items stored in the 'partitions' array. Also
* serves as the index of the next free array element for new
* ResultRelInfo objects that need to be stored.
*
* max_partitions
* The current allocated size of the 'partitions' array.
*
* memcxt
* Memory context used to allocate subsidiary structs.
*-----------------------
*/
struct PartitionTupleRouting
{
Relation partition_root;
PartitionDispatch *partition_dispatch_info;
ResultRelInfo **nonleaf_partitions;
int num_dispatch;
int max_dispatch;
ResultRelInfo **partitions;
bool *is_borrowed_rel;
int num_partitions;
int max_partitions;
MemoryContext memcxt;
};
/*-----------------------
* PartitionDispatch - information about one partitioned table in a partition
* hierarchy required to route a tuple to any of its partitions. A
* PartitionDispatch is always encapsulated inside a PartitionTupleRouting
* struct and stored inside its 'partition_dispatch_info' array.
*
* reldesc
* Relation descriptor of the table
*
* key
* Partition key information of the table
*
* keystate
* Execution state required for expressions in the partition key
*
* partdesc
* Partition descriptor of the table
*
* tupslot
* A standalone TupleTableSlot initialized with this table's tuple
* descriptor, or NULL if no tuple conversion between the parent is
* required.
*
* tupmap
* TupleConversionMap to convert from the parent's rowtype to this table's
* rowtype (when extracting the partition key of a tuple just before
* routing it through this table). A NULL value is stored if no tuple
* conversion is required.
*
* indexes
* Array of partdesc->nparts elements. For leaf partitions the index
* corresponds to the partition's ResultRelInfo in the encapsulating
* PartitionTupleRouting's partitions array. For partitioned partitions,
* the index corresponds to the PartitionDispatch for it in its
* partition_dispatch_info array. -1 indicates we've not yet allocated
* anything in PartitionTupleRouting for the partition.
*-----------------------
*/
typedef struct PartitionDispatchData
{
Relation reldesc;
PartitionKey key;
List *keystate; /* list of ExprState */
PartitionDesc partdesc;
TupleTableSlot *tupslot;
AttrMap *tupmap;
int indexes[FLEXIBLE_ARRAY_MEMBER];
} PartitionDispatchData;
static ResultRelInfo *ExecInitPartitionInfo(ModifyTableState *mtstate,
EState *estate, PartitionTupleRouting *proute,
PartitionDispatch dispatch,
ResultRelInfo *rootResultRelInfo,
int partidx);
static void ExecInitRoutingInfo(ModifyTableState *mtstate,
EState *estate,
PartitionTupleRouting *proute,
PartitionDispatch dispatch,
ResultRelInfo *partRelInfo,
int partidx,
bool is_borrowed_rel);
static PartitionDispatch ExecInitPartitionDispatchInfo(EState *estate,
PartitionTupleRouting *proute,
Oid partoid, PartitionDispatch parent_pd,
int partidx, ResultRelInfo *rootResultRelInfo);
static void FormPartitionKeyDatum(PartitionDispatch pd,
TupleTableSlot *slot,
EState *estate,
Datum *values,
bool *isnull);
static int get_partition_for_tuple(PartitionDispatch pd, Datum *values,
bool *isnull);
static char *ExecBuildSlotPartitionKeyDescription(Relation rel,
Datum *values,
bool *isnull,
int maxfieldlen);
static List *adjust_partition_colnos(List *colnos, ResultRelInfo *leaf_part_rri);
static List *adjust_partition_colnos_using_map(List *colnos, AttrMap *attrMap);
static PartitionPruneState *CreatePartitionPruneState(PlanState *planstate,
PartitionPruneInfo *pruneinfo);
static void InitPartitionPruneContext(PartitionPruneContext *context,
List *pruning_steps,
PartitionDesc partdesc,
PartitionKey partkey,
PlanState *planstate,
ExprContext *econtext);
static void PartitionPruneFixSubPlanMap(PartitionPruneState *prunestate,
Bitmapset *initially_valid_subplans,
int n_total_subplans);
static void find_matching_subplans_recurse(PartitionPruningData *prunedata,
PartitionedRelPruningData *pprune,
bool initial_prune,
Bitmapset **validsubplans);
/*
* ExecSetupPartitionTupleRouting - sets up information needed during
* tuple routing for partitioned tables, encapsulates it in
* PartitionTupleRouting, and returns it.
*
* Callers must use the returned PartitionTupleRouting during calls to
* ExecFindPartition(). The actual ResultRelInfo for a partition is only
* allocated when the partition is found for the first time.
*
* The current memory context is used to allocate this struct and all
* subsidiary structs that will be allocated from it later on. Typically
* it should be estate->es_query_cxt.
*/
PartitionTupleRouting *
ExecSetupPartitionTupleRouting(EState *estate, Relation rel)
{
PartitionTupleRouting *proute;
/*
* Here we attempt to expend as little effort as possible in setting up
* the PartitionTupleRouting. Each partition's ResultRelInfo is built on
* demand, only when we actually need to route a tuple to that partition.
* The reason for this is that a common case is for INSERT to insert a
* single tuple into a partitioned table and this must be fast.
*/
proute = (PartitionTupleRouting *) palloc0(sizeof(PartitionTupleRouting));
proute->partition_root = rel;
proute->memcxt = CurrentMemoryContext;
/* Rest of members initialized by zeroing */
/*
* Initialize this table's PartitionDispatch object. Here we pass in the
* parent as NULL as we don't need to care about any parent of the target
* partitioned table.
*/
ExecInitPartitionDispatchInfo(estate, proute, RelationGetRelid(rel),
NULL, 0, NULL);
return proute;
}
/*
* ExecFindPartition -- Return the ResultRelInfo for the leaf partition that
* the tuple contained in *slot should belong to.
*
* If the partition's ResultRelInfo does not yet exist in 'proute' then we set
* one up or reuse one from mtstate's resultRelInfo array. When reusing a
* ResultRelInfo from the mtstate we verify that the relation is a valid
* target for INSERTs and initialize tuple routing information.
*
* rootResultRelInfo is the relation named in the query.
*
* estate must be non-NULL; we'll need it to compute any expressions in the
* partition keys. Also, its per-tuple contexts are used as evaluation
* scratch space.
*
* If no leaf partition is found, this routine errors out with the appropriate
* error message. An error may also be raised if the found target partition
* is not a valid target for an INSERT.
*/
ResultRelInfo *
ExecFindPartition(ModifyTableState *mtstate,
ResultRelInfo *rootResultRelInfo,
PartitionTupleRouting *proute,
TupleTableSlot *slot, EState *estate)
{
PartitionDispatch *pd = proute->partition_dispatch_info;
Datum values[PARTITION_MAX_KEYS];
bool isnull[PARTITION_MAX_KEYS];
Relation rel;
PartitionDispatch dispatch;
PartitionDesc partdesc;
ExprContext *ecxt = GetPerTupleExprContext(estate);
TupleTableSlot *ecxt_scantuple_saved = ecxt->ecxt_scantuple;
TupleTableSlot *rootslot = slot;
TupleTableSlot *myslot = NULL;
MemoryContext oldcxt;
ResultRelInfo *rri = NULL;
/* use per-tuple context here to avoid leaking memory */
oldcxt = MemoryContextSwitchTo(GetPerTupleMemoryContext(estate));
/*
* First check the root table's partition constraint, if any. No point in
* routing the tuple if it doesn't belong in the root table itself.
*/
if (rootResultRelInfo->ri_RelationDesc->rd_rel->relispartition)
ExecPartitionCheck(rootResultRelInfo, slot, estate, true);
/* start with the root partitioned table */
dispatch = pd[0];
while (dispatch != NULL)
{
int partidx = -1;
bool is_leaf;
CHECK_FOR_INTERRUPTS();
rel = dispatch->reldesc;
partdesc = dispatch->partdesc;
/*
* Extract partition key from tuple. Expression evaluation machinery
* that FormPartitionKeyDatum() invokes expects ecxt_scantuple to
* point to the correct tuple slot. The slot might have changed from
* what was used for the parent table if the table of the current
* partitioning level has different tuple descriptor from the parent.
* So update ecxt_scantuple accordingly.
*/
ecxt->ecxt_scantuple = slot;
FormPartitionKeyDatum(dispatch, slot, estate, values, isnull);
/*
* If this partitioned table has no partitions or no partition for
* these values, error out.
*/
if (partdesc->nparts == 0 ||
(partidx = get_partition_for_tuple(dispatch, values, isnull)) < 0)
{
char *val_desc;
val_desc = ExecBuildSlotPartitionKeyDescription(rel,
values, isnull, 64);
Assert(OidIsValid(RelationGetRelid(rel)));
ereport(ERROR,
(errcode(ERRCODE_CHECK_VIOLATION),
errmsg("no partition of relation \"%s\" found for row",
RelationGetRelationName(rel)),
val_desc ?
errdetail("Partition key of the failing row contains %s.",
val_desc) : 0,
errtable(rel)));
}
is_leaf = partdesc->is_leaf[partidx];
if (is_leaf)
{
/*
* We've reached the leaf -- hurray, we're done. Look to see if
* we've already got a ResultRelInfo for this partition.
*/
if (likely(dispatch->indexes[partidx] >= 0))
{
/* ResultRelInfo already built */
Assert(dispatch->indexes[partidx] < proute->num_partitions);
rri = proute->partitions[dispatch->indexes[partidx]];
}
else
{
/*
* If the partition is known in the owning ModifyTableState
* node, we can re-use that ResultRelInfo instead of creating
* a new one with ExecInitPartitionInfo().
*/
rri = ExecLookupResultRelByOid(mtstate,
partdesc->oids[partidx],
true, false);
if (rri)
{
/* Verify this ResultRelInfo allows INSERTs */
CheckValidResultRel(rri, CMD_INSERT);
/*
* Initialize information needed to insert this and
* subsequent tuples routed to this partition.
*/
ExecInitRoutingInfo(mtstate, estate, proute, dispatch,
rri, partidx, true);
}
else
{
/* We need to create a new one. */
rri = ExecInitPartitionInfo(mtstate, estate, proute,
dispatch,
rootResultRelInfo, partidx);
}
}
Assert(rri != NULL);
/* Signal to terminate the loop */
dispatch = NULL;
}
else
{
/*
* Partition is a sub-partitioned table; get the PartitionDispatch
*/
if (likely(dispatch->indexes[partidx] >= 0))
{
/* Already built. */
Assert(dispatch->indexes[partidx] < proute->num_dispatch);
rri = proute->nonleaf_partitions[dispatch->indexes[partidx]];
/*
* Move down to the next partition level and search again
* until we find a leaf partition that matches this tuple
*/
dispatch = pd[dispatch->indexes[partidx]];
}
else
{
/* Not yet built. Do that now. */
PartitionDispatch subdispatch;
/*
* Create the new PartitionDispatch. We pass the current one
* in as the parent PartitionDispatch
*/
subdispatch = ExecInitPartitionDispatchInfo(estate,
proute,
partdesc->oids[partidx],
dispatch, partidx,
mtstate->rootResultRelInfo);
Assert(dispatch->indexes[partidx] >= 0 &&
dispatch->indexes[partidx] < proute->num_dispatch);
rri = proute->nonleaf_partitions[dispatch->indexes[partidx]];
dispatch = subdispatch;
}
/*
* Convert the tuple to the new parent's layout, if different from
* the previous parent.
*/
if (dispatch->tupslot)
{
AttrMap *map = dispatch->tupmap;
TupleTableSlot *tempslot = myslot;
myslot = dispatch->tupslot;
slot = execute_attr_map_slot(map, slot, myslot);
if (tempslot != NULL)
ExecClearTuple(tempslot);
}
}
/*
* If this partition is the default one, we must check its partition
* constraint now, which may have changed concurrently due to
* partitions being added to the parent.
*
* (We do this here, and do not rely on ExecInsert doing it, because
* we don't want to miss doing it for non-leaf partitions.)
*/
if (partidx == partdesc->boundinfo->default_index)
{
/*
* The tuple must match the partition's layout for the constraint
* expression to be evaluated successfully. If the partition is
* sub-partitioned, that would already be the case due to the code
* above, but for a leaf partition the tuple still matches the
* parent's layout.
*
* Note that we have a map to convert from root to current
* partition, but not from immediate parent to current partition.
* So if we have to convert, do it from the root slot; if not, use
* the root slot as-is.
*/
if (is_leaf)
{
TupleConversionMap *map = ExecGetRootToChildMap(rri, estate);
if (map)
slot = execute_attr_map_slot(map->attrMap, rootslot,
rri->ri_PartitionTupleSlot);
else
slot = rootslot;
}
ExecPartitionCheck(rri, slot, estate, true);
}
}
/* Release the tuple in the lowest parent's dedicated slot. */
if (myslot != NULL)
ExecClearTuple(myslot);
/* and restore ecxt's scantuple */
ecxt->ecxt_scantuple = ecxt_scantuple_saved;
MemoryContextSwitchTo(oldcxt);
return rri;
}
/*
* ExecInitPartitionInfo
* Lock the partition and initialize ResultRelInfo. Also setup other
* information for the partition and store it in the next empty slot in
* the proute->partitions array.
*
* Returns the ResultRelInfo
*/
static ResultRelInfo *
ExecInitPartitionInfo(ModifyTableState *mtstate, EState *estate,
PartitionTupleRouting *proute,
PartitionDispatch dispatch,
ResultRelInfo *rootResultRelInfo,
int partidx)
{
ModifyTable *node = (ModifyTable *) mtstate->ps.plan;
Oid partOid = dispatch->partdesc->oids[partidx];
Relation partrel;
int firstVarno = mtstate->resultRelInfo[0].ri_RangeTableIndex;
Relation firstResultRel = mtstate->resultRelInfo[0].ri_RelationDesc;
ResultRelInfo *leaf_part_rri;
MemoryContext oldcxt;
AttrMap *part_attmap = NULL;
bool found_whole_row;
oldcxt = MemoryContextSwitchTo(proute->memcxt);
partrel = table_open(partOid, RowExclusiveLock);
leaf_part_rri = makeNode(ResultRelInfo);
InitResultRelInfo(leaf_part_rri,
partrel,
0,
rootResultRelInfo,
estate->es_instrument);
/*
* Verify result relation is a valid target for an INSERT. An UPDATE of a
* partition-key becomes a DELETE+INSERT operation, so this check is still
* required when the operation is CMD_UPDATE.
*/
CheckValidResultRel(leaf_part_rri, CMD_INSERT);
/*
* Open partition indices. The user may have asked to check for conflicts
* within this leaf partition and do "nothing" instead of throwing an
* error. Be prepared in that case by initializing the index information
* needed by ExecInsert() to perform speculative insertions.
*/
if (partrel->rd_rel->relhasindex &&
leaf_part_rri->ri_IndexRelationDescs == NULL)
ExecOpenIndices(leaf_part_rri,
(node != NULL &&
node->onConflictAction != ONCONFLICT_NONE));
/*
* Build WITH CHECK OPTION constraints for the partition. Note that we
* didn't build the withCheckOptionList for partitions within the planner,
* but simple translation of varattnos will suffice. This only occurs for
* the INSERT case or in the case of UPDATE/MERGE tuple routing where we
* didn't find a result rel to reuse.
*/
if (node && node->withCheckOptionLists != NIL)
{
List *wcoList;
List *wcoExprs = NIL;
ListCell *ll;
/*
* In the case of INSERT on a partitioned table, there is only one
* plan. Likewise, there is only one WCO list, not one per partition.
* For UPDATE/MERGE, there are as many WCO lists as there are plans.
*/
Assert((node->operation == CMD_INSERT &&
list_length(node->withCheckOptionLists) == 1 &&
list_length(node->resultRelations) == 1) ||
(node->operation == CMD_UPDATE &&
list_length(node->withCheckOptionLists) ==
list_length(node->resultRelations)) ||
(node->operation == CMD_MERGE &&
list_length(node->withCheckOptionLists) ==
list_length(node->resultRelations)));
/*
* Use the WCO list of the first plan as a reference to calculate
* attno's for the WCO list of this partition. In the INSERT case,
* that refers to the root partitioned table, whereas in the UPDATE
* tuple routing case, that refers to the first partition in the
* mtstate->resultRelInfo array. In any case, both that relation and
* this partition should have the same columns, so we should be able
* to map attributes successfully.
*/
wcoList = linitial(node->withCheckOptionLists);
/*
* Convert Vars in it to contain this partition's attribute numbers.
*/
part_attmap =
build_attrmap_by_name(RelationGetDescr(partrel),
RelationGetDescr(firstResultRel),
false);
wcoList = (List *)
map_variable_attnos((Node *) wcoList,
firstVarno, 0,
part_attmap,
RelationGetForm(partrel)->reltype,
&found_whole_row);
/* We ignore the value of found_whole_row. */
foreach(ll, wcoList)
{
WithCheckOption *wco = lfirst_node(WithCheckOption, ll);
ExprState *wcoExpr = ExecInitQual(castNode(List, wco->qual),
&mtstate->ps);
wcoExprs = lappend(wcoExprs, wcoExpr);
}
leaf_part_rri->ri_WithCheckOptions = wcoList;
leaf_part_rri->ri_WithCheckOptionExprs = wcoExprs;
}
/*
* Build the RETURNING projection for the partition. Note that we didn't
* build the returningList for partitions within the planner, but simple
* translation of varattnos will suffice. This only occurs for the INSERT
* case or in the case of UPDATE tuple routing where we didn't find a
* result rel to reuse.
*/
if (node && node->returningLists != NIL)
{
TupleTableSlot *slot;
ExprContext *econtext;
List *returningList;
/* See the comment above for WCO lists. */
/* (except no RETURNING support for MERGE yet) */
Assert((node->operation == CMD_INSERT &&
list_length(node->returningLists) == 1 &&
list_length(node->resultRelations) == 1) ||
(node->operation == CMD_UPDATE &&
list_length(node->returningLists) ==
list_length(node->resultRelations)));
/*
* Use the RETURNING list of the first plan as a reference to
* calculate attno's for the RETURNING list of this partition. See
* the comment above for WCO lists for more details on why this is
* okay.
*/
returningList = linitial(node->returningLists);
/*
* Convert Vars in it to contain this partition's attribute numbers.
*/
if (part_attmap == NULL)
part_attmap =
build_attrmap_by_name(RelationGetDescr(partrel),
RelationGetDescr(firstResultRel),
false);
returningList = (List *)
map_variable_attnos((Node *) returningList,
firstVarno, 0,
part_attmap,
RelationGetForm(partrel)->reltype,
&found_whole_row);
/* We ignore the value of found_whole_row. */
leaf_part_rri->ri_returningList = returningList;
/*
* Initialize the projection itself.
*
* Use the slot and the expression context that would have been set up
* in ExecInitModifyTable() for projection's output.
*/
Assert(mtstate->ps.ps_ResultTupleSlot != NULL);
slot = mtstate->ps.ps_ResultTupleSlot;
Assert(mtstate->ps.ps_ExprContext != NULL);
econtext = mtstate->ps.ps_ExprContext;
leaf_part_rri->ri_projectReturning =
ExecBuildProjectionInfo(returningList, econtext, slot,
&mtstate->ps, RelationGetDescr(partrel));
}
/* Set up information needed for routing tuples to the partition. */
ExecInitRoutingInfo(mtstate, estate, proute, dispatch,
leaf_part_rri, partidx, false);
/*
* If there is an ON CONFLICT clause, initialize state for it.
*/
if (node && node->onConflictAction != ONCONFLICT_NONE)
{
TupleDesc partrelDesc = RelationGetDescr(partrel);
ExprContext *econtext = mtstate->ps.ps_ExprContext;
ListCell *lc;
List *arbiterIndexes = NIL;
/*
* If there is a list of arbiter indexes, map it to a list of indexes
* in the partition. We do that by scanning the partition's index
* list and searching for ancestry relationships to each index in the
* ancestor table.
*/
if (rootResultRelInfo->ri_onConflictArbiterIndexes != NIL)
{
List *childIdxs;
childIdxs = RelationGetIndexList(leaf_part_rri->ri_RelationDesc);
foreach(lc, childIdxs)
{
Oid childIdx = lfirst_oid(lc);
List *ancestors;
ListCell *lc2;
ancestors = get_partition_ancestors(childIdx);
foreach(lc2, rootResultRelInfo->ri_onConflictArbiterIndexes)
{
if (list_member_oid(ancestors, lfirst_oid(lc2)))
arbiterIndexes = lappend_oid(arbiterIndexes, childIdx);
}
list_free(ancestors);
}
}
/*
* If the resulting lists are of inequal length, something is wrong.
* (This shouldn't happen, since arbiter index selection should not
* pick up an invalid index.)
*/
if (list_length(rootResultRelInfo->ri_onConflictArbiterIndexes) !=
list_length(arbiterIndexes))
elog(ERROR, "invalid arbiter index list");
leaf_part_rri->ri_onConflictArbiterIndexes = arbiterIndexes;
/*
* In the DO UPDATE case, we have some more state to initialize.
*/
if (node->onConflictAction == ONCONFLICT_UPDATE)
{
OnConflictSetState *onconfl = makeNode(OnConflictSetState);
TupleConversionMap *map;
map = ExecGetRootToChildMap(leaf_part_rri, estate);
Assert(node->onConflictSet != NIL);
Assert(rootResultRelInfo->ri_onConflict != NULL);
leaf_part_rri->ri_onConflict = onconfl;
/*
* Need a separate existing slot for each partition, as the
* partition could be of a different AM, even if the tuple
* descriptors match.
*/
onconfl->oc_Existing =
table_slot_create(leaf_part_rri->ri_RelationDesc,
&mtstate->ps.state->es_tupleTable);
/*
* If the partition's tuple descriptor matches exactly the root
* parent (the common case), we can re-use most of the parent's ON
* CONFLICT SET state, skipping a bunch of work. Otherwise, we
* need to create state specific to this partition.
*/
if (map == NULL)
{
/*
* It's safe to reuse these from the partition root, as we
* only process one tuple at a time (therefore we won't
* overwrite needed data in slots), and the results of
* projections are independent of the underlying storage.
* Projections and where clauses themselves don't store state
* / are independent of the underlying storage.
*/
onconfl->oc_ProjSlot =
rootResultRelInfo->ri_onConflict->oc_ProjSlot;
onconfl->oc_ProjInfo =
rootResultRelInfo->ri_onConflict->oc_ProjInfo;
onconfl->oc_WhereClause =
rootResultRelInfo->ri_onConflict->oc_WhereClause;
}
else
{
List *onconflset;
List *onconflcols;
/*
* Translate expressions in onConflictSet to account for
* different attribute numbers. For that, map partition
* varattnos twice: first to catch the EXCLUDED
* pseudo-relation (INNER_VAR), and second to handle the main
* target relation (firstVarno).
*/
onconflset = copyObject(node->onConflictSet);
if (part_attmap == NULL)
part_attmap =
build_attrmap_by_name(RelationGetDescr(partrel),
RelationGetDescr(firstResultRel),
false);
onconflset = (List *)
map_variable_attnos((Node *) onconflset,
INNER_VAR, 0,
part_attmap,
RelationGetForm(partrel)->reltype,
&found_whole_row);
/* We ignore the value of found_whole_row. */
onconflset = (List *)
map_variable_attnos((Node *) onconflset,
firstVarno, 0,
part_attmap,
RelationGetForm(partrel)->reltype,
&found_whole_row);
/* We ignore the value of found_whole_row. */
/* Finally, adjust the target colnos to match the partition. */
onconflcols = adjust_partition_colnos(node->onConflictCols,
leaf_part_rri);
/* create the tuple slot for the UPDATE SET projection */
onconfl->oc_ProjSlot =
table_slot_create(partrel,
&mtstate->ps.state->es_tupleTable);
/* build UPDATE SET projection state */
onconfl->oc_ProjInfo =
ExecBuildUpdateProjection(onconflset,
true,
onconflcols,
partrelDesc,
econtext,
onconfl->oc_ProjSlot,
&mtstate->ps);
/*
* If there is a WHERE clause, initialize state where it will
* be evaluated, mapping the attribute numbers appropriately.
* As with onConflictSet, we need to map partition varattnos
* to the partition's tupdesc.
*/
if (node->onConflictWhere)
{
List *clause;
clause = copyObject((List *) node->onConflictWhere);
clause = (List *)
map_variable_attnos((Node *) clause,
INNER_VAR, 0,
part_attmap,
RelationGetForm(partrel)->reltype,
&found_whole_row);
/* We ignore the value of found_whole_row. */
clause = (List *)
map_variable_attnos((Node *) clause,
firstVarno, 0,
part_attmap,
RelationGetForm(partrel)->reltype,
&found_whole_row);
/* We ignore the value of found_whole_row. */
onconfl->oc_WhereClause =
ExecInitQual((List *) clause, &mtstate->ps);
}
}
}
}
/*
* Since we've just initialized this ResultRelInfo, it's not in any list
* attached to the estate as yet. Add it, so that it can be found later.
*
* Note that the entries in this list appear in no predetermined order,
* because partition result rels are initialized as and when they're
* needed.
*/
MemoryContextSwitchTo(estate->es_query_cxt);
estate->es_tuple_routing_result_relations =
lappend(estate->es_tuple_routing_result_relations,
leaf_part_rri);
/*
* Initialize information about this partition that's needed to handle
* MERGE. We take the "first" result relation's mergeActionList as
* reference and make copy for this relation, converting stuff that
* references attribute numbers to match this relation's.
*
* This duplicates much of the logic in ExecInitMerge(), so something
* changes there, look here too.
*/
if (node && node->operation == CMD_MERGE)
{
List *firstMergeActionList = linitial(node->mergeActionLists);
ListCell *lc;
ExprContext *econtext = mtstate->ps.ps_ExprContext;
if (part_attmap == NULL)
part_attmap =
build_attrmap_by_name(RelationGetDescr(partrel),
RelationGetDescr(firstResultRel),
false);
if (unlikely(!leaf_part_rri->ri_projectNewInfoValid))
ExecInitMergeTupleSlots(mtstate, leaf_part_rri);
foreach(lc, firstMergeActionList)
{
/* Make a copy for this relation to be safe. */
MergeAction *action = copyObject(lfirst(lc));
MergeActionState *action_state;
List **list;
/* Generate the action's state for this relation */
action_state = makeNode(MergeActionState);
action_state->mas_action = action;
/* And put the action in the appropriate list */
if (action->matched)
list = &leaf_part_rri->ri_matchedMergeAction;
else
list = &leaf_part_rri->ri_notMatchedMergeAction;
*list = lappend(*list, action_state);
switch (action->commandType)
{
case CMD_INSERT:
/*
* ExecCheckPlanOutput() already done on the targetlist
* when "first" result relation initialized and it is same
* for all result relations.
*/
action_state->mas_proj =
ExecBuildProjectionInfo(action->targetList, econtext,
leaf_part_rri->ri_newTupleSlot,
&mtstate->ps,
RelationGetDescr(partrel));
break;
case CMD_UPDATE:
/*
* Convert updateColnos from "first" result relation
* attribute numbers to this result rel's.
*/
if (part_attmap)
action->updateColnos =
adjust_partition_colnos_using_map(action->updateColnos,
part_attmap);
action_state->mas_proj =
ExecBuildUpdateProjection(action->targetList,
true,
action->updateColnos,
RelationGetDescr(leaf_part_rri->ri_RelationDesc),
econtext,
leaf_part_rri->ri_newTupleSlot,
NULL);
break;
case CMD_DELETE:
break;
default:
elog(ERROR, "unknown action in MERGE WHEN clause");
}
/* found_whole_row intentionally ignored. */
action->qual =
map_variable_attnos(action->qual,
firstVarno, 0,
part_attmap,
RelationGetForm(partrel)->reltype,
&found_whole_row);
action_state->mas_whenqual =
ExecInitQual((List *) action->qual, &mtstate->ps);
}
}
MemoryContextSwitchTo(oldcxt);
return leaf_part_rri;
}
/*
* ExecInitRoutingInfo
* Set up information needed for translating tuples between root
* partitioned table format and partition format, and keep track of it
* in PartitionTupleRouting.
*/
static void
ExecInitRoutingInfo(ModifyTableState *mtstate,
EState *estate,
PartitionTupleRouting *proute,
PartitionDispatch dispatch,
ResultRelInfo *partRelInfo,
int partidx,
bool is_borrowed_rel)
{
MemoryContext oldcxt;
int rri_index;
oldcxt = MemoryContextSwitchTo(proute->memcxt);
/*
* Set up tuple conversion between root parent and the partition if the
* two have different rowtypes. If conversion is indeed required, also
* initialize a slot dedicated to storing this partition's converted
* tuples. Various operations that are applied to tuples after routing,
* such as checking constraints, will refer to this slot.
*/
if (ExecGetRootToChildMap(partRelInfo, estate) != NULL)
{
Relation partrel = partRelInfo->ri_RelationDesc;
/*
* This pins the partition's TupleDesc, which will be released at the
* end of the command.
*/
partRelInfo->ri_PartitionTupleSlot =
table_slot_create(partrel, &estate->es_tupleTable);
}
else
partRelInfo->ri_PartitionTupleSlot = NULL;
/*
* If the partition is a foreign table, let the FDW init itself for
* routing tuples to the partition.
*/
if (partRelInfo->ri_FdwRoutine != NULL &&
partRelInfo->ri_FdwRoutine->BeginForeignInsert != NULL)
partRelInfo->ri_FdwRoutine->BeginForeignInsert(mtstate, partRelInfo);
/*
* Determine if the FDW supports batch insert and determine the batch size
* (a FDW may support batching, but it may be disabled for the
* server/table or for this particular query).
*
* If the FDW does not support batching, we set the batch size to 1.
*/
if (partRelInfo->ri_FdwRoutine != NULL &&
partRelInfo->ri_FdwRoutine->GetForeignModifyBatchSize &&
partRelInfo->ri_FdwRoutine->ExecForeignBatchInsert)
partRelInfo->ri_BatchSize =
partRelInfo->ri_FdwRoutine->GetForeignModifyBatchSize(partRelInfo);
else
partRelInfo->ri_BatchSize = 1;
Assert(partRelInfo->ri_BatchSize >= 1);
partRelInfo->ri_CopyMultiInsertBuffer = NULL;
/*
* Keep track of it in the PartitionTupleRouting->partitions array.
*/
Assert(dispatch->indexes[partidx] == -1);
rri_index = proute->num_partitions++;
/* Allocate or enlarge the array, as needed */
if (proute->num_partitions >= proute->max_partitions)
{
if (proute->max_partitions == 0)
{
proute->max_partitions = 8;
proute->partitions = (ResultRelInfo **)
palloc(sizeof(ResultRelInfo *) * proute->max_partitions);
proute->is_borrowed_rel = (bool *)
palloc(sizeof(bool) * proute->max_partitions);
}
else
{
proute->max_partitions *= 2;
proute->partitions = (ResultRelInfo **)
repalloc(proute->partitions, sizeof(ResultRelInfo *) *
proute->max_partitions);
proute->is_borrowed_rel = (bool *)
repalloc(proute->is_borrowed_rel, sizeof(bool) *
proute->max_partitions);
}
}
proute->partitions[rri_index] = partRelInfo;
proute->is_borrowed_rel[rri_index] = is_borrowed_rel;
dispatch->indexes[partidx] = rri_index;
MemoryContextSwitchTo(oldcxt);
}
/*
* ExecInitPartitionDispatchInfo
* Lock the partitioned table (if not locked already) and initialize
* PartitionDispatch for a partitioned table and store it in the next
* available slot in the proute->partition_dispatch_info array. Also,
* record the index into this array in the parent_pd->indexes[] array in
* the partidx element so that we can properly retrieve the newly created
* PartitionDispatch later.
*/
static PartitionDispatch
ExecInitPartitionDispatchInfo(EState *estate,
PartitionTupleRouting *proute, Oid partoid,
PartitionDispatch parent_pd, int partidx,
ResultRelInfo *rootResultRelInfo)
{
Relation rel;
PartitionDesc partdesc;
PartitionDispatch pd;
int dispatchidx;
MemoryContext oldcxt;
/*
* For data modification, it is better that executor does not include
* partitions being detached, except when running in snapshot-isolation
* mode. This means that a read-committed transaction immediately gets a
* "no partition for tuple" error when a tuple is inserted into a
* partition that's being detached concurrently, but a transaction in
* repeatable-read mode can still use such a partition.
*/
if (estate->es_partition_directory == NULL)
estate->es_partition_directory =
CreatePartitionDirectory(estate->es_query_cxt,
!IsolationUsesXactSnapshot());
oldcxt = MemoryContextSwitchTo(proute->memcxt);
/*
* Only sub-partitioned tables need to be locked here. The root
* partitioned table will already have been locked as it's referenced in
* the query's rtable.
*/
if (partoid != RelationGetRelid(proute->partition_root))
rel = table_open(partoid, RowExclusiveLock);
else
rel = proute->partition_root;
partdesc = PartitionDirectoryLookup(estate->es_partition_directory, rel);
pd = (PartitionDispatch) palloc(offsetof(PartitionDispatchData, indexes) +
partdesc->nparts * sizeof(int));
pd->reldesc = rel;
pd->key = RelationGetPartitionKey(rel);
pd->keystate = NIL;
pd->partdesc = partdesc;
if (parent_pd != NULL)
{
TupleDesc tupdesc = RelationGetDescr(rel);
/*
* For sub-partitioned tables where the column order differs from its
* direct parent partitioned table, we must store a tuple table slot
* initialized with its tuple descriptor and a tuple conversion map to
* convert a tuple from its parent's rowtype to its own. This is to
* make sure that we are looking at the correct row using the correct
* tuple descriptor when computing its partition key for tuple
* routing.
*/
pd->tupmap = build_attrmap_by_name_if_req(RelationGetDescr(parent_pd->reldesc),
tupdesc,
false);
pd->tupslot = pd->tupmap ?
MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual) : NULL;
}
else
{
/* Not required for the root partitioned table */
pd->tupmap = NULL;
pd->tupslot = NULL;
}
/*
* Initialize with -1 to signify that the corresponding partition's
* ResultRelInfo or PartitionDispatch has not been created yet.
*/
memset(pd->indexes, -1, sizeof(int) * partdesc->nparts);
/* Track in PartitionTupleRouting for later use */
dispatchidx = proute->num_dispatch++;
/* Allocate or enlarge the array, as needed */
if (proute->num_dispatch >= proute->max_dispatch)
{
if (proute->max_dispatch == 0)
{
proute->max_dispatch = 4;
proute->partition_dispatch_info = (PartitionDispatch *)
palloc(sizeof(PartitionDispatch) * proute->max_dispatch);
proute->nonleaf_partitions = (ResultRelInfo **)
palloc(sizeof(ResultRelInfo *) * proute->max_dispatch);
}
else
{
proute->max_dispatch *= 2;
proute->partition_dispatch_info = (PartitionDispatch *)
repalloc(proute->partition_dispatch_info,
sizeof(PartitionDispatch) * proute->max_dispatch);
proute->nonleaf_partitions = (ResultRelInfo **)
repalloc(proute->nonleaf_partitions,
sizeof(ResultRelInfo *) * proute->max_dispatch);
}
}
proute->partition_dispatch_info[dispatchidx] = pd;
/*
* If setting up a PartitionDispatch for a sub-partitioned table, we may
* also need a minimally valid ResultRelInfo for checking the partition
* constraint later; set that up now.
*/
if (parent_pd)
{
ResultRelInfo *rri = makeNode(ResultRelInfo);
InitResultRelInfo(rri, rel, 0, rootResultRelInfo, 0);
proute->nonleaf_partitions[dispatchidx] = rri;
}
else
proute->nonleaf_partitions[dispatchidx] = NULL;
/*
* Finally, if setting up a PartitionDispatch for a sub-partitioned table,
* install a downlink in the parent to allow quick descent.
*/
if (parent_pd)
{
Assert(parent_pd->indexes[partidx] == -1);
parent_pd->indexes[partidx] = dispatchidx;
}
MemoryContextSwitchTo(oldcxt);
return pd;
}
/*
* ExecCleanupTupleRouting -- Clean up objects allocated for partition tuple
* routing.
*
* Close all the partitioned tables, leaf partitions, and their indices.
*/
void
ExecCleanupTupleRouting(ModifyTableState *mtstate,
PartitionTupleRouting *proute)
{
int i;
/*
* Remember, proute->partition_dispatch_info[0] corresponds to the root
* partitioned table, which we must not try to close, because it is the
* main target table of the query that will be closed by callers such as
* ExecEndPlan() or DoCopy(). Also, tupslot is NULL for the root
* partitioned table.
*/
for (i = 1; i < proute->num_dispatch; i++)
{
PartitionDispatch pd = proute->partition_dispatch_info[i];
table_close(pd->reldesc, NoLock);
if (pd->tupslot)
ExecDropSingleTupleTableSlot(pd->tupslot);
}
for (i = 0; i < proute->num_partitions; i++)
{
ResultRelInfo *resultRelInfo = proute->partitions[i];
/* Allow any FDWs to shut down */
if (resultRelInfo->ri_FdwRoutine != NULL &&
resultRelInfo->ri_FdwRoutine->EndForeignInsert != NULL)
resultRelInfo->ri_FdwRoutine->EndForeignInsert(mtstate->ps.state,
resultRelInfo);
/*
* Close it if it's not one of the result relations borrowed from the
* owning ModifyTableState; those will be closed by ExecEndPlan().
*/
if (proute->is_borrowed_rel[i])
continue;
ExecCloseIndices(resultRelInfo);
table_close(resultRelInfo->ri_RelationDesc, NoLock);
}
}
/* ----------------
* FormPartitionKeyDatum
* Construct values[] and isnull[] arrays for the partition key
* of a tuple.
*
* pd Partition dispatch object of the partitioned table
* slot Heap tuple from which to extract partition key
* estate executor state for evaluating any partition key
* expressions (must be non-NULL)
* values Array of partition key Datums (output area)
* isnull Array of is-null indicators (output area)
*
* the ecxt_scantuple slot of estate's per-tuple expr context must point to
* the heap tuple passed in.
* ----------------
*/
static void
FormPartitionKeyDatum(PartitionDispatch pd,
TupleTableSlot *slot,
EState *estate,
Datum *values,
bool *isnull)
{
ListCell *partexpr_item;
int i;
if (pd->key->partexprs != NIL && pd->keystate == NIL)
{
/* Check caller has set up context correctly */
Assert(estate != NULL &&
GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
/* First time through, set up expression evaluation state */
pd->keystate = ExecPrepareExprList(pd->key->partexprs, estate);
}
partexpr_item = list_head(pd->keystate);
for (i = 0; i < pd->key->partnatts; i++)
{
AttrNumber keycol = pd->key->partattrs[i];
Datum datum;
bool isNull;
if (keycol != 0)
{
/* Plain column; get the value directly from the heap tuple */
datum = slot_getattr(slot, keycol, &isNull);
}
else
{
/* Expression; need to evaluate it */
if (partexpr_item == NULL)
elog(ERROR, "wrong number of partition key expressions");
datum = ExecEvalExprSwitchContext((ExprState *) lfirst(partexpr_item),
GetPerTupleExprContext(estate),
&isNull);
partexpr_item = lnext(pd->keystate, partexpr_item);
}
values[i] = datum;
isnull[i] = isNull;
}
if (partexpr_item != NULL)
elog(ERROR, "wrong number of partition key expressions");
}
/*
* The number of times the same partition must be found in a row before we
* switch from a binary search for the given values to just checking if the
* values belong to the last found partition. This must be above 0.
*/
#define PARTITION_CACHED_FIND_THRESHOLD 16
/*
* get_partition_for_tuple
* Finds partition of relation which accepts the partition key specified
* in values and isnull.
*
* Calling this function can be quite expensive when LIST and RANGE
* partitioned tables have many partitions. This is due to the binary search
* that's done to find the correct partition. Many of the use cases for LIST
* and RANGE partitioned tables make it likely that the same partition is
* found in subsequent ExecFindPartition() calls. This is especially true for
* cases such as RANGE partitioned tables on a TIMESTAMP column where the
* partition key is the current time. When asked to find a partition for a
* RANGE or LIST partitioned table, we record the partition index and datum
* offset we've found for the given 'values' in the PartitionDesc (which is
* stored in relcache), and if we keep finding the same partition
* PARTITION_CACHED_FIND_THRESHOLD times in a row, then we'll enable caching
* logic and instead of performing a binary search to find the correct
* partition, we'll just double-check that 'values' still belong to the last
* found partition, and if so, we'll return that partition index, thus
* skipping the need for the binary search. If we fail to match the last
* partition when double checking, then we fall back on doing a binary search.
* In this case, unless we find 'values' belong to the DEFAULT partition,
* we'll reset the number of times we've hit the same partition so that we
* don't attempt to use the cache again until we've found that partition at
* least PARTITION_CACHED_FIND_THRESHOLD times in a row.
*
* For cases where the partition changes on each lookup, the amount of
* additional work required just amounts to recording the last found partition
* and bound offset then resetting the found counter. This is cheap and does
* not appear to cause any meaningful slowdowns for such cases.
*
* No caching of partitions is done when the last found partition is the
* DEFAULT or NULL partition. For the case of the DEFAULT partition, there
* is no bound offset storing the matching datum, so we cannot confirm the
* indexes match. For the NULL partition, this is just so cheap, there's no
* sense in caching.
*
* Return value is index of the partition (>= 0 and < partdesc->nparts) if one
* found or -1 if none found.
*/
static int
get_partition_for_tuple(PartitionDispatch pd, Datum *values, bool *isnull)
{
int bound_offset = -1;
int part_index = -1;
PartitionKey key = pd->key;
PartitionDesc partdesc = pd->partdesc;
PartitionBoundInfo boundinfo = partdesc->boundinfo;
/*
* In the switch statement below, when we perform a cached lookup for
* RANGE and LIST partitioned tables, if we find that the last found
* partition matches the 'values', we return the partition index right
* away. We do this instead of breaking out of the switch as we don't
* want to execute the code about the DEFAULT partition or do any updates
* for any of the cache-related fields. That would be a waste of effort
* as we already know it's not the DEFAULT partition and have no need to
* increment the number of times we found the same partition any higher
* than PARTITION_CACHED_FIND_THRESHOLD.
*/
/* Route as appropriate based on partitioning strategy. */
switch (key->strategy)
{
case PARTITION_STRATEGY_HASH:
{
uint64 rowHash;
/* hash partitioning is too cheap to bother caching */
rowHash = compute_partition_hash_value(key->partnatts,
key->partsupfunc,
key->partcollation,
values, isnull);
/*
* HASH partitions can't have a DEFAULT partition and we don't
* do any caching work for them, so just return the part index
*/
return boundinfo->indexes[rowHash % boundinfo->nindexes];
}
case PARTITION_STRATEGY_LIST:
if (isnull[0])
{
/* this is far too cheap to bother doing any caching */
if (partition_bound_accepts_nulls(boundinfo))
{
/*
* When there is a NULL partition we just return that
* directly. We don't have a bound_offset so it's not
* valid to drop into the code after the switch which
* checks and updates the cache fields. We perhaps should
* be invalidating the details of the last cached
* partition but there's no real need to. Keeping those
* fields set gives a chance at matching to the cached
* partition on the next lookup.
*/
return boundinfo->null_index;
}
}
else
{
bool equal;
if (partdesc->last_found_count >= PARTITION_CACHED_FIND_THRESHOLD)
{
int last_datum_offset = partdesc->last_found_datum_index;
Datum lastDatum = boundinfo->datums[last_datum_offset][0];
int32 cmpval;
/* does the last found datum index match this datum? */
cmpval = DatumGetInt32(FunctionCall2Coll(&key->partsupfunc[0],
key->partcollation[0],
lastDatum,
values[0]));
if (cmpval == 0)
return boundinfo->indexes[last_datum_offset];
/* fall-through and do a manual lookup */
}
bound_offset = partition_list_bsearch(key->partsupfunc,
key->partcollation,
boundinfo,
values[0], &equal);
if (bound_offset >= 0 && equal)
part_index = boundinfo->indexes[bound_offset];
}
break;
case PARTITION_STRATEGY_RANGE:
{
bool equal = false,
range_partkey_has_null = false;
int i;
/*
* No range includes NULL, so this will be accepted by the
* default partition if there is one, and otherwise rejected.
*/
for (i = 0; i < key->partnatts; i++)
{
if (isnull[i])
{
range_partkey_has_null = true;
break;
}
}
/* NULLs belong in the DEFAULT partition */
if (range_partkey_has_null)
break;
if (partdesc->last_found_count >= PARTITION_CACHED_FIND_THRESHOLD)
{
int last_datum_offset = partdesc->last_found_datum_index;
Datum *lastDatums = boundinfo->datums[last_datum_offset];
PartitionRangeDatumKind *kind = boundinfo->kind[last_datum_offset];
int32 cmpval;
/* check if the value is >= to the lower bound */
cmpval = partition_rbound_datum_cmp(key->partsupfunc,
key->partcollation,
lastDatums,
kind,
values,
key->partnatts);
/*
* If it's equal to the lower bound then no need to check
* the upper bound.
*/
if (cmpval == 0)
return boundinfo->indexes[last_datum_offset + 1];
if (cmpval < 0 && last_datum_offset + 1 < boundinfo->ndatums)
{
/* check if the value is below the upper bound */
lastDatums = boundinfo->datums[last_datum_offset + 1];
kind = boundinfo->kind[last_datum_offset + 1];
cmpval = partition_rbound_datum_cmp(key->partsupfunc,
key->partcollation,
lastDatums,
kind,
values,
key->partnatts);
if (cmpval > 0)
return boundinfo->indexes[last_datum_offset + 1];
}
/* fall-through and do a manual lookup */
}
bound_offset = partition_range_datum_bsearch(key->partsupfunc,
key->partcollation,
boundinfo,
key->partnatts,
values,
&equal);
/*
* The bound at bound_offset is less than or equal to the
* tuple value, so the bound at offset+1 is the upper bound of
* the partition we're looking for, if there actually exists
* one.
*/
part_index = boundinfo->indexes[bound_offset + 1];
}
break;
default:
elog(ERROR, "unexpected partition strategy: %d",
(int) key->strategy);
}
/*
* part_index < 0 means we failed to find a partition of this parent. Use
* the default partition, if there is one.
*/
if (part_index < 0)
{
/*
* No need to reset the cache fields here. The next set of values
* might end up belonging to the cached partition, so leaving the
* cache alone improves the chances of a cache hit on the next lookup.
*/
return boundinfo->default_index;
}
/* we should only make it here when the code above set bound_offset */
Assert(bound_offset >= 0);
/*
* Attend to the cache fields. If the bound_offset matches the last
* cached bound offset then we've found the same partition as last time,
* so bump the count by one. If all goes well, we'll eventually reach
* PARTITION_CACHED_FIND_THRESHOLD and try the cache path next time
* around. Otherwise, we'll reset the cache count back to 1 to mark that
* we've found this partition for the first time.
*/
if (bound_offset == partdesc->last_found_datum_index)
partdesc->last_found_count++;
else
{
partdesc->last_found_count = 1;
partdesc->last_found_part_index = part_index;
partdesc->last_found_datum_index = bound_offset;
}
return part_index;
}
/*
* ExecBuildSlotPartitionKeyDescription
*
* This works very much like BuildIndexValueDescription() and is currently
* used for building error messages when ExecFindPartition() fails to find
* partition for a row.
*/
static char *
ExecBuildSlotPartitionKeyDescription(Relation rel,
Datum *values,
bool *isnull,
int maxfieldlen)
{
StringInfoData buf;
PartitionKey key = RelationGetPartitionKey(rel);
int partnatts = get_partition_natts(key);
int i;
Oid relid = RelationGetRelid(rel);
AclResult aclresult;
if (check_enable_rls(relid, InvalidOid, true) == RLS_ENABLED)
return NULL;
/* If the user has table-level access, just go build the description. */
aclresult = pg_class_aclcheck(relid, GetUserId(), ACL_SELECT);
if (aclresult != ACLCHECK_OK)
{
/*
* Step through the columns of the partition key and make sure the
* user has SELECT rights on all of them.
*/
for (i = 0; i < partnatts; i++)
{
AttrNumber attnum = get_partition_col_attnum(key, i);
/*
* If this partition key column is an expression, we return no
* detail rather than try to figure out what column(s) the
* expression includes and if the user has SELECT rights on them.
*/
if (attnum == InvalidAttrNumber ||
pg_attribute_aclcheck(relid, attnum, GetUserId(),
ACL_SELECT) != ACLCHECK_OK)
return NULL;
}
}
initStringInfo(&buf);
appendStringInfo(&buf, "(%s) = (",
pg_get_partkeydef_columns(relid, true));
for (i = 0; i < partnatts; i++)
{
char *val;
int vallen;
if (isnull[i])
val = "null";
else
{
Oid foutoid;
bool typisvarlena;
getTypeOutputInfo(get_partition_col_typid(key, i),
&foutoid, &typisvarlena);
val = OidOutputFunctionCall(foutoid, values[i]);
}
if (i > 0)
appendStringInfoString(&buf, ", ");
/* truncate if needed */
vallen = strlen(val);
if (vallen <= maxfieldlen)
appendBinaryStringInfo(&buf, val, vallen);
else
{
vallen = pg_mbcliplen(val, vallen, maxfieldlen);
appendBinaryStringInfo(&buf, val, vallen);
appendStringInfoString(&buf, "...");
}
}
appendStringInfoChar(&buf, ')');
return buf.data;
}
/*
* adjust_partition_colnos
* Adjust the list of UPDATE target column numbers to account for
* attribute differences between the parent and the partition.
*
* Note: mustn't be called if no adjustment is required.
*/
static List *
adjust_partition_colnos(List *colnos, ResultRelInfo *leaf_part_rri)
{
TupleConversionMap *map = ExecGetChildToRootMap(leaf_part_rri);
Assert(map != NULL);
return adjust_partition_colnos_using_map(colnos, map->attrMap);
}
/*
* adjust_partition_colnos_using_map
* Like adjust_partition_colnos, but uses a caller-supplied map instead
* of assuming to map from the "root" result relation.
*
* Note: mustn't be called if no adjustment is required.
*/
static List *
adjust_partition_colnos_using_map(List *colnos, AttrMap *attrMap)
{
List *new_colnos = NIL;
ListCell *lc;
Assert(attrMap != NULL); /* else we shouldn't be here */
foreach(lc, colnos)
{
AttrNumber parentattrno = lfirst_int(lc);
if (parentattrno <= 0 ||
parentattrno > attrMap->maplen ||
attrMap->attnums[parentattrno - 1] == 0)
elog(ERROR, "unexpected attno %d in target column list",
parentattrno);
new_colnos = lappend_int(new_colnos,
attrMap->attnums[parentattrno - 1]);
}
return new_colnos;
}
/*-------------------------------------------------------------------------
* Run-Time Partition Pruning Support.
*
* The following series of functions exist to support the removal of unneeded
* subplans for queries against partitioned tables. The supporting functions
* here are designed to work with any plan type which supports an arbitrary
* number of subplans, e.g. Append, MergeAppend.
*
* When pruning involves comparison of a partition key to a constant, it's
* done by the planner. However, if we have a comparison to a non-constant
* but not volatile expression, that presents an opportunity for run-time
* pruning by the executor, allowing irrelevant partitions to be skipped
* dynamically.
*
* We must distinguish expressions containing PARAM_EXEC Params from
* expressions that don't contain those. Even though a PARAM_EXEC Param is
* considered to be a stable expression, it can change value from one plan
* node scan to the next during query execution. Stable comparison
* expressions that don't involve such Params allow partition pruning to be
* done once during executor startup. Expressions that do involve such Params
* require us to prune separately for each scan of the parent plan node.
*
* Note that pruning away unneeded subplans during executor startup has the
* added benefit of not having to initialize the unneeded subplans at all.
*
*
* Functions:
*
* ExecInitPartitionPruning:
* Creates the PartitionPruneState required by ExecFindMatchingSubPlans.
* Details stored include how to map the partition index returned by the
* partition pruning code into subplan indexes. Also determines the set
* of subplans to initialize considering the result of performing initial
* pruning steps if any. Maps in PartitionPruneState are updated to
* account for initial pruning possibly having eliminated some of the
* subplans.
*
* ExecFindMatchingSubPlans:
* Returns indexes of matching subplans after evaluating the expressions
* that are safe to evaluate at a given point. This function is first
* called during ExecInitPartitionPruning() to find the initially
* matching subplans based on performing the initial pruning steps and
* then must be called again each time the value of a Param listed in
* PartitionPruneState's 'execparamids' changes.
*-------------------------------------------------------------------------
*/
/*
* ExecInitPartitionPruning
* Initialize data structure needed for run-time partition pruning and
* do initial pruning if needed
*
* On return, *initially_valid_subplans is assigned the set of indexes of
* child subplans that must be initialized along with the parent plan node.
* Initial pruning is performed here if needed and in that case only the
* surviving subplans' indexes are added.
*
* If subplans are indeed pruned, subplan_map arrays contained in the returned
* PartitionPruneState are re-sequenced to not count those, though only if the
* maps will be needed for subsequent execution pruning passes.
*/
PartitionPruneState *
ExecInitPartitionPruning(PlanState *planstate,
int n_total_subplans,
PartitionPruneInfo *pruneinfo,
Bitmapset **initially_valid_subplans)
{
PartitionPruneState *prunestate;
EState *estate = planstate->state;
/* We may need an expression context to evaluate partition exprs */
ExecAssignExprContext(estate, planstate);
/* Create the working data structure for pruning */
prunestate = CreatePartitionPruneState(planstate, pruneinfo);
/*
* Perform an initial partition prune pass, if required.
*/
if (prunestate->do_initial_prune)
*initially_valid_subplans = ExecFindMatchingSubPlans(prunestate, true);
else
{
/* No pruning, so we'll need to initialize all subplans */
Assert(n_total_subplans > 0);
*initially_valid_subplans = bms_add_range(NULL, 0,
n_total_subplans - 1);
}
/*
* Re-sequence subplan indexes contained in prunestate to account for any
* that were removed above due to initial pruning. No need to do this if
* no steps were removed.
*/
if (bms_num_members(*initially_valid_subplans) < n_total_subplans)
{
/*
* We can safely skip this when !do_exec_prune, even though that
* leaves invalid data in prunestate, because that data won't be
* consulted again (cf initial Assert in ExecFindMatchingSubPlans).
*/
if (prunestate->do_exec_prune)
PartitionPruneFixSubPlanMap(prunestate,
*initially_valid_subplans,
n_total_subplans);
}
return prunestate;
}
/*
* CreatePartitionPruneState
* Build the data structure required for calling ExecFindMatchingSubPlans
*
* 'planstate' is the parent plan node's execution state.
*
* 'pruneinfo' is a PartitionPruneInfo as generated by
* make_partition_pruneinfo. Here we build a PartitionPruneState containing a
* PartitionPruningData for each partitioning hierarchy (i.e., each sublist of
* pruneinfo->prune_infos), each of which contains a PartitionedRelPruningData
* for each PartitionedRelPruneInfo appearing in that sublist. This two-level
* system is needed to keep from confusing the different hierarchies when a
* UNION ALL contains multiple partitioned tables as children. The data
* stored in each PartitionedRelPruningData can be re-used each time we
* re-evaluate which partitions match the pruning steps provided in each
* PartitionedRelPruneInfo.
*/
static PartitionPruneState *
CreatePartitionPruneState(PlanState *planstate, PartitionPruneInfo *pruneinfo)
{
EState *estate = planstate->state;
PartitionPruneState *prunestate;
int n_part_hierarchies;
ListCell *lc;
int i;
ExprContext *econtext = planstate->ps_ExprContext;
/* For data reading, executor always omits detached partitions */
if (estate->es_partition_directory == NULL)
estate->es_partition_directory =
CreatePartitionDirectory(estate->es_query_cxt, false);
n_part_hierarchies = list_length(pruneinfo->prune_infos);
Assert(n_part_hierarchies > 0);
/*
* Allocate the data structure
*/
prunestate = (PartitionPruneState *)
palloc(offsetof(PartitionPruneState, partprunedata) +
sizeof(PartitionPruningData *) * n_part_hierarchies);
prunestate->execparamids = NULL;
/* other_subplans can change at runtime, so we need our own copy */
prunestate->other_subplans = bms_copy(pruneinfo->other_subplans);
prunestate->do_initial_prune = false; /* may be set below */
prunestate->do_exec_prune = false; /* may be set below */
prunestate->num_partprunedata = n_part_hierarchies;
/*
* Create a short-term memory context which we'll use when making calls to
* the partition pruning functions. This avoids possible memory leaks,
* since the pruning functions call comparison functions that aren't under
* our control.
*/
prunestate->prune_context =
AllocSetContextCreate(CurrentMemoryContext,
"Partition Prune",
ALLOCSET_DEFAULT_SIZES);
i = 0;
foreach(lc, pruneinfo->prune_infos)
{
List *partrelpruneinfos = lfirst_node(List, lc);
int npartrelpruneinfos = list_length(partrelpruneinfos);
PartitionPruningData *prunedata;
ListCell *lc2;
int j;
prunedata = (PartitionPruningData *)
palloc(offsetof(PartitionPruningData, partrelprunedata) +
npartrelpruneinfos * sizeof(PartitionedRelPruningData));
prunestate->partprunedata[i] = prunedata;
prunedata->num_partrelprunedata = npartrelpruneinfos;
j = 0;
foreach(lc2, partrelpruneinfos)
{
PartitionedRelPruneInfo *pinfo = lfirst_node(PartitionedRelPruneInfo, lc2);
PartitionedRelPruningData *pprune = &prunedata->partrelprunedata[j];
Relation partrel;
PartitionDesc partdesc;
PartitionKey partkey;
/*
* We can rely on the copies of the partitioned table's partition
* key and partition descriptor appearing in its relcache entry,
* because that entry will be held open and locked for the
* duration of this executor run.
*/
partrel = ExecGetRangeTableRelation(estate, pinfo->rtindex);
partkey = RelationGetPartitionKey(partrel);
partdesc = PartitionDirectoryLookup(estate->es_partition_directory,
partrel);
/*
* Initialize the subplan_map and subpart_map.
*
* Because we request detached partitions to be included, and
* detaching waits for old transactions, it is safe to assume that
* no partitions have disappeared since this query was planned.
*
* However, new partitions may have been added.
*/
Assert(partdesc->nparts >= pinfo->nparts);
pprune->nparts = partdesc->nparts;
pprune->subplan_map = palloc(sizeof(int) * partdesc->nparts);
if (partdesc->nparts == pinfo->nparts)
{
/*
* There are no new partitions, so this is simple. We can
* simply point to the subpart_map from the plan, but we must
* copy the subplan_map since we may change it later.
*/
pprune->subpart_map = pinfo->subpart_map;
memcpy(pprune->subplan_map, pinfo->subplan_map,
sizeof(int) * pinfo->nparts);
/*
* Double-check that the list of unpruned relations has not
* changed. (Pruned partitions are not in relid_map[].)
*/
#ifdef USE_ASSERT_CHECKING
for (int k = 0; k < pinfo->nparts; k++)
{
Assert(partdesc->oids[k] == pinfo->relid_map[k] ||
pinfo->subplan_map[k] == -1);
}
#endif
}
else
{
int pd_idx = 0;
int pp_idx;
/*
* Some new partitions have appeared since plan time, and
* those are reflected in our PartitionDesc but were not
* present in the one used to construct subplan_map and
* subpart_map. So we must construct new and longer arrays
* where the partitions that were originally present map to
* the same sub-structures, and any added partitions map to
* -1, as if the new partitions had been pruned.
*
* Note: pinfo->relid_map[] may contain InvalidOid entries for
* partitions pruned by the planner. We cannot tell exactly
* which of the partdesc entries these correspond to, but we
* don't have to; just skip over them. The non-pruned
* relid_map entries, however, had better be a subset of the
* partdesc entries and in the same order.
*/
pprune->subpart_map = palloc(sizeof(int) * partdesc->nparts);
for (pp_idx = 0; pp_idx < partdesc->nparts; pp_idx++)
{
/* Skip any InvalidOid relid_map entries */
while (pd_idx < pinfo->nparts &&
!OidIsValid(pinfo->relid_map[pd_idx]))
pd_idx++;
if (pd_idx < pinfo->nparts &&
pinfo->relid_map[pd_idx] == partdesc->oids[pp_idx])
{
/* match... */
pprune->subplan_map[pp_idx] =
pinfo->subplan_map[pd_idx];
pprune->subpart_map[pp_idx] =
pinfo->subpart_map[pd_idx];
pd_idx++;
}
else
{
/* this partdesc entry is not in the plan */
pprune->subplan_map[pp_idx] = -1;
pprune->subpart_map[pp_idx] = -1;
}
}
/*
* It might seem that we need to skip any trailing InvalidOid
* entries in pinfo->relid_map before checking that we scanned
* all of the relid_map. But we will have skipped them above,
* because they must correspond to some partdesc->oids
* entries; we just couldn't tell which.
*/
if (pd_idx != pinfo->nparts)
elog(ERROR, "could not match partition child tables to plan elements");
}
/* present_parts is also subject to later modification */
pprune->present_parts = bms_copy(pinfo->present_parts);
/*
* Initialize pruning contexts as needed. Note that we must skip
* execution-time partition pruning in EXPLAIN (GENERIC_PLAN),
* since parameter values may be missing.
*/
pprune->initial_pruning_steps = pinfo->initial_pruning_steps;
if (pinfo->initial_pruning_steps &&
!(econtext->ecxt_estate->es_top_eflags & EXEC_FLAG_EXPLAIN_GENERIC))
{
InitPartitionPruneContext(&pprune->initial_context,
pinfo->initial_pruning_steps,
partdesc, partkey, planstate,
econtext);
/* Record whether initial pruning is needed at any level */
prunestate->do_initial_prune = true;
}
pprune->exec_pruning_steps = pinfo->exec_pruning_steps;
if (pinfo->exec_pruning_steps &&
!(econtext->ecxt_estate->es_top_eflags & EXEC_FLAG_EXPLAIN_GENERIC))
{
InitPartitionPruneContext(&pprune->exec_context,
pinfo->exec_pruning_steps,
partdesc, partkey, planstate,
econtext);
/* Record whether exec pruning is needed at any level */
prunestate->do_exec_prune = true;
}
/*
* Accumulate the IDs of all PARAM_EXEC Params affecting the
* partitioning decisions at this plan node.
*/
prunestate->execparamids = bms_add_members(prunestate->execparamids,
pinfo->execparamids);
j++;
}
i++;
}
return prunestate;
}
/*
* Initialize a PartitionPruneContext for the given list of pruning steps.
*/
static void
InitPartitionPruneContext(PartitionPruneContext *context,
List *pruning_steps,
PartitionDesc partdesc,
PartitionKey partkey,
PlanState *planstate,
ExprContext *econtext)
{
int n_steps;
int partnatts;
ListCell *lc;
n_steps = list_length(pruning_steps);
context->strategy = partkey->strategy;
context->partnatts = partnatts = partkey->partnatts;
context->nparts = partdesc->nparts;
context->boundinfo = partdesc->boundinfo;
context->partcollation = partkey->partcollation;
context->partsupfunc = partkey->partsupfunc;
/* We'll look up type-specific support functions as needed */
context->stepcmpfuncs = (FmgrInfo *)
palloc0(sizeof(FmgrInfo) * n_steps * partnatts);
context->ppccontext = CurrentMemoryContext;
context->planstate = planstate;
context->exprcontext = econtext;
/* Initialize expression state for each expression we need */
context->exprstates = (ExprState **)
palloc0(sizeof(ExprState *) * n_steps * partnatts);
foreach(lc, pruning_steps)
{
PartitionPruneStepOp *step = (PartitionPruneStepOp *) lfirst(lc);
ListCell *lc2 = list_head(step->exprs);
int keyno;
/* not needed for other step kinds */
if (!IsA(step, PartitionPruneStepOp))
continue;
Assert(list_length(step->exprs) <= partnatts);
for (keyno = 0; keyno < partnatts; keyno++)
{
if (bms_is_member(keyno, step->nullkeys))
continue;
if (lc2 != NULL)
{
Expr *expr = lfirst(lc2);
/* not needed for Consts */
if (!IsA(expr, Const))
{
int stateidx = PruneCxtStateIdx(partnatts,
step->step.step_id,
keyno);
/*
* When planstate is NULL, pruning_steps is known not to
* contain any expressions that depend on the parent plan.
* Information of any available EXTERN parameters must be
* passed explicitly in that case, which the caller must
* have made available via econtext.
*/
if (planstate == NULL)
context->exprstates[stateidx] =
ExecInitExprWithParams(expr,
econtext->ecxt_param_list_info);
else
context->exprstates[stateidx] =
ExecInitExpr(expr, context->planstate);
}
lc2 = lnext(step->exprs, lc2);
}
}
}
}
/*
* PartitionPruneFixSubPlanMap
* Fix mapping of partition indexes to subplan indexes contained in
* prunestate by considering the new list of subplans that survived
* initial pruning
*
* Current values of the indexes present in PartitionPruneState count all the
* subplans that would be present before initial pruning was done. If initial
* pruning got rid of some of the subplans, any subsequent pruning passes will
* be looking at a different set of target subplans to choose from than those
* in the pre-initial-pruning set, so the maps in PartitionPruneState
* containing those indexes must be updated to reflect the new indexes of
* subplans in the post-initial-pruning set.
*/
static void
PartitionPruneFixSubPlanMap(PartitionPruneState *prunestate,
Bitmapset *initially_valid_subplans,
int n_total_subplans)
{
int *new_subplan_indexes;
Bitmapset *new_other_subplans;
int i;
int newidx;
/*
* First we must build a temporary array which maps old subplan indexes to
* new ones. For convenience of initialization, we use 1-based indexes in
* this array and leave pruned items as 0.
*/
new_subplan_indexes = (int *) palloc0(sizeof(int) * n_total_subplans);
newidx = 1;
i = -1;
while ((i = bms_next_member(initially_valid_subplans, i)) >= 0)
{
Assert(i < n_total_subplans);
new_subplan_indexes[i] = newidx++;
}
/*
* Now we can update each PartitionedRelPruneInfo's subplan_map with new
* subplan indexes. We must also recompute its present_parts bitmap.
*/
for (i = 0; i < prunestate->num_partprunedata; i++)
{
PartitionPruningData *prunedata = prunestate->partprunedata[i];
int j;
/*
* Within each hierarchy, we perform this loop in back-to-front order
* so that we determine present_parts for the lowest-level partitioned
* tables first. This way we can tell whether a sub-partitioned
* table's partitions were entirely pruned so we can exclude it from
* the current level's present_parts.
*/
for (j = prunedata->num_partrelprunedata - 1; j >= 0; j--)
{
PartitionedRelPruningData *pprune = &prunedata->partrelprunedata[j];
int nparts = pprune->nparts;
int k;
/* We just rebuild present_parts from scratch */
bms_free(pprune->present_parts);
pprune->present_parts = NULL;
for (k = 0; k < nparts; k++)
{
int oldidx = pprune->subplan_map[k];
int subidx;
/*
* If this partition existed as a subplan then change the old
* subplan index to the new subplan index. The new index may
* become -1 if the partition was pruned above, or it may just
* come earlier in the subplan list due to some subplans being
* removed earlier in the list. If it's a subpartition, add
* it to present_parts unless it's entirely pruned.
*/
if (oldidx >= 0)
{
Assert(oldidx < n_total_subplans);
pprune->subplan_map[k] = new_subplan_indexes[oldidx] - 1;
if (new_subplan_indexes[oldidx] > 0)
pprune->present_parts =
bms_add_member(pprune->present_parts, k);
}
else if ((subidx = pprune->subpart_map[k]) >= 0)
{
PartitionedRelPruningData *subprune;
subprune = &prunedata->partrelprunedata[subidx];
if (!bms_is_empty(subprune->present_parts))
pprune->present_parts =
bms_add_member(pprune->present_parts, k);
}
}
}
}
/*
* We must also recompute the other_subplans set, since indexes in it may
* change.
*/
new_other_subplans = NULL;
i = -1;
while ((i = bms_next_member(prunestate->other_subplans, i)) >= 0)
new_other_subplans = bms_add_member(new_other_subplans,
new_subplan_indexes[i] - 1);
bms_free(prunestate->other_subplans);
prunestate->other_subplans = new_other_subplans;
pfree(new_subplan_indexes);
}
/*
* ExecFindMatchingSubPlans
* Determine which subplans match the pruning steps detailed in
* 'prunestate' for the current comparison expression values.
*
* Pass initial_prune if PARAM_EXEC Params cannot yet be evaluated. This
* differentiates the initial executor-time pruning step from later
* runtime pruning.
*/
Bitmapset *
ExecFindMatchingSubPlans(PartitionPruneState *prunestate,
bool initial_prune)
{
Bitmapset *result = NULL;
MemoryContext oldcontext;
int i;
/*
* Either we're here on the initial prune done during pruning
* initialization, or we're at a point where PARAM_EXEC Params can be
* evaluated *and* there are steps in which to do so.
*/
Assert(initial_prune || prunestate->do_exec_prune);
/*
* Switch to a temp context to avoid leaking memory in the executor's
* query-lifespan memory context.
*/
oldcontext = MemoryContextSwitchTo(prunestate->prune_context);
/*
* For each hierarchy, do the pruning tests, and add nondeletable
* subplans' indexes to "result".
*/
for (i = 0; i < prunestate->num_partprunedata; i++)
{
PartitionPruningData *prunedata = prunestate->partprunedata[i];
PartitionedRelPruningData *pprune;
/*
* We pass the zeroth item, belonging to the root table of the
* hierarchy, and find_matching_subplans_recurse() takes care of
* recursing to other (lower-level) parents as needed.
*/
pprune = &prunedata->partrelprunedata[0];
find_matching_subplans_recurse(prunedata, pprune, initial_prune,
&result);
/* Expression eval may have used space in ExprContext too */
if (pprune->exec_pruning_steps)
ResetExprContext(pprune->exec_context.exprcontext);
}
/* Add in any subplans that partition pruning didn't account for */
result = bms_add_members(result, prunestate->other_subplans);
MemoryContextSwitchTo(oldcontext);
/* Copy result out of the temp context before we reset it */
result = bms_copy(result);
MemoryContextReset(prunestate->prune_context);
return result;
}
/*
* find_matching_subplans_recurse
* Recursive worker function for ExecFindMatchingSubPlans
*
* Adds valid (non-prunable) subplan IDs to *validsubplans
*/
static void
find_matching_subplans_recurse(PartitionPruningData *prunedata,
PartitionedRelPruningData *pprune,
bool initial_prune,
Bitmapset **validsubplans)
{
Bitmapset *partset;
int i;
/* Guard against stack overflow due to overly deep partition hierarchy. */
check_stack_depth();
/*
* Prune as appropriate, if we have pruning steps matching the current
* execution context. Otherwise just include all partitions at this
* level.
*/
if (initial_prune && pprune->initial_pruning_steps)
partset = get_matching_partitions(&pprune->initial_context,
pprune->initial_pruning_steps);
else if (!initial_prune && pprune->exec_pruning_steps)
partset = get_matching_partitions(&pprune->exec_context,
pprune->exec_pruning_steps);
else
partset = pprune->present_parts;
/* Translate partset into subplan indexes */
i = -1;
while ((i = bms_next_member(partset, i)) >= 0)
{
if (pprune->subplan_map[i] >= 0)
*validsubplans = bms_add_member(*validsubplans,
pprune->subplan_map[i]);
else
{
int partidx = pprune->subpart_map[i];
if (partidx >= 0)
find_matching_subplans_recurse(prunedata,
&prunedata->partrelprunedata[partidx],
initial_prune, validsubplans);
else
{
/*
* We get here if the planner already pruned all the sub-
* partitions for this partition. Silently ignore this
* partition in this case. The end result is the same: we
* would have pruned all partitions just the same, but we
* don't have any pruning steps to execute to verify this.
*/
}
}
}
}
|