summaryrefslogtreecommitdiffstats
path: root/src/backend/optimizer/plan/createplan.c
blob: 4bb38160b338a61c18d91edc749a68cebc5f8a38 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
/*-------------------------------------------------------------------------
 *
 * createplan.c
 *	  Routines to create the desired plan for processing a query.
 *	  Planning is complete, we just need to convert the selected
 *	  Path into a Plan.
 *
 * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/optimizer/plan/createplan.c
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include <math.h>

#include "access/sysattr.h"
#include "catalog/pg_class.h"
#include "foreign/fdwapi.h"
#include "miscadmin.h"
#include "nodes/extensible.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/optimizer.h"
#include "optimizer/paramassign.h"
#include "optimizer/paths.h"
#include "optimizer/placeholder.h"
#include "optimizer/plancat.h"
#include "optimizer/planmain.h"
#include "optimizer/prep.h"
#include "optimizer/restrictinfo.h"
#include "optimizer/subselect.h"
#include "optimizer/tlist.h"
#include "parser/parse_clause.h"
#include "parser/parsetree.h"
#include "partitioning/partprune.h"
#include "utils/lsyscache.h"


/*
 * Flag bits that can appear in the flags argument of create_plan_recurse().
 * These can be OR-ed together.
 *
 * CP_EXACT_TLIST specifies that the generated plan node must return exactly
 * the tlist specified by the path's pathtarget (this overrides both
 * CP_SMALL_TLIST and CP_LABEL_TLIST, if those are set).  Otherwise, the
 * plan node is allowed to return just the Vars and PlaceHolderVars needed
 * to evaluate the pathtarget.
 *
 * CP_SMALL_TLIST specifies that a narrower tlist is preferred.  This is
 * passed down by parent nodes such as Sort and Hash, which will have to
 * store the returned tuples.
 *
 * CP_LABEL_TLIST specifies that the plan node must return columns matching
 * any sortgrouprefs specified in its pathtarget, with appropriate
 * ressortgroupref labels.  This is passed down by parent nodes such as Sort
 * and Group, which need these values to be available in their inputs.
 *
 * CP_IGNORE_TLIST specifies that the caller plans to replace the targetlist,
 * and therefore it doesn't matter a bit what target list gets generated.
 */
#define CP_EXACT_TLIST		0x0001	/* Plan must return specified tlist */
#define CP_SMALL_TLIST		0x0002	/* Prefer narrower tlists */
#define CP_LABEL_TLIST		0x0004	/* tlist must contain sortgrouprefs */
#define CP_IGNORE_TLIST		0x0008	/* caller will replace tlist */


static Plan *create_plan_recurse(PlannerInfo *root, Path *best_path,
								 int flags);
static Plan *create_scan_plan(PlannerInfo *root, Path *best_path,
							  int flags);
static List *build_path_tlist(PlannerInfo *root, Path *path);
static bool use_physical_tlist(PlannerInfo *root, Path *path, int flags);
static List *get_gating_quals(PlannerInfo *root, List *quals);
static Plan *create_gating_plan(PlannerInfo *root, Path *path, Plan *plan,
								List *gating_quals);
static Plan *create_join_plan(PlannerInfo *root, JoinPath *best_path);
static bool mark_async_capable_plan(Plan *plan, Path *path);
static Plan *create_append_plan(PlannerInfo *root, AppendPath *best_path,
								int flags);
static Plan *create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path,
									  int flags);
static Result *create_group_result_plan(PlannerInfo *root,
										GroupResultPath *best_path);
static ProjectSet *create_project_set_plan(PlannerInfo *root, ProjectSetPath *best_path);
static Material *create_material_plan(PlannerInfo *root, MaterialPath *best_path,
									  int flags);
static Memoize *create_memoize_plan(PlannerInfo *root, MemoizePath *best_path,
									int flags);
static Plan *create_unique_plan(PlannerInfo *root, UniquePath *best_path,
								int flags);
static Gather *create_gather_plan(PlannerInfo *root, GatherPath *best_path);
static Plan *create_projection_plan(PlannerInfo *root,
									ProjectionPath *best_path,
									int flags);
static Plan *inject_projection_plan(Plan *subplan, List *tlist, bool parallel_safe);
static Sort *create_sort_plan(PlannerInfo *root, SortPath *best_path, int flags);
static IncrementalSort *create_incrementalsort_plan(PlannerInfo *root,
													IncrementalSortPath *best_path, int flags);
static Group *create_group_plan(PlannerInfo *root, GroupPath *best_path);
static Unique *create_upper_unique_plan(PlannerInfo *root, UpperUniquePath *best_path,
										int flags);
static Agg *create_agg_plan(PlannerInfo *root, AggPath *best_path);
static Plan *create_groupingsets_plan(PlannerInfo *root, GroupingSetsPath *best_path);
static Result *create_minmaxagg_plan(PlannerInfo *root, MinMaxAggPath *best_path);
static WindowAgg *create_windowagg_plan(PlannerInfo *root, WindowAggPath *best_path);
static SetOp *create_setop_plan(PlannerInfo *root, SetOpPath *best_path,
								int flags);
static RecursiveUnion *create_recursiveunion_plan(PlannerInfo *root, RecursiveUnionPath *best_path);
static LockRows *create_lockrows_plan(PlannerInfo *root, LockRowsPath *best_path,
									  int flags);
static ModifyTable *create_modifytable_plan(PlannerInfo *root, ModifyTablePath *best_path);
static Limit *create_limit_plan(PlannerInfo *root, LimitPath *best_path,
								int flags);
static SeqScan *create_seqscan_plan(PlannerInfo *root, Path *best_path,
									List *tlist, List *scan_clauses);
static SampleScan *create_samplescan_plan(PlannerInfo *root, Path *best_path,
										  List *tlist, List *scan_clauses);
static Scan *create_indexscan_plan(PlannerInfo *root, IndexPath *best_path,
								   List *tlist, List *scan_clauses, bool indexonly);
static BitmapHeapScan *create_bitmap_scan_plan(PlannerInfo *root,
											   BitmapHeapPath *best_path,
											   List *tlist, List *scan_clauses);
static Plan *create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual,
								   List **qual, List **indexqual, List **indexECs);
static void bitmap_subplan_mark_shared(Plan *plan);
static TidScan *create_tidscan_plan(PlannerInfo *root, TidPath *best_path,
									List *tlist, List *scan_clauses);
static TidRangeScan *create_tidrangescan_plan(PlannerInfo *root,
											  TidRangePath *best_path,
											  List *tlist,
											  List *scan_clauses);
static SubqueryScan *create_subqueryscan_plan(PlannerInfo *root,
											  SubqueryScanPath *best_path,
											  List *tlist, List *scan_clauses);
static FunctionScan *create_functionscan_plan(PlannerInfo *root, Path *best_path,
											  List *tlist, List *scan_clauses);
static ValuesScan *create_valuesscan_plan(PlannerInfo *root, Path *best_path,
										  List *tlist, List *scan_clauses);
static TableFuncScan *create_tablefuncscan_plan(PlannerInfo *root, Path *best_path,
												List *tlist, List *scan_clauses);
static CteScan *create_ctescan_plan(PlannerInfo *root, Path *best_path,
									List *tlist, List *scan_clauses);
static NamedTuplestoreScan *create_namedtuplestorescan_plan(PlannerInfo *root,
															Path *best_path, List *tlist, List *scan_clauses);
static Result *create_resultscan_plan(PlannerInfo *root, Path *best_path,
									  List *tlist, List *scan_clauses);
static WorkTableScan *create_worktablescan_plan(PlannerInfo *root, Path *best_path,
												List *tlist, List *scan_clauses);
static ForeignScan *create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path,
											List *tlist, List *scan_clauses);
static CustomScan *create_customscan_plan(PlannerInfo *root,
										  CustomPath *best_path,
										  List *tlist, List *scan_clauses);
static NestLoop *create_nestloop_plan(PlannerInfo *root, NestPath *best_path);
static MergeJoin *create_mergejoin_plan(PlannerInfo *root, MergePath *best_path);
static HashJoin *create_hashjoin_plan(PlannerInfo *root, HashPath *best_path);
static Node *replace_nestloop_params(PlannerInfo *root, Node *expr);
static Node *replace_nestloop_params_mutator(Node *node, PlannerInfo *root);
static void fix_indexqual_references(PlannerInfo *root, IndexPath *index_path,
									 List **stripped_indexquals_p,
									 List **fixed_indexquals_p);
static List *fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path);
static Node *fix_indexqual_clause(PlannerInfo *root,
								  IndexOptInfo *index, int indexcol,
								  Node *clause, List *indexcolnos);
static Node *fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol);
static List *get_switched_clauses(List *clauses, Relids outerrelids);
static List *order_qual_clauses(PlannerInfo *root, List *clauses);
static void copy_generic_path_info(Plan *dest, Path *src);
static void copy_plan_costsize(Plan *dest, Plan *src);
static void label_sort_with_costsize(PlannerInfo *root, Sort *plan,
									 double limit_tuples);
static SeqScan *make_seqscan(List *qptlist, List *qpqual, Index scanrelid);
static SampleScan *make_samplescan(List *qptlist, List *qpqual, Index scanrelid,
								   TableSampleClause *tsc);
static IndexScan *make_indexscan(List *qptlist, List *qpqual, Index scanrelid,
								 Oid indexid, List *indexqual, List *indexqualorig,
								 List *indexorderby, List *indexorderbyorig,
								 List *indexorderbyops,
								 ScanDirection indexscandir);
static IndexOnlyScan *make_indexonlyscan(List *qptlist, List *qpqual,
										 Index scanrelid, Oid indexid,
										 List *indexqual, List *recheckqual,
										 List *indexorderby,
										 List *indextlist,
										 ScanDirection indexscandir);
static BitmapIndexScan *make_bitmap_indexscan(Index scanrelid, Oid indexid,
											  List *indexqual,
											  List *indexqualorig);
static BitmapHeapScan *make_bitmap_heapscan(List *qptlist,
											List *qpqual,
											Plan *lefttree,
											List *bitmapqualorig,
											Index scanrelid);
static TidScan *make_tidscan(List *qptlist, List *qpqual, Index scanrelid,
							 List *tidquals);
static TidRangeScan *make_tidrangescan(List *qptlist, List *qpqual,
									   Index scanrelid, List *tidrangequals);
static SubqueryScan *make_subqueryscan(List *qptlist,
									   List *qpqual,
									   Index scanrelid,
									   Plan *subplan);
static FunctionScan *make_functionscan(List *qptlist, List *qpqual,
									   Index scanrelid, List *functions, bool funcordinality);
static ValuesScan *make_valuesscan(List *qptlist, List *qpqual,
								   Index scanrelid, List *values_lists);
static TableFuncScan *make_tablefuncscan(List *qptlist, List *qpqual,
										 Index scanrelid, TableFunc *tablefunc);
static CteScan *make_ctescan(List *qptlist, List *qpqual,
							 Index scanrelid, int ctePlanId, int cteParam);
static NamedTuplestoreScan *make_namedtuplestorescan(List *qptlist, List *qpqual,
													 Index scanrelid, char *enrname);
static WorkTableScan *make_worktablescan(List *qptlist, List *qpqual,
										 Index scanrelid, int wtParam);
static RecursiveUnion *make_recursive_union(List *tlist,
											Plan *lefttree,
											Plan *righttree,
											int wtParam,
											List *distinctList,
											long numGroups);
static BitmapAnd *make_bitmap_and(List *bitmapplans);
static BitmapOr *make_bitmap_or(List *bitmapplans);
static NestLoop *make_nestloop(List *tlist,
							   List *joinclauses, List *otherclauses, List *nestParams,
							   Plan *lefttree, Plan *righttree,
							   JoinType jointype, bool inner_unique);
static HashJoin *make_hashjoin(List *tlist,
							   List *joinclauses, List *otherclauses,
							   List *hashclauses,
							   List *hashoperators, List *hashcollations,
							   List *hashkeys,
							   Plan *lefttree, Plan *righttree,
							   JoinType jointype, bool inner_unique);
static Hash *make_hash(Plan *lefttree,
					   List *hashkeys,
					   Oid skewTable,
					   AttrNumber skewColumn,
					   bool skewInherit);
static MergeJoin *make_mergejoin(List *tlist,
								 List *joinclauses, List *otherclauses,
								 List *mergeclauses,
								 Oid *mergefamilies,
								 Oid *mergecollations,
								 int *mergestrategies,
								 bool *mergenullsfirst,
								 Plan *lefttree, Plan *righttree,
								 JoinType jointype, bool inner_unique,
								 bool skip_mark_restore);
static Sort *make_sort(Plan *lefttree, int numCols,
					   AttrNumber *sortColIdx, Oid *sortOperators,
					   Oid *collations, bool *nullsFirst);
static IncrementalSort *make_incrementalsort(Plan *lefttree,
											 int numCols, int nPresortedCols,
											 AttrNumber *sortColIdx, Oid *sortOperators,
											 Oid *collations, bool *nullsFirst);
static Plan *prepare_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
										Relids relids,
										const AttrNumber *reqColIdx,
										bool adjust_tlist_in_place,
										int *p_numsortkeys,
										AttrNumber **p_sortColIdx,
										Oid **p_sortOperators,
										Oid **p_collations,
										bool **p_nullsFirst);
static Sort *make_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
									 Relids relids);
static IncrementalSort *make_incrementalsort_from_pathkeys(Plan *lefttree,
														   List *pathkeys, Relids relids, int nPresortedCols);
static Sort *make_sort_from_groupcols(List *groupcls,
									  AttrNumber *grpColIdx,
									  Plan *lefttree);
static Material *make_material(Plan *lefttree);
static Memoize *make_memoize(Plan *lefttree, Oid *hashoperators,
							 Oid *collations, List *param_exprs,
							 bool singlerow, bool binary_mode,
							 uint32 est_entries, Bitmapset *keyparamids);
static WindowAgg *make_windowagg(List *tlist, Index winref,
								 int partNumCols, AttrNumber *partColIdx, Oid *partOperators, Oid *partCollations,
								 int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators, Oid *ordCollations,
								 int frameOptions, Node *startOffset, Node *endOffset,
								 Oid startInRangeFunc, Oid endInRangeFunc,
								 Oid inRangeColl, bool inRangeAsc, bool inRangeNullsFirst,
								 List *runCondition, List *qual, bool topWindow,
								 Plan *lefttree);
static Group *make_group(List *tlist, List *qual, int numGroupCols,
						 AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations,
						 Plan *lefttree);
static Unique *make_unique_from_sortclauses(Plan *lefttree, List *distinctList);
static Unique *make_unique_from_pathkeys(Plan *lefttree,
										 List *pathkeys, int numCols);
static Gather *make_gather(List *qptlist, List *qpqual,
						   int nworkers, int rescan_param, bool single_copy, Plan *subplan);
static SetOp *make_setop(SetOpCmd cmd, SetOpStrategy strategy, Plan *lefttree,
						 List *distinctList, AttrNumber flagColIdx, int firstFlag,
						 long numGroups);
static LockRows *make_lockrows(Plan *lefttree, List *rowMarks, int epqParam);
static Result *make_result(List *tlist, Node *resconstantqual, Plan *subplan);
static ProjectSet *make_project_set(List *tlist, Plan *subplan);
static ModifyTable *make_modifytable(PlannerInfo *root, Plan *subplan,
									 CmdType operation, bool canSetTag,
									 Index nominalRelation, Index rootRelation,
									 bool partColsUpdated,
									 List *resultRelations,
									 List *updateColnosLists,
									 List *withCheckOptionLists, List *returningLists,
									 List *rowMarks, OnConflictExpr *onconflict,
									 List *mergeActionLists, int epqParam);
static GatherMerge *create_gather_merge_plan(PlannerInfo *root,
											 GatherMergePath *best_path);


/*
 * create_plan
 *	  Creates the access plan for a query by recursively processing the
 *	  desired tree of pathnodes, starting at the node 'best_path'.  For
 *	  every pathnode found, we create a corresponding plan node containing
 *	  appropriate id, target list, and qualification information.
 *
 *	  The tlists and quals in the plan tree are still in planner format,
 *	  ie, Vars still correspond to the parser's numbering.  This will be
 *	  fixed later by setrefs.c.
 *
 *	  best_path is the best access path
 *
 *	  Returns a Plan tree.
 */
Plan *
create_plan(PlannerInfo *root, Path *best_path)
{
	Plan	   *plan;

	/* plan_params should not be in use in current query level */
	Assert(root->plan_params == NIL);

	/* Initialize this module's workspace in PlannerInfo */
	root->curOuterRels = NULL;
	root->curOuterParams = NIL;

	/* Recursively process the path tree, demanding the correct tlist result */
	plan = create_plan_recurse(root, best_path, CP_EXACT_TLIST);

	/*
	 * Make sure the topmost plan node's targetlist exposes the original
	 * column names and other decorative info.  Targetlists generated within
	 * the planner don't bother with that stuff, but we must have it on the
	 * top-level tlist seen at execution time.  However, ModifyTable plan
	 * nodes don't have a tlist matching the querytree targetlist.
	 */
	if (!IsA(plan, ModifyTable))
		apply_tlist_labeling(plan->targetlist, root->processed_tlist);

	/*
	 * Attach any initPlans created in this query level to the topmost plan
	 * node.  (In principle the initplans could go in any plan node at or
	 * above where they're referenced, but there seems no reason to put them
	 * any lower than the topmost node for the query level.  Also, see
	 * comments for SS_finalize_plan before you try to change this.)
	 */
	SS_attach_initplans(root, plan);

	/* Check we successfully assigned all NestLoopParams to plan nodes */
	if (root->curOuterParams != NIL)
		elog(ERROR, "failed to assign all NestLoopParams to plan nodes");

	/*
	 * Reset plan_params to ensure param IDs used for nestloop params are not
	 * re-used later
	 */
	root->plan_params = NIL;

	return plan;
}

/*
 * create_plan_recurse
 *	  Recursive guts of create_plan().
 */
static Plan *
create_plan_recurse(PlannerInfo *root, Path *best_path, int flags)
{
	Plan	   *plan;

	/* Guard against stack overflow due to overly complex plans */
	check_stack_depth();

	switch (best_path->pathtype)
	{
		case T_SeqScan:
		case T_SampleScan:
		case T_IndexScan:
		case T_IndexOnlyScan:
		case T_BitmapHeapScan:
		case T_TidScan:
		case T_TidRangeScan:
		case T_SubqueryScan:
		case T_FunctionScan:
		case T_TableFuncScan:
		case T_ValuesScan:
		case T_CteScan:
		case T_WorkTableScan:
		case T_NamedTuplestoreScan:
		case T_ForeignScan:
		case T_CustomScan:
			plan = create_scan_plan(root, best_path, flags);
			break;
		case T_HashJoin:
		case T_MergeJoin:
		case T_NestLoop:
			plan = create_join_plan(root,
									(JoinPath *) best_path);
			break;
		case T_Append:
			plan = create_append_plan(root,
									  (AppendPath *) best_path,
									  flags);
			break;
		case T_MergeAppend:
			plan = create_merge_append_plan(root,
											(MergeAppendPath *) best_path,
											flags);
			break;
		case T_Result:
			if (IsA(best_path, ProjectionPath))
			{
				plan = create_projection_plan(root,
											  (ProjectionPath *) best_path,
											  flags);
			}
			else if (IsA(best_path, MinMaxAggPath))
			{
				plan = (Plan *) create_minmaxagg_plan(root,
													  (MinMaxAggPath *) best_path);
			}
			else if (IsA(best_path, GroupResultPath))
			{
				plan = (Plan *) create_group_result_plan(root,
														 (GroupResultPath *) best_path);
			}
			else
			{
				/* Simple RTE_RESULT base relation */
				Assert(IsA(best_path, Path));
				plan = create_scan_plan(root, best_path, flags);
			}
			break;
		case T_ProjectSet:
			plan = (Plan *) create_project_set_plan(root,
													(ProjectSetPath *) best_path);
			break;
		case T_Material:
			plan = (Plan *) create_material_plan(root,
												 (MaterialPath *) best_path,
												 flags);
			break;
		case T_Memoize:
			plan = (Plan *) create_memoize_plan(root,
												(MemoizePath *) best_path,
												flags);
			break;
		case T_Unique:
			if (IsA(best_path, UpperUniquePath))
			{
				plan = (Plan *) create_upper_unique_plan(root,
														 (UpperUniquePath *) best_path,
														 flags);
			}
			else
			{
				Assert(IsA(best_path, UniquePath));
				plan = create_unique_plan(root,
										  (UniquePath *) best_path,
										  flags);
			}
			break;
		case T_Gather:
			plan = (Plan *) create_gather_plan(root,
											   (GatherPath *) best_path);
			break;
		case T_Sort:
			plan = (Plan *) create_sort_plan(root,
											 (SortPath *) best_path,
											 flags);
			break;
		case T_IncrementalSort:
			plan = (Plan *) create_incrementalsort_plan(root,
														(IncrementalSortPath *) best_path,
														flags);
			break;
		case T_Group:
			plan = (Plan *) create_group_plan(root,
											  (GroupPath *) best_path);
			break;
		case T_Agg:
			if (IsA(best_path, GroupingSetsPath))
				plan = create_groupingsets_plan(root,
												(GroupingSetsPath *) best_path);
			else
			{
				Assert(IsA(best_path, AggPath));
				plan = (Plan *) create_agg_plan(root,
												(AggPath *) best_path);
			}
			break;
		case T_WindowAgg:
			plan = (Plan *) create_windowagg_plan(root,
												  (WindowAggPath *) best_path);
			break;
		case T_SetOp:
			plan = (Plan *) create_setop_plan(root,
											  (SetOpPath *) best_path,
											  flags);
			break;
		case T_RecursiveUnion:
			plan = (Plan *) create_recursiveunion_plan(root,
													   (RecursiveUnionPath *) best_path);
			break;
		case T_LockRows:
			plan = (Plan *) create_lockrows_plan(root,
												 (LockRowsPath *) best_path,
												 flags);
			break;
		case T_ModifyTable:
			plan = (Plan *) create_modifytable_plan(root,
													(ModifyTablePath *) best_path);
			break;
		case T_Limit:
			plan = (Plan *) create_limit_plan(root,
											  (LimitPath *) best_path,
											  flags);
			break;
		case T_GatherMerge:
			plan = (Plan *) create_gather_merge_plan(root,
													 (GatherMergePath *) best_path);
			break;
		default:
			elog(ERROR, "unrecognized node type: %d",
				 (int) best_path->pathtype);
			plan = NULL;		/* keep compiler quiet */
			break;
	}

	return plan;
}

/*
 * create_scan_plan
 *	 Create a scan plan for the parent relation of 'best_path'.
 */
static Plan *
create_scan_plan(PlannerInfo *root, Path *best_path, int flags)
{
	RelOptInfo *rel = best_path->parent;
	List	   *scan_clauses;
	List	   *gating_clauses;
	List	   *tlist;
	Plan	   *plan;

	/*
	 * Extract the relevant restriction clauses from the parent relation. The
	 * executor must apply all these restrictions during the scan, except for
	 * pseudoconstants which we'll take care of below.
	 *
	 * If this is a plain indexscan or index-only scan, we need not consider
	 * restriction clauses that are implied by the index's predicate, so use
	 * indrestrictinfo not baserestrictinfo.  Note that we can't do that for
	 * bitmap indexscans, since there's not necessarily a single index
	 * involved; but it doesn't matter since create_bitmap_scan_plan() will be
	 * able to get rid of such clauses anyway via predicate proof.
	 */
	switch (best_path->pathtype)
	{
		case T_IndexScan:
		case T_IndexOnlyScan:
			scan_clauses = castNode(IndexPath, best_path)->indexinfo->indrestrictinfo;
			break;
		default:
			scan_clauses = rel->baserestrictinfo;
			break;
	}

	/*
	 * If this is a parameterized scan, we also need to enforce all the join
	 * clauses available from the outer relation(s).
	 *
	 * For paranoia's sake, don't modify the stored baserestrictinfo list.
	 */
	if (best_path->param_info)
		scan_clauses = list_concat_copy(scan_clauses,
										best_path->param_info->ppi_clauses);

	/*
	 * Detect whether we have any pseudoconstant quals to deal with.  Then, if
	 * we'll need a gating Result node, it will be able to project, so there
	 * are no requirements on the child's tlist.
	 */
	gating_clauses = get_gating_quals(root, scan_clauses);
	if (gating_clauses)
		flags = 0;

	/*
	 * For table scans, rather than using the relation targetlist (which is
	 * only those Vars actually needed by the query), we prefer to generate a
	 * tlist containing all Vars in order.  This will allow the executor to
	 * optimize away projection of the table tuples, if possible.
	 *
	 * But if the caller is going to ignore our tlist anyway, then don't
	 * bother generating one at all.  We use an exact equality test here, so
	 * that this only applies when CP_IGNORE_TLIST is the only flag set.
	 */
	if (flags == CP_IGNORE_TLIST)
	{
		tlist = NULL;
	}
	else if (use_physical_tlist(root, best_path, flags))
	{
		if (best_path->pathtype == T_IndexOnlyScan)
		{
			/* For index-only scan, the preferred tlist is the index's */
			tlist = copyObject(((IndexPath *) best_path)->indexinfo->indextlist);

			/*
			 * Transfer sortgroupref data to the replacement tlist, if
			 * requested (use_physical_tlist checked that this will work).
			 */
			if (flags & CP_LABEL_TLIST)
				apply_pathtarget_labeling_to_tlist(tlist, best_path->pathtarget);
		}
		else
		{
			tlist = build_physical_tlist(root, rel);
			if (tlist == NIL)
			{
				/* Failed because of dropped cols, so use regular method */
				tlist = build_path_tlist(root, best_path);
			}
			else
			{
				/* As above, transfer sortgroupref data to replacement tlist */
				if (flags & CP_LABEL_TLIST)
					apply_pathtarget_labeling_to_tlist(tlist, best_path->pathtarget);
			}
		}
	}
	else
	{
		tlist = build_path_tlist(root, best_path);
	}

	switch (best_path->pathtype)
	{
		case T_SeqScan:
			plan = (Plan *) create_seqscan_plan(root,
												best_path,
												tlist,
												scan_clauses);
			break;

		case T_SampleScan:
			plan = (Plan *) create_samplescan_plan(root,
												   best_path,
												   tlist,
												   scan_clauses);
			break;

		case T_IndexScan:
			plan = (Plan *) create_indexscan_plan(root,
												  (IndexPath *) best_path,
												  tlist,
												  scan_clauses,
												  false);
			break;

		case T_IndexOnlyScan:
			plan = (Plan *) create_indexscan_plan(root,
												  (IndexPath *) best_path,
												  tlist,
												  scan_clauses,
												  true);
			break;

		case T_BitmapHeapScan:
			plan = (Plan *) create_bitmap_scan_plan(root,
													(BitmapHeapPath *) best_path,
													tlist,
													scan_clauses);
			break;

		case T_TidScan:
			plan = (Plan *) create_tidscan_plan(root,
												(TidPath *) best_path,
												tlist,
												scan_clauses);
			break;

		case T_TidRangeScan:
			plan = (Plan *) create_tidrangescan_plan(root,
													 (TidRangePath *) best_path,
													 tlist,
													 scan_clauses);
			break;

		case T_SubqueryScan:
			plan = (Plan *) create_subqueryscan_plan(root,
													 (SubqueryScanPath *) best_path,
													 tlist,
													 scan_clauses);
			break;

		case T_FunctionScan:
			plan = (Plan *) create_functionscan_plan(root,
													 best_path,
													 tlist,
													 scan_clauses);
			break;

		case T_TableFuncScan:
			plan = (Plan *) create_tablefuncscan_plan(root,
													  best_path,
													  tlist,
													  scan_clauses);
			break;

		case T_ValuesScan:
			plan = (Plan *) create_valuesscan_plan(root,
												   best_path,
												   tlist,
												   scan_clauses);
			break;

		case T_CteScan:
			plan = (Plan *) create_ctescan_plan(root,
												best_path,
												tlist,
												scan_clauses);
			break;

		case T_NamedTuplestoreScan:
			plan = (Plan *) create_namedtuplestorescan_plan(root,
															best_path,
															tlist,
															scan_clauses);
			break;

		case T_Result:
			plan = (Plan *) create_resultscan_plan(root,
												   best_path,
												   tlist,
												   scan_clauses);
			break;

		case T_WorkTableScan:
			plan = (Plan *) create_worktablescan_plan(root,
													  best_path,
													  tlist,
													  scan_clauses);
			break;

		case T_ForeignScan:
			plan = (Plan *) create_foreignscan_plan(root,
													(ForeignPath *) best_path,
													tlist,
													scan_clauses);
			break;

		case T_CustomScan:
			plan = (Plan *) create_customscan_plan(root,
												   (CustomPath *) best_path,
												   tlist,
												   scan_clauses);
			break;

		default:
			elog(ERROR, "unrecognized node type: %d",
				 (int) best_path->pathtype);
			plan = NULL;		/* keep compiler quiet */
			break;
	}

	/*
	 * If there are any pseudoconstant clauses attached to this node, insert a
	 * gating Result node that evaluates the pseudoconstants as one-time
	 * quals.
	 */
	if (gating_clauses)
		plan = create_gating_plan(root, best_path, plan, gating_clauses);

	return plan;
}

/*
 * Build a target list (ie, a list of TargetEntry) for the Path's output.
 *
 * This is almost just make_tlist_from_pathtarget(), but we also have to
 * deal with replacing nestloop params.
 */
static List *
build_path_tlist(PlannerInfo *root, Path *path)
{
	List	   *tlist = NIL;
	Index	   *sortgrouprefs = path->pathtarget->sortgrouprefs;
	int			resno = 1;
	ListCell   *v;

	foreach(v, path->pathtarget->exprs)
	{
		Node	   *node = (Node *) lfirst(v);
		TargetEntry *tle;

		/*
		 * If it's a parameterized path, there might be lateral references in
		 * the tlist, which need to be replaced with Params.  There's no need
		 * to remake the TargetEntry nodes, so apply this to each list item
		 * separately.
		 */
		if (path->param_info)
			node = replace_nestloop_params(root, node);

		tle = makeTargetEntry((Expr *) node,
							  resno,
							  NULL,
							  false);
		if (sortgrouprefs)
			tle->ressortgroupref = sortgrouprefs[resno - 1];

		tlist = lappend(tlist, tle);
		resno++;
	}
	return tlist;
}

/*
 * use_physical_tlist
 *		Decide whether to use a tlist matching relation structure,
 *		rather than only those Vars actually referenced.
 */
static bool
use_physical_tlist(PlannerInfo *root, Path *path, int flags)
{
	RelOptInfo *rel = path->parent;
	int			i;
	ListCell   *lc;

	/*
	 * Forget it if either exact tlist or small tlist is demanded.
	 */
	if (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST))
		return false;

	/*
	 * We can do this for real relation scans, subquery scans, function scans,
	 * tablefunc scans, values scans, and CTE scans (but not for, eg, joins).
	 */
	if (rel->rtekind != RTE_RELATION &&
		rel->rtekind != RTE_SUBQUERY &&
		rel->rtekind != RTE_FUNCTION &&
		rel->rtekind != RTE_TABLEFUNC &&
		rel->rtekind != RTE_VALUES &&
		rel->rtekind != RTE_CTE)
		return false;

	/*
	 * Can't do it with inheritance cases either (mainly because Append
	 * doesn't project; this test may be unnecessary now that
	 * create_append_plan instructs its children to return an exact tlist).
	 */
	if (rel->reloptkind != RELOPT_BASEREL)
		return false;

	/*
	 * Also, don't do it to a CustomPath; the premise that we're extracting
	 * columns from a simple physical tuple is unlikely to hold for those.
	 * (When it does make sense, the custom path creator can set up the path's
	 * pathtarget that way.)
	 */
	if (IsA(path, CustomPath))
		return false;

	/*
	 * If a bitmap scan's tlist is empty, keep it as-is.  This may allow the
	 * executor to skip heap page fetches, and in any case, the benefit of
	 * using a physical tlist instead would be minimal.
	 */
	if (IsA(path, BitmapHeapPath) &&
		path->pathtarget->exprs == NIL)
		return false;

	/*
	 * Can't do it if any system columns or whole-row Vars are requested.
	 * (This could possibly be fixed but would take some fragile assumptions
	 * in setrefs.c, I think.)
	 */
	for (i = rel->min_attr; i <= 0; i++)
	{
		if (!bms_is_empty(rel->attr_needed[i - rel->min_attr]))
			return false;
	}

	/*
	 * Can't do it if the rel is required to emit any placeholder expressions,
	 * either.
	 */
	foreach(lc, root->placeholder_list)
	{
		PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);

		if (bms_nonempty_difference(phinfo->ph_needed, rel->relids) &&
			bms_is_subset(phinfo->ph_eval_at, rel->relids))
			return false;
	}

	/*
	 * For an index-only scan, the "physical tlist" is the index's indextlist.
	 * We can only return that without a projection if all the index's columns
	 * are returnable.
	 */
	if (path->pathtype == T_IndexOnlyScan)
	{
		IndexOptInfo *indexinfo = ((IndexPath *) path)->indexinfo;

		for (i = 0; i < indexinfo->ncolumns; i++)
		{
			if (!indexinfo->canreturn[i])
				return false;
		}
	}

	/*
	 * Also, can't do it if CP_LABEL_TLIST is specified and path is requested
	 * to emit any sort/group columns that are not simple Vars.  (If they are
	 * simple Vars, they should appear in the physical tlist, and
	 * apply_pathtarget_labeling_to_tlist will take care of getting them
	 * labeled again.)	We also have to check that no two sort/group columns
	 * are the same Var, else that element of the physical tlist would need
	 * conflicting ressortgroupref labels.
	 */
	if ((flags & CP_LABEL_TLIST) && path->pathtarget->sortgrouprefs)
	{
		Bitmapset  *sortgroupatts = NULL;

		i = 0;
		foreach(lc, path->pathtarget->exprs)
		{
			Expr	   *expr = (Expr *) lfirst(lc);

			if (path->pathtarget->sortgrouprefs[i])
			{
				if (expr && IsA(expr, Var))
				{
					int			attno = ((Var *) expr)->varattno;

					attno -= FirstLowInvalidHeapAttributeNumber;
					if (bms_is_member(attno, sortgroupatts))
						return false;
					sortgroupatts = bms_add_member(sortgroupatts, attno);
				}
				else
					return false;
			}
			i++;
		}
	}

	return true;
}

/*
 * get_gating_quals
 *	  See if there are pseudoconstant quals in a node's quals list
 *
 * If the node's quals list includes any pseudoconstant quals,
 * return just those quals.
 */
static List *
get_gating_quals(PlannerInfo *root, List *quals)
{
	/* No need to look if we know there are no pseudoconstants */
	if (!root->hasPseudoConstantQuals)
		return NIL;

	/* Sort into desirable execution order while still in RestrictInfo form */
	quals = order_qual_clauses(root, quals);

	/* Pull out any pseudoconstant quals from the RestrictInfo list */
	return extract_actual_clauses(quals, true);
}

/*
 * create_gating_plan
 *	  Deal with pseudoconstant qual clauses
 *
 * Add a gating Result node atop the already-built plan.
 */
static Plan *
create_gating_plan(PlannerInfo *root, Path *path, Plan *plan,
				   List *gating_quals)
{
	Plan	   *gplan;
	Plan	   *splan;

	Assert(gating_quals);

	/*
	 * We might have a trivial Result plan already.  Stacking one Result atop
	 * another is silly, so if that applies, just discard the input plan.
	 * (We're assuming its targetlist is uninteresting; it should be either
	 * the same as the result of build_path_tlist, or a simplified version.)
	 */
	splan = plan;
	if (IsA(plan, Result))
	{
		Result	   *rplan = (Result *) plan;

		if (rplan->plan.lefttree == NULL &&
			rplan->resconstantqual == NULL)
			splan = NULL;
	}

	/*
	 * Since we need a Result node anyway, always return the path's requested
	 * tlist; that's never a wrong choice, even if the parent node didn't ask
	 * for CP_EXACT_TLIST.
	 */
	gplan = (Plan *) make_result(build_path_tlist(root, path),
								 (Node *) gating_quals,
								 splan);

	/*
	 * Notice that we don't change cost or size estimates when doing gating.
	 * The costs of qual eval were already included in the subplan's cost.
	 * Leaving the size alone amounts to assuming that the gating qual will
	 * succeed, which is the conservative estimate for planning upper queries.
	 * We certainly don't want to assume the output size is zero (unless the
	 * gating qual is actually constant FALSE, and that case is dealt with in
	 * clausesel.c).  Interpolating between the two cases is silly, because it
	 * doesn't reflect what will really happen at runtime, and besides which
	 * in most cases we have only a very bad idea of the probability of the
	 * gating qual being true.
	 */
	copy_plan_costsize(gplan, plan);

	/* Gating quals could be unsafe, so better use the Path's safety flag */
	gplan->parallel_safe = path->parallel_safe;

	return gplan;
}

/*
 * create_join_plan
 *	  Create a join plan for 'best_path' and (recursively) plans for its
 *	  inner and outer paths.
 */
static Plan *
create_join_plan(PlannerInfo *root, JoinPath *best_path)
{
	Plan	   *plan;
	List	   *gating_clauses;

	switch (best_path->path.pathtype)
	{
		case T_MergeJoin:
			plan = (Plan *) create_mergejoin_plan(root,
												  (MergePath *) best_path);
			break;
		case T_HashJoin:
			plan = (Plan *) create_hashjoin_plan(root,
												 (HashPath *) best_path);
			break;
		case T_NestLoop:
			plan = (Plan *) create_nestloop_plan(root,
												 (NestPath *) best_path);
			break;
		default:
			elog(ERROR, "unrecognized node type: %d",
				 (int) best_path->path.pathtype);
			plan = NULL;		/* keep compiler quiet */
			break;
	}

	/*
	 * If there are any pseudoconstant clauses attached to this node, insert a
	 * gating Result node that evaluates the pseudoconstants as one-time
	 * quals.
	 */
	gating_clauses = get_gating_quals(root, best_path->joinrestrictinfo);
	if (gating_clauses)
		plan = create_gating_plan(root, (Path *) best_path, plan,
								  gating_clauses);

#ifdef NOT_USED

	/*
	 * * Expensive function pullups may have pulled local predicates * into
	 * this path node.  Put them in the qpqual of the plan node. * JMH,
	 * 6/15/92
	 */
	if (get_loc_restrictinfo(best_path) != NIL)
		set_qpqual((Plan) plan,
				   list_concat(get_qpqual((Plan) plan),
							   get_actual_clauses(get_loc_restrictinfo(best_path))));
#endif

	return plan;
}

/*
 * mark_async_capable_plan
 *		Check whether the Plan node created from a Path node is async-capable,
 *		and if so, mark the Plan node as such and return true, otherwise
 *		return false.
 */
static bool
mark_async_capable_plan(Plan *plan, Path *path)
{
	switch (nodeTag(path))
	{
		case T_SubqueryScanPath:
			{
				SubqueryScan *scan_plan = (SubqueryScan *) plan;

				/*
				 * If the generated plan node includes a gating Result node,
				 * we can't execute it asynchronously.
				 */
				if (IsA(plan, Result))
					return false;

				/*
				 * If a SubqueryScan node atop of an async-capable plan node
				 * is deletable, consider it as async-capable.
				 */
				if (trivial_subqueryscan(scan_plan) &&
					mark_async_capable_plan(scan_plan->subplan,
											((SubqueryScanPath *) path)->subpath))
					break;
				return false;
			}
		case T_ForeignPath:
			{
				FdwRoutine *fdwroutine = path->parent->fdwroutine;

				/*
				 * If the generated plan node includes a gating Result node,
				 * we can't execute it asynchronously.
				 */
				if (IsA(plan, Result))
					return false;

				Assert(fdwroutine != NULL);
				if (fdwroutine->IsForeignPathAsyncCapable != NULL &&
					fdwroutine->IsForeignPathAsyncCapable((ForeignPath *) path))
					break;
				return false;
			}
		case T_ProjectionPath:

			/*
			 * If the generated plan node includes a Result node for the
			 * projection, we can't execute it asynchronously.
			 */
			if (IsA(plan, Result))
				return false;

			/*
			 * create_projection_plan() would have pulled up the subplan, so
			 * check the capability using the subpath.
			 */
			if (mark_async_capable_plan(plan,
										((ProjectionPath *) path)->subpath))
				return true;
			return false;
		default:
			return false;
	}

	plan->async_capable = true;

	return true;
}

/*
 * create_append_plan
 *	  Create an Append plan for 'best_path' and (recursively) plans
 *	  for its subpaths.
 *
 *	  Returns a Plan node.
 */
static Plan *
create_append_plan(PlannerInfo *root, AppendPath *best_path, int flags)
{
	Append	   *plan;
	List	   *tlist = build_path_tlist(root, &best_path->path);
	int			orig_tlist_length = list_length(tlist);
	bool		tlist_was_changed = false;
	List	   *pathkeys = best_path->path.pathkeys;
	List	   *subplans = NIL;
	ListCell   *subpaths;
	int			nasyncplans = 0;
	RelOptInfo *rel = best_path->path.parent;
	PartitionPruneInfo *partpruneinfo = NULL;
	int			nodenumsortkeys = 0;
	AttrNumber *nodeSortColIdx = NULL;
	Oid		   *nodeSortOperators = NULL;
	Oid		   *nodeCollations = NULL;
	bool	   *nodeNullsFirst = NULL;
	bool		consider_async = false;

	/*
	 * The subpaths list could be empty, if every child was proven empty by
	 * constraint exclusion.  In that case generate a dummy plan that returns
	 * no rows.
	 *
	 * Note that an AppendPath with no members is also generated in certain
	 * cases where there was no appending construct at all, but we know the
	 * relation is empty (see set_dummy_rel_pathlist and mark_dummy_rel).
	 */
	if (best_path->subpaths == NIL)
	{
		/* Generate a Result plan with constant-FALSE gating qual */
		Plan	   *plan;

		plan = (Plan *) make_result(tlist,
									(Node *) list_make1(makeBoolConst(false,
																	  false)),
									NULL);

		copy_generic_path_info(plan, (Path *) best_path);

		return plan;
	}

	/*
	 * Otherwise build an Append plan.  Note that if there's just one child,
	 * the Append is pretty useless; but we wait till setrefs.c to get rid of
	 * it.  Doing so here doesn't work because the varno of the child scan
	 * plan won't match the parent-rel Vars it'll be asked to emit.
	 *
	 * We don't have the actual creation of the Append node split out into a
	 * separate make_xxx function.  This is because we want to run
	 * prepare_sort_from_pathkeys on it before we do so on the individual
	 * child plans, to make cross-checking the sort info easier.
	 */
	plan = makeNode(Append);
	plan->plan.targetlist = tlist;
	plan->plan.qual = NIL;
	plan->plan.lefttree = NULL;
	plan->plan.righttree = NULL;
	plan->apprelids = rel->relids;

	if (pathkeys != NIL)
	{
		/*
		 * Compute sort column info, and adjust the Append's tlist as needed.
		 * Because we pass adjust_tlist_in_place = true, we may ignore the
		 * function result; it must be the same plan node.  However, we then
		 * need to detect whether any tlist entries were added.
		 */
		(void) prepare_sort_from_pathkeys((Plan *) plan, pathkeys,
										  best_path->path.parent->relids,
										  NULL,
										  true,
										  &nodenumsortkeys,
										  &nodeSortColIdx,
										  &nodeSortOperators,
										  &nodeCollations,
										  &nodeNullsFirst);
		tlist_was_changed = (orig_tlist_length != list_length(plan->plan.targetlist));
	}

	/* If appropriate, consider async append */
	consider_async = (enable_async_append && pathkeys == NIL &&
					  !best_path->path.parallel_safe &&
					  list_length(best_path->subpaths) > 1);

	/* Build the plan for each child */
	foreach(subpaths, best_path->subpaths)
	{
		Path	   *subpath = (Path *) lfirst(subpaths);
		Plan	   *subplan;

		/* Must insist that all children return the same tlist */
		subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);

		/*
		 * For ordered Appends, we must insert a Sort node if subplan isn't
		 * sufficiently ordered.
		 */
		if (pathkeys != NIL)
		{
			int			numsortkeys;
			AttrNumber *sortColIdx;
			Oid		   *sortOperators;
			Oid		   *collations;
			bool	   *nullsFirst;

			/*
			 * Compute sort column info, and adjust subplan's tlist as needed.
			 * We must apply prepare_sort_from_pathkeys even to subplans that
			 * don't need an explicit sort, to make sure they are returning
			 * the same sort key columns the Append expects.
			 */
			subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
												 subpath->parent->relids,
												 nodeSortColIdx,
												 false,
												 &numsortkeys,
												 &sortColIdx,
												 &sortOperators,
												 &collations,
												 &nullsFirst);

			/*
			 * Check that we got the same sort key information.  We just
			 * Assert that the sortops match, since those depend only on the
			 * pathkeys; but it seems like a good idea to check the sort
			 * column numbers explicitly, to ensure the tlists match up.
			 */
			Assert(numsortkeys == nodenumsortkeys);
			if (memcmp(sortColIdx, nodeSortColIdx,
					   numsortkeys * sizeof(AttrNumber)) != 0)
				elog(ERROR, "Append child's targetlist doesn't match Append");
			Assert(memcmp(sortOperators, nodeSortOperators,
						  numsortkeys * sizeof(Oid)) == 0);
			Assert(memcmp(collations, nodeCollations,
						  numsortkeys * sizeof(Oid)) == 0);
			Assert(memcmp(nullsFirst, nodeNullsFirst,
						  numsortkeys * sizeof(bool)) == 0);

			/* Now, insert a Sort node if subplan isn't sufficiently ordered */
			if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
			{
				Sort	   *sort = make_sort(subplan, numsortkeys,
											 sortColIdx, sortOperators,
											 collations, nullsFirst);

				label_sort_with_costsize(root, sort, best_path->limit_tuples);
				subplan = (Plan *) sort;
			}
		}

		/* If needed, check to see if subplan can be executed asynchronously */
		if (consider_async && mark_async_capable_plan(subplan, subpath))
		{
			Assert(subplan->async_capable);
			++nasyncplans;
		}

		subplans = lappend(subplans, subplan);
	}

	/*
	 * If any quals exist, they may be useful to perform further partition
	 * pruning during execution.  Gather information needed by the executor to
	 * do partition pruning.
	 */
	if (enable_partition_pruning)
	{
		List	   *prunequal;

		prunequal = extract_actual_clauses(rel->baserestrictinfo, false);

		if (best_path->path.param_info)
		{
			List	   *prmquals = best_path->path.param_info->ppi_clauses;

			prmquals = extract_actual_clauses(prmquals, false);
			prmquals = (List *) replace_nestloop_params(root,
														(Node *) prmquals);

			prunequal = list_concat(prunequal, prmquals);
		}

		if (prunequal != NIL)
			partpruneinfo =
				make_partition_pruneinfo(root, rel,
										 best_path->subpaths,
										 prunequal);
	}

	plan->appendplans = subplans;
	plan->nasyncplans = nasyncplans;
	plan->first_partial_plan = best_path->first_partial_path;
	plan->part_prune_info = partpruneinfo;

	copy_generic_path_info(&plan->plan, (Path *) best_path);

	/*
	 * If prepare_sort_from_pathkeys added sort columns, but we were told to
	 * produce either the exact tlist or a narrow tlist, we should get rid of
	 * the sort columns again.  We must inject a projection node to do so.
	 */
	if (tlist_was_changed && (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST)))
	{
		tlist = list_copy_head(plan->plan.targetlist, orig_tlist_length);
		return inject_projection_plan((Plan *) plan, tlist,
									  plan->plan.parallel_safe);
	}
	else
		return (Plan *) plan;
}

/*
 * create_merge_append_plan
 *	  Create a MergeAppend plan for 'best_path' and (recursively) plans
 *	  for its subpaths.
 *
 *	  Returns a Plan node.
 */
static Plan *
create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path,
						 int flags)
{
	MergeAppend *node = makeNode(MergeAppend);
	Plan	   *plan = &node->plan;
	List	   *tlist = build_path_tlist(root, &best_path->path);
	int			orig_tlist_length = list_length(tlist);
	bool		tlist_was_changed;
	List	   *pathkeys = best_path->path.pathkeys;
	List	   *subplans = NIL;
	ListCell   *subpaths;
	RelOptInfo *rel = best_path->path.parent;
	PartitionPruneInfo *partpruneinfo = NULL;

	/*
	 * We don't have the actual creation of the MergeAppend node split out
	 * into a separate make_xxx function.  This is because we want to run
	 * prepare_sort_from_pathkeys on it before we do so on the individual
	 * child plans, to make cross-checking the sort info easier.
	 */
	copy_generic_path_info(plan, (Path *) best_path);
	plan->targetlist = tlist;
	plan->qual = NIL;
	plan->lefttree = NULL;
	plan->righttree = NULL;
	node->apprelids = rel->relids;

	/*
	 * Compute sort column info, and adjust MergeAppend's tlist as needed.
	 * Because we pass adjust_tlist_in_place = true, we may ignore the
	 * function result; it must be the same plan node.  However, we then need
	 * to detect whether any tlist entries were added.
	 */
	(void) prepare_sort_from_pathkeys(plan, pathkeys,
									  best_path->path.parent->relids,
									  NULL,
									  true,
									  &node->numCols,
									  &node->sortColIdx,
									  &node->sortOperators,
									  &node->collations,
									  &node->nullsFirst);
	tlist_was_changed = (orig_tlist_length != list_length(plan->targetlist));

	/*
	 * Now prepare the child plans.  We must apply prepare_sort_from_pathkeys
	 * even to subplans that don't need an explicit sort, to make sure they
	 * are returning the same sort key columns the MergeAppend expects.
	 */
	foreach(subpaths, best_path->subpaths)
	{
		Path	   *subpath = (Path *) lfirst(subpaths);
		Plan	   *subplan;
		int			numsortkeys;
		AttrNumber *sortColIdx;
		Oid		   *sortOperators;
		Oid		   *collations;
		bool	   *nullsFirst;

		/* Build the child plan */
		/* Must insist that all children return the same tlist */
		subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);

		/* Compute sort column info, and adjust subplan's tlist as needed */
		subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
											 subpath->parent->relids,
											 node->sortColIdx,
											 false,
											 &numsortkeys,
											 &sortColIdx,
											 &sortOperators,
											 &collations,
											 &nullsFirst);

		/*
		 * Check that we got the same sort key information.  We just Assert
		 * that the sortops match, since those depend only on the pathkeys;
		 * but it seems like a good idea to check the sort column numbers
		 * explicitly, to ensure the tlists really do match up.
		 */
		Assert(numsortkeys == node->numCols);
		if (memcmp(sortColIdx, node->sortColIdx,
				   numsortkeys * sizeof(AttrNumber)) != 0)
			elog(ERROR, "MergeAppend child's targetlist doesn't match MergeAppend");
		Assert(memcmp(sortOperators, node->sortOperators,
					  numsortkeys * sizeof(Oid)) == 0);
		Assert(memcmp(collations, node->collations,
					  numsortkeys * sizeof(Oid)) == 0);
		Assert(memcmp(nullsFirst, node->nullsFirst,
					  numsortkeys * sizeof(bool)) == 0);

		/* Now, insert a Sort node if subplan isn't sufficiently ordered */
		if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
		{
			Sort	   *sort = make_sort(subplan, numsortkeys,
										 sortColIdx, sortOperators,
										 collations, nullsFirst);

			label_sort_with_costsize(root, sort, best_path->limit_tuples);
			subplan = (Plan *) sort;
		}

		subplans = lappend(subplans, subplan);
	}

	/*
	 * If any quals exist, they may be useful to perform further partition
	 * pruning during execution.  Gather information needed by the executor to
	 * do partition pruning.
	 */
	if (enable_partition_pruning)
	{
		List	   *prunequal;

		prunequal = extract_actual_clauses(rel->baserestrictinfo, false);

		/* We don't currently generate any parameterized MergeAppend paths */
		Assert(best_path->path.param_info == NULL);

		if (prunequal != NIL)
			partpruneinfo = make_partition_pruneinfo(root, rel,
													 best_path->subpaths,
													 prunequal);
	}

	node->mergeplans = subplans;
	node->part_prune_info = partpruneinfo;

	/*
	 * If prepare_sort_from_pathkeys added sort columns, but we were told to
	 * produce either the exact tlist or a narrow tlist, we should get rid of
	 * the sort columns again.  We must inject a projection node to do so.
	 */
	if (tlist_was_changed && (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST)))
	{
		tlist = list_copy_head(plan->targetlist, orig_tlist_length);
		return inject_projection_plan(plan, tlist, plan->parallel_safe);
	}
	else
		return plan;
}

/*
 * create_group_result_plan
 *	  Create a Result plan for 'best_path'.
 *	  This is only used for degenerate grouping cases.
 *
 *	  Returns a Plan node.
 */
static Result *
create_group_result_plan(PlannerInfo *root, GroupResultPath *best_path)
{
	Result	   *plan;
	List	   *tlist;
	List	   *quals;

	tlist = build_path_tlist(root, &best_path->path);

	/* best_path->quals is just bare clauses */
	quals = order_qual_clauses(root, best_path->quals);

	plan = make_result(tlist, (Node *) quals, NULL);

	copy_generic_path_info(&plan->plan, (Path *) best_path);

	return plan;
}

/*
 * create_project_set_plan
 *	  Create a ProjectSet plan for 'best_path'.
 *
 *	  Returns a Plan node.
 */
static ProjectSet *
create_project_set_plan(PlannerInfo *root, ProjectSetPath *best_path)
{
	ProjectSet *plan;
	Plan	   *subplan;
	List	   *tlist;

	/* Since we intend to project, we don't need to constrain child tlist */
	subplan = create_plan_recurse(root, best_path->subpath, 0);

	tlist = build_path_tlist(root, &best_path->path);

	plan = make_project_set(tlist, subplan);

	copy_generic_path_info(&plan->plan, (Path *) best_path);

	return plan;
}

/*
 * create_material_plan
 *	  Create a Material plan for 'best_path' and (recursively) plans
 *	  for its subpaths.
 *
 *	  Returns a Plan node.
 */
static Material *
create_material_plan(PlannerInfo *root, MaterialPath *best_path, int flags)
{
	Material   *plan;
	Plan	   *subplan;

	/*
	 * We don't want any excess columns in the materialized tuples, so request
	 * a smaller tlist.  Otherwise, since Material doesn't project, tlist
	 * requirements pass through.
	 */
	subplan = create_plan_recurse(root, best_path->subpath,
								  flags | CP_SMALL_TLIST);

	plan = make_material(subplan);

	copy_generic_path_info(&plan->plan, (Path *) best_path);

	return plan;
}

/*
 * create_memoize_plan
 *	  Create a Memoize plan for 'best_path' and (recursively) plans for its
 *	  subpaths.
 *
 *	  Returns a Plan node.
 */
static Memoize *
create_memoize_plan(PlannerInfo *root, MemoizePath *best_path, int flags)
{
	Memoize    *plan;
	Bitmapset  *keyparamids;
	Plan	   *subplan;
	Oid		   *operators;
	Oid		   *collations;
	List	   *param_exprs = NIL;
	ListCell   *lc;
	ListCell   *lc2;
	int			nkeys;
	int			i;

	subplan = create_plan_recurse(root, best_path->subpath,
								  flags | CP_SMALL_TLIST);

	param_exprs = (List *) replace_nestloop_params(root, (Node *)
												   best_path->param_exprs);

	nkeys = list_length(param_exprs);
	Assert(nkeys > 0);
	operators = palloc(nkeys * sizeof(Oid));
	collations = palloc(nkeys * sizeof(Oid));

	i = 0;
	forboth(lc, param_exprs, lc2, best_path->hash_operators)
	{
		Expr	   *param_expr = (Expr *) lfirst(lc);
		Oid			opno = lfirst_oid(lc2);

		operators[i] = opno;
		collations[i] = exprCollation((Node *) param_expr);
		i++;
	}

	keyparamids = pull_paramids((Expr *) param_exprs);

	plan = make_memoize(subplan, operators, collations, param_exprs,
						best_path->singlerow, best_path->binary_mode,
						best_path->est_entries, keyparamids);

	copy_generic_path_info(&plan->plan, (Path *) best_path);

	return plan;
}

/*
 * create_unique_plan
 *	  Create a Unique plan for 'best_path' and (recursively) plans
 *	  for its subpaths.
 *
 *	  Returns a Plan node.
 */
static Plan *
create_unique_plan(PlannerInfo *root, UniquePath *best_path, int flags)
{
	Plan	   *plan;
	Plan	   *subplan;
	List	   *in_operators;
	List	   *uniq_exprs;
	List	   *newtlist;
	int			nextresno;
	bool		newitems;
	int			numGroupCols;
	AttrNumber *groupColIdx;
	Oid		   *groupCollations;
	int			groupColPos;
	ListCell   *l;

	/* Unique doesn't project, so tlist requirements pass through */
	subplan = create_plan_recurse(root, best_path->subpath, flags);

	/* Done if we don't need to do any actual unique-ifying */
	if (best_path->umethod == UNIQUE_PATH_NOOP)
		return subplan;

	/*
	 * As constructed, the subplan has a "flat" tlist containing just the Vars
	 * needed here and at upper levels.  The values we are supposed to
	 * unique-ify may be expressions in these variables.  We have to add any
	 * such expressions to the subplan's tlist.
	 *
	 * The subplan may have a "physical" tlist if it is a simple scan plan. If
	 * we're going to sort, this should be reduced to the regular tlist, so
	 * that we don't sort more data than we need to.  For hashing, the tlist
	 * should be left as-is if we don't need to add any expressions; but if we
	 * do have to add expressions, then a projection step will be needed at
	 * runtime anyway, so we may as well remove unneeded items. Therefore
	 * newtlist starts from build_path_tlist() not just a copy of the
	 * subplan's tlist; and we don't install it into the subplan unless we are
	 * sorting or stuff has to be added.
	 */
	in_operators = best_path->in_operators;
	uniq_exprs = best_path->uniq_exprs;

	/* initialize modified subplan tlist as just the "required" vars */
	newtlist = build_path_tlist(root, &best_path->path);
	nextresno = list_length(newtlist) + 1;
	newitems = false;

	foreach(l, uniq_exprs)
	{
		Expr	   *uniqexpr = lfirst(l);
		TargetEntry *tle;

		tle = tlist_member(uniqexpr, newtlist);
		if (!tle)
		{
			tle = makeTargetEntry((Expr *) uniqexpr,
								  nextresno,
								  NULL,
								  false);
			newtlist = lappend(newtlist, tle);
			nextresno++;
			newitems = true;
		}
	}

	/* Use change_plan_targetlist in case we need to insert a Result node */
	if (newitems || best_path->umethod == UNIQUE_PATH_SORT)
		subplan = change_plan_targetlist(subplan, newtlist,
										 best_path->path.parallel_safe);

	/*
	 * Build control information showing which subplan output columns are to
	 * be examined by the grouping step.  Unfortunately we can't merge this
	 * with the previous loop, since we didn't then know which version of the
	 * subplan tlist we'd end up using.
	 */
	newtlist = subplan->targetlist;
	numGroupCols = list_length(uniq_exprs);
	groupColIdx = (AttrNumber *) palloc(numGroupCols * sizeof(AttrNumber));
	groupCollations = (Oid *) palloc(numGroupCols * sizeof(Oid));

	groupColPos = 0;
	foreach(l, uniq_exprs)
	{
		Expr	   *uniqexpr = lfirst(l);
		TargetEntry *tle;

		tle = tlist_member(uniqexpr, newtlist);
		if (!tle)				/* shouldn't happen */
			elog(ERROR, "failed to find unique expression in subplan tlist");
		groupColIdx[groupColPos] = tle->resno;
		groupCollations[groupColPos] = exprCollation((Node *) tle->expr);
		groupColPos++;
	}

	if (best_path->umethod == UNIQUE_PATH_HASH)
	{
		Oid		   *groupOperators;

		/*
		 * Get the hashable equality operators for the Agg node to use.
		 * Normally these are the same as the IN clause operators, but if
		 * those are cross-type operators then the equality operators are the
		 * ones for the IN clause operators' RHS datatype.
		 */
		groupOperators = (Oid *) palloc(numGroupCols * sizeof(Oid));
		groupColPos = 0;
		foreach(l, in_operators)
		{
			Oid			in_oper = lfirst_oid(l);
			Oid			eq_oper;

			if (!get_compatible_hash_operators(in_oper, NULL, &eq_oper))
				elog(ERROR, "could not find compatible hash operator for operator %u",
					 in_oper);
			groupOperators[groupColPos++] = eq_oper;
		}

		/*
		 * Since the Agg node is going to project anyway, we can give it the
		 * minimum output tlist, without any stuff we might have added to the
		 * subplan tlist.
		 */
		plan = (Plan *) make_agg(build_path_tlist(root, &best_path->path),
								 NIL,
								 AGG_HASHED,
								 AGGSPLIT_SIMPLE,
								 numGroupCols,
								 groupColIdx,
								 groupOperators,
								 groupCollations,
								 NIL,
								 NIL,
								 best_path->path.rows,
								 0,
								 subplan);
	}
	else
	{
		List	   *sortList = NIL;
		Sort	   *sort;

		/* Create an ORDER BY list to sort the input compatibly */
		groupColPos = 0;
		foreach(l, in_operators)
		{
			Oid			in_oper = lfirst_oid(l);
			Oid			sortop;
			Oid			eqop;
			TargetEntry *tle;
			SortGroupClause *sortcl;

			sortop = get_ordering_op_for_equality_op(in_oper, false);
			if (!OidIsValid(sortop))	/* shouldn't happen */
				elog(ERROR, "could not find ordering operator for equality operator %u",
					 in_oper);

			/*
			 * The Unique node will need equality operators.  Normally these
			 * are the same as the IN clause operators, but if those are
			 * cross-type operators then the equality operators are the ones
			 * for the IN clause operators' RHS datatype.
			 */
			eqop = get_equality_op_for_ordering_op(sortop, NULL);
			if (!OidIsValid(eqop))	/* shouldn't happen */
				elog(ERROR, "could not find equality operator for ordering operator %u",
					 sortop);

			tle = get_tle_by_resno(subplan->targetlist,
								   groupColIdx[groupColPos]);
			Assert(tle != NULL);

			sortcl = makeNode(SortGroupClause);
			sortcl->tleSortGroupRef = assignSortGroupRef(tle,
														 subplan->targetlist);
			sortcl->eqop = eqop;
			sortcl->sortop = sortop;
			sortcl->nulls_first = false;
			sortcl->hashable = false;	/* no need to make this accurate */
			sortList = lappend(sortList, sortcl);
			groupColPos++;
		}
		sort = make_sort_from_sortclauses(sortList, subplan);
		label_sort_with_costsize(root, sort, -1.0);
		plan = (Plan *) make_unique_from_sortclauses((Plan *) sort, sortList);
	}

	/* Copy cost data from Path to Plan */
	copy_generic_path_info(plan, &best_path->path);

	return plan;
}

/*
 * create_gather_plan
 *
 *	  Create a Gather plan for 'best_path' and (recursively) plans
 *	  for its subpaths.
 */
static Gather *
create_gather_plan(PlannerInfo *root, GatherPath *best_path)
{
	Gather	   *gather_plan;
	Plan	   *subplan;
	List	   *tlist;

	/*
	 * Push projection down to the child node.  That way, the projection work
	 * is parallelized, and there can be no system columns in the result (they
	 * can't travel through a tuple queue because it uses MinimalTuple
	 * representation).
	 */
	subplan = create_plan_recurse(root, best_path->subpath, CP_EXACT_TLIST);

	tlist = build_path_tlist(root, &best_path->path);

	gather_plan = make_gather(tlist,
							  NIL,
							  best_path->num_workers,
							  assign_special_exec_param(root),
							  best_path->single_copy,
							  subplan);

	copy_generic_path_info(&gather_plan->plan, &best_path->path);

	/* use parallel mode for parallel plans. */
	root->glob->parallelModeNeeded = true;

	return gather_plan;
}

/*
 * create_gather_merge_plan
 *
 *	  Create a Gather Merge plan for 'best_path' and (recursively)
 *	  plans for its subpaths.
 */
static GatherMerge *
create_gather_merge_plan(PlannerInfo *root, GatherMergePath *best_path)
{
	GatherMerge *gm_plan;
	Plan	   *subplan;
	List	   *pathkeys = best_path->path.pathkeys;
	List	   *tlist = build_path_tlist(root, &best_path->path);

	/* As with Gather, project away columns in the workers. */
	subplan = create_plan_recurse(root, best_path->subpath, CP_EXACT_TLIST);

	/* Create a shell for a GatherMerge plan. */
	gm_plan = makeNode(GatherMerge);
	gm_plan->plan.targetlist = tlist;
	gm_plan->num_workers = best_path->num_workers;
	copy_generic_path_info(&gm_plan->plan, &best_path->path);

	/* Assign the rescan Param. */
	gm_plan->rescan_param = assign_special_exec_param(root);

	/* Gather Merge is pointless with no pathkeys; use Gather instead. */
	Assert(pathkeys != NIL);

	/* Compute sort column info, and adjust subplan's tlist as needed */
	subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
										 best_path->subpath->parent->relids,
										 gm_plan->sortColIdx,
										 false,
										 &gm_plan->numCols,
										 &gm_plan->sortColIdx,
										 &gm_plan->sortOperators,
										 &gm_plan->collations,
										 &gm_plan->nullsFirst);


	/*
	 * All gather merge paths should have already guaranteed the necessary
	 * sort order either by adding an explicit sort node or by using presorted
	 * input. We can't simply add a sort here on additional pathkeys, because
	 * we can't guarantee the sort would be safe. For example, expressions may
	 * be volatile or otherwise parallel unsafe.
	 */
	if (!pathkeys_contained_in(pathkeys, best_path->subpath->pathkeys))
		elog(ERROR, "gather merge input not sufficiently sorted");

	/* Now insert the subplan under GatherMerge. */
	gm_plan->plan.lefttree = subplan;

	/* use parallel mode for parallel plans. */
	root->glob->parallelModeNeeded = true;

	return gm_plan;
}

/*
 * create_projection_plan
 *
 *	  Create a plan tree to do a projection step and (recursively) plans
 *	  for its subpaths.  We may need a Result node for the projection,
 *	  but sometimes we can just let the subplan do the work.
 */
static Plan *
create_projection_plan(PlannerInfo *root, ProjectionPath *best_path, int flags)
{
	Plan	   *plan;
	Plan	   *subplan;
	List	   *tlist;
	bool		needs_result_node = false;

	/*
	 * Convert our subpath to a Plan and determine whether we need a Result
	 * node.
	 *
	 * In most cases where we don't need to project, creation_projection_path
	 * will have set dummypp, but not always.  First, some createplan.c
	 * routines change the tlists of their nodes.  (An example is that
	 * create_merge_append_plan might add resjunk sort columns to a
	 * MergeAppend.)  Second, create_projection_path has no way of knowing
	 * what path node will be placed on top of the projection path and
	 * therefore can't predict whether it will require an exact tlist. For
	 * both of these reasons, we have to recheck here.
	 */
	if (use_physical_tlist(root, &best_path->path, flags))
	{
		/*
		 * Our caller doesn't really care what tlist we return, so we don't
		 * actually need to project.  However, we may still need to ensure
		 * proper sortgroupref labels, if the caller cares about those.
		 */
		subplan = create_plan_recurse(root, best_path->subpath, 0);
		tlist = subplan->targetlist;
		if (flags & CP_LABEL_TLIST)
			apply_pathtarget_labeling_to_tlist(tlist,
											   best_path->path.pathtarget);
	}
	else if (is_projection_capable_path(best_path->subpath))
	{
		/*
		 * Our caller requires that we return the exact tlist, but no separate
		 * result node is needed because the subpath is projection-capable.
		 * Tell create_plan_recurse that we're going to ignore the tlist it
		 * produces.
		 */
		subplan = create_plan_recurse(root, best_path->subpath,
									  CP_IGNORE_TLIST);
		Assert(is_projection_capable_plan(subplan));
		tlist = build_path_tlist(root, &best_path->path);
	}
	else
	{
		/*
		 * It looks like we need a result node, unless by good fortune the
		 * requested tlist is exactly the one the child wants to produce.
		 */
		subplan = create_plan_recurse(root, best_path->subpath, 0);
		tlist = build_path_tlist(root, &best_path->path);
		needs_result_node = !tlist_same_exprs(tlist, subplan->targetlist);
	}

	/*
	 * If we make a different decision about whether to include a Result node
	 * than create_projection_path did, we'll have made slightly wrong cost
	 * estimates; but label the plan with the cost estimates we actually used,
	 * not "corrected" ones.  (XXX this could be cleaned up if we moved more
	 * of the sortcolumn setup logic into Path creation, but that would add
	 * expense to creating Paths we might end up not using.)
	 */
	if (!needs_result_node)
	{
		/* Don't need a separate Result, just assign tlist to subplan */
		plan = subplan;
		plan->targetlist = tlist;

		/* Label plan with the estimated costs we actually used */
		plan->startup_cost = best_path->path.startup_cost;
		plan->total_cost = best_path->path.total_cost;
		plan->plan_rows = best_path->path.rows;
		plan->plan_width = best_path->path.pathtarget->width;
		plan->parallel_safe = best_path->path.parallel_safe;
		/* ... but don't change subplan's parallel_aware flag */
	}
	else
	{
		/* We need a Result node */
		plan = (Plan *) make_result(tlist, NULL, subplan);

		copy_generic_path_info(plan, (Path *) best_path);
	}

	return plan;
}

/*
 * inject_projection_plan
 *	  Insert a Result node to do a projection step.
 *
 * This is used in a few places where we decide on-the-fly that we need a
 * projection step as part of the tree generated for some Path node.
 * We should try to get rid of this in favor of doing it more honestly.
 *
 * One reason it's ugly is we have to be told the right parallel_safe marking
 * to apply (since the tlist might be unsafe even if the child plan is safe).
 */
static Plan *
inject_projection_plan(Plan *subplan, List *tlist, bool parallel_safe)
{
	Plan	   *plan;

	plan = (Plan *) make_result(tlist, NULL, subplan);

	/*
	 * In principle, we should charge tlist eval cost plus cpu_per_tuple per
	 * row for the Result node.  But the former has probably been factored in
	 * already and the latter was not accounted for during Path construction,
	 * so being formally correct might just make the EXPLAIN output look less
	 * consistent not more so.  Hence, just copy the subplan's cost.
	 */
	copy_plan_costsize(plan, subplan);
	plan->parallel_safe = parallel_safe;

	return plan;
}

/*
 * change_plan_targetlist
 *	  Externally available wrapper for inject_projection_plan.
 *
 * This is meant for use by FDW plan-generation functions, which might
 * want to adjust the tlist computed by some subplan tree.  In general,
 * a Result node is needed to compute the new tlist, but we can optimize
 * some cases.
 *
 * In most cases, tlist_parallel_safe can just be passed as the parallel_safe
 * flag of the FDW's own Path node.
 */
Plan *
change_plan_targetlist(Plan *subplan, List *tlist, bool tlist_parallel_safe)
{
	/*
	 * If the top plan node can't do projections and its existing target list
	 * isn't already what we need, we need to add a Result node to help it
	 * along.
	 */
	if (!is_projection_capable_plan(subplan) &&
		!tlist_same_exprs(tlist, subplan->targetlist))
		subplan = inject_projection_plan(subplan, tlist,
										 subplan->parallel_safe &&
										 tlist_parallel_safe);
	else
	{
		/* Else we can just replace the plan node's tlist */
		subplan->targetlist = tlist;
		subplan->parallel_safe &= tlist_parallel_safe;
	}
	return subplan;
}

/*
 * create_sort_plan
 *
 *	  Create a Sort plan for 'best_path' and (recursively) plans
 *	  for its subpaths.
 */
static Sort *
create_sort_plan(PlannerInfo *root, SortPath *best_path, int flags)
{
	Sort	   *plan;
	Plan	   *subplan;

	/*
	 * We don't want any excess columns in the sorted tuples, so request a
	 * smaller tlist.  Otherwise, since Sort doesn't project, tlist
	 * requirements pass through.
	 */
	subplan = create_plan_recurse(root, best_path->subpath,
								  flags | CP_SMALL_TLIST);

	/*
	 * make_sort_from_pathkeys indirectly calls find_ec_member_matching_expr,
	 * which will ignore any child EC members that don't belong to the given
	 * relids. Thus, if this sort path is based on a child relation, we must
	 * pass its relids.
	 */
	plan = make_sort_from_pathkeys(subplan, best_path->path.pathkeys,
								   IS_OTHER_REL(best_path->subpath->parent) ?
								   best_path->path.parent->relids : NULL);

	copy_generic_path_info(&plan->plan, (Path *) best_path);

	return plan;
}

/*
 * create_incrementalsort_plan
 *
 *	  Do the same as create_sort_plan, but create IncrementalSort plan.
 */
static IncrementalSort *
create_incrementalsort_plan(PlannerInfo *root, IncrementalSortPath *best_path,
							int flags)
{
	IncrementalSort *plan;
	Plan	   *subplan;

	/* See comments in create_sort_plan() above */
	subplan = create_plan_recurse(root, best_path->spath.subpath,
								  flags | CP_SMALL_TLIST);
	plan = make_incrementalsort_from_pathkeys(subplan,
											  best_path->spath.path.pathkeys,
											  IS_OTHER_REL(best_path->spath.subpath->parent) ?
											  best_path->spath.path.parent->relids : NULL,
											  best_path->nPresortedCols);

	copy_generic_path_info(&plan->sort.plan, (Path *) best_path);

	return plan;
}

/*
 * create_group_plan
 *
 *	  Create a Group plan for 'best_path' and (recursively) plans
 *	  for its subpaths.
 */
static Group *
create_group_plan(PlannerInfo *root, GroupPath *best_path)
{
	Group	   *plan;
	Plan	   *subplan;
	List	   *tlist;
	List	   *quals;

	/*
	 * Group can project, so no need to be terribly picky about child tlist,
	 * but we do need grouping columns to be available
	 */
	subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);

	tlist = build_path_tlist(root, &best_path->path);

	quals = order_qual_clauses(root, best_path->qual);

	plan = make_group(tlist,
					  quals,
					  list_length(best_path->groupClause),
					  extract_grouping_cols(best_path->groupClause,
											subplan->targetlist),
					  extract_grouping_ops(best_path->groupClause),
					  extract_grouping_collations(best_path->groupClause,
												  subplan->targetlist),
					  subplan);

	copy_generic_path_info(&plan->plan, (Path *) best_path);

	return plan;
}

/*
 * create_upper_unique_plan
 *
 *	  Create a Unique plan for 'best_path' and (recursively) plans
 *	  for its subpaths.
 */
static Unique *
create_upper_unique_plan(PlannerInfo *root, UpperUniquePath *best_path, int flags)
{
	Unique	   *plan;
	Plan	   *subplan;

	/*
	 * Unique doesn't project, so tlist requirements pass through; moreover we
	 * need grouping columns to be labeled.
	 */
	subplan = create_plan_recurse(root, best_path->subpath,
								  flags | CP_LABEL_TLIST);

	plan = make_unique_from_pathkeys(subplan,
									 best_path->path.pathkeys,
									 best_path->numkeys);

	copy_generic_path_info(&plan->plan, (Path *) best_path);

	return plan;
}

/*
 * create_agg_plan
 *
 *	  Create an Agg plan for 'best_path' and (recursively) plans
 *	  for its subpaths.
 */
static Agg *
create_agg_plan(PlannerInfo *root, AggPath *best_path)
{
	Agg		   *plan;
	Plan	   *subplan;
	List	   *tlist;
	List	   *quals;

	/*
	 * Agg can project, so no need to be terribly picky about child tlist, but
	 * we do need grouping columns to be available
	 */
	subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);

	tlist = build_path_tlist(root, &best_path->path);

	quals = order_qual_clauses(root, best_path->qual);

	plan = make_agg(tlist, quals,
					best_path->aggstrategy,
					best_path->aggsplit,
					list_length(best_path->groupClause),
					extract_grouping_cols(best_path->groupClause,
										  subplan->targetlist),
					extract_grouping_ops(best_path->groupClause),
					extract_grouping_collations(best_path->groupClause,
												subplan->targetlist),
					NIL,
					NIL,
					best_path->numGroups,
					best_path->transitionSpace,
					subplan);

	copy_generic_path_info(&plan->plan, (Path *) best_path);

	return plan;
}

/*
 * Given a groupclause for a collection of grouping sets, produce the
 * corresponding groupColIdx.
 *
 * root->grouping_map maps the tleSortGroupRef to the actual column position in
 * the input tuple. So we get the ref from the entries in the groupclause and
 * look them up there.
 */
static AttrNumber *
remap_groupColIdx(PlannerInfo *root, List *groupClause)
{
	AttrNumber *grouping_map = root->grouping_map;
	AttrNumber *new_grpColIdx;
	ListCell   *lc;
	int			i;

	Assert(grouping_map);

	new_grpColIdx = palloc0(sizeof(AttrNumber) * list_length(groupClause));

	i = 0;
	foreach(lc, groupClause)
	{
		SortGroupClause *clause = lfirst(lc);

		new_grpColIdx[i++] = grouping_map[clause->tleSortGroupRef];
	}

	return new_grpColIdx;
}

/*
 * create_groupingsets_plan
 *	  Create a plan for 'best_path' and (recursively) plans
 *	  for its subpaths.
 *
 *	  What we emit is an Agg plan with some vestigial Agg and Sort nodes
 *	  hanging off the side.  The top Agg implements the last grouping set
 *	  specified in the GroupingSetsPath, and any additional grouping sets
 *	  each give rise to a subsidiary Agg and Sort node in the top Agg's
 *	  "chain" list.  These nodes don't participate in the plan directly,
 *	  but they are a convenient way to represent the required data for
 *	  the extra steps.
 *
 *	  Returns a Plan node.
 */
static Plan *
create_groupingsets_plan(PlannerInfo *root, GroupingSetsPath *best_path)
{
	Agg		   *plan;
	Plan	   *subplan;
	List	   *rollups = best_path->rollups;
	AttrNumber *grouping_map;
	int			maxref;
	List	   *chain;
	ListCell   *lc;

	/* Shouldn't get here without grouping sets */
	Assert(root->parse->groupingSets);
	Assert(rollups != NIL);

	/*
	 * Agg can project, so no need to be terribly picky about child tlist, but
	 * we do need grouping columns to be available
	 */
	subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);

	/*
	 * Compute the mapping from tleSortGroupRef to column index in the child's
	 * tlist.  First, identify max SortGroupRef in groupClause, for array
	 * sizing.
	 */
	maxref = 0;
	foreach(lc, root->processed_groupClause)
	{
		SortGroupClause *gc = (SortGroupClause *) lfirst(lc);

		if (gc->tleSortGroupRef > maxref)
			maxref = gc->tleSortGroupRef;
	}

	grouping_map = (AttrNumber *) palloc0((maxref + 1) * sizeof(AttrNumber));

	/* Now look up the column numbers in the child's tlist */
	foreach(lc, root->processed_groupClause)
	{
		SortGroupClause *gc = (SortGroupClause *) lfirst(lc);
		TargetEntry *tle = get_sortgroupclause_tle(gc, subplan->targetlist);

		grouping_map[gc->tleSortGroupRef] = tle->resno;
	}

	/*
	 * During setrefs.c, we'll need the grouping_map to fix up the cols lists
	 * in GroupingFunc nodes.  Save it for setrefs.c to use.
	 */
	Assert(root->grouping_map == NULL);
	root->grouping_map = grouping_map;

	/*
	 * Generate the side nodes that describe the other sort and group
	 * operations besides the top one.  Note that we don't worry about putting
	 * accurate cost estimates in the side nodes; only the topmost Agg node's
	 * costs will be shown by EXPLAIN.
	 */
	chain = NIL;
	if (list_length(rollups) > 1)
	{
		bool		is_first_sort = ((RollupData *) linitial(rollups))->is_hashed;

		for_each_from(lc, rollups, 1)
		{
			RollupData *rollup = lfirst(lc);
			AttrNumber *new_grpColIdx;
			Plan	   *sort_plan = NULL;
			Plan	   *agg_plan;
			AggStrategy strat;

			new_grpColIdx = remap_groupColIdx(root, rollup->groupClause);

			if (!rollup->is_hashed && !is_first_sort)
			{
				sort_plan = (Plan *)
					make_sort_from_groupcols(rollup->groupClause,
											 new_grpColIdx,
											 subplan);
			}

			if (!rollup->is_hashed)
				is_first_sort = false;

			if (rollup->is_hashed)
				strat = AGG_HASHED;
			else if (linitial(rollup->gsets) == NIL)
				strat = AGG_PLAIN;
			else
				strat = AGG_SORTED;

			agg_plan = (Plan *) make_agg(NIL,
										 NIL,
										 strat,
										 AGGSPLIT_SIMPLE,
										 list_length((List *) linitial(rollup->gsets)),
										 new_grpColIdx,
										 extract_grouping_ops(rollup->groupClause),
										 extract_grouping_collations(rollup->groupClause, subplan->targetlist),
										 rollup->gsets,
										 NIL,
										 rollup->numGroups,
										 best_path->transitionSpace,
										 sort_plan);

			/*
			 * Remove stuff we don't need to avoid bloating debug output.
			 */
			if (sort_plan)
			{
				sort_plan->targetlist = NIL;
				sort_plan->lefttree = NULL;
			}

			chain = lappend(chain, agg_plan);
		}
	}

	/*
	 * Now make the real Agg node
	 */
	{
		RollupData *rollup = linitial(rollups);
		AttrNumber *top_grpColIdx;
		int			numGroupCols;

		top_grpColIdx = remap_groupColIdx(root, rollup->groupClause);

		numGroupCols = list_length((List *) linitial(rollup->gsets));

		plan = make_agg(build_path_tlist(root, &best_path->path),
						best_path->qual,
						best_path->aggstrategy,
						AGGSPLIT_SIMPLE,
						numGroupCols,
						top_grpColIdx,
						extract_grouping_ops(rollup->groupClause),
						extract_grouping_collations(rollup->groupClause, subplan->targetlist),
						rollup->gsets,
						chain,
						rollup->numGroups,
						best_path->transitionSpace,
						subplan);

		/* Copy cost data from Path to Plan */
		copy_generic_path_info(&plan->plan, &best_path->path);
	}

	return (Plan *) plan;
}

/*
 * create_minmaxagg_plan
 *
 *	  Create a Result plan for 'best_path' and (recursively) plans
 *	  for its subpaths.
 */
static Result *
create_minmaxagg_plan(PlannerInfo *root, MinMaxAggPath *best_path)
{
	Result	   *plan;
	List	   *tlist;
	ListCell   *lc;

	/* Prepare an InitPlan for each aggregate's subquery. */
	foreach(lc, best_path->mmaggregates)
	{
		MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
		PlannerInfo *subroot = mminfo->subroot;
		Query	   *subparse = subroot->parse;
		Plan	   *plan;

		/*
		 * Generate the plan for the subquery. We already have a Path, but we
		 * have to convert it to a Plan and attach a LIMIT node above it.
		 * Since we are entering a different planner context (subroot),
		 * recurse to create_plan not create_plan_recurse.
		 */
		plan = create_plan(subroot, mminfo->path);

		plan = (Plan *) make_limit(plan,
								   subparse->limitOffset,
								   subparse->limitCount,
								   subparse->limitOption,
								   0, NULL, NULL, NULL);

		/* Must apply correct cost/width data to Limit node */
		plan->startup_cost = mminfo->path->startup_cost;
		plan->total_cost = mminfo->pathcost;
		plan->plan_rows = 1;
		plan->plan_width = mminfo->path->pathtarget->width;
		plan->parallel_aware = false;
		plan->parallel_safe = mminfo->path->parallel_safe;

		/* Convert the plan into an InitPlan in the outer query. */
		SS_make_initplan_from_plan(root, subroot, plan, mminfo->param);
	}

	/* Generate the output plan --- basically just a Result */
	tlist = build_path_tlist(root, &best_path->path);

	plan = make_result(tlist, (Node *) best_path->quals, NULL);

	copy_generic_path_info(&plan->plan, (Path *) best_path);

	/*
	 * During setrefs.c, we'll need to replace references to the Agg nodes
	 * with InitPlan output params.  (We can't just do that locally in the
	 * MinMaxAgg node, because path nodes above here may have Agg references
	 * as well.)  Save the mmaggregates list to tell setrefs.c to do that.
	 */
	Assert(root->minmax_aggs == NIL);
	root->minmax_aggs = best_path->mmaggregates;

	return plan;
}

/*
 * create_windowagg_plan
 *
 *	  Create a WindowAgg plan for 'best_path' and (recursively) plans
 *	  for its subpaths.
 */
static WindowAgg *
create_windowagg_plan(PlannerInfo *root, WindowAggPath *best_path)
{
	WindowAgg  *plan;
	WindowClause *wc = best_path->winclause;
	int			numPart = list_length(wc->partitionClause);
	int			numOrder = list_length(wc->orderClause);
	Plan	   *subplan;
	List	   *tlist;
	int			partNumCols;
	AttrNumber *partColIdx;
	Oid		   *partOperators;
	Oid		   *partCollations;
	int			ordNumCols;
	AttrNumber *ordColIdx;
	Oid		   *ordOperators;
	Oid		   *ordCollations;
	ListCell   *lc;

	/*
	 * Choice of tlist here is motivated by the fact that WindowAgg will be
	 * storing the input rows of window frames in a tuplestore; it therefore
	 * behooves us to request a small tlist to avoid wasting space. We do of
	 * course need grouping columns to be available.
	 */
	subplan = create_plan_recurse(root, best_path->subpath,
								  CP_LABEL_TLIST | CP_SMALL_TLIST);

	tlist = build_path_tlist(root, &best_path->path);

	/*
	 * Convert SortGroupClause lists into arrays of attr indexes and equality
	 * operators, as wanted by executor.  (Note: in principle, it's possible
	 * to drop some of the sort columns, if they were proved redundant by
	 * pathkey logic.  However, it doesn't seem worth going out of our way to
	 * optimize such cases.  In any case, we must *not* remove the ordering
	 * column for RANGE OFFSET cases, as the executor needs that for in_range
	 * tests even if it's known to be equal to some partitioning column.)
	 */
	partColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numPart);
	partOperators = (Oid *) palloc(sizeof(Oid) * numPart);
	partCollations = (Oid *) palloc(sizeof(Oid) * numPart);

	partNumCols = 0;
	foreach(lc, wc->partitionClause)
	{
		SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
		TargetEntry *tle = get_sortgroupclause_tle(sgc, subplan->targetlist);

		Assert(OidIsValid(sgc->eqop));
		partColIdx[partNumCols] = tle->resno;
		partOperators[partNumCols] = sgc->eqop;
		partCollations[partNumCols] = exprCollation((Node *) tle->expr);
		partNumCols++;
	}

	ordColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numOrder);
	ordOperators = (Oid *) palloc(sizeof(Oid) * numOrder);
	ordCollations = (Oid *) palloc(sizeof(Oid) * numOrder);

	ordNumCols = 0;
	foreach(lc, wc->orderClause)
	{
		SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
		TargetEntry *tle = get_sortgroupclause_tle(sgc, subplan->targetlist);

		Assert(OidIsValid(sgc->eqop));
		ordColIdx[ordNumCols] = tle->resno;
		ordOperators[ordNumCols] = sgc->eqop;
		ordCollations[ordNumCols] = exprCollation((Node *) tle->expr);
		ordNumCols++;
	}

	/* And finally we can make the WindowAgg node */
	plan = make_windowagg(tlist,
						  wc->winref,
						  partNumCols,
						  partColIdx,
						  partOperators,
						  partCollations,
						  ordNumCols,
						  ordColIdx,
						  ordOperators,
						  ordCollations,
						  wc->frameOptions,
						  wc->startOffset,
						  wc->endOffset,
						  wc->startInRangeFunc,
						  wc->endInRangeFunc,
						  wc->inRangeColl,
						  wc->inRangeAsc,
						  wc->inRangeNullsFirst,
						  wc->runCondition,
						  best_path->qual,
						  best_path->topwindow,
						  subplan);

	copy_generic_path_info(&plan->plan, (Path *) best_path);

	return plan;
}

/*
 * create_setop_plan
 *
 *	  Create a SetOp plan for 'best_path' and (recursively) plans
 *	  for its subpaths.
 */
static SetOp *
create_setop_plan(PlannerInfo *root, SetOpPath *best_path, int flags)
{
	SetOp	   *plan;
	Plan	   *subplan;
	long		numGroups;

	/*
	 * SetOp doesn't project, so tlist requirements pass through; moreover we
	 * need grouping columns to be labeled.
	 */
	subplan = create_plan_recurse(root, best_path->subpath,
								  flags | CP_LABEL_TLIST);

	/* Convert numGroups to long int --- but 'ware overflow! */
	numGroups = clamp_cardinality_to_long(best_path->numGroups);

	plan = make_setop(best_path->cmd,
					  best_path->strategy,
					  subplan,
					  best_path->distinctList,
					  best_path->flagColIdx,
					  best_path->firstFlag,
					  numGroups);

	copy_generic_path_info(&plan->plan, (Path *) best_path);

	return plan;
}

/*
 * create_recursiveunion_plan
 *
 *	  Create a RecursiveUnion plan for 'best_path' and (recursively) plans
 *	  for its subpaths.
 */
static RecursiveUnion *
create_recursiveunion_plan(PlannerInfo *root, RecursiveUnionPath *best_path)
{
	RecursiveUnion *plan;
	Plan	   *leftplan;
	Plan	   *rightplan;
	List	   *tlist;
	long		numGroups;

	/* Need both children to produce same tlist, so force it */
	leftplan = create_plan_recurse(root, best_path->leftpath, CP_EXACT_TLIST);
	rightplan = create_plan_recurse(root, best_path->rightpath, CP_EXACT_TLIST);

	tlist = build_path_tlist(root, &best_path->path);

	/* Convert numGroups to long int --- but 'ware overflow! */
	numGroups = clamp_cardinality_to_long(best_path->numGroups);

	plan = make_recursive_union(tlist,
								leftplan,
								rightplan,
								best_path->wtParam,
								best_path->distinctList,
								numGroups);

	copy_generic_path_info(&plan->plan, (Path *) best_path);

	return plan;
}

/*
 * create_lockrows_plan
 *
 *	  Create a LockRows plan for 'best_path' and (recursively) plans
 *	  for its subpaths.
 */
static LockRows *
create_lockrows_plan(PlannerInfo *root, LockRowsPath *best_path,
					 int flags)
{
	LockRows   *plan;
	Plan	   *subplan;

	/* LockRows doesn't project, so tlist requirements pass through */
	subplan = create_plan_recurse(root, best_path->subpath, flags);

	plan = make_lockrows(subplan, best_path->rowMarks, best_path->epqParam);

	copy_generic_path_info(&plan->plan, (Path *) best_path);

	return plan;
}

/*
 * create_modifytable_plan
 *	  Create a ModifyTable plan for 'best_path'.
 *
 *	  Returns a Plan node.
 */
static ModifyTable *
create_modifytable_plan(PlannerInfo *root, ModifyTablePath *best_path)
{
	ModifyTable *plan;
	Path	   *subpath = best_path->subpath;
	Plan	   *subplan;

	/* Subplan must produce exactly the specified tlist */
	subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);

	/* Transfer resname/resjunk labeling, too, to keep executor happy */
	apply_tlist_labeling(subplan->targetlist, root->processed_tlist);

	plan = make_modifytable(root,
							subplan,
							best_path->operation,
							best_path->canSetTag,
							best_path->nominalRelation,
							best_path->rootRelation,
							best_path->partColsUpdated,
							best_path->resultRelations,
							best_path->updateColnosLists,
							best_path->withCheckOptionLists,
							best_path->returningLists,
							best_path->rowMarks,
							best_path->onconflict,
							best_path->mergeActionLists,
							best_path->epqParam);

	copy_generic_path_info(&plan->plan, &best_path->path);

	return plan;
}

/*
 * create_limit_plan
 *
 *	  Create a Limit plan for 'best_path' and (recursively) plans
 *	  for its subpaths.
 */
static Limit *
create_limit_plan(PlannerInfo *root, LimitPath *best_path, int flags)
{
	Limit	   *plan;
	Plan	   *subplan;
	int			numUniqkeys = 0;
	AttrNumber *uniqColIdx = NULL;
	Oid		   *uniqOperators = NULL;
	Oid		   *uniqCollations = NULL;

	/* Limit doesn't project, so tlist requirements pass through */
	subplan = create_plan_recurse(root, best_path->subpath, flags);

	/* Extract information necessary for comparing rows for WITH TIES. */
	if (best_path->limitOption == LIMIT_OPTION_WITH_TIES)
	{
		Query	   *parse = root->parse;
		ListCell   *l;

		numUniqkeys = list_length(parse->sortClause);
		uniqColIdx = (AttrNumber *) palloc(numUniqkeys * sizeof(AttrNumber));
		uniqOperators = (Oid *) palloc(numUniqkeys * sizeof(Oid));
		uniqCollations = (Oid *) palloc(numUniqkeys * sizeof(Oid));

		numUniqkeys = 0;
		foreach(l, parse->sortClause)
		{
			SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
			TargetEntry *tle = get_sortgroupclause_tle(sortcl, parse->targetList);

			uniqColIdx[numUniqkeys] = tle->resno;
			uniqOperators[numUniqkeys] = sortcl->eqop;
			uniqCollations[numUniqkeys] = exprCollation((Node *) tle->expr);
			numUniqkeys++;
		}
	}

	plan = make_limit(subplan,
					  best_path->limitOffset,
					  best_path->limitCount,
					  best_path->limitOption,
					  numUniqkeys, uniqColIdx, uniqOperators, uniqCollations);

	copy_generic_path_info(&plan->plan, (Path *) best_path);

	return plan;
}


/*****************************************************************************
 *
 *	BASE-RELATION SCAN METHODS
 *
 *****************************************************************************/


/*
 * create_seqscan_plan
 *	 Returns a seqscan plan for the base relation scanned by 'best_path'
 *	 with restriction clauses 'scan_clauses' and targetlist 'tlist'.
 */
static SeqScan *
create_seqscan_plan(PlannerInfo *root, Path *best_path,
					List *tlist, List *scan_clauses)
{
	SeqScan    *scan_plan;
	Index		scan_relid = best_path->parent->relid;

	/* it should be a base rel... */
	Assert(scan_relid > 0);
	Assert(best_path->parent->rtekind == RTE_RELATION);

	/* Sort clauses into best execution order */
	scan_clauses = order_qual_clauses(root, scan_clauses);

	/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
	scan_clauses = extract_actual_clauses(scan_clauses, false);

	/* Replace any outer-relation variables with nestloop params */
	if (best_path->param_info)
	{
		scan_clauses = (List *)
			replace_nestloop_params(root, (Node *) scan_clauses);
	}

	scan_plan = make_seqscan(tlist,
							 scan_clauses,
							 scan_relid);

	copy_generic_path_info(&scan_plan->scan.plan, best_path);

	return scan_plan;
}

/*
 * create_samplescan_plan
 *	 Returns a samplescan plan for the base relation scanned by 'best_path'
 *	 with restriction clauses 'scan_clauses' and targetlist 'tlist'.
 */
static SampleScan *
create_samplescan_plan(PlannerInfo *root, Path *best_path,
					   List *tlist, List *scan_clauses)
{
	SampleScan *scan_plan;
	Index		scan_relid = best_path->parent->relid;
	RangeTblEntry *rte;
	TableSampleClause *tsc;

	/* it should be a base rel with a tablesample clause... */
	Assert(scan_relid > 0);
	rte = planner_rt_fetch(scan_relid, root);
	Assert(rte->rtekind == RTE_RELATION);
	tsc = rte->tablesample;
	Assert(tsc != NULL);

	/* Sort clauses into best execution order */
	scan_clauses = order_qual_clauses(root, scan_clauses);

	/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
	scan_clauses = extract_actual_clauses(scan_clauses, false);

	/* Replace any outer-relation variables with nestloop params */
	if (best_path->param_info)
	{
		scan_clauses = (List *)
			replace_nestloop_params(root, (Node *) scan_clauses);
		tsc = (TableSampleClause *)
			replace_nestloop_params(root, (Node *) tsc);
	}

	scan_plan = make_samplescan(tlist,
								scan_clauses,
								scan_relid,
								tsc);

	copy_generic_path_info(&scan_plan->scan.plan, best_path);

	return scan_plan;
}

/*
 * create_indexscan_plan
 *	  Returns an indexscan plan for the base relation scanned by 'best_path'
 *	  with restriction clauses 'scan_clauses' and targetlist 'tlist'.
 *
 * We use this for both plain IndexScans and IndexOnlyScans, because the
 * qual preprocessing work is the same for both.  Note that the caller tells
 * us which to build --- we don't look at best_path->path.pathtype, because
 * create_bitmap_subplan needs to be able to override the prior decision.
 */
static Scan *
create_indexscan_plan(PlannerInfo *root,
					  IndexPath *best_path,
					  List *tlist,
					  List *scan_clauses,
					  bool indexonly)
{
	Scan	   *scan_plan;
	List	   *indexclauses = best_path->indexclauses;
	List	   *indexorderbys = best_path->indexorderbys;
	Index		baserelid = best_path->path.parent->relid;
	IndexOptInfo *indexinfo = best_path->indexinfo;
	Oid			indexoid = indexinfo->indexoid;
	List	   *qpqual;
	List	   *stripped_indexquals;
	List	   *fixed_indexquals;
	List	   *fixed_indexorderbys;
	List	   *indexorderbyops = NIL;
	ListCell   *l;

	/* it should be a base rel... */
	Assert(baserelid > 0);
	Assert(best_path->path.parent->rtekind == RTE_RELATION);
	/* check the scan direction is valid */
	Assert(best_path->indexscandir == ForwardScanDirection ||
		   best_path->indexscandir == BackwardScanDirection);

	/*
	 * Extract the index qual expressions (stripped of RestrictInfos) from the
	 * IndexClauses list, and prepare a copy with index Vars substituted for
	 * table Vars.  (This step also does replace_nestloop_params on the
	 * fixed_indexquals.)
	 */
	fix_indexqual_references(root, best_path,
							 &stripped_indexquals,
							 &fixed_indexquals);

	/*
	 * Likewise fix up index attr references in the ORDER BY expressions.
	 */
	fixed_indexorderbys = fix_indexorderby_references(root, best_path);

	/*
	 * The qpqual list must contain all restrictions not automatically handled
	 * by the index, other than pseudoconstant clauses which will be handled
	 * by a separate gating plan node.  All the predicates in the indexquals
	 * will be checked (either by the index itself, or by nodeIndexscan.c),
	 * but if there are any "special" operators involved then they must be
	 * included in qpqual.  The upshot is that qpqual must contain
	 * scan_clauses minus whatever appears in indexquals.
	 *
	 * is_redundant_with_indexclauses() detects cases where a scan clause is
	 * present in the indexclauses list or is generated from the same
	 * EquivalenceClass as some indexclause, and is therefore redundant with
	 * it, though not equal.  (The latter happens when indxpath.c prefers a
	 * different derived equality than what generate_join_implied_equalities
	 * picked for a parameterized scan's ppi_clauses.)  Note that it will not
	 * match to lossy index clauses, which is critical because we have to
	 * include the original clause in qpqual in that case.
	 *
	 * In some situations (particularly with OR'd index conditions) we may
	 * have scan_clauses that are not equal to, but are logically implied by,
	 * the index quals; so we also try a predicate_implied_by() check to see
	 * if we can discard quals that way.  (predicate_implied_by assumes its
	 * first input contains only immutable functions, so we have to check
	 * that.)
	 *
	 * Note: if you change this bit of code you should also look at
	 * extract_nonindex_conditions() in costsize.c.
	 */
	qpqual = NIL;
	foreach(l, scan_clauses)
	{
		RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);

		if (rinfo->pseudoconstant)
			continue;			/* we may drop pseudoconstants here */
		if (is_redundant_with_indexclauses(rinfo, indexclauses))
			continue;			/* dup or derived from same EquivalenceClass */
		if (!contain_mutable_functions((Node *) rinfo->clause) &&
			predicate_implied_by(list_make1(rinfo->clause), stripped_indexquals,
								 false))
			continue;			/* provably implied by indexquals */
		qpqual = lappend(qpqual, rinfo);
	}

	/* Sort clauses into best execution order */
	qpqual = order_qual_clauses(root, qpqual);

	/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
	qpqual = extract_actual_clauses(qpqual, false);

	/*
	 * We have to replace any outer-relation variables with nestloop params in
	 * the indexqualorig, qpqual, and indexorderbyorig expressions.  A bit
	 * annoying to have to do this separately from the processing in
	 * fix_indexqual_references --- rethink this when generalizing the inner
	 * indexscan support.  But note we can't really do this earlier because
	 * it'd break the comparisons to predicates above ... (or would it?  Those
	 * wouldn't have outer refs)
	 */
	if (best_path->path.param_info)
	{
		stripped_indexquals = (List *)
			replace_nestloop_params(root, (Node *) stripped_indexquals);
		qpqual = (List *)
			replace_nestloop_params(root, (Node *) qpqual);
		indexorderbys = (List *)
			replace_nestloop_params(root, (Node *) indexorderbys);
	}

	/*
	 * If there are ORDER BY expressions, look up the sort operators for their
	 * result datatypes.
	 */
	if (indexorderbys)
	{
		ListCell   *pathkeyCell,
				   *exprCell;

		/*
		 * PathKey contains OID of the btree opfamily we're sorting by, but
		 * that's not quite enough because we need the expression's datatype
		 * to look up the sort operator in the operator family.
		 */
		Assert(list_length(best_path->path.pathkeys) == list_length(indexorderbys));
		forboth(pathkeyCell, best_path->path.pathkeys, exprCell, indexorderbys)
		{
			PathKey    *pathkey = (PathKey *) lfirst(pathkeyCell);
			Node	   *expr = (Node *) lfirst(exprCell);
			Oid			exprtype = exprType(expr);
			Oid			sortop;

			/* Get sort operator from opfamily */
			sortop = get_opfamily_member(pathkey->pk_opfamily,
										 exprtype,
										 exprtype,
										 pathkey->pk_strategy);
			if (!OidIsValid(sortop))
				elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
					 pathkey->pk_strategy, exprtype, exprtype, pathkey->pk_opfamily);
			indexorderbyops = lappend_oid(indexorderbyops, sortop);
		}
	}

	/*
	 * For an index-only scan, we must mark indextlist entries as resjunk if
	 * they are columns that the index AM can't return; this cues setrefs.c to
	 * not generate references to those columns.
	 */
	if (indexonly)
	{
		int			i = 0;

		foreach(l, indexinfo->indextlist)
		{
			TargetEntry *indextle = (TargetEntry *) lfirst(l);

			indextle->resjunk = !indexinfo->canreturn[i];
			i++;
		}
	}

	/* Finally ready to build the plan node */
	if (indexonly)
		scan_plan = (Scan *) make_indexonlyscan(tlist,
												qpqual,
												baserelid,
												indexoid,
												fixed_indexquals,
												stripped_indexquals,
												fixed_indexorderbys,
												indexinfo->indextlist,
												best_path->indexscandir);
	else
		scan_plan = (Scan *) make_indexscan(tlist,
											qpqual,
											baserelid,
											indexoid,
											fixed_indexquals,
											stripped_indexquals,
											fixed_indexorderbys,
											indexorderbys,
											indexorderbyops,
											best_path->indexscandir);

	copy_generic_path_info(&scan_plan->plan, &best_path->path);

	return scan_plan;
}

/*
 * create_bitmap_scan_plan
 *	  Returns a bitmap scan plan for the base relation scanned by 'best_path'
 *	  with restriction clauses 'scan_clauses' and targetlist 'tlist'.
 */
static BitmapHeapScan *
create_bitmap_scan_plan(PlannerInfo *root,
						BitmapHeapPath *best_path,
						List *tlist,
						List *scan_clauses)
{
	Index		baserelid = best_path->path.parent->relid;
	Plan	   *bitmapqualplan;
	List	   *bitmapqualorig;
	List	   *indexquals;
	List	   *indexECs;
	List	   *qpqual;
	ListCell   *l;
	BitmapHeapScan *scan_plan;

	/* it should be a base rel... */
	Assert(baserelid > 0);
	Assert(best_path->path.parent->rtekind == RTE_RELATION);

	/* Process the bitmapqual tree into a Plan tree and qual lists */
	bitmapqualplan = create_bitmap_subplan(root, best_path->bitmapqual,
										   &bitmapqualorig, &indexquals,
										   &indexECs);

	if (best_path->path.parallel_aware)
		bitmap_subplan_mark_shared(bitmapqualplan);

	/*
	 * The qpqual list must contain all restrictions not automatically handled
	 * by the index, other than pseudoconstant clauses which will be handled
	 * by a separate gating plan node.  All the predicates in the indexquals
	 * will be checked (either by the index itself, or by
	 * nodeBitmapHeapscan.c), but if there are any "special" operators
	 * involved then they must be added to qpqual.  The upshot is that qpqual
	 * must contain scan_clauses minus whatever appears in indexquals.
	 *
	 * This loop is similar to the comparable code in create_indexscan_plan(),
	 * but with some differences because it has to compare the scan clauses to
	 * stripped (no RestrictInfos) indexquals.  See comments there for more
	 * info.
	 *
	 * In normal cases simple equal() checks will be enough to spot duplicate
	 * clauses, so we try that first.  We next see if the scan clause is
	 * redundant with any top-level indexqual by virtue of being generated
	 * from the same EC.  After that, try predicate_implied_by().
	 *
	 * Unlike create_indexscan_plan(), the predicate_implied_by() test here is
	 * useful for getting rid of qpquals that are implied by index predicates,
	 * because the predicate conditions are included in the "indexquals"
	 * returned by create_bitmap_subplan().  Bitmap scans have to do it that
	 * way because predicate conditions need to be rechecked if the scan
	 * becomes lossy, so they have to be included in bitmapqualorig.
	 */
	qpqual = NIL;
	foreach(l, scan_clauses)
	{
		RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
		Node	   *clause = (Node *) rinfo->clause;

		if (rinfo->pseudoconstant)
			continue;			/* we may drop pseudoconstants here */
		if (list_member(indexquals, clause))
			continue;			/* simple duplicate */
		if (rinfo->parent_ec && list_member_ptr(indexECs, rinfo->parent_ec))
			continue;			/* derived from same EquivalenceClass */
		if (!contain_mutable_functions(clause) &&
			predicate_implied_by(list_make1(clause), indexquals, false))
			continue;			/* provably implied by indexquals */
		qpqual = lappend(qpqual, rinfo);
	}

	/* Sort clauses into best execution order */
	qpqual = order_qual_clauses(root, qpqual);

	/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
	qpqual = extract_actual_clauses(qpqual, false);

	/*
	 * When dealing with special operators, we will at this point have
	 * duplicate clauses in qpqual and bitmapqualorig.  We may as well drop
	 * 'em from bitmapqualorig, since there's no point in making the tests
	 * twice.
	 */
	bitmapqualorig = list_difference_ptr(bitmapqualorig, qpqual);

	/*
	 * We have to replace any outer-relation variables with nestloop params in
	 * the qpqual and bitmapqualorig expressions.  (This was already done for
	 * expressions attached to plan nodes in the bitmapqualplan tree.)
	 */
	if (best_path->path.param_info)
	{
		qpqual = (List *)
			replace_nestloop_params(root, (Node *) qpqual);
		bitmapqualorig = (List *)
			replace_nestloop_params(root, (Node *) bitmapqualorig);
	}

	/* Finally ready to build the plan node */
	scan_plan = make_bitmap_heapscan(tlist,
									 qpqual,
									 bitmapqualplan,
									 bitmapqualorig,
									 baserelid);

	copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);

	return scan_plan;
}

/*
 * Given a bitmapqual tree, generate the Plan tree that implements it
 *
 * As byproducts, we also return in *qual and *indexqual the qual lists
 * (in implicit-AND form, without RestrictInfos) describing the original index
 * conditions and the generated indexqual conditions.  (These are the same in
 * simple cases, but when special index operators are involved, the former
 * list includes the special conditions while the latter includes the actual
 * indexable conditions derived from them.)  Both lists include partial-index
 * predicates, because we have to recheck predicates as well as index
 * conditions if the bitmap scan becomes lossy.
 *
 * In addition, we return a list of EquivalenceClass pointers for all the
 * top-level indexquals that were possibly-redundantly derived from ECs.
 * This allows removal of scan_clauses that are redundant with such quals.
 * (We do not attempt to detect such redundancies for quals that are within
 * OR subtrees.  This could be done in a less hacky way if we returned the
 * indexquals in RestrictInfo form, but that would be slower and still pretty
 * messy, since we'd have to build new RestrictInfos in many cases.)
 */
static Plan *
create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual,
					  List **qual, List **indexqual, List **indexECs)
{
	Plan	   *plan;

	if (IsA(bitmapqual, BitmapAndPath))
	{
		BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
		List	   *subplans = NIL;
		List	   *subquals = NIL;
		List	   *subindexquals = NIL;
		List	   *subindexECs = NIL;
		ListCell   *l;

		/*
		 * There may well be redundant quals among the subplans, since a
		 * top-level WHERE qual might have gotten used to form several
		 * different index quals.  We don't try exceedingly hard to eliminate
		 * redundancies, but we do eliminate obvious duplicates by using
		 * list_concat_unique.
		 */
		foreach(l, apath->bitmapquals)
		{
			Plan	   *subplan;
			List	   *subqual;
			List	   *subindexqual;
			List	   *subindexEC;

			subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
											&subqual, &subindexqual,
											&subindexEC);
			subplans = lappend(subplans, subplan);
			subquals = list_concat_unique(subquals, subqual);
			subindexquals = list_concat_unique(subindexquals, subindexqual);
			/* Duplicates in indexECs aren't worth getting rid of */
			subindexECs = list_concat(subindexECs, subindexEC);
		}
		plan = (Plan *) make_bitmap_and(subplans);
		plan->startup_cost = apath->path.startup_cost;
		plan->total_cost = apath->path.total_cost;
		plan->plan_rows =
			clamp_row_est(apath->bitmapselectivity * apath->path.parent->tuples);
		plan->plan_width = 0;	/* meaningless */
		plan->parallel_aware = false;
		plan->parallel_safe = apath->path.parallel_safe;
		*qual = subquals;
		*indexqual = subindexquals;
		*indexECs = subindexECs;
	}
	else if (IsA(bitmapqual, BitmapOrPath))
	{
		BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
		List	   *subplans = NIL;
		List	   *subquals = NIL;
		List	   *subindexquals = NIL;
		bool		const_true_subqual = false;
		bool		const_true_subindexqual = false;
		ListCell   *l;

		/*
		 * Here, we only detect qual-free subplans.  A qual-free subplan would
		 * cause us to generate "... OR true ..."  which we may as well reduce
		 * to just "true".  We do not try to eliminate redundant subclauses
		 * because (a) it's not as likely as in the AND case, and (b) we might
		 * well be working with hundreds or even thousands of OR conditions,
		 * perhaps from a long IN list.  The performance of list_append_unique
		 * would be unacceptable.
		 */
		foreach(l, opath->bitmapquals)
		{
			Plan	   *subplan;
			List	   *subqual;
			List	   *subindexqual;
			List	   *subindexEC;

			subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
											&subqual, &subindexqual,
											&subindexEC);
			subplans = lappend(subplans, subplan);
			if (subqual == NIL)
				const_true_subqual = true;
			else if (!const_true_subqual)
				subquals = lappend(subquals,
								   make_ands_explicit(subqual));
			if (subindexqual == NIL)
				const_true_subindexqual = true;
			else if (!const_true_subindexqual)
				subindexquals = lappend(subindexquals,
										make_ands_explicit(subindexqual));
		}

		/*
		 * In the presence of ScalarArrayOpExpr quals, we might have built
		 * BitmapOrPaths with just one subpath; don't add an OR step.
		 */
		if (list_length(subplans) == 1)
		{
			plan = (Plan *) linitial(subplans);
		}
		else
		{
			plan = (Plan *) make_bitmap_or(subplans);
			plan->startup_cost = opath->path.startup_cost;
			plan->total_cost = opath->path.total_cost;
			plan->plan_rows =
				clamp_row_est(opath->bitmapselectivity * opath->path.parent->tuples);
			plan->plan_width = 0;	/* meaningless */
			plan->parallel_aware = false;
			plan->parallel_safe = opath->path.parallel_safe;
		}

		/*
		 * If there were constant-TRUE subquals, the OR reduces to constant
		 * TRUE.  Also, avoid generating one-element ORs, which could happen
		 * due to redundancy elimination or ScalarArrayOpExpr quals.
		 */
		if (const_true_subqual)
			*qual = NIL;
		else if (list_length(subquals) <= 1)
			*qual = subquals;
		else
			*qual = list_make1(make_orclause(subquals));
		if (const_true_subindexqual)
			*indexqual = NIL;
		else if (list_length(subindexquals) <= 1)
			*indexqual = subindexquals;
		else
			*indexqual = list_make1(make_orclause(subindexquals));
		*indexECs = NIL;
	}
	else if (IsA(bitmapqual, IndexPath))
	{
		IndexPath  *ipath = (IndexPath *) bitmapqual;
		IndexScan  *iscan;
		List	   *subquals;
		List	   *subindexquals;
		List	   *subindexECs;
		ListCell   *l;

		/* Use the regular indexscan plan build machinery... */
		iscan = castNode(IndexScan,
						 create_indexscan_plan(root, ipath,
											   NIL, NIL, false));
		/* then convert to a bitmap indexscan */
		plan = (Plan *) make_bitmap_indexscan(iscan->scan.scanrelid,
											  iscan->indexid,
											  iscan->indexqual,
											  iscan->indexqualorig);
		/* and set its cost/width fields appropriately */
		plan->startup_cost = 0.0;
		plan->total_cost = ipath->indextotalcost;
		plan->plan_rows =
			clamp_row_est(ipath->indexselectivity * ipath->path.parent->tuples);
		plan->plan_width = 0;	/* meaningless */
		plan->parallel_aware = false;
		plan->parallel_safe = ipath->path.parallel_safe;
		/* Extract original index clauses, actual index quals, relevant ECs */
		subquals = NIL;
		subindexquals = NIL;
		subindexECs = NIL;
		foreach(l, ipath->indexclauses)
		{
			IndexClause *iclause = (IndexClause *) lfirst(l);
			RestrictInfo *rinfo = iclause->rinfo;

			Assert(!rinfo->pseudoconstant);
			subquals = lappend(subquals, rinfo->clause);
			subindexquals = list_concat(subindexquals,
										get_actual_clauses(iclause->indexquals));
			if (rinfo->parent_ec)
				subindexECs = lappend(subindexECs, rinfo->parent_ec);
		}
		/* We can add any index predicate conditions, too */
		foreach(l, ipath->indexinfo->indpred)
		{
			Expr	   *pred = (Expr *) lfirst(l);

			/*
			 * We know that the index predicate must have been implied by the
			 * query condition as a whole, but it may or may not be implied by
			 * the conditions that got pushed into the bitmapqual.  Avoid
			 * generating redundant conditions.
			 */
			if (!predicate_implied_by(list_make1(pred), subquals, false))
			{
				subquals = lappend(subquals, pred);
				subindexquals = lappend(subindexquals, pred);
			}
		}
		*qual = subquals;
		*indexqual = subindexquals;
		*indexECs = subindexECs;
	}
	else
	{
		elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
		plan = NULL;			/* keep compiler quiet */
	}

	return plan;
}

/*
 * create_tidscan_plan
 *	 Returns a tidscan plan for the base relation scanned by 'best_path'
 *	 with restriction clauses 'scan_clauses' and targetlist 'tlist'.
 */
static TidScan *
create_tidscan_plan(PlannerInfo *root, TidPath *best_path,
					List *tlist, List *scan_clauses)
{
	TidScan    *scan_plan;
	Index		scan_relid = best_path->path.parent->relid;
	List	   *tidquals = best_path->tidquals;

	/* it should be a base rel... */
	Assert(scan_relid > 0);
	Assert(best_path->path.parent->rtekind == RTE_RELATION);

	/*
	 * The qpqual list must contain all restrictions not enforced by the
	 * tidquals list.  Since tidquals has OR semantics, we have to be careful
	 * about matching it up to scan_clauses.  It's convenient to handle the
	 * single-tidqual case separately from the multiple-tidqual case.  In the
	 * single-tidqual case, we look through the scan_clauses while they are
	 * still in RestrictInfo form, and drop any that are redundant with the
	 * tidqual.
	 *
	 * In normal cases simple pointer equality checks will be enough to spot
	 * duplicate RestrictInfos, so we try that first.
	 *
	 * Another common case is that a scan_clauses entry is generated from the
	 * same EquivalenceClass as some tidqual, and is therefore redundant with
	 * it, though not equal.
	 *
	 * Unlike indexpaths, we don't bother with predicate_implied_by(); the
	 * number of cases where it could win are pretty small.
	 */
	if (list_length(tidquals) == 1)
	{
		List	   *qpqual = NIL;
		ListCell   *l;

		foreach(l, scan_clauses)
		{
			RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);

			if (rinfo->pseudoconstant)
				continue;		/* we may drop pseudoconstants here */
			if (list_member_ptr(tidquals, rinfo))
				continue;		/* simple duplicate */
			if (is_redundant_derived_clause(rinfo, tidquals))
				continue;		/* derived from same EquivalenceClass */
			qpqual = lappend(qpqual, rinfo);
		}
		scan_clauses = qpqual;
	}

	/* Sort clauses into best execution order */
	scan_clauses = order_qual_clauses(root, scan_clauses);

	/* Reduce RestrictInfo lists to bare expressions; ignore pseudoconstants */
	tidquals = extract_actual_clauses(tidquals, false);
	scan_clauses = extract_actual_clauses(scan_clauses, false);

	/*
	 * If we have multiple tidquals, it's more convenient to remove duplicate
	 * scan_clauses after stripping the RestrictInfos.  In this situation,
	 * because the tidquals represent OR sub-clauses, they could not have come
	 * from EquivalenceClasses so we don't have to worry about matching up
	 * non-identical clauses.  On the other hand, because tidpath.c will have
	 * extracted those sub-clauses from some OR clause and built its own list,
	 * we will certainly not have pointer equality to any scan clause.  So
	 * convert the tidquals list to an explicit OR clause and see if we can
	 * match it via equal() to any scan clause.
	 */
	if (list_length(tidquals) > 1)
		scan_clauses = list_difference(scan_clauses,
									   list_make1(make_orclause(tidquals)));

	/* Replace any outer-relation variables with nestloop params */
	if (best_path->path.param_info)
	{
		tidquals = (List *)
			replace_nestloop_params(root, (Node *) tidquals);
		scan_clauses = (List *)
			replace_nestloop_params(root, (Node *) scan_clauses);
	}

	scan_plan = make_tidscan(tlist,
							 scan_clauses,
							 scan_relid,
							 tidquals);

	copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);

	return scan_plan;
}

/*
 * create_tidrangescan_plan
 *	 Returns a tidrangescan plan for the base relation scanned by 'best_path'
 *	 with restriction clauses 'scan_clauses' and targetlist 'tlist'.
 */
static TidRangeScan *
create_tidrangescan_plan(PlannerInfo *root, TidRangePath *best_path,
						 List *tlist, List *scan_clauses)
{
	TidRangeScan *scan_plan;
	Index		scan_relid = best_path->path.parent->relid;
	List	   *tidrangequals = best_path->tidrangequals;

	/* it should be a base rel... */
	Assert(scan_relid > 0);
	Assert(best_path->path.parent->rtekind == RTE_RELATION);

	/*
	 * The qpqual list must contain all restrictions not enforced by the
	 * tidrangequals list.  tidrangequals has AND semantics, so we can simply
	 * remove any qual that appears in it.
	 */
	{
		List	   *qpqual = NIL;
		ListCell   *l;

		foreach(l, scan_clauses)
		{
			RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);

			if (rinfo->pseudoconstant)
				continue;		/* we may drop pseudoconstants here */
			if (list_member_ptr(tidrangequals, rinfo))
				continue;		/* simple duplicate */
			qpqual = lappend(qpqual, rinfo);
		}
		scan_clauses = qpqual;
	}

	/* Sort clauses into best execution order */
	scan_clauses = order_qual_clauses(root, scan_clauses);

	/* Reduce RestrictInfo lists to bare expressions; ignore pseudoconstants */
	tidrangequals = extract_actual_clauses(tidrangequals, false);
	scan_clauses = extract_actual_clauses(scan_clauses, false);

	/* Replace any outer-relation variables with nestloop params */
	if (best_path->path.param_info)
	{
		tidrangequals = (List *)
			replace_nestloop_params(root, (Node *) tidrangequals);
		scan_clauses = (List *)
			replace_nestloop_params(root, (Node *) scan_clauses);
	}

	scan_plan = make_tidrangescan(tlist,
								  scan_clauses,
								  scan_relid,
								  tidrangequals);

	copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);

	return scan_plan;
}

/*
 * create_subqueryscan_plan
 *	 Returns a subqueryscan plan for the base relation scanned by 'best_path'
 *	 with restriction clauses 'scan_clauses' and targetlist 'tlist'.
 */
static SubqueryScan *
create_subqueryscan_plan(PlannerInfo *root, SubqueryScanPath *best_path,
						 List *tlist, List *scan_clauses)
{
	SubqueryScan *scan_plan;
	RelOptInfo *rel = best_path->path.parent;
	Index		scan_relid = rel->relid;
	Plan	   *subplan;

	/* it should be a subquery base rel... */
	Assert(scan_relid > 0);
	Assert(rel->rtekind == RTE_SUBQUERY);

	/*
	 * Recursively create Plan from Path for subquery.  Since we are entering
	 * a different planner context (subroot), recurse to create_plan not
	 * create_plan_recurse.
	 */
	subplan = create_plan(rel->subroot, best_path->subpath);

	/* Sort clauses into best execution order */
	scan_clauses = order_qual_clauses(root, scan_clauses);

	/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
	scan_clauses = extract_actual_clauses(scan_clauses, false);

	/* Replace any outer-relation variables with nestloop params */
	if (best_path->path.param_info)
	{
		scan_clauses = (List *)
			replace_nestloop_params(root, (Node *) scan_clauses);
		process_subquery_nestloop_params(root,
										 rel->subplan_params);
	}

	scan_plan = make_subqueryscan(tlist,
								  scan_clauses,
								  scan_relid,
								  subplan);

	copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);

	return scan_plan;
}

/*
 * create_functionscan_plan
 *	 Returns a functionscan plan for the base relation scanned by 'best_path'
 *	 with restriction clauses 'scan_clauses' and targetlist 'tlist'.
 */
static FunctionScan *
create_functionscan_plan(PlannerInfo *root, Path *best_path,
						 List *tlist, List *scan_clauses)
{
	FunctionScan *scan_plan;
	Index		scan_relid = best_path->parent->relid;
	RangeTblEntry *rte;
	List	   *functions;

	/* it should be a function base rel... */
	Assert(scan_relid > 0);
	rte = planner_rt_fetch(scan_relid, root);
	Assert(rte->rtekind == RTE_FUNCTION);
	functions = rte->functions;

	/* Sort clauses into best execution order */
	scan_clauses = order_qual_clauses(root, scan_clauses);

	/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
	scan_clauses = extract_actual_clauses(scan_clauses, false);

	/* Replace any outer-relation variables with nestloop params */
	if (best_path->param_info)
	{
		scan_clauses = (List *)
			replace_nestloop_params(root, (Node *) scan_clauses);
		/* The function expressions could contain nestloop params, too */
		functions = (List *) replace_nestloop_params(root, (Node *) functions);
	}

	scan_plan = make_functionscan(tlist, scan_clauses, scan_relid,
								  functions, rte->funcordinality);

	copy_generic_path_info(&scan_plan->scan.plan, best_path);

	return scan_plan;
}

/*
 * create_tablefuncscan_plan
 *	 Returns a tablefuncscan plan for the base relation scanned by 'best_path'
 *	 with restriction clauses 'scan_clauses' and targetlist 'tlist'.
 */
static TableFuncScan *
create_tablefuncscan_plan(PlannerInfo *root, Path *best_path,
						  List *tlist, List *scan_clauses)
{
	TableFuncScan *scan_plan;
	Index		scan_relid = best_path->parent->relid;
	RangeTblEntry *rte;
	TableFunc  *tablefunc;

	/* it should be a function base rel... */
	Assert(scan_relid > 0);
	rte = planner_rt_fetch(scan_relid, root);
	Assert(rte->rtekind == RTE_TABLEFUNC);
	tablefunc = rte->tablefunc;

	/* Sort clauses into best execution order */
	scan_clauses = order_qual_clauses(root, scan_clauses);

	/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
	scan_clauses = extract_actual_clauses(scan_clauses, false);

	/* Replace any outer-relation variables with nestloop params */
	if (best_path->param_info)
	{
		scan_clauses = (List *)
			replace_nestloop_params(root, (Node *) scan_clauses);
		/* The function expressions could contain nestloop params, too */
		tablefunc = (TableFunc *) replace_nestloop_params(root, (Node *) tablefunc);
	}

	scan_plan = make_tablefuncscan(tlist, scan_clauses, scan_relid,
								   tablefunc);

	copy_generic_path_info(&scan_plan->scan.plan, best_path);

	return scan_plan;
}

/*
 * create_valuesscan_plan
 *	 Returns a valuesscan plan for the base relation scanned by 'best_path'
 *	 with restriction clauses 'scan_clauses' and targetlist 'tlist'.
 */
static ValuesScan *
create_valuesscan_plan(PlannerInfo *root, Path *best_path,
					   List *tlist, List *scan_clauses)
{
	ValuesScan *scan_plan;
	Index		scan_relid = best_path->parent->relid;
	RangeTblEntry *rte;
	List	   *values_lists;

	/* it should be a values base rel... */
	Assert(scan_relid > 0);
	rte = planner_rt_fetch(scan_relid, root);
	Assert(rte->rtekind == RTE_VALUES);
	values_lists = rte->values_lists;

	/* Sort clauses into best execution order */
	scan_clauses = order_qual_clauses(root, scan_clauses);

	/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
	scan_clauses = extract_actual_clauses(scan_clauses, false);

	/* Replace any outer-relation variables with nestloop params */
	if (best_path->param_info)
	{
		scan_clauses = (List *)
			replace_nestloop_params(root, (Node *) scan_clauses);
		/* The values lists could contain nestloop params, too */
		values_lists = (List *)
			replace_nestloop_params(root, (Node *) values_lists);
	}

	scan_plan = make_valuesscan(tlist, scan_clauses, scan_relid,
								values_lists);

	copy_generic_path_info(&scan_plan->scan.plan, best_path);

	return scan_plan;
}

/*
 * create_ctescan_plan
 *	 Returns a ctescan plan for the base relation scanned by 'best_path'
 *	 with restriction clauses 'scan_clauses' and targetlist 'tlist'.
 */
static CteScan *
create_ctescan_plan(PlannerInfo *root, Path *best_path,
					List *tlist, List *scan_clauses)
{
	CteScan    *scan_plan;
	Index		scan_relid = best_path->parent->relid;
	RangeTblEntry *rte;
	SubPlan    *ctesplan = NULL;
	int			plan_id;
	int			cte_param_id;
	PlannerInfo *cteroot;
	Index		levelsup;
	int			ndx;
	ListCell   *lc;

	Assert(scan_relid > 0);
	rte = planner_rt_fetch(scan_relid, root);
	Assert(rte->rtekind == RTE_CTE);
	Assert(!rte->self_reference);

	/*
	 * Find the referenced CTE, and locate the SubPlan previously made for it.
	 */
	levelsup = rte->ctelevelsup;
	cteroot = root;
	while (levelsup-- > 0)
	{
		cteroot = cteroot->parent_root;
		if (!cteroot)			/* shouldn't happen */
			elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
	}

	/*
	 * Note: cte_plan_ids can be shorter than cteList, if we are still working
	 * on planning the CTEs (ie, this is a side-reference from another CTE).
	 * So we mustn't use forboth here.
	 */
	ndx = 0;
	foreach(lc, cteroot->parse->cteList)
	{
		CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);

		if (strcmp(cte->ctename, rte->ctename) == 0)
			break;
		ndx++;
	}
	if (lc == NULL)				/* shouldn't happen */
		elog(ERROR, "could not find CTE \"%s\"", rte->ctename);
	if (ndx >= list_length(cteroot->cte_plan_ids))
		elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
	plan_id = list_nth_int(cteroot->cte_plan_ids, ndx);
	if (plan_id <= 0)
		elog(ERROR, "no plan was made for CTE \"%s\"", rte->ctename);
	foreach(lc, cteroot->init_plans)
	{
		ctesplan = (SubPlan *) lfirst(lc);
		if (ctesplan->plan_id == plan_id)
			break;
	}
	if (lc == NULL)				/* shouldn't happen */
		elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);

	/*
	 * We need the CTE param ID, which is the sole member of the SubPlan's
	 * setParam list.
	 */
	cte_param_id = linitial_int(ctesplan->setParam);

	/* Sort clauses into best execution order */
	scan_clauses = order_qual_clauses(root, scan_clauses);

	/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
	scan_clauses = extract_actual_clauses(scan_clauses, false);

	/* Replace any outer-relation variables with nestloop params */
	if (best_path->param_info)
	{
		scan_clauses = (List *)
			replace_nestloop_params(root, (Node *) scan_clauses);
	}

	scan_plan = make_ctescan(tlist, scan_clauses, scan_relid,
							 plan_id, cte_param_id);

	copy_generic_path_info(&scan_plan->scan.plan, best_path);

	return scan_plan;
}

/*
 * create_namedtuplestorescan_plan
 *	 Returns a tuplestorescan plan for the base relation scanned by
 *	'best_path' with restriction clauses 'scan_clauses' and targetlist
 *	'tlist'.
 */
static NamedTuplestoreScan *
create_namedtuplestorescan_plan(PlannerInfo *root, Path *best_path,
								List *tlist, List *scan_clauses)
{
	NamedTuplestoreScan *scan_plan;
	Index		scan_relid = best_path->parent->relid;
	RangeTblEntry *rte;

	Assert(scan_relid > 0);
	rte = planner_rt_fetch(scan_relid, root);
	Assert(rte->rtekind == RTE_NAMEDTUPLESTORE);

	/* Sort clauses into best execution order */
	scan_clauses = order_qual_clauses(root, scan_clauses);

	/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
	scan_clauses = extract_actual_clauses(scan_clauses, false);

	/* Replace any outer-relation variables with nestloop params */
	if (best_path->param_info)
	{
		scan_clauses = (List *)
			replace_nestloop_params(root, (Node *) scan_clauses);
	}

	scan_plan = make_namedtuplestorescan(tlist, scan_clauses, scan_relid,
										 rte->enrname);

	copy_generic_path_info(&scan_plan->scan.plan, best_path);

	return scan_plan;
}

/*
 * create_resultscan_plan
 *	 Returns a Result plan for the RTE_RESULT base relation scanned by
 *	'best_path' with restriction clauses 'scan_clauses' and targetlist
 *	'tlist'.
 */
static Result *
create_resultscan_plan(PlannerInfo *root, Path *best_path,
					   List *tlist, List *scan_clauses)
{
	Result	   *scan_plan;
	Index		scan_relid = best_path->parent->relid;
	RangeTblEntry *rte PG_USED_FOR_ASSERTS_ONLY;

	Assert(scan_relid > 0);
	rte = planner_rt_fetch(scan_relid, root);
	Assert(rte->rtekind == RTE_RESULT);

	/* Sort clauses into best execution order */
	scan_clauses = order_qual_clauses(root, scan_clauses);

	/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
	scan_clauses = extract_actual_clauses(scan_clauses, false);

	/* Replace any outer-relation variables with nestloop params */
	if (best_path->param_info)
	{
		scan_clauses = (List *)
			replace_nestloop_params(root, (Node *) scan_clauses);
	}

	scan_plan = make_result(tlist, (Node *) scan_clauses, NULL);

	copy_generic_path_info(&scan_plan->plan, best_path);

	return scan_plan;
}

/*
 * create_worktablescan_plan
 *	 Returns a worktablescan plan for the base relation scanned by 'best_path'
 *	 with restriction clauses 'scan_clauses' and targetlist 'tlist'.
 */
static WorkTableScan *
create_worktablescan_plan(PlannerInfo *root, Path *best_path,
						  List *tlist, List *scan_clauses)
{
	WorkTableScan *scan_plan;
	Index		scan_relid = best_path->parent->relid;
	RangeTblEntry *rte;
	Index		levelsup;
	PlannerInfo *cteroot;

	Assert(scan_relid > 0);
	rte = planner_rt_fetch(scan_relid, root);
	Assert(rte->rtekind == RTE_CTE);
	Assert(rte->self_reference);

	/*
	 * We need to find the worktable param ID, which is in the plan level
	 * that's processing the recursive UNION, which is one level *below* where
	 * the CTE comes from.
	 */
	levelsup = rte->ctelevelsup;
	if (levelsup == 0)			/* shouldn't happen */
		elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
	levelsup--;
	cteroot = root;
	while (levelsup-- > 0)
	{
		cteroot = cteroot->parent_root;
		if (!cteroot)			/* shouldn't happen */
			elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
	}
	if (cteroot->wt_param_id < 0)	/* shouldn't happen */
		elog(ERROR, "could not find param ID for CTE \"%s\"", rte->ctename);

	/* Sort clauses into best execution order */
	scan_clauses = order_qual_clauses(root, scan_clauses);

	/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
	scan_clauses = extract_actual_clauses(scan_clauses, false);

	/* Replace any outer-relation variables with nestloop params */
	if (best_path->param_info)
	{
		scan_clauses = (List *)
			replace_nestloop_params(root, (Node *) scan_clauses);
	}

	scan_plan = make_worktablescan(tlist, scan_clauses, scan_relid,
								   cteroot->wt_param_id);

	copy_generic_path_info(&scan_plan->scan.plan, best_path);

	return scan_plan;
}

/*
 * create_foreignscan_plan
 *	 Returns a foreignscan plan for the relation scanned by 'best_path'
 *	 with restriction clauses 'scan_clauses' and targetlist 'tlist'.
 */
static ForeignScan *
create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path,
						List *tlist, List *scan_clauses)
{
	ForeignScan *scan_plan;
	RelOptInfo *rel = best_path->path.parent;
	Index		scan_relid = rel->relid;
	Oid			rel_oid = InvalidOid;
	Plan	   *outer_plan = NULL;

	Assert(rel->fdwroutine != NULL);

	/* transform the child path if any */
	if (best_path->fdw_outerpath)
		outer_plan = create_plan_recurse(root, best_path->fdw_outerpath,
										 CP_EXACT_TLIST);

	/*
	 * If we're scanning a base relation, fetch its OID.  (Irrelevant if
	 * scanning a join relation.)
	 */
	if (scan_relid > 0)
	{
		RangeTblEntry *rte;

		Assert(rel->rtekind == RTE_RELATION);
		rte = planner_rt_fetch(scan_relid, root);
		Assert(rte->rtekind == RTE_RELATION);
		rel_oid = rte->relid;
	}

	/*
	 * Sort clauses into best execution order.  We do this first since the FDW
	 * might have more info than we do and wish to adjust the ordering.
	 */
	scan_clauses = order_qual_clauses(root, scan_clauses);

	/*
	 * Let the FDW perform its processing on the restriction clauses and
	 * generate the plan node.  Note that the FDW might remove restriction
	 * clauses that it intends to execute remotely, or even add more (if it
	 * has selected some join clauses for remote use but also wants them
	 * rechecked locally).
	 */
	scan_plan = rel->fdwroutine->GetForeignPlan(root, rel, rel_oid,
												best_path,
												tlist, scan_clauses,
												outer_plan);

	/* Copy cost data from Path to Plan; no need to make FDW do this */
	copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);

	/* Copy user OID to access as; likewise no need to make FDW do this */
	scan_plan->checkAsUser = rel->userid;

	/* Copy foreign server OID; likewise, no need to make FDW do this */
	scan_plan->fs_server = rel->serverid;

	/*
	 * Likewise, copy the relids that are represented by this foreign scan. An
	 * upper rel doesn't have relids set, but it covers all the relations
	 * participating in the underlying scan/join, so use root->all_query_rels.
	 */
	if (rel->reloptkind == RELOPT_UPPER_REL)
		scan_plan->fs_relids = root->all_query_rels;
	else
		scan_plan->fs_relids = best_path->path.parent->relids;

	/*
	 * Join relid sets include relevant outer joins, but FDWs may need to know
	 * which are the included base rels.  That's a bit tedious to get without
	 * access to the plan-time data structures, so compute it here.
	 */
	scan_plan->fs_base_relids = bms_difference(scan_plan->fs_relids,
											   root->outer_join_rels);

	/*
	 * If this is a foreign join, and to make it valid to push down we had to
	 * assume that the current user is the same as some user explicitly named
	 * in the query, mark the finished plan as depending on the current user.
	 */
	if (rel->useridiscurrent)
		root->glob->dependsOnRole = true;

	/*
	 * Replace any outer-relation variables with nestloop params in the qual,
	 * fdw_exprs and fdw_recheck_quals expressions.  We do this last so that
	 * the FDW doesn't have to be involved.  (Note that parts of fdw_exprs or
	 * fdw_recheck_quals could have come from join clauses, so doing this
	 * beforehand on the scan_clauses wouldn't work.)  We assume
	 * fdw_scan_tlist contains no such variables.
	 */
	if (best_path->path.param_info)
	{
		scan_plan->scan.plan.qual = (List *)
			replace_nestloop_params(root, (Node *) scan_plan->scan.plan.qual);
		scan_plan->fdw_exprs = (List *)
			replace_nestloop_params(root, (Node *) scan_plan->fdw_exprs);
		scan_plan->fdw_recheck_quals = (List *)
			replace_nestloop_params(root,
									(Node *) scan_plan->fdw_recheck_quals);
	}

	/*
	 * If rel is a base relation, detect whether any system columns are
	 * requested from the rel.  (If rel is a join relation, rel->relid will be
	 * 0, but there can be no Var with relid 0 in the rel's targetlist or the
	 * restriction clauses, so we skip this in that case.  Note that any such
	 * columns in base relations that were joined are assumed to be contained
	 * in fdw_scan_tlist.)	This is a bit of a kluge and might go away
	 * someday, so we intentionally leave it out of the API presented to FDWs.
	 */
	scan_plan->fsSystemCol = false;
	if (scan_relid > 0)
	{
		Bitmapset  *attrs_used = NULL;
		ListCell   *lc;
		int			i;

		/*
		 * First, examine all the attributes needed for joins or final output.
		 * Note: we must look at rel's targetlist, not the attr_needed data,
		 * because attr_needed isn't computed for inheritance child rels.
		 */
		pull_varattnos((Node *) rel->reltarget->exprs, scan_relid, &attrs_used);

		/* Add all the attributes used by restriction clauses. */
		foreach(lc, rel->baserestrictinfo)
		{
			RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);

			pull_varattnos((Node *) rinfo->clause, scan_relid, &attrs_used);
		}

		/* Now, are any system columns requested from rel? */
		for (i = FirstLowInvalidHeapAttributeNumber + 1; i < 0; i++)
		{
			if (bms_is_member(i - FirstLowInvalidHeapAttributeNumber, attrs_used))
			{
				scan_plan->fsSystemCol = true;
				break;
			}
		}

		bms_free(attrs_used);
	}

	return scan_plan;
}

/*
 * create_customscan_plan
 *
 * Transform a CustomPath into a Plan.
 */
static CustomScan *
create_customscan_plan(PlannerInfo *root, CustomPath *best_path,
					   List *tlist, List *scan_clauses)
{
	CustomScan *cplan;
	RelOptInfo *rel = best_path->path.parent;
	List	   *custom_plans = NIL;
	ListCell   *lc;

	/* Recursively transform child paths. */
	foreach(lc, best_path->custom_paths)
	{
		Plan	   *plan = create_plan_recurse(root, (Path *) lfirst(lc),
											   CP_EXACT_TLIST);

		custom_plans = lappend(custom_plans, plan);
	}

	/*
	 * Sort clauses into the best execution order, although custom-scan
	 * provider can reorder them again.
	 */
	scan_clauses = order_qual_clauses(root, scan_clauses);

	/*
	 * Invoke custom plan provider to create the Plan node represented by the
	 * CustomPath.
	 */
	cplan = castNode(CustomScan,
					 best_path->methods->PlanCustomPath(root,
														rel,
														best_path,
														tlist,
														scan_clauses,
														custom_plans));

	/*
	 * Copy cost data from Path to Plan; no need to make custom-plan providers
	 * do this
	 */
	copy_generic_path_info(&cplan->scan.plan, &best_path->path);

	/* Likewise, copy the relids that are represented by this custom scan */
	cplan->custom_relids = best_path->path.parent->relids;

	/*
	 * Replace any outer-relation variables with nestloop params in the qual
	 * and custom_exprs expressions.  We do this last so that the custom-plan
	 * provider doesn't have to be involved.  (Note that parts of custom_exprs
	 * could have come from join clauses, so doing this beforehand on the
	 * scan_clauses wouldn't work.)  We assume custom_scan_tlist contains no
	 * such variables.
	 */
	if (best_path->path.param_info)
	{
		cplan->scan.plan.qual = (List *)
			replace_nestloop_params(root, (Node *) cplan->scan.plan.qual);
		cplan->custom_exprs = (List *)
			replace_nestloop_params(root, (Node *) cplan->custom_exprs);
	}

	return cplan;
}


/*****************************************************************************
 *
 *	JOIN METHODS
 *
 *****************************************************************************/

static NestLoop *
create_nestloop_plan(PlannerInfo *root,
					 NestPath *best_path)
{
	NestLoop   *join_plan;
	Plan	   *outer_plan;
	Plan	   *inner_plan;
	List	   *tlist = build_path_tlist(root, &best_path->jpath.path);
	List	   *joinrestrictclauses = best_path->jpath.joinrestrictinfo;
	List	   *joinclauses;
	List	   *otherclauses;
	Relids		outerrelids;
	List	   *nestParams;
	Relids		saveOuterRels = root->curOuterRels;

	/* NestLoop can project, so no need to be picky about child tlists */
	outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath, 0);

	/* For a nestloop, include outer relids in curOuterRels for inner side */
	root->curOuterRels = bms_union(root->curOuterRels,
								   best_path->jpath.outerjoinpath->parent->relids);

	inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath, 0);

	/* Restore curOuterRels */
	bms_free(root->curOuterRels);
	root->curOuterRels = saveOuterRels;

	/* Sort join qual clauses into best execution order */
	joinrestrictclauses = order_qual_clauses(root, joinrestrictclauses);

	/* Get the join qual clauses (in plain expression form) */
	/* Any pseudoconstant clauses are ignored here */
	if (IS_OUTER_JOIN(best_path->jpath.jointype))
	{
		extract_actual_join_clauses(joinrestrictclauses,
									best_path->jpath.path.parent->relids,
									&joinclauses, &otherclauses);
	}
	else
	{
		/* We can treat all clauses alike for an inner join */
		joinclauses = extract_actual_clauses(joinrestrictclauses, false);
		otherclauses = NIL;
	}

	/* Replace any outer-relation variables with nestloop params */
	if (best_path->jpath.path.param_info)
	{
		joinclauses = (List *)
			replace_nestloop_params(root, (Node *) joinclauses);
		otherclauses = (List *)
			replace_nestloop_params(root, (Node *) otherclauses);
	}

	/*
	 * Identify any nestloop parameters that should be supplied by this join
	 * node, and remove them from root->curOuterParams.
	 */
	outerrelids = best_path->jpath.outerjoinpath->parent->relids;
	nestParams = identify_current_nestloop_params(root, outerrelids);

	join_plan = make_nestloop(tlist,
							  joinclauses,
							  otherclauses,
							  nestParams,
							  outer_plan,
							  inner_plan,
							  best_path->jpath.jointype,
							  best_path->jpath.inner_unique);

	copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);

	return join_plan;
}

static MergeJoin *
create_mergejoin_plan(PlannerInfo *root,
					  MergePath *best_path)
{
	MergeJoin  *join_plan;
	Plan	   *outer_plan;
	Plan	   *inner_plan;
	List	   *tlist = build_path_tlist(root, &best_path->jpath.path);
	List	   *joinclauses;
	List	   *otherclauses;
	List	   *mergeclauses;
	List	   *outerpathkeys;
	List	   *innerpathkeys;
	int			nClauses;
	Oid		   *mergefamilies;
	Oid		   *mergecollations;
	int		   *mergestrategies;
	bool	   *mergenullsfirst;
	PathKey    *opathkey;
	EquivalenceClass *opeclass;
	int			i;
	ListCell   *lc;
	ListCell   *lop;
	ListCell   *lip;
	Path	   *outer_path = best_path->jpath.outerjoinpath;
	Path	   *inner_path = best_path->jpath.innerjoinpath;

	/*
	 * MergeJoin can project, so we don't have to demand exact tlists from the
	 * inputs.  However, if we're intending to sort an input's result, it's
	 * best to request a small tlist so we aren't sorting more data than
	 * necessary.
	 */
	outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath,
									 (best_path->outersortkeys != NIL) ? CP_SMALL_TLIST : 0);

	inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath,
									 (best_path->innersortkeys != NIL) ? CP_SMALL_TLIST : 0);

	/* Sort join qual clauses into best execution order */
	/* NB: do NOT reorder the mergeclauses */
	joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);

	/* Get the join qual clauses (in plain expression form) */
	/* Any pseudoconstant clauses are ignored here */
	if (IS_OUTER_JOIN(best_path->jpath.jointype))
	{
		extract_actual_join_clauses(joinclauses,
									best_path->jpath.path.parent->relids,
									&joinclauses, &otherclauses);
	}
	else
	{
		/* We can treat all clauses alike for an inner join */
		joinclauses = extract_actual_clauses(joinclauses, false);
		otherclauses = NIL;
	}

	/*
	 * Remove the mergeclauses from the list of join qual clauses, leaving the
	 * list of quals that must be checked as qpquals.
	 */
	mergeclauses = get_actual_clauses(best_path->path_mergeclauses);
	joinclauses = list_difference(joinclauses, mergeclauses);

	/*
	 * Replace any outer-relation variables with nestloop params.  There
	 * should not be any in the mergeclauses.
	 */
	if (best_path->jpath.path.param_info)
	{
		joinclauses = (List *)
			replace_nestloop_params(root, (Node *) joinclauses);
		otherclauses = (List *)
			replace_nestloop_params(root, (Node *) otherclauses);
	}

	/*
	 * Rearrange mergeclauses, if needed, so that the outer variable is always
	 * on the left; mark the mergeclause restrictinfos with correct
	 * outer_is_left status.
	 */
	mergeclauses = get_switched_clauses(best_path->path_mergeclauses,
										best_path->jpath.outerjoinpath->parent->relids);

	/*
	 * Create explicit sort nodes for the outer and inner paths if necessary.
	 */
	if (best_path->outersortkeys)
	{
		Relids		outer_relids = outer_path->parent->relids;
		Sort	   *sort = make_sort_from_pathkeys(outer_plan,
												   best_path->outersortkeys,
												   outer_relids);

		label_sort_with_costsize(root, sort, -1.0);
		outer_plan = (Plan *) sort;
		outerpathkeys = best_path->outersortkeys;
	}
	else
		outerpathkeys = best_path->jpath.outerjoinpath->pathkeys;

	if (best_path->innersortkeys)
	{
		Relids		inner_relids = inner_path->parent->relids;
		Sort	   *sort = make_sort_from_pathkeys(inner_plan,
												   best_path->innersortkeys,
												   inner_relids);

		label_sort_with_costsize(root, sort, -1.0);
		inner_plan = (Plan *) sort;
		innerpathkeys = best_path->innersortkeys;
	}
	else
		innerpathkeys = best_path->jpath.innerjoinpath->pathkeys;

	/*
	 * If specified, add a materialize node to shield the inner plan from the
	 * need to handle mark/restore.
	 */
	if (best_path->materialize_inner)
	{
		Plan	   *matplan = (Plan *) make_material(inner_plan);

		/*
		 * We assume the materialize will not spill to disk, and therefore
		 * charge just cpu_operator_cost per tuple.  (Keep this estimate in
		 * sync with final_cost_mergejoin.)
		 */
		copy_plan_costsize(matplan, inner_plan);
		matplan->total_cost += cpu_operator_cost * matplan->plan_rows;

		inner_plan = matplan;
	}

	/*
	 * Compute the opfamily/collation/strategy/nullsfirst arrays needed by the
	 * executor.  The information is in the pathkeys for the two inputs, but
	 * we need to be careful about the possibility of mergeclauses sharing a
	 * pathkey, as well as the possibility that the inner pathkeys are not in
	 * an order matching the mergeclauses.
	 */
	nClauses = list_length(mergeclauses);
	Assert(nClauses == list_length(best_path->path_mergeclauses));
	mergefamilies = (Oid *) palloc(nClauses * sizeof(Oid));
	mergecollations = (Oid *) palloc(nClauses * sizeof(Oid));
	mergestrategies = (int *) palloc(nClauses * sizeof(int));
	mergenullsfirst = (bool *) palloc(nClauses * sizeof(bool));

	opathkey = NULL;
	opeclass = NULL;
	lop = list_head(outerpathkeys);
	lip = list_head(innerpathkeys);
	i = 0;
	foreach(lc, best_path->path_mergeclauses)
	{
		RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
		EquivalenceClass *oeclass;
		EquivalenceClass *ieclass;
		PathKey    *ipathkey = NULL;
		EquivalenceClass *ipeclass = NULL;
		bool		first_inner_match = false;

		/* fetch outer/inner eclass from mergeclause */
		if (rinfo->outer_is_left)
		{
			oeclass = rinfo->left_ec;
			ieclass = rinfo->right_ec;
		}
		else
		{
			oeclass = rinfo->right_ec;
			ieclass = rinfo->left_ec;
		}
		Assert(oeclass != NULL);
		Assert(ieclass != NULL);

		/*
		 * We must identify the pathkey elements associated with this clause
		 * by matching the eclasses (which should give a unique match, since
		 * the pathkey lists should be canonical).  In typical cases the merge
		 * clauses are one-to-one with the pathkeys, but when dealing with
		 * partially redundant query conditions, things are more complicated.
		 *
		 * lop and lip reference the first as-yet-unmatched pathkey elements.
		 * If they're NULL then all pathkey elements have been matched.
		 *
		 * The ordering of the outer pathkeys should match the mergeclauses,
		 * by construction (see find_mergeclauses_for_outer_pathkeys()). There
		 * could be more than one mergeclause for the same outer pathkey, but
		 * no pathkey may be entirely skipped over.
		 */
		if (oeclass != opeclass)	/* multiple matches are not interesting */
		{
			/* doesn't match the current opathkey, so must match the next */
			if (lop == NULL)
				elog(ERROR, "outer pathkeys do not match mergeclauses");
			opathkey = (PathKey *) lfirst(lop);
			opeclass = opathkey->pk_eclass;
			lop = lnext(outerpathkeys, lop);
			if (oeclass != opeclass)
				elog(ERROR, "outer pathkeys do not match mergeclauses");
		}

		/*
		 * The inner pathkeys likewise should not have skipped-over keys, but
		 * it's possible for a mergeclause to reference some earlier inner
		 * pathkey if we had redundant pathkeys.  For example we might have
		 * mergeclauses like "o.a = i.x AND o.b = i.y AND o.c = i.x".  The
		 * implied inner ordering is then "ORDER BY x, y, x", but the pathkey
		 * mechanism drops the second sort by x as redundant, and this code
		 * must cope.
		 *
		 * It's also possible for the implied inner-rel ordering to be like
		 * "ORDER BY x, y, x DESC".  We still drop the second instance of x as
		 * redundant; but this means that the sort ordering of a redundant
		 * inner pathkey should not be considered significant.  So we must
		 * detect whether this is the first clause matching an inner pathkey.
		 */
		if (lip)
		{
			ipathkey = (PathKey *) lfirst(lip);
			ipeclass = ipathkey->pk_eclass;
			if (ieclass == ipeclass)
			{
				/* successful first match to this inner pathkey */
				lip = lnext(innerpathkeys, lip);
				first_inner_match = true;
			}
		}
		if (!first_inner_match)
		{
			/* redundant clause ... must match something before lip */
			ListCell   *l2;

			foreach(l2, innerpathkeys)
			{
				if (l2 == lip)
					break;
				ipathkey = (PathKey *) lfirst(l2);
				ipeclass = ipathkey->pk_eclass;
				if (ieclass == ipeclass)
					break;
			}
			if (ieclass != ipeclass)
				elog(ERROR, "inner pathkeys do not match mergeclauses");
		}

		/*
		 * The pathkeys should always match each other as to opfamily and
		 * collation (which affect equality), but if we're considering a
		 * redundant inner pathkey, its sort ordering might not match.  In
		 * such cases we may ignore the inner pathkey's sort ordering and use
		 * the outer's.  (In effect, we're lying to the executor about the
		 * sort direction of this inner column, but it does not matter since
		 * the run-time row comparisons would only reach this column when
		 * there's equality for the earlier column containing the same eclass.
		 * There could be only one value in this column for the range of inner
		 * rows having a given value in the earlier column, so it does not
		 * matter which way we imagine this column to be ordered.)  But a
		 * non-redundant inner pathkey had better match outer's ordering too.
		 */
		if (opathkey->pk_opfamily != ipathkey->pk_opfamily ||
			opathkey->pk_eclass->ec_collation != ipathkey->pk_eclass->ec_collation)
			elog(ERROR, "left and right pathkeys do not match in mergejoin");
		if (first_inner_match &&
			(opathkey->pk_strategy != ipathkey->pk_strategy ||
			 opathkey->pk_nulls_first != ipathkey->pk_nulls_first))
			elog(ERROR, "left and right pathkeys do not match in mergejoin");

		/* OK, save info for executor */
		mergefamilies[i] = opathkey->pk_opfamily;
		mergecollations[i] = opathkey->pk_eclass->ec_collation;
		mergestrategies[i] = opathkey->pk_strategy;
		mergenullsfirst[i] = opathkey->pk_nulls_first;
		i++;
	}

	/*
	 * Note: it is not an error if we have additional pathkey elements (i.e.,
	 * lop or lip isn't NULL here).  The input paths might be better-sorted
	 * than we need for the current mergejoin.
	 */

	/*
	 * Now we can build the mergejoin node.
	 */
	join_plan = make_mergejoin(tlist,
							   joinclauses,
							   otherclauses,
							   mergeclauses,
							   mergefamilies,
							   mergecollations,
							   mergestrategies,
							   mergenullsfirst,
							   outer_plan,
							   inner_plan,
							   best_path->jpath.jointype,
							   best_path->jpath.inner_unique,
							   best_path->skip_mark_restore);

	/* Costs of sort and material steps are included in path cost already */
	copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);

	return join_plan;
}

static HashJoin *
create_hashjoin_plan(PlannerInfo *root,
					 HashPath *best_path)
{
	HashJoin   *join_plan;
	Hash	   *hash_plan;
	Plan	   *outer_plan;
	Plan	   *inner_plan;
	List	   *tlist = build_path_tlist(root, &best_path->jpath.path);
	List	   *joinclauses;
	List	   *otherclauses;
	List	   *hashclauses;
	List	   *hashoperators = NIL;
	List	   *hashcollations = NIL;
	List	   *inner_hashkeys = NIL;
	List	   *outer_hashkeys = NIL;
	Oid			skewTable = InvalidOid;
	AttrNumber	skewColumn = InvalidAttrNumber;
	bool		skewInherit = false;
	ListCell   *lc;

	/*
	 * HashJoin can project, so we don't have to demand exact tlists from the
	 * inputs.  However, it's best to request a small tlist from the inner
	 * side, so that we aren't storing more data than necessary.  Likewise, if
	 * we anticipate batching, request a small tlist from the outer side so
	 * that we don't put extra data in the outer batch files.
	 */
	outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath,
									 (best_path->num_batches > 1) ? CP_SMALL_TLIST : 0);

	inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath,
									 CP_SMALL_TLIST);

	/* Sort join qual clauses into best execution order */
	joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);
	/* There's no point in sorting the hash clauses ... */

	/* Get the join qual clauses (in plain expression form) */
	/* Any pseudoconstant clauses are ignored here */
	if (IS_OUTER_JOIN(best_path->jpath.jointype))
	{
		extract_actual_join_clauses(joinclauses,
									best_path->jpath.path.parent->relids,
									&joinclauses, &otherclauses);
	}
	else
	{
		/* We can treat all clauses alike for an inner join */
		joinclauses = extract_actual_clauses(joinclauses, false);
		otherclauses = NIL;
	}

	/*
	 * Remove the hashclauses from the list of join qual clauses, leaving the
	 * list of quals that must be checked as qpquals.
	 */
	hashclauses = get_actual_clauses(best_path->path_hashclauses);
	joinclauses = list_difference(joinclauses, hashclauses);

	/*
	 * Replace any outer-relation variables with nestloop params.  There
	 * should not be any in the hashclauses.
	 */
	if (best_path->jpath.path.param_info)
	{
		joinclauses = (List *)
			replace_nestloop_params(root, (Node *) joinclauses);
		otherclauses = (List *)
			replace_nestloop_params(root, (Node *) otherclauses);
	}

	/*
	 * Rearrange hashclauses, if needed, so that the outer variable is always
	 * on the left.
	 */
	hashclauses = get_switched_clauses(best_path->path_hashclauses,
									   best_path->jpath.outerjoinpath->parent->relids);

	/*
	 * If there is a single join clause and we can identify the outer variable
	 * as a simple column reference, supply its identity for possible use in
	 * skew optimization.  (Note: in principle we could do skew optimization
	 * with multiple join clauses, but we'd have to be able to determine the
	 * most common combinations of outer values, which we don't currently have
	 * enough stats for.)
	 */
	if (list_length(hashclauses) == 1)
	{
		OpExpr	   *clause = (OpExpr *) linitial(hashclauses);
		Node	   *node;

		Assert(is_opclause(clause));
		node = (Node *) linitial(clause->args);
		if (IsA(node, RelabelType))
			node = (Node *) ((RelabelType *) node)->arg;
		if (IsA(node, Var))
		{
			Var		   *var = (Var *) node;
			RangeTblEntry *rte;

			rte = root->simple_rte_array[var->varno];
			if (rte->rtekind == RTE_RELATION)
			{
				skewTable = rte->relid;
				skewColumn = var->varattno;
				skewInherit = rte->inh;
			}
		}
	}

	/*
	 * Collect hash related information. The hashed expressions are
	 * deconstructed into outer/inner expressions, so they can be computed
	 * separately (inner expressions are used to build the hashtable via Hash,
	 * outer expressions to perform lookups of tuples from HashJoin's outer
	 * plan in the hashtable). Also collect operator information necessary to
	 * build the hashtable.
	 */
	foreach(lc, hashclauses)
	{
		OpExpr	   *hclause = lfirst_node(OpExpr, lc);

		hashoperators = lappend_oid(hashoperators, hclause->opno);
		hashcollations = lappend_oid(hashcollations, hclause->inputcollid);
		outer_hashkeys = lappend(outer_hashkeys, linitial(hclause->args));
		inner_hashkeys = lappend(inner_hashkeys, lsecond(hclause->args));
	}

	/*
	 * Build the hash node and hash join node.
	 */
	hash_plan = make_hash(inner_plan,
						  inner_hashkeys,
						  skewTable,
						  skewColumn,
						  skewInherit);

	/*
	 * Set Hash node's startup & total costs equal to total cost of input
	 * plan; this only affects EXPLAIN display not decisions.
	 */
	copy_plan_costsize(&hash_plan->plan, inner_plan);
	hash_plan->plan.startup_cost = hash_plan->plan.total_cost;

	/*
	 * If parallel-aware, the executor will also need an estimate of the total
	 * number of rows expected from all participants so that it can size the
	 * shared hash table.
	 */
	if (best_path->jpath.path.parallel_aware)
	{
		hash_plan->plan.parallel_aware = true;
		hash_plan->rows_total = best_path->inner_rows_total;
	}

	join_plan = make_hashjoin(tlist,
							  joinclauses,
							  otherclauses,
							  hashclauses,
							  hashoperators,
							  hashcollations,
							  outer_hashkeys,
							  outer_plan,
							  (Plan *) hash_plan,
							  best_path->jpath.jointype,
							  best_path->jpath.inner_unique);

	copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);

	return join_plan;
}


/*****************************************************************************
 *
 *	SUPPORTING ROUTINES
 *
 *****************************************************************************/

/*
 * replace_nestloop_params
 *	  Replace outer-relation Vars and PlaceHolderVars in the given expression
 *	  with nestloop Params
 *
 * All Vars and PlaceHolderVars belonging to the relation(s) identified by
 * root->curOuterRels are replaced by Params, and entries are added to
 * root->curOuterParams if not already present.
 */
static Node *
replace_nestloop_params(PlannerInfo *root, Node *expr)
{
	/* No setup needed for tree walk, so away we go */
	return replace_nestloop_params_mutator(expr, root);
}

static Node *
replace_nestloop_params_mutator(Node *node, PlannerInfo *root)
{
	if (node == NULL)
		return NULL;
	if (IsA(node, Var))
	{
		Var		   *var = (Var *) node;

		/* Upper-level Vars should be long gone at this point */
		Assert(var->varlevelsup == 0);
		/* If not to be replaced, we can just return the Var unmodified */
		if (IS_SPECIAL_VARNO(var->varno) ||
			!bms_is_member(var->varno, root->curOuterRels))
			return node;
		/* Replace the Var with a nestloop Param */
		return (Node *) replace_nestloop_param_var(root, var);
	}
	if (IsA(node, PlaceHolderVar))
	{
		PlaceHolderVar *phv = (PlaceHolderVar *) node;

		/* Upper-level PlaceHolderVars should be long gone at this point */
		Assert(phv->phlevelsup == 0);

		/* Check whether we need to replace the PHV */
		if (!bms_is_subset(find_placeholder_info(root, phv)->ph_eval_at,
						   root->curOuterRels))
		{
			/*
			 * We can't replace the whole PHV, but we might still need to
			 * replace Vars or PHVs within its expression, in case it ends up
			 * actually getting evaluated here.  (It might get evaluated in
			 * this plan node, or some child node; in the latter case we don't
			 * really need to process the expression here, but we haven't got
			 * enough info to tell if that's the case.)  Flat-copy the PHV
			 * node and then recurse on its expression.
			 *
			 * Note that after doing this, we might have different
			 * representations of the contents of the same PHV in different
			 * parts of the plan tree.  This is OK because equal() will just
			 * match on phid/phlevelsup, so setrefs.c will still recognize an
			 * upper-level reference to a lower-level copy of the same PHV.
			 */
			PlaceHolderVar *newphv = makeNode(PlaceHolderVar);

			memcpy(newphv, phv, sizeof(PlaceHolderVar));
			newphv->phexpr = (Expr *)
				replace_nestloop_params_mutator((Node *) phv->phexpr,
												root);
			return (Node *) newphv;
		}
		/* Replace the PlaceHolderVar with a nestloop Param */
		return (Node *) replace_nestloop_param_placeholdervar(root, phv);
	}
	return expression_tree_mutator(node,
								   replace_nestloop_params_mutator,
								   (void *) root);
}

/*
 * fix_indexqual_references
 *	  Adjust indexqual clauses to the form the executor's indexqual
 *	  machinery needs.
 *
 * We have three tasks here:
 *	* Select the actual qual clauses out of the input IndexClause list,
 *	  and remove RestrictInfo nodes from the qual clauses.
 *	* Replace any outer-relation Var or PHV nodes with nestloop Params.
 *	  (XXX eventually, that responsibility should go elsewhere?)
 *	* Index keys must be represented by Var nodes with varattno set to the
 *	  index's attribute number, not the attribute number in the original rel.
 *
 * *stripped_indexquals_p receives a list of the actual qual clauses.
 *
 * *fixed_indexquals_p receives a list of the adjusted quals.  This is a copy
 * that shares no substructure with the original; this is needed in case there
 * are subplans in it (we need two separate copies of the subplan tree, or
 * things will go awry).
 */
static void
fix_indexqual_references(PlannerInfo *root, IndexPath *index_path,
						 List **stripped_indexquals_p, List **fixed_indexquals_p)
{
	IndexOptInfo *index = index_path->indexinfo;
	List	   *stripped_indexquals;
	List	   *fixed_indexquals;
	ListCell   *lc;

	stripped_indexquals = fixed_indexquals = NIL;

	foreach(lc, index_path->indexclauses)
	{
		IndexClause *iclause = lfirst_node(IndexClause, lc);
		int			indexcol = iclause->indexcol;
		ListCell   *lc2;

		foreach(lc2, iclause->indexquals)
		{
			RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
			Node	   *clause = (Node *) rinfo->clause;

			stripped_indexquals = lappend(stripped_indexquals, clause);
			clause = fix_indexqual_clause(root, index, indexcol,
										  clause, iclause->indexcols);
			fixed_indexquals = lappend(fixed_indexquals, clause);
		}
	}

	*stripped_indexquals_p = stripped_indexquals;
	*fixed_indexquals_p = fixed_indexquals;
}

/*
 * fix_indexorderby_references
 *	  Adjust indexorderby clauses to the form the executor's index
 *	  machinery needs.
 *
 * This is a simplified version of fix_indexqual_references.  The input is
 * bare clauses and a separate indexcol list, instead of IndexClauses.
 */
static List *
fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path)
{
	IndexOptInfo *index = index_path->indexinfo;
	List	   *fixed_indexorderbys;
	ListCell   *lcc,
			   *lci;

	fixed_indexorderbys = NIL;

	forboth(lcc, index_path->indexorderbys, lci, index_path->indexorderbycols)
	{
		Node	   *clause = (Node *) lfirst(lcc);
		int			indexcol = lfirst_int(lci);

		clause = fix_indexqual_clause(root, index, indexcol, clause, NIL);
		fixed_indexorderbys = lappend(fixed_indexorderbys, clause);
	}

	return fixed_indexorderbys;
}

/*
 * fix_indexqual_clause
 *	  Convert a single indexqual clause to the form needed by the executor.
 *
 * We replace nestloop params here, and replace the index key variables
 * or expressions by index Var nodes.
 */
static Node *
fix_indexqual_clause(PlannerInfo *root, IndexOptInfo *index, int indexcol,
					 Node *clause, List *indexcolnos)
{
	/*
	 * Replace any outer-relation variables with nestloop params.
	 *
	 * This also makes a copy of the clause, so it's safe to modify it
	 * in-place below.
	 */
	clause = replace_nestloop_params(root, clause);

	if (IsA(clause, OpExpr))
	{
		OpExpr	   *op = (OpExpr *) clause;

		/* Replace the indexkey expression with an index Var. */
		linitial(op->args) = fix_indexqual_operand(linitial(op->args),
												   index,
												   indexcol);
	}
	else if (IsA(clause, RowCompareExpr))
	{
		RowCompareExpr *rc = (RowCompareExpr *) clause;
		ListCell   *lca,
				   *lcai;

		/* Replace the indexkey expressions with index Vars. */
		Assert(list_length(rc->largs) == list_length(indexcolnos));
		forboth(lca, rc->largs, lcai, indexcolnos)
		{
			lfirst(lca) = fix_indexqual_operand(lfirst(lca),
												index,
												lfirst_int(lcai));
		}
	}
	else if (IsA(clause, ScalarArrayOpExpr))
	{
		ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;

		/* Replace the indexkey expression with an index Var. */
		linitial(saop->args) = fix_indexqual_operand(linitial(saop->args),
													 index,
													 indexcol);
	}
	else if (IsA(clause, NullTest))
	{
		NullTest   *nt = (NullTest *) clause;

		/* Replace the indexkey expression with an index Var. */
		nt->arg = (Expr *) fix_indexqual_operand((Node *) nt->arg,
												 index,
												 indexcol);
	}
	else
		elog(ERROR, "unsupported indexqual type: %d",
			 (int) nodeTag(clause));

	return clause;
}

/*
 * fix_indexqual_operand
 *	  Convert an indexqual expression to a Var referencing the index column.
 *
 * We represent index keys by Var nodes having varno == INDEX_VAR and varattno
 * equal to the index's attribute number (index column position).
 *
 * Most of the code here is just for sanity cross-checking that the given
 * expression actually matches the index column it's claimed to.
 */
static Node *
fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol)
{
	Var		   *result;
	int			pos;
	ListCell   *indexpr_item;

	/*
	 * Remove any binary-compatible relabeling of the indexkey
	 */
	if (IsA(node, RelabelType))
		node = (Node *) ((RelabelType *) node)->arg;

	Assert(indexcol >= 0 && indexcol < index->ncolumns);

	if (index->indexkeys[indexcol] != 0)
	{
		/* It's a simple index column */
		if (IsA(node, Var) &&
			((Var *) node)->varno == index->rel->relid &&
			((Var *) node)->varattno == index->indexkeys[indexcol])
		{
			result = (Var *) copyObject(node);
			result->varno = INDEX_VAR;
			result->varattno = indexcol + 1;
			return (Node *) result;
		}
		else
			elog(ERROR, "index key does not match expected index column");
	}

	/* It's an index expression, so find and cross-check the expression */
	indexpr_item = list_head(index->indexprs);
	for (pos = 0; pos < index->ncolumns; pos++)
	{
		if (index->indexkeys[pos] == 0)
		{
			if (indexpr_item == NULL)
				elog(ERROR, "too few entries in indexprs list");
			if (pos == indexcol)
			{
				Node	   *indexkey;

				indexkey = (Node *) lfirst(indexpr_item);
				if (indexkey && IsA(indexkey, RelabelType))
					indexkey = (Node *) ((RelabelType *) indexkey)->arg;
				if (equal(node, indexkey))
				{
					result = makeVar(INDEX_VAR, indexcol + 1,
									 exprType(lfirst(indexpr_item)), -1,
									 exprCollation(lfirst(indexpr_item)),
									 0);
					return (Node *) result;
				}
				else
					elog(ERROR, "index key does not match expected index column");
			}
			indexpr_item = lnext(index->indexprs, indexpr_item);
		}
	}

	/* Oops... */
	elog(ERROR, "index key does not match expected index column");
	return NULL;				/* keep compiler quiet */
}

/*
 * get_switched_clauses
 *	  Given a list of merge or hash joinclauses (as RestrictInfo nodes),
 *	  extract the bare clauses, and rearrange the elements within the
 *	  clauses, if needed, so the outer join variable is on the left and
 *	  the inner is on the right.  The original clause data structure is not
 *	  touched; a modified list is returned.  We do, however, set the transient
 *	  outer_is_left field in each RestrictInfo to show which side was which.
 */
static List *
get_switched_clauses(List *clauses, Relids outerrelids)
{
	List	   *t_list = NIL;
	ListCell   *l;

	foreach(l, clauses)
	{
		RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(l);
		OpExpr	   *clause = (OpExpr *) restrictinfo->clause;

		Assert(is_opclause(clause));
		if (bms_is_subset(restrictinfo->right_relids, outerrelids))
		{
			/*
			 * Duplicate just enough of the structure to allow commuting the
			 * clause without changing the original list.  Could use
			 * copyObject, but a complete deep copy is overkill.
			 */
			OpExpr	   *temp = makeNode(OpExpr);

			temp->opno = clause->opno;
			temp->opfuncid = InvalidOid;
			temp->opresulttype = clause->opresulttype;
			temp->opretset = clause->opretset;
			temp->opcollid = clause->opcollid;
			temp->inputcollid = clause->inputcollid;
			temp->args = list_copy(clause->args);
			temp->location = clause->location;
			/* Commute it --- note this modifies the temp node in-place. */
			CommuteOpExpr(temp);
			t_list = lappend(t_list, temp);
			restrictinfo->outer_is_left = false;
		}
		else
		{
			Assert(bms_is_subset(restrictinfo->left_relids, outerrelids));
			t_list = lappend(t_list, clause);
			restrictinfo->outer_is_left = true;
		}
	}
	return t_list;
}

/*
 * order_qual_clauses
 *		Given a list of qual clauses that will all be evaluated at the same
 *		plan node, sort the list into the order we want to check the quals
 *		in at runtime.
 *
 * When security barrier quals are used in the query, we may have quals with
 * different security levels in the list.  Quals of lower security_level
 * must go before quals of higher security_level, except that we can grant
 * exceptions to move up quals that are leakproof.  When security level
 * doesn't force the decision, we prefer to order clauses by estimated
 * execution cost, cheapest first.
 *
 * Ideally the order should be driven by a combination of execution cost and
 * selectivity, but it's not immediately clear how to account for both,
 * and given the uncertainty of the estimates the reliability of the decisions
 * would be doubtful anyway.  So we just order by security level then
 * estimated per-tuple cost, being careful not to change the order when
 * (as is often the case) the estimates are identical.
 *
 * Although this will work on either bare clauses or RestrictInfos, it's
 * much faster to apply it to RestrictInfos, since it can re-use cost
 * information that is cached in RestrictInfos.  XXX in the bare-clause
 * case, we are also not able to apply security considerations.  That is
 * all right for the moment, because the bare-clause case doesn't occur
 * anywhere that barrier quals could be present, but it would be better to
 * get rid of it.
 *
 * Note: some callers pass lists that contain entries that will later be
 * removed; this is the easiest way to let this routine see RestrictInfos
 * instead of bare clauses.  This is another reason why trying to consider
 * selectivity in the ordering would likely do the wrong thing.
 */
static List *
order_qual_clauses(PlannerInfo *root, List *clauses)
{
	typedef struct
	{
		Node	   *clause;
		Cost		cost;
		Index		security_level;
	} QualItem;
	int			nitems = list_length(clauses);
	QualItem   *items;
	ListCell   *lc;
	int			i;
	List	   *result;

	/* No need to work hard for 0 or 1 clause */
	if (nitems <= 1)
		return clauses;

	/*
	 * Collect the items and costs into an array.  This is to avoid repeated
	 * cost_qual_eval work if the inputs aren't RestrictInfos.
	 */
	items = (QualItem *) palloc(nitems * sizeof(QualItem));
	i = 0;
	foreach(lc, clauses)
	{
		Node	   *clause = (Node *) lfirst(lc);
		QualCost	qcost;

		cost_qual_eval_node(&qcost, clause, root);
		items[i].clause = clause;
		items[i].cost = qcost.per_tuple;
		if (IsA(clause, RestrictInfo))
		{
			RestrictInfo *rinfo = (RestrictInfo *) clause;

			/*
			 * If a clause is leakproof, it doesn't have to be constrained by
			 * its nominal security level.  If it's also reasonably cheap
			 * (here defined as 10X cpu_operator_cost), pretend it has
			 * security_level 0, which will allow it to go in front of
			 * more-expensive quals of lower security levels.  Of course, that
			 * will also force it to go in front of cheaper quals of its own
			 * security level, which is not so great, but we can alleviate
			 * that risk by applying the cost limit cutoff.
			 */
			if (rinfo->leakproof && items[i].cost < 10 * cpu_operator_cost)
				items[i].security_level = 0;
			else
				items[i].security_level = rinfo->security_level;
		}
		else
			items[i].security_level = 0;
		i++;
	}

	/*
	 * Sort.  We don't use qsort() because it's not guaranteed stable for
	 * equal keys.  The expected number of entries is small enough that a
	 * simple insertion sort should be good enough.
	 */
	for (i = 1; i < nitems; i++)
	{
		QualItem	newitem = items[i];
		int			j;

		/* insert newitem into the already-sorted subarray */
		for (j = i; j > 0; j--)
		{
			QualItem   *olditem = &items[j - 1];

			if (newitem.security_level > olditem->security_level ||
				(newitem.security_level == olditem->security_level &&
				 newitem.cost >= olditem->cost))
				break;
			items[j] = *olditem;
		}
		items[j] = newitem;
	}

	/* Convert back to a list */
	result = NIL;
	for (i = 0; i < nitems; i++)
		result = lappend(result, items[i].clause);

	return result;
}

/*
 * Copy cost and size info from a Path node to the Plan node created from it.
 * The executor usually won't use this info, but it's needed by EXPLAIN.
 * Also copy the parallel-related flags, which the executor *will* use.
 */
static void
copy_generic_path_info(Plan *dest, Path *src)
{
	dest->startup_cost = src->startup_cost;
	dest->total_cost = src->total_cost;
	dest->plan_rows = src->rows;
	dest->plan_width = src->pathtarget->width;
	dest->parallel_aware = src->parallel_aware;
	dest->parallel_safe = src->parallel_safe;
}

/*
 * Copy cost and size info from a lower plan node to an inserted node.
 * (Most callers alter the info after copying it.)
 */
static void
copy_plan_costsize(Plan *dest, Plan *src)
{
	dest->startup_cost = src->startup_cost;
	dest->total_cost = src->total_cost;
	dest->plan_rows = src->plan_rows;
	dest->plan_width = src->plan_width;
	/* Assume the inserted node is not parallel-aware. */
	dest->parallel_aware = false;
	/* Assume the inserted node is parallel-safe, if child plan is. */
	dest->parallel_safe = src->parallel_safe;
}

/*
 * Some places in this file build Sort nodes that don't have a directly
 * corresponding Path node.  The cost of the sort is, or should have been,
 * included in the cost of the Path node we're working from, but since it's
 * not split out, we have to re-figure it using cost_sort().  This is just
 * to label the Sort node nicely for EXPLAIN.
 *
 * limit_tuples is as for cost_sort (in particular, pass -1 if no limit)
 */
static void
label_sort_with_costsize(PlannerInfo *root, Sort *plan, double limit_tuples)
{
	Plan	   *lefttree = plan->plan.lefttree;
	Path		sort_path;		/* dummy for result of cost_sort */

	/*
	 * This function shouldn't have to deal with IncrementalSort plans because
	 * they are only created from corresponding Path nodes.
	 */
	Assert(IsA(plan, Sort));

	cost_sort(&sort_path, root, NIL,
			  lefttree->total_cost,
			  lefttree->plan_rows,
			  lefttree->plan_width,
			  0.0,
			  work_mem,
			  limit_tuples);
	plan->plan.startup_cost = sort_path.startup_cost;
	plan->plan.total_cost = sort_path.total_cost;
	plan->plan.plan_rows = lefttree->plan_rows;
	plan->plan.plan_width = lefttree->plan_width;
	plan->plan.parallel_aware = false;
	plan->plan.parallel_safe = lefttree->parallel_safe;
}

/*
 * bitmap_subplan_mark_shared
 *	 Set isshared flag in bitmap subplan so that it will be created in
 *	 shared memory.
 */
static void
bitmap_subplan_mark_shared(Plan *plan)
{
	if (IsA(plan, BitmapAnd))
		bitmap_subplan_mark_shared(linitial(((BitmapAnd *) plan)->bitmapplans));
	else if (IsA(plan, BitmapOr))
	{
		((BitmapOr *) plan)->isshared = true;
		bitmap_subplan_mark_shared(linitial(((BitmapOr *) plan)->bitmapplans));
	}
	else if (IsA(plan, BitmapIndexScan))
		((BitmapIndexScan *) plan)->isshared = true;
	else
		elog(ERROR, "unrecognized node type: %d", nodeTag(plan));
}

/*****************************************************************************
 *
 *	PLAN NODE BUILDING ROUTINES
 *
 * In general, these functions are not passed the original Path and therefore
 * leave it to the caller to fill in the cost/width fields from the Path,
 * typically by calling copy_generic_path_info().  This convention is
 * somewhat historical, but it does support a few places above where we build
 * a plan node without having an exactly corresponding Path node.  Under no
 * circumstances should one of these functions do its own cost calculations,
 * as that would be redundant with calculations done while building Paths.
 *
 *****************************************************************************/

static SeqScan *
make_seqscan(List *qptlist,
			 List *qpqual,
			 Index scanrelid)
{
	SeqScan    *node = makeNode(SeqScan);
	Plan	   *plan = &node->scan.plan;

	plan->targetlist = qptlist;
	plan->qual = qpqual;
	plan->lefttree = NULL;
	plan->righttree = NULL;
	node->scan.scanrelid = scanrelid;

	return node;
}

static SampleScan *
make_samplescan(List *qptlist,
				List *qpqual,
				Index scanrelid,
				TableSampleClause *tsc)
{
	SampleScan *node = makeNode(SampleScan);
	Plan	   *plan = &node->scan.plan;

	plan->targetlist = qptlist;
	plan->qual = qpqual;
	plan->lefttree = NULL;
	plan->righttree = NULL;
	node->scan.scanrelid = scanrelid;
	node->tablesample = tsc;

	return node;
}

static IndexScan *
make_indexscan(List *qptlist,
			   List *qpqual,
			   Index scanrelid,
			   Oid indexid,
			   List *indexqual,
			   List *indexqualorig,
			   List *indexorderby,
			   List *indexorderbyorig,
			   List *indexorderbyops,
			   ScanDirection indexscandir)
{
	IndexScan  *node = makeNode(IndexScan);
	Plan	   *plan = &node->scan.plan;

	plan->targetlist = qptlist;
	plan->qual = qpqual;
	plan->lefttree = NULL;
	plan->righttree = NULL;
	node->scan.scanrelid = scanrelid;
	node->indexid = indexid;
	node->indexqual = indexqual;
	node->indexqualorig = indexqualorig;
	node->indexorderby = indexorderby;
	node->indexorderbyorig = indexorderbyorig;
	node->indexorderbyops = indexorderbyops;
	node->indexorderdir = indexscandir;

	return node;
}

static IndexOnlyScan *
make_indexonlyscan(List *qptlist,
				   List *qpqual,
				   Index scanrelid,
				   Oid indexid,
				   List *indexqual,
				   List *recheckqual,
				   List *indexorderby,
				   List *indextlist,
				   ScanDirection indexscandir)
{
	IndexOnlyScan *node = makeNode(IndexOnlyScan);
	Plan	   *plan = &node->scan.plan;

	plan->targetlist = qptlist;
	plan->qual = qpqual;
	plan->lefttree = NULL;
	plan->righttree = NULL;
	node->scan.scanrelid = scanrelid;
	node->indexid = indexid;
	node->indexqual = indexqual;
	node->recheckqual = recheckqual;
	node->indexorderby = indexorderby;
	node->indextlist = indextlist;
	node->indexorderdir = indexscandir;

	return node;
}

static BitmapIndexScan *
make_bitmap_indexscan(Index scanrelid,
					  Oid indexid,
					  List *indexqual,
					  List *indexqualorig)
{
	BitmapIndexScan *node = makeNode(BitmapIndexScan);
	Plan	   *plan = &node->scan.plan;

	plan->targetlist = NIL;		/* not used */
	plan->qual = NIL;			/* not used */
	plan->lefttree = NULL;
	plan->righttree = NULL;
	node->scan.scanrelid = scanrelid;
	node->indexid = indexid;
	node->indexqual = indexqual;
	node->indexqualorig = indexqualorig;

	return node;
}

static BitmapHeapScan *
make_bitmap_heapscan(List *qptlist,
					 List *qpqual,
					 Plan *lefttree,
					 List *bitmapqualorig,
					 Index scanrelid)
{
	BitmapHeapScan *node = makeNode(BitmapHeapScan);
	Plan	   *plan = &node->scan.plan;

	plan->targetlist = qptlist;
	plan->qual = qpqual;
	plan->lefttree = lefttree;
	plan->righttree = NULL;
	node->scan.scanrelid = scanrelid;
	node->bitmapqualorig = bitmapqualorig;

	return node;
}

static TidScan *
make_tidscan(List *qptlist,
			 List *qpqual,
			 Index scanrelid,
			 List *tidquals)
{
	TidScan    *node = makeNode(TidScan);
	Plan	   *plan = &node->scan.plan;

	plan->targetlist = qptlist;
	plan->qual = qpqual;
	plan->lefttree = NULL;
	plan->righttree = NULL;
	node->scan.scanrelid = scanrelid;
	node->tidquals = tidquals;

	return node;
}

static TidRangeScan *
make_tidrangescan(List *qptlist,
				  List *qpqual,
				  Index scanrelid,
				  List *tidrangequals)
{
	TidRangeScan *node = makeNode(TidRangeScan);
	Plan	   *plan = &node->scan.plan;

	plan->targetlist = qptlist;
	plan->qual = qpqual;
	plan->lefttree = NULL;
	plan->righttree = NULL;
	node->scan.scanrelid = scanrelid;
	node->tidrangequals = tidrangequals;

	return node;
}

static SubqueryScan *
make_subqueryscan(List *qptlist,
				  List *qpqual,
				  Index scanrelid,
				  Plan *subplan)
{
	SubqueryScan *node = makeNode(SubqueryScan);
	Plan	   *plan = &node->scan.plan;

	plan->targetlist = qptlist;
	plan->qual = qpqual;
	plan->lefttree = NULL;
	plan->righttree = NULL;
	node->scan.scanrelid = scanrelid;
	node->subplan = subplan;
	node->scanstatus = SUBQUERY_SCAN_UNKNOWN;

	return node;
}

static FunctionScan *
make_functionscan(List *qptlist,
				  List *qpqual,
				  Index scanrelid,
				  List *functions,
				  bool funcordinality)
{
	FunctionScan *node = makeNode(FunctionScan);
	Plan	   *plan = &node->scan.plan;

	plan->targetlist = qptlist;
	plan->qual = qpqual;
	plan->lefttree = NULL;
	plan->righttree = NULL;
	node->scan.scanrelid = scanrelid;
	node->functions = functions;
	node->funcordinality = funcordinality;

	return node;
}

static TableFuncScan *
make_tablefuncscan(List *qptlist,
				   List *qpqual,
				   Index scanrelid,
				   TableFunc *tablefunc)
{
	TableFuncScan *node = makeNode(TableFuncScan);
	Plan	   *plan = &node->scan.plan;

	plan->targetlist = qptlist;
	plan->qual = qpqual;
	plan->lefttree = NULL;
	plan->righttree = NULL;
	node->scan.scanrelid = scanrelid;
	node->tablefunc = tablefunc;

	return node;
}

static ValuesScan *
make_valuesscan(List *qptlist,
				List *qpqual,
				Index scanrelid,
				List *values_lists)
{
	ValuesScan *node = makeNode(ValuesScan);
	Plan	   *plan = &node->scan.plan;

	plan->targetlist = qptlist;
	plan->qual = qpqual;
	plan->lefttree = NULL;
	plan->righttree = NULL;
	node->scan.scanrelid = scanrelid;
	node->values_lists = values_lists;

	return node;
}

static CteScan *
make_ctescan(List *qptlist,
			 List *qpqual,
			 Index scanrelid,
			 int ctePlanId,
			 int cteParam)
{
	CteScan    *node = makeNode(CteScan);
	Plan	   *plan = &node->scan.plan;

	plan->targetlist = qptlist;
	plan->qual = qpqual;
	plan->lefttree = NULL;
	plan->righttree = NULL;
	node->scan.scanrelid = scanrelid;
	node->ctePlanId = ctePlanId;
	node->cteParam = cteParam;

	return node;
}

static NamedTuplestoreScan *
make_namedtuplestorescan(List *qptlist,
						 List *qpqual,
						 Index scanrelid,
						 char *enrname)
{
	NamedTuplestoreScan *node = makeNode(NamedTuplestoreScan);
	Plan	   *plan = &node->scan.plan;

	/* cost should be inserted by caller */
	plan->targetlist = qptlist;
	plan->qual = qpqual;
	plan->lefttree = NULL;
	plan->righttree = NULL;
	node->scan.scanrelid = scanrelid;
	node->enrname = enrname;

	return node;
}

static WorkTableScan *
make_worktablescan(List *qptlist,
				   List *qpqual,
				   Index scanrelid,
				   int wtParam)
{
	WorkTableScan *node = makeNode(WorkTableScan);
	Plan	   *plan = &node->scan.plan;

	plan->targetlist = qptlist;
	plan->qual = qpqual;
	plan->lefttree = NULL;
	plan->righttree = NULL;
	node->scan.scanrelid = scanrelid;
	node->wtParam = wtParam;

	return node;
}

ForeignScan *
make_foreignscan(List *qptlist,
				 List *qpqual,
				 Index scanrelid,
				 List *fdw_exprs,
				 List *fdw_private,
				 List *fdw_scan_tlist,
				 List *fdw_recheck_quals,
				 Plan *outer_plan)
{
	ForeignScan *node = makeNode(ForeignScan);
	Plan	   *plan = &node->scan.plan;

	/* cost will be filled in by create_foreignscan_plan */
	plan->targetlist = qptlist;
	plan->qual = qpqual;
	plan->lefttree = outer_plan;
	plan->righttree = NULL;
	node->scan.scanrelid = scanrelid;

	/* these may be overridden by the FDW's PlanDirectModify callback. */
	node->operation = CMD_SELECT;
	node->resultRelation = 0;

	/* checkAsUser, fs_server will be filled in by create_foreignscan_plan */
	node->checkAsUser = InvalidOid;
	node->fs_server = InvalidOid;
	node->fdw_exprs = fdw_exprs;
	node->fdw_private = fdw_private;
	node->fdw_scan_tlist = fdw_scan_tlist;
	node->fdw_recheck_quals = fdw_recheck_quals;
	/* fs_relids, fs_base_relids will be filled by create_foreignscan_plan */
	node->fs_relids = NULL;
	node->fs_base_relids = NULL;
	/* fsSystemCol will be filled in by create_foreignscan_plan */
	node->fsSystemCol = false;

	return node;
}

static RecursiveUnion *
make_recursive_union(List *tlist,
					 Plan *lefttree,
					 Plan *righttree,
					 int wtParam,
					 List *distinctList,
					 long numGroups)
{
	RecursiveUnion *node = makeNode(RecursiveUnion);
	Plan	   *plan = &node->plan;
	int			numCols = list_length(distinctList);

	plan->targetlist = tlist;
	plan->qual = NIL;
	plan->lefttree = lefttree;
	plan->righttree = righttree;
	node->wtParam = wtParam;

	/*
	 * convert SortGroupClause list into arrays of attr indexes and equality
	 * operators, as wanted by executor
	 */
	node->numCols = numCols;
	if (numCols > 0)
	{
		int			keyno = 0;
		AttrNumber *dupColIdx;
		Oid		   *dupOperators;
		Oid		   *dupCollations;
		ListCell   *slitem;

		dupColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
		dupOperators = (Oid *) palloc(sizeof(Oid) * numCols);
		dupCollations = (Oid *) palloc(sizeof(Oid) * numCols);

		foreach(slitem, distinctList)
		{
			SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
			TargetEntry *tle = get_sortgroupclause_tle(sortcl,
													   plan->targetlist);

			dupColIdx[keyno] = tle->resno;
			dupOperators[keyno] = sortcl->eqop;
			dupCollations[keyno] = exprCollation((Node *) tle->expr);
			Assert(OidIsValid(dupOperators[keyno]));
			keyno++;
		}
		node->dupColIdx = dupColIdx;
		node->dupOperators = dupOperators;
		node->dupCollations = dupCollations;
	}
	node->numGroups = numGroups;

	return node;
}

static BitmapAnd *
make_bitmap_and(List *bitmapplans)
{
	BitmapAnd  *node = makeNode(BitmapAnd);
	Plan	   *plan = &node->plan;

	plan->targetlist = NIL;
	plan->qual = NIL;
	plan->lefttree = NULL;
	plan->righttree = NULL;
	node->bitmapplans = bitmapplans;

	return node;
}

static BitmapOr *
make_bitmap_or(List *bitmapplans)
{
	BitmapOr   *node = makeNode(BitmapOr);
	Plan	   *plan = &node->plan;

	plan->targetlist = NIL;
	plan->qual = NIL;
	plan->lefttree = NULL;
	plan->righttree = NULL;
	node->bitmapplans = bitmapplans;

	return node;
}

static NestLoop *
make_nestloop(List *tlist,
			  List *joinclauses,
			  List *otherclauses,
			  List *nestParams,
			  Plan *lefttree,
			  Plan *righttree,
			  JoinType jointype,
			  bool inner_unique)
{
	NestLoop   *node = makeNode(NestLoop);
	Plan	   *plan = &node->join.plan;

	plan->targetlist = tlist;
	plan->qual = otherclauses;
	plan->lefttree = lefttree;
	plan->righttree = righttree;
	node->join.jointype = jointype;
	node->join.inner_unique = inner_unique;
	node->join.joinqual = joinclauses;
	node->nestParams = nestParams;

	return node;
}

static HashJoin *
make_hashjoin(List *tlist,
			  List *joinclauses,
			  List *otherclauses,
			  List *hashclauses,
			  List *hashoperators,
			  List *hashcollations,
			  List *hashkeys,
			  Plan *lefttree,
			  Plan *righttree,
			  JoinType jointype,
			  bool inner_unique)
{
	HashJoin   *node = makeNode(HashJoin);
	Plan	   *plan = &node->join.plan;

	plan->targetlist = tlist;
	plan->qual = otherclauses;
	plan->lefttree = lefttree;
	plan->righttree = righttree;
	node->hashclauses = hashclauses;
	node->hashoperators = hashoperators;
	node->hashcollations = hashcollations;
	node->hashkeys = hashkeys;
	node->join.jointype = jointype;
	node->join.inner_unique = inner_unique;
	node->join.joinqual = joinclauses;

	return node;
}

static Hash *
make_hash(Plan *lefttree,
		  List *hashkeys,
		  Oid skewTable,
		  AttrNumber skewColumn,
		  bool skewInherit)
{
	Hash	   *node = makeNode(Hash);
	Plan	   *plan = &node->plan;

	plan->targetlist = lefttree->targetlist;
	plan->qual = NIL;
	plan->lefttree = lefttree;
	plan->righttree = NULL;

	node->hashkeys = hashkeys;
	node->skewTable = skewTable;
	node->skewColumn = skewColumn;
	node->skewInherit = skewInherit;

	return node;
}

static MergeJoin *
make_mergejoin(List *tlist,
			   List *joinclauses,
			   List *otherclauses,
			   List *mergeclauses,
			   Oid *mergefamilies,
			   Oid *mergecollations,
			   int *mergestrategies,
			   bool *mergenullsfirst,
			   Plan *lefttree,
			   Plan *righttree,
			   JoinType jointype,
			   bool inner_unique,
			   bool skip_mark_restore)
{
	MergeJoin  *node = makeNode(MergeJoin);
	Plan	   *plan = &node->join.plan;

	plan->targetlist = tlist;
	plan->qual = otherclauses;
	plan->lefttree = lefttree;
	plan->righttree = righttree;
	node->skip_mark_restore = skip_mark_restore;
	node->mergeclauses = mergeclauses;
	node->mergeFamilies = mergefamilies;
	node->mergeCollations = mergecollations;
	node->mergeStrategies = mergestrategies;
	node->mergeNullsFirst = mergenullsfirst;
	node->join.jointype = jointype;
	node->join.inner_unique = inner_unique;
	node->join.joinqual = joinclauses;

	return node;
}

/*
 * make_sort --- basic routine to build a Sort plan node
 *
 * Caller must have built the sortColIdx, sortOperators, collations, and
 * nullsFirst arrays already.
 */
static Sort *
make_sort(Plan *lefttree, int numCols,
		  AttrNumber *sortColIdx, Oid *sortOperators,
		  Oid *collations, bool *nullsFirst)
{
	Sort	   *node;
	Plan	   *plan;

	node = makeNode(Sort);

	plan = &node->plan;
	plan->targetlist = lefttree->targetlist;
	plan->qual = NIL;
	plan->lefttree = lefttree;
	plan->righttree = NULL;
	node->numCols = numCols;
	node->sortColIdx = sortColIdx;
	node->sortOperators = sortOperators;
	node->collations = collations;
	node->nullsFirst = nullsFirst;

	return node;
}

/*
 * make_incrementalsort --- basic routine to build an IncrementalSort plan node
 *
 * Caller must have built the sortColIdx, sortOperators, collations, and
 * nullsFirst arrays already.
 */
static IncrementalSort *
make_incrementalsort(Plan *lefttree, int numCols, int nPresortedCols,
					 AttrNumber *sortColIdx, Oid *sortOperators,
					 Oid *collations, bool *nullsFirst)
{
	IncrementalSort *node;
	Plan	   *plan;

	node = makeNode(IncrementalSort);

	plan = &node->sort.plan;
	plan->targetlist = lefttree->targetlist;
	plan->qual = NIL;
	plan->lefttree = lefttree;
	plan->righttree = NULL;
	node->nPresortedCols = nPresortedCols;
	node->sort.numCols = numCols;
	node->sort.sortColIdx = sortColIdx;
	node->sort.sortOperators = sortOperators;
	node->sort.collations = collations;
	node->sort.nullsFirst = nullsFirst;

	return node;
}

/*
 * prepare_sort_from_pathkeys
 *	  Prepare to sort according to given pathkeys
 *
 * This is used to set up for Sort, MergeAppend, and Gather Merge nodes.  It
 * calculates the executor's representation of the sort key information, and
 * adjusts the plan targetlist if needed to add resjunk sort columns.
 *
 * Input parameters:
 *	  'lefttree' is the plan node which yields input tuples
 *	  'pathkeys' is the list of pathkeys by which the result is to be sorted
 *	  'relids' identifies the child relation being sorted, if any
 *	  'reqColIdx' is NULL or an array of required sort key column numbers
 *	  'adjust_tlist_in_place' is true if lefttree must be modified in-place
 *
 * We must convert the pathkey information into arrays of sort key column
 * numbers, sort operator OIDs, collation OIDs, and nulls-first flags,
 * which is the representation the executor wants.  These are returned into
 * the output parameters *p_numsortkeys etc.
 *
 * When looking for matches to an EquivalenceClass's members, we will only
 * consider child EC members if they belong to given 'relids'.  This protects
 * against possible incorrect matches to child expressions that contain no
 * Vars.
 *
 * If reqColIdx isn't NULL then it contains sort key column numbers that
 * we should match.  This is used when making child plans for a MergeAppend;
 * it's an error if we can't match the columns.
 *
 * If the pathkeys include expressions that aren't simple Vars, we will
 * usually need to add resjunk items to the input plan's targetlist to
 * compute these expressions, since a Sort or MergeAppend node itself won't
 * do any such calculations.  If the input plan type isn't one that can do
 * projections, this means adding a Result node just to do the projection.
 * However, the caller can pass adjust_tlist_in_place = true to force the
 * lefttree tlist to be modified in-place regardless of whether the node type
 * can project --- we use this for fixing the tlist of MergeAppend itself.
 *
 * Returns the node which is to be the input to the Sort (either lefttree,
 * or a Result stacked atop lefttree).
 */
static Plan *
prepare_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
						   Relids relids,
						   const AttrNumber *reqColIdx,
						   bool adjust_tlist_in_place,
						   int *p_numsortkeys,
						   AttrNumber **p_sortColIdx,
						   Oid **p_sortOperators,
						   Oid **p_collations,
						   bool **p_nullsFirst)
{
	List	   *tlist = lefttree->targetlist;
	ListCell   *i;
	int			numsortkeys;
	AttrNumber *sortColIdx;
	Oid		   *sortOperators;
	Oid		   *collations;
	bool	   *nullsFirst;

	/*
	 * We will need at most list_length(pathkeys) sort columns; possibly less
	 */
	numsortkeys = list_length(pathkeys);
	sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
	sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
	collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
	nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));

	numsortkeys = 0;

	foreach(i, pathkeys)
	{
		PathKey    *pathkey = (PathKey *) lfirst(i);
		EquivalenceClass *ec = pathkey->pk_eclass;
		EquivalenceMember *em;
		TargetEntry *tle = NULL;
		Oid			pk_datatype = InvalidOid;
		Oid			sortop;
		ListCell   *j;

		if (ec->ec_has_volatile)
		{
			/*
			 * If the pathkey's EquivalenceClass is volatile, then it must
			 * have come from an ORDER BY clause, and we have to match it to
			 * that same targetlist entry.
			 */
			if (ec->ec_sortref == 0)	/* can't happen */
				elog(ERROR, "volatile EquivalenceClass has no sortref");
			tle = get_sortgroupref_tle(ec->ec_sortref, tlist);
			Assert(tle);
			Assert(list_length(ec->ec_members) == 1);
			pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype;
		}
		else if (reqColIdx != NULL)
		{
			/*
			 * If we are given a sort column number to match, only consider
			 * the single TLE at that position.  It's possible that there is
			 * no such TLE, in which case fall through and generate a resjunk
			 * targetentry (we assume this must have happened in the parent
			 * plan as well).  If there is a TLE but it doesn't match the
			 * pathkey's EC, we do the same, which is probably the wrong thing
			 * but we'll leave it to caller to complain about the mismatch.
			 */
			tle = get_tle_by_resno(tlist, reqColIdx[numsortkeys]);
			if (tle)
			{
				em = find_ec_member_matching_expr(ec, tle->expr, relids);
				if (em)
				{
					/* found expr at right place in tlist */
					pk_datatype = em->em_datatype;
				}
				else
					tle = NULL;
			}
		}
		else
		{
			/*
			 * Otherwise, we can sort by any non-constant expression listed in
			 * the pathkey's EquivalenceClass.  For now, we take the first
			 * tlist item found in the EC. If there's no match, we'll generate
			 * a resjunk entry using the first EC member that is an expression
			 * in the input's vars.
			 *
			 * XXX if we have a choice, is there any way of figuring out which
			 * might be cheapest to execute?  (For example, int4lt is likely
			 * much cheaper to execute than numericlt, but both might appear
			 * in the same equivalence class...)  Not clear that we ever will
			 * have an interesting choice in practice, so it may not matter.
			 */
			foreach(j, tlist)
			{
				tle = (TargetEntry *) lfirst(j);
				em = find_ec_member_matching_expr(ec, tle->expr, relids);
				if (em)
				{
					/* found expr already in tlist */
					pk_datatype = em->em_datatype;
					break;
				}
				tle = NULL;
			}
		}

		if (!tle)
		{
			/*
			 * No matching tlist item; look for a computable expression.
			 */
			em = find_computable_ec_member(NULL, ec, tlist, relids, false);
			if (!em)
				elog(ERROR, "could not find pathkey item to sort");
			pk_datatype = em->em_datatype;

			/*
			 * Do we need to insert a Result node?
			 */
			if (!adjust_tlist_in_place &&
				!is_projection_capable_plan(lefttree))
			{
				/* copy needed so we don't modify input's tlist below */
				tlist = copyObject(tlist);
				lefttree = inject_projection_plan(lefttree, tlist,
												  lefttree->parallel_safe);
			}

			/* Don't bother testing is_projection_capable_plan again */
			adjust_tlist_in_place = true;

			/*
			 * Add resjunk entry to input's tlist
			 */
			tle = makeTargetEntry(copyObject(em->em_expr),
								  list_length(tlist) + 1,
								  NULL,
								  true);
			tlist = lappend(tlist, tle);
			lefttree->targetlist = tlist;	/* just in case NIL before */
		}

		/*
		 * Look up the correct sort operator from the PathKey's slightly
		 * abstracted representation.
		 */
		sortop = get_opfamily_member(pathkey->pk_opfamily,
									 pk_datatype,
									 pk_datatype,
									 pathkey->pk_strategy);
		if (!OidIsValid(sortop))	/* should not happen */
			elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
				 pathkey->pk_strategy, pk_datatype, pk_datatype,
				 pathkey->pk_opfamily);

		/* Add the column to the sort arrays */
		sortColIdx[numsortkeys] = tle->resno;
		sortOperators[numsortkeys] = sortop;
		collations[numsortkeys] = ec->ec_collation;
		nullsFirst[numsortkeys] = pathkey->pk_nulls_first;
		numsortkeys++;
	}

	/* Return results */
	*p_numsortkeys = numsortkeys;
	*p_sortColIdx = sortColIdx;
	*p_sortOperators = sortOperators;
	*p_collations = collations;
	*p_nullsFirst = nullsFirst;

	return lefttree;
}

/*
 * make_sort_from_pathkeys
 *	  Create sort plan to sort according to given pathkeys
 *
 *	  'lefttree' is the node which yields input tuples
 *	  'pathkeys' is the list of pathkeys by which the result is to be sorted
 *	  'relids' is the set of relations required by prepare_sort_from_pathkeys()
 */
static Sort *
make_sort_from_pathkeys(Plan *lefttree, List *pathkeys, Relids relids)
{
	int			numsortkeys;
	AttrNumber *sortColIdx;
	Oid		   *sortOperators;
	Oid		   *collations;
	bool	   *nullsFirst;

	/* Compute sort column info, and adjust lefttree as needed */
	lefttree = prepare_sort_from_pathkeys(lefttree, pathkeys,
										  relids,
										  NULL,
										  false,
										  &numsortkeys,
										  &sortColIdx,
										  &sortOperators,
										  &collations,
										  &nullsFirst);

	/* Now build the Sort node */
	return make_sort(lefttree, numsortkeys,
					 sortColIdx, sortOperators,
					 collations, nullsFirst);
}

/*
 * make_incrementalsort_from_pathkeys
 *	  Create sort plan to sort according to given pathkeys
 *
 *	  'lefttree' is the node which yields input tuples
 *	  'pathkeys' is the list of pathkeys by which the result is to be sorted
 *	  'relids' is the set of relations required by prepare_sort_from_pathkeys()
 *	  'nPresortedCols' is the number of presorted columns in input tuples
 */
static IncrementalSort *
make_incrementalsort_from_pathkeys(Plan *lefttree, List *pathkeys,
								   Relids relids, int nPresortedCols)
{
	int			numsortkeys;
	AttrNumber *sortColIdx;
	Oid		   *sortOperators;
	Oid		   *collations;
	bool	   *nullsFirst;

	/* Compute sort column info, and adjust lefttree as needed */
	lefttree = prepare_sort_from_pathkeys(lefttree, pathkeys,
										  relids,
										  NULL,
										  false,
										  &numsortkeys,
										  &sortColIdx,
										  &sortOperators,
										  &collations,
										  &nullsFirst);

	/* Now build the Sort node */
	return make_incrementalsort(lefttree, numsortkeys, nPresortedCols,
								sortColIdx, sortOperators,
								collations, nullsFirst);
}

/*
 * make_sort_from_sortclauses
 *	  Create sort plan to sort according to given sortclauses
 *
 *	  'sortcls' is a list of SortGroupClauses
 *	  'lefttree' is the node which yields input tuples
 */
Sort *
make_sort_from_sortclauses(List *sortcls, Plan *lefttree)
{
	List	   *sub_tlist = lefttree->targetlist;
	ListCell   *l;
	int			numsortkeys;
	AttrNumber *sortColIdx;
	Oid		   *sortOperators;
	Oid		   *collations;
	bool	   *nullsFirst;

	/* Convert list-ish representation to arrays wanted by executor */
	numsortkeys = list_length(sortcls);
	sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
	sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
	collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
	nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));

	numsortkeys = 0;
	foreach(l, sortcls)
	{
		SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
		TargetEntry *tle = get_sortgroupclause_tle(sortcl, sub_tlist);

		sortColIdx[numsortkeys] = tle->resno;
		sortOperators[numsortkeys] = sortcl->sortop;
		collations[numsortkeys] = exprCollation((Node *) tle->expr);
		nullsFirst[numsortkeys] = sortcl->nulls_first;
		numsortkeys++;
	}

	return make_sort(lefttree, numsortkeys,
					 sortColIdx, sortOperators,
					 collations, nullsFirst);
}

/*
 * make_sort_from_groupcols
 *	  Create sort plan to sort based on grouping columns
 *
 * 'groupcls' is the list of SortGroupClauses
 * 'grpColIdx' gives the column numbers to use
 *
 * This might look like it could be merged with make_sort_from_sortclauses,
 * but presently we *must* use the grpColIdx[] array to locate sort columns,
 * because the child plan's tlist is not marked with ressortgroupref info
 * appropriate to the grouping node.  So, only the sort ordering info
 * is used from the SortGroupClause entries.
 */
static Sort *
make_sort_from_groupcols(List *groupcls,
						 AttrNumber *grpColIdx,
						 Plan *lefttree)
{
	List	   *sub_tlist = lefttree->targetlist;
	ListCell   *l;
	int			numsortkeys;
	AttrNumber *sortColIdx;
	Oid		   *sortOperators;
	Oid		   *collations;
	bool	   *nullsFirst;

	/* Convert list-ish representation to arrays wanted by executor */
	numsortkeys = list_length(groupcls);
	sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
	sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
	collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
	nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));

	numsortkeys = 0;
	foreach(l, groupcls)
	{
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
		TargetEntry *tle = get_tle_by_resno(sub_tlist, grpColIdx[numsortkeys]);

		if (!tle)
			elog(ERROR, "could not retrieve tle for sort-from-groupcols");

		sortColIdx[numsortkeys] = tle->resno;
		sortOperators[numsortkeys] = grpcl->sortop;
		collations[numsortkeys] = exprCollation((Node *) tle->expr);
		nullsFirst[numsortkeys] = grpcl->nulls_first;
		numsortkeys++;
	}

	return make_sort(lefttree, numsortkeys,
					 sortColIdx, sortOperators,
					 collations, nullsFirst);
}

static Material *
make_material(Plan *lefttree)
{
	Material   *node = makeNode(Material);
	Plan	   *plan = &node->plan;

	plan->targetlist = lefttree->targetlist;
	plan->qual = NIL;
	plan->lefttree = lefttree;
	plan->righttree = NULL;

	return node;
}

/*
 * materialize_finished_plan: stick a Material node atop a completed plan
 *
 * There are a couple of places where we want to attach a Material node
 * after completion of create_plan(), without any MaterialPath path.
 * Those places should probably be refactored someday to do this on the
 * Path representation, but it's not worth the trouble yet.
 */
Plan *
materialize_finished_plan(Plan *subplan)
{
	Plan	   *matplan;
	Path		matpath;		/* dummy for result of cost_material */

	matplan = (Plan *) make_material(subplan);

	/*
	 * XXX horrid kluge: if there are any initPlans attached to the subplan,
	 * move them up to the Material node, which is now effectively the top
	 * plan node in its query level.  This prevents failure in
	 * SS_finalize_plan(), which see for comments.  We don't bother adjusting
	 * the subplan's cost estimate for this.
	 */
	matplan->initPlan = subplan->initPlan;
	subplan->initPlan = NIL;

	/* Set cost data */
	cost_material(&matpath,
				  subplan->startup_cost,
				  subplan->total_cost,
				  subplan->plan_rows,
				  subplan->plan_width);
	matplan->startup_cost = matpath.startup_cost;
	matplan->total_cost = matpath.total_cost;
	matplan->plan_rows = subplan->plan_rows;
	matplan->plan_width = subplan->plan_width;
	matplan->parallel_aware = false;
	matplan->parallel_safe = subplan->parallel_safe;

	return matplan;
}

static Memoize *
make_memoize(Plan *lefttree, Oid *hashoperators, Oid *collations,
			 List *param_exprs, bool singlerow, bool binary_mode,
			 uint32 est_entries, Bitmapset *keyparamids)
{
	Memoize    *node = makeNode(Memoize);
	Plan	   *plan = &node->plan;

	plan->targetlist = lefttree->targetlist;
	plan->qual = NIL;
	plan->lefttree = lefttree;
	plan->righttree = NULL;

	node->numKeys = list_length(param_exprs);
	node->hashOperators = hashoperators;
	node->collations = collations;
	node->param_exprs = param_exprs;
	node->singlerow = singlerow;
	node->binary_mode = binary_mode;
	node->est_entries = est_entries;
	node->keyparamids = keyparamids;

	return node;
}

Agg *
make_agg(List *tlist, List *qual,
		 AggStrategy aggstrategy, AggSplit aggsplit,
		 int numGroupCols, AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations,
		 List *groupingSets, List *chain, double dNumGroups,
		 Size transitionSpace, Plan *lefttree)
{
	Agg		   *node = makeNode(Agg);
	Plan	   *plan = &node->plan;
	long		numGroups;

	/* Reduce to long, but 'ware overflow! */
	numGroups = clamp_cardinality_to_long(dNumGroups);

	node->aggstrategy = aggstrategy;
	node->aggsplit = aggsplit;
	node->numCols = numGroupCols;
	node->grpColIdx = grpColIdx;
	node->grpOperators = grpOperators;
	node->grpCollations = grpCollations;
	node->numGroups = numGroups;
	node->transitionSpace = transitionSpace;
	node->aggParams = NULL;		/* SS_finalize_plan() will fill this */
	node->groupingSets = groupingSets;
	node->chain = chain;

	plan->qual = qual;
	plan->targetlist = tlist;
	plan->lefttree = lefttree;
	plan->righttree = NULL;

	return node;
}

static WindowAgg *
make_windowagg(List *tlist, Index winref,
			   int partNumCols, AttrNumber *partColIdx, Oid *partOperators, Oid *partCollations,
			   int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators, Oid *ordCollations,
			   int frameOptions, Node *startOffset, Node *endOffset,
			   Oid startInRangeFunc, Oid endInRangeFunc,
			   Oid inRangeColl, bool inRangeAsc, bool inRangeNullsFirst,
			   List *runCondition, List *qual, bool topWindow, Plan *lefttree)
{
	WindowAgg  *node = makeNode(WindowAgg);
	Plan	   *plan = &node->plan;

	node->winref = winref;
	node->partNumCols = partNumCols;
	node->partColIdx = partColIdx;
	node->partOperators = partOperators;
	node->partCollations = partCollations;
	node->ordNumCols = ordNumCols;
	node->ordColIdx = ordColIdx;
	node->ordOperators = ordOperators;
	node->ordCollations = ordCollations;
	node->frameOptions = frameOptions;
	node->startOffset = startOffset;
	node->endOffset = endOffset;
	node->runCondition = runCondition;
	/* a duplicate of the above for EXPLAIN */
	node->runConditionOrig = runCondition;
	node->startInRangeFunc = startInRangeFunc;
	node->endInRangeFunc = endInRangeFunc;
	node->inRangeColl = inRangeColl;
	node->inRangeAsc = inRangeAsc;
	node->inRangeNullsFirst = inRangeNullsFirst;
	node->topWindow = topWindow;

	plan->targetlist = tlist;
	plan->lefttree = lefttree;
	plan->righttree = NULL;
	plan->qual = qual;

	return node;
}

static Group *
make_group(List *tlist,
		   List *qual,
		   int numGroupCols,
		   AttrNumber *grpColIdx,
		   Oid *grpOperators,
		   Oid *grpCollations,
		   Plan *lefttree)
{
	Group	   *node = makeNode(Group);
	Plan	   *plan = &node->plan;

	node->numCols = numGroupCols;
	node->grpColIdx = grpColIdx;
	node->grpOperators = grpOperators;
	node->grpCollations = grpCollations;

	plan->qual = qual;
	plan->targetlist = tlist;
	plan->lefttree = lefttree;
	plan->righttree = NULL;

	return node;
}

/*
 * distinctList is a list of SortGroupClauses, identifying the targetlist items
 * that should be considered by the Unique filter.  The input path must
 * already be sorted accordingly.
 */
static Unique *
make_unique_from_sortclauses(Plan *lefttree, List *distinctList)
{
	Unique	   *node = makeNode(Unique);
	Plan	   *plan = &node->plan;
	int			numCols = list_length(distinctList);
	int			keyno = 0;
	AttrNumber *uniqColIdx;
	Oid		   *uniqOperators;
	Oid		   *uniqCollations;
	ListCell   *slitem;

	plan->targetlist = lefttree->targetlist;
	plan->qual = NIL;
	plan->lefttree = lefttree;
	plan->righttree = NULL;

	/*
	 * convert SortGroupClause list into arrays of attr indexes and equality
	 * operators, as wanted by executor
	 */
	Assert(numCols > 0);
	uniqColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
	uniqOperators = (Oid *) palloc(sizeof(Oid) * numCols);
	uniqCollations = (Oid *) palloc(sizeof(Oid) * numCols);

	foreach(slitem, distinctList)
	{
		SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
		TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist);

		uniqColIdx[keyno] = tle->resno;
		uniqOperators[keyno] = sortcl->eqop;
		uniqCollations[keyno] = exprCollation((Node *) tle->expr);
		Assert(OidIsValid(uniqOperators[keyno]));
		keyno++;
	}

	node->numCols = numCols;
	node->uniqColIdx = uniqColIdx;
	node->uniqOperators = uniqOperators;
	node->uniqCollations = uniqCollations;

	return node;
}

/*
 * as above, but use pathkeys to identify the sort columns and semantics
 */
static Unique *
make_unique_from_pathkeys(Plan *lefttree, List *pathkeys, int numCols)
{
	Unique	   *node = makeNode(Unique);
	Plan	   *plan = &node->plan;
	int			keyno = 0;
	AttrNumber *uniqColIdx;
	Oid		   *uniqOperators;
	Oid		   *uniqCollations;
	ListCell   *lc;

	plan->targetlist = lefttree->targetlist;
	plan->qual = NIL;
	plan->lefttree = lefttree;
	plan->righttree = NULL;

	/*
	 * Convert pathkeys list into arrays of attr indexes and equality
	 * operators, as wanted by executor.  This has a lot in common with
	 * prepare_sort_from_pathkeys ... maybe unify sometime?
	 */
	Assert(numCols >= 0 && numCols <= list_length(pathkeys));
	uniqColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
	uniqOperators = (Oid *) palloc(sizeof(Oid) * numCols);
	uniqCollations = (Oid *) palloc(sizeof(Oid) * numCols);

	foreach(lc, pathkeys)
	{
		PathKey    *pathkey = (PathKey *) lfirst(lc);
		EquivalenceClass *ec = pathkey->pk_eclass;
		EquivalenceMember *em;
		TargetEntry *tle = NULL;
		Oid			pk_datatype = InvalidOid;
		Oid			eqop;
		ListCell   *j;

		/* Ignore pathkeys beyond the specified number of columns */
		if (keyno >= numCols)
			break;

		if (ec->ec_has_volatile)
		{
			/*
			 * If the pathkey's EquivalenceClass is volatile, then it must
			 * have come from an ORDER BY clause, and we have to match it to
			 * that same targetlist entry.
			 */
			if (ec->ec_sortref == 0)	/* can't happen */
				elog(ERROR, "volatile EquivalenceClass has no sortref");
			tle = get_sortgroupref_tle(ec->ec_sortref, plan->targetlist);
			Assert(tle);
			Assert(list_length(ec->ec_members) == 1);
			pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype;
		}
		else
		{
			/*
			 * Otherwise, we can use any non-constant expression listed in the
			 * pathkey's EquivalenceClass.  For now, we take the first tlist
			 * item found in the EC.
			 */
			foreach(j, plan->targetlist)
			{
				tle = (TargetEntry *) lfirst(j);
				em = find_ec_member_matching_expr(ec, tle->expr, NULL);
				if (em)
				{
					/* found expr already in tlist */
					pk_datatype = em->em_datatype;
					break;
				}
				tle = NULL;
			}
		}

		if (!tle)
			elog(ERROR, "could not find pathkey item to sort");

		/*
		 * Look up the correct equality operator from the PathKey's slightly
		 * abstracted representation.
		 */
		eqop = get_opfamily_member(pathkey->pk_opfamily,
								   pk_datatype,
								   pk_datatype,
								   BTEqualStrategyNumber);
		if (!OidIsValid(eqop))	/* should not happen */
			elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
				 BTEqualStrategyNumber, pk_datatype, pk_datatype,
				 pathkey->pk_opfamily);

		uniqColIdx[keyno] = tle->resno;
		uniqOperators[keyno] = eqop;
		uniqCollations[keyno] = ec->ec_collation;

		keyno++;
	}

	node->numCols = numCols;
	node->uniqColIdx = uniqColIdx;
	node->uniqOperators = uniqOperators;
	node->uniqCollations = uniqCollations;

	return node;
}

static Gather *
make_gather(List *qptlist,
			List *qpqual,
			int nworkers,
			int rescan_param,
			bool single_copy,
			Plan *subplan)
{
	Gather	   *node = makeNode(Gather);
	Plan	   *plan = &node->plan;

	plan->targetlist = qptlist;
	plan->qual = qpqual;
	plan->lefttree = subplan;
	plan->righttree = NULL;
	node->num_workers = nworkers;
	node->rescan_param = rescan_param;
	node->single_copy = single_copy;
	node->invisible = false;
	node->initParam = NULL;

	return node;
}

/*
 * distinctList is a list of SortGroupClauses, identifying the targetlist
 * items that should be considered by the SetOp filter.  The input path must
 * already be sorted accordingly.
 */
static SetOp *
make_setop(SetOpCmd cmd, SetOpStrategy strategy, Plan *lefttree,
		   List *distinctList, AttrNumber flagColIdx, int firstFlag,
		   long numGroups)
{
	SetOp	   *node = makeNode(SetOp);
	Plan	   *plan = &node->plan;
	int			numCols = list_length(distinctList);
	int			keyno = 0;
	AttrNumber *dupColIdx;
	Oid		   *dupOperators;
	Oid		   *dupCollations;
	ListCell   *slitem;

	plan->targetlist = lefttree->targetlist;
	plan->qual = NIL;
	plan->lefttree = lefttree;
	plan->righttree = NULL;

	/*
	 * convert SortGroupClause list into arrays of attr indexes and equality
	 * operators, as wanted by executor
	 */
	dupColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
	dupOperators = (Oid *) palloc(sizeof(Oid) * numCols);
	dupCollations = (Oid *) palloc(sizeof(Oid) * numCols);

	foreach(slitem, distinctList)
	{
		SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
		TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist);

		dupColIdx[keyno] = tle->resno;
		dupOperators[keyno] = sortcl->eqop;
		dupCollations[keyno] = exprCollation((Node *) tle->expr);
		Assert(OidIsValid(dupOperators[keyno]));
		keyno++;
	}

	node->cmd = cmd;
	node->strategy = strategy;
	node->numCols = numCols;
	node->dupColIdx = dupColIdx;
	node->dupOperators = dupOperators;
	node->dupCollations = dupCollations;
	node->flagColIdx = flagColIdx;
	node->firstFlag = firstFlag;
	node->numGroups = numGroups;

	return node;
}

/*
 * make_lockrows
 *	  Build a LockRows plan node
 */
static LockRows *
make_lockrows(Plan *lefttree, List *rowMarks, int epqParam)
{
	LockRows   *node = makeNode(LockRows);
	Plan	   *plan = &node->plan;

	plan->targetlist = lefttree->targetlist;
	plan->qual = NIL;
	plan->lefttree = lefttree;
	plan->righttree = NULL;

	node->rowMarks = rowMarks;
	node->epqParam = epqParam;

	return node;
}

/*
 * make_limit
 *	  Build a Limit plan node
 */
Limit *
make_limit(Plan *lefttree, Node *limitOffset, Node *limitCount,
		   LimitOption limitOption, int uniqNumCols, AttrNumber *uniqColIdx,
		   Oid *uniqOperators, Oid *uniqCollations)
{
	Limit	   *node = makeNode(Limit);
	Plan	   *plan = &node->plan;

	plan->targetlist = lefttree->targetlist;
	plan->qual = NIL;
	plan->lefttree = lefttree;
	plan->righttree = NULL;

	node->limitOffset = limitOffset;
	node->limitCount = limitCount;
	node->limitOption = limitOption;
	node->uniqNumCols = uniqNumCols;
	node->uniqColIdx = uniqColIdx;
	node->uniqOperators = uniqOperators;
	node->uniqCollations = uniqCollations;

	return node;
}

/*
 * make_result
 *	  Build a Result plan node
 */
static Result *
make_result(List *tlist,
			Node *resconstantqual,
			Plan *subplan)
{
	Result	   *node = makeNode(Result);
	Plan	   *plan = &node->plan;

	plan->targetlist = tlist;
	plan->qual = NIL;
	plan->lefttree = subplan;
	plan->righttree = NULL;
	node->resconstantqual = resconstantqual;

	return node;
}

/*
 * make_project_set
 *	  Build a ProjectSet plan node
 */
static ProjectSet *
make_project_set(List *tlist,
				 Plan *subplan)
{
	ProjectSet *node = makeNode(ProjectSet);
	Plan	   *plan = &node->plan;

	plan->targetlist = tlist;
	plan->qual = NIL;
	plan->lefttree = subplan;
	plan->righttree = NULL;

	return node;
}

/*
 * make_modifytable
 *	  Build a ModifyTable plan node
 */
static ModifyTable *
make_modifytable(PlannerInfo *root, Plan *subplan,
				 CmdType operation, bool canSetTag,
				 Index nominalRelation, Index rootRelation,
				 bool partColsUpdated,
				 List *resultRelations,
				 List *updateColnosLists,
				 List *withCheckOptionLists, List *returningLists,
				 List *rowMarks, OnConflictExpr *onconflict,
				 List *mergeActionLists, int epqParam)
{
	ModifyTable *node = makeNode(ModifyTable);
	List	   *fdw_private_list;
	Bitmapset  *direct_modify_plans;
	ListCell   *lc;
	int			i;

	Assert(operation == CMD_MERGE ||
		   (operation == CMD_UPDATE ?
			list_length(resultRelations) == list_length(updateColnosLists) :
			updateColnosLists == NIL));
	Assert(withCheckOptionLists == NIL ||
		   list_length(resultRelations) == list_length(withCheckOptionLists));
	Assert(returningLists == NIL ||
		   list_length(resultRelations) == list_length(returningLists));

	node->plan.lefttree = subplan;
	node->plan.righttree = NULL;
	node->plan.qual = NIL;
	/* setrefs.c will fill in the targetlist, if needed */
	node->plan.targetlist = NIL;

	node->operation = operation;
	node->canSetTag = canSetTag;
	node->nominalRelation = nominalRelation;
	node->rootRelation = rootRelation;
	node->partColsUpdated = partColsUpdated;
	node->resultRelations = resultRelations;
	if (!onconflict)
	{
		node->onConflictAction = ONCONFLICT_NONE;
		node->onConflictSet = NIL;
		node->onConflictCols = NIL;
		node->onConflictWhere = NULL;
		node->arbiterIndexes = NIL;
		node->exclRelRTI = 0;
		node->exclRelTlist = NIL;
	}
	else
	{
		node->onConflictAction = onconflict->action;

		/*
		 * Here we convert the ON CONFLICT UPDATE tlist, if any, to the
		 * executor's convention of having consecutive resno's.  The actual
		 * target column numbers are saved in node->onConflictCols.  (This
		 * could be done earlier, but there seems no need to.)
		 */
		node->onConflictSet = onconflict->onConflictSet;
		node->onConflictCols =
			extract_update_targetlist_colnos(node->onConflictSet);
		node->onConflictWhere = onconflict->onConflictWhere;

		/*
		 * If a set of unique index inference elements was provided (an
		 * INSERT...ON CONFLICT "inference specification"), then infer
		 * appropriate unique indexes (or throw an error if none are
		 * available).
		 */
		node->arbiterIndexes = infer_arbiter_indexes(root);

		node->exclRelRTI = onconflict->exclRelIndex;
		node->exclRelTlist = onconflict->exclRelTlist;
	}
	node->updateColnosLists = updateColnosLists;
	node->withCheckOptionLists = withCheckOptionLists;
	node->returningLists = returningLists;
	node->rowMarks = rowMarks;
	node->mergeActionLists = mergeActionLists;
	node->epqParam = epqParam;

	/*
	 * For each result relation that is a foreign table, allow the FDW to
	 * construct private plan data, and accumulate it all into a list.
	 */
	fdw_private_list = NIL;
	direct_modify_plans = NULL;
	i = 0;
	foreach(lc, resultRelations)
	{
		Index		rti = lfirst_int(lc);
		FdwRoutine *fdwroutine;
		List	   *fdw_private;
		bool		direct_modify;

		/*
		 * If possible, we want to get the FdwRoutine from our RelOptInfo for
		 * the table.  But sometimes we don't have a RelOptInfo and must get
		 * it the hard way.  (In INSERT, the target relation is not scanned,
		 * so it's not a baserel; and there are also corner cases for
		 * updatable views where the target rel isn't a baserel.)
		 */
		if (rti < root->simple_rel_array_size &&
			root->simple_rel_array[rti] != NULL)
		{
			RelOptInfo *resultRel = root->simple_rel_array[rti];

			fdwroutine = resultRel->fdwroutine;
		}
		else
		{
			RangeTblEntry *rte = planner_rt_fetch(rti, root);

			if (rte->rtekind == RTE_RELATION &&
				rte->relkind == RELKIND_FOREIGN_TABLE)
				fdwroutine = GetFdwRoutineByRelId(rte->relid);
			else
				fdwroutine = NULL;
		}

		/*
		 * MERGE is not currently supported for foreign tables.  We already
		 * checked that when the table mentioned in the query is foreign; but
		 * we can still get here if a partitioned table has a foreign table as
		 * partition.  Disallow that now, to avoid an uglier error message
		 * later.
		 */
		if (operation == CMD_MERGE && fdwroutine != NULL)
		{
			RangeTblEntry *rte = planner_rt_fetch(rti, root);

			ereport(ERROR,
					errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					errmsg("cannot execute MERGE on relation \"%s\"",
						   get_rel_name(rte->relid)),
					errdetail_relkind_not_supported(rte->relkind));
		}

		/*
		 * Try to modify the foreign table directly if (1) the FDW provides
		 * callback functions needed for that and (2) there are no local
		 * structures that need to be run for each modified row: row-level
		 * triggers on the foreign table, stored generated columns, WITH CHECK
		 * OPTIONs from parent views.
		 */
		direct_modify = false;
		if (fdwroutine != NULL &&
			fdwroutine->PlanDirectModify != NULL &&
			fdwroutine->BeginDirectModify != NULL &&
			fdwroutine->IterateDirectModify != NULL &&
			fdwroutine->EndDirectModify != NULL &&
			withCheckOptionLists == NIL &&
			!has_row_triggers(root, rti, operation) &&
			!has_stored_generated_columns(root, rti))
			direct_modify = fdwroutine->PlanDirectModify(root, node, rti, i);
		if (direct_modify)
			direct_modify_plans = bms_add_member(direct_modify_plans, i);

		if (!direct_modify &&
			fdwroutine != NULL &&
			fdwroutine->PlanForeignModify != NULL)
			fdw_private = fdwroutine->PlanForeignModify(root, node, rti, i);
		else
			fdw_private = NIL;
		fdw_private_list = lappend(fdw_private_list, fdw_private);
		i++;
	}
	node->fdwPrivLists = fdw_private_list;
	node->fdwDirectModifyPlans = direct_modify_plans;

	return node;
}

/*
 * is_projection_capable_path
 *		Check whether a given Path node is able to do projection.
 */
bool
is_projection_capable_path(Path *path)
{
	/* Most plan types can project, so just list the ones that can't */
	switch (path->pathtype)
	{
		case T_Hash:
		case T_Material:
		case T_Memoize:
		case T_Sort:
		case T_IncrementalSort:
		case T_Unique:
		case T_SetOp:
		case T_LockRows:
		case T_Limit:
		case T_ModifyTable:
		case T_MergeAppend:
		case T_RecursiveUnion:
			return false;
		case T_CustomScan:
			if (castNode(CustomPath, path)->flags & CUSTOMPATH_SUPPORT_PROJECTION)
				return true;
			return false;
		case T_Append:

			/*
			 * Append can't project, but if an AppendPath is being used to
			 * represent a dummy path, what will actually be generated is a
			 * Result which can project.
			 */
			return IS_DUMMY_APPEND(path);
		case T_ProjectSet:

			/*
			 * Although ProjectSet certainly projects, say "no" because we
			 * don't want the planner to randomly replace its tlist with
			 * something else; the SRFs have to stay at top level.  This might
			 * get relaxed later.
			 */
			return false;
		default:
			break;
	}
	return true;
}

/*
 * is_projection_capable_plan
 *		Check whether a given Plan node is able to do projection.
 */
bool
is_projection_capable_plan(Plan *plan)
{
	/* Most plan types can project, so just list the ones that can't */
	switch (nodeTag(plan))
	{
		case T_Hash:
		case T_Material:
		case T_Memoize:
		case T_Sort:
		case T_Unique:
		case T_SetOp:
		case T_LockRows:
		case T_Limit:
		case T_ModifyTable:
		case T_Append:
		case T_MergeAppend:
		case T_RecursiveUnion:
			return false;
		case T_CustomScan:
			if (((CustomScan *) plan)->flags & CUSTOMPATH_SUPPORT_PROJECTION)
				return true;
			return false;
		case T_ProjectSet:

			/*
			 * Although ProjectSet certainly projects, say "no" because we
			 * don't want the planner to randomly replace its tlist with
			 * something else; the SRFs have to stay at top level.  This might
			 * get relaxed later.
			 */
			return false;
		default:
			break;
	}
	return true;
}