1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
|
/*
* simplehash.h
*
* When included this file generates a "templated" (by way of macros)
* open-addressing hash table implementation specialized to user-defined
* types.
*
* It's probably not worthwhile to generate such a specialized implementation
* for hash tables that aren't performance or space sensitive.
*
* Compared to dynahash, simplehash has the following benefits:
*
* - Due to the "templated" code generation has known structure sizes and no
* indirect function calls (which show up substantially in dynahash
* profiles). These features considerably increase speed for small
* entries.
* - Open addressing has better CPU cache behavior than dynahash's chained
* hashtables.
* - The generated interface is type-safe and easier to use than dynahash,
* though at the cost of more complex setup.
* - Allocates memory in a MemoryContext or another allocator with a
* malloc/free style interface (which isn't easily usable in a shared
* memory context)
* - Does not require the overhead of a separate memory context.
*
* Usage notes:
*
* To generate a hash-table and associated functions for a use case several
* macros have to be #define'ed before this file is included. Including
* the file #undef's all those, so a new hash table can be generated
* afterwards.
* The relevant parameters are:
* - SH_PREFIX - prefix for all symbol names generated. A prefix of 'foo'
* will result in hash table type 'foo_hash' and functions like
* 'foo_insert'/'foo_lookup' and so forth.
* - SH_ELEMENT_TYPE - type of the contained elements
* - SH_KEY_TYPE - type of the hashtable's key
* - SH_DECLARE - if defined function prototypes and type declarations are
* generated
* - SH_DEFINE - if defined function definitions are generated
* - SH_SCOPE - in which scope (e.g. extern, static inline) do function
* declarations reside
* - SH_RAW_ALLOCATOR - if defined, memory contexts are not used; instead,
* use this to allocate bytes. The allocator must zero the returned space.
* - SH_USE_NONDEFAULT_ALLOCATOR - if defined no element allocator functions
* are defined, so you can supply your own
* The following parameters are only relevant when SH_DEFINE is defined:
* - SH_KEY - name of the element in SH_ELEMENT_TYPE containing the hash key
* - SH_EQUAL(table, a, b) - compare two table keys
* - SH_HASH_KEY(table, key) - generate hash for the key
* - SH_STORE_HASH - if defined the hash is stored in the elements
* - SH_GET_HASH(tb, a) - return the field to store the hash in
*
* The element type is required to contain a "status" member that can store
* the range of values defined in the SH_STATUS enum.
*
* While SH_STORE_HASH (and subsequently SH_GET_HASH) are optional, because
* the hash table implementation needs to compare hashes to move elements
* (particularly when growing the hash), it's preferable, if possible, to
* store the element's hash in the element's data type. If the hash is so
* stored, the hash table will also compare hashes before calling SH_EQUAL
* when comparing two keys.
*
* For convenience the hash table create functions accept a void pointer
* that will be stored in the hash table type's member private_data. This
* allows callbacks to reference caller provided data.
*
* For examples of usage look at tidbitmap.c (file local definition) and
* execnodes.h/execGrouping.c (exposed declaration, file local
* implementation).
*
* Hash table design:
*
* The hash table design chosen is a variant of linear open-addressing. The
* reason for doing so is that linear addressing is CPU cache & pipeline
* friendly. The biggest disadvantage of simple linear addressing schemes
* are highly variable lookup times due to clustering, and deletions
* leaving a lot of tombstones around. To address these issues a variant
* of "robin hood" hashing is employed. Robin hood hashing optimizes
* chaining lengths by moving elements close to their optimal bucket
* ("rich" elements), out of the way if a to-be-inserted element is further
* away from its optimal position (i.e. it's "poor"). While that can make
* insertions slower, the average lookup performance is a lot better, and
* higher fill factors can be used in a still performant manner. To avoid
* tombstones - which normally solve the issue that a deleted node's
* presence is relevant to determine whether a lookup needs to continue
* looking or is done - buckets following a deleted element are shifted
* backwards, unless they're empty or already at their optimal position.
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/include/lib/simplehash.h
*/
#include "port/pg_bitutils.h"
/* helpers */
#define SH_MAKE_PREFIX(a) CppConcat(a,_)
#define SH_MAKE_NAME(name) SH_MAKE_NAME_(SH_MAKE_PREFIX(SH_PREFIX),name)
#define SH_MAKE_NAME_(a,b) CppConcat(a,b)
/* name macros for: */
/* type declarations */
#define SH_TYPE SH_MAKE_NAME(hash)
#define SH_STATUS SH_MAKE_NAME(status)
#define SH_STATUS_EMPTY SH_MAKE_NAME(SH_EMPTY)
#define SH_STATUS_IN_USE SH_MAKE_NAME(SH_IN_USE)
#define SH_ITERATOR SH_MAKE_NAME(iterator)
/* function declarations */
#define SH_CREATE SH_MAKE_NAME(create)
#define SH_DESTROY SH_MAKE_NAME(destroy)
#define SH_RESET SH_MAKE_NAME(reset)
#define SH_INSERT SH_MAKE_NAME(insert)
#define SH_INSERT_HASH SH_MAKE_NAME(insert_hash)
#define SH_DELETE_ITEM SH_MAKE_NAME(delete_item)
#define SH_DELETE SH_MAKE_NAME(delete)
#define SH_LOOKUP SH_MAKE_NAME(lookup)
#define SH_LOOKUP_HASH SH_MAKE_NAME(lookup_hash)
#define SH_GROW SH_MAKE_NAME(grow)
#define SH_START_ITERATE SH_MAKE_NAME(start_iterate)
#define SH_START_ITERATE_AT SH_MAKE_NAME(start_iterate_at)
#define SH_ITERATE SH_MAKE_NAME(iterate)
#define SH_ALLOCATE SH_MAKE_NAME(allocate)
#define SH_FREE SH_MAKE_NAME(free)
#define SH_STAT SH_MAKE_NAME(stat)
/* internal helper functions (no externally visible prototypes) */
#define SH_COMPUTE_PARAMETERS SH_MAKE_NAME(compute_parameters)
#define SH_NEXT SH_MAKE_NAME(next)
#define SH_PREV SH_MAKE_NAME(prev)
#define SH_DISTANCE_FROM_OPTIMAL SH_MAKE_NAME(distance)
#define SH_INITIAL_BUCKET SH_MAKE_NAME(initial_bucket)
#define SH_ENTRY_HASH SH_MAKE_NAME(entry_hash)
#define SH_INSERT_HASH_INTERNAL SH_MAKE_NAME(insert_hash_internal)
#define SH_LOOKUP_HASH_INTERNAL SH_MAKE_NAME(lookup_hash_internal)
/* generate forward declarations necessary to use the hash table */
#ifdef SH_DECLARE
/* type definitions */
typedef struct SH_TYPE
{
/*
* Size of data / bucket array, 64 bits to handle UINT32_MAX sized hash
* tables. Note that the maximum number of elements is lower
* (SH_MAX_FILLFACTOR)
*/
uint64 size;
/* how many elements have valid contents */
uint32 members;
/* mask for bucket and size calculations, based on size */
uint32 sizemask;
/* boundary after which to grow hashtable */
uint32 grow_threshold;
/* hash buckets */
SH_ELEMENT_TYPE *data;
#ifndef SH_RAW_ALLOCATOR
/* memory context to use for allocations */
MemoryContext ctx;
#endif
/* user defined data, useful for callbacks */
void *private_data;
} SH_TYPE;
typedef enum SH_STATUS
{
SH_STATUS_EMPTY = 0x00,
SH_STATUS_IN_USE = 0x01
} SH_STATUS;
typedef struct SH_ITERATOR
{
uint32 cur; /* current element */
uint32 end;
bool done; /* iterator exhausted? */
} SH_ITERATOR;
/* externally visible function prototypes */
#ifdef SH_RAW_ALLOCATOR
/* <prefix>_hash <prefix>_create(uint32 nelements, void *private_data) */
SH_SCOPE SH_TYPE *SH_CREATE(uint32 nelements, void *private_data);
#else
/*
* <prefix>_hash <prefix>_create(MemoryContext ctx, uint32 nelements,
* void *private_data)
*/
SH_SCOPE SH_TYPE *SH_CREATE(MemoryContext ctx, uint32 nelements,
void *private_data);
#endif
/* void <prefix>_destroy(<prefix>_hash *tb) */
SH_SCOPE void SH_DESTROY(SH_TYPE * tb);
/* void <prefix>_reset(<prefix>_hash *tb) */
SH_SCOPE void SH_RESET(SH_TYPE * tb);
/* void <prefix>_grow(<prefix>_hash *tb, uint64 newsize) */
SH_SCOPE void SH_GROW(SH_TYPE * tb, uint64 newsize);
/* <element> *<prefix>_insert(<prefix>_hash *tb, <key> key, bool *found) */
SH_SCOPE SH_ELEMENT_TYPE *SH_INSERT(SH_TYPE * tb, SH_KEY_TYPE key, bool *found);
/*
* <element> *<prefix>_insert_hash(<prefix>_hash *tb, <key> key, uint32 hash,
* bool *found)
*/
SH_SCOPE SH_ELEMENT_TYPE *SH_INSERT_HASH(SH_TYPE * tb, SH_KEY_TYPE key,
uint32 hash, bool *found);
/* <element> *<prefix>_lookup(<prefix>_hash *tb, <key> key) */
SH_SCOPE SH_ELEMENT_TYPE *SH_LOOKUP(SH_TYPE * tb, SH_KEY_TYPE key);
/* <element> *<prefix>_lookup_hash(<prefix>_hash *tb, <key> key, uint32 hash) */
SH_SCOPE SH_ELEMENT_TYPE *SH_LOOKUP_HASH(SH_TYPE * tb, SH_KEY_TYPE key,
uint32 hash);
/* void <prefix>_delete_item(<prefix>_hash *tb, <element> *entry) */
SH_SCOPE void SH_DELETE_ITEM(SH_TYPE * tb, SH_ELEMENT_TYPE * entry);
/* bool <prefix>_delete(<prefix>_hash *tb, <key> key) */
SH_SCOPE bool SH_DELETE(SH_TYPE * tb, SH_KEY_TYPE key);
/* void <prefix>_start_iterate(<prefix>_hash *tb, <prefix>_iterator *iter) */
SH_SCOPE void SH_START_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter);
/*
* void <prefix>_start_iterate_at(<prefix>_hash *tb, <prefix>_iterator *iter,
* uint32 at)
*/
SH_SCOPE void SH_START_ITERATE_AT(SH_TYPE * tb, SH_ITERATOR * iter, uint32 at);
/* <element> *<prefix>_iterate(<prefix>_hash *tb, <prefix>_iterator *iter) */
SH_SCOPE SH_ELEMENT_TYPE *SH_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter);
/* void <prefix>_stat(<prefix>_hash *tb */
SH_SCOPE void SH_STAT(SH_TYPE * tb);
#endif /* SH_DECLARE */
/* generate implementation of the hash table */
#ifdef SH_DEFINE
#ifndef SH_RAW_ALLOCATOR
#include "utils/memutils.h"
#endif
/* max data array size,we allow up to PG_UINT32_MAX buckets, including 0 */
#define SH_MAX_SIZE (((uint64) PG_UINT32_MAX) + 1)
/* normal fillfactor, unless already close to maximum */
#ifndef SH_FILLFACTOR
#define SH_FILLFACTOR (0.9)
#endif
/* increase fillfactor if we otherwise would error out */
#define SH_MAX_FILLFACTOR (0.98)
/* grow if actual and optimal location bigger than */
#ifndef SH_GROW_MAX_DIB
#define SH_GROW_MAX_DIB 25
#endif
/* grow if more than elements to move when inserting */
#ifndef SH_GROW_MAX_MOVE
#define SH_GROW_MAX_MOVE 150
#endif
#ifndef SH_GROW_MIN_FILLFACTOR
/* but do not grow due to SH_GROW_MAX_* if below */
#define SH_GROW_MIN_FILLFACTOR 0.1
#endif
#ifdef SH_STORE_HASH
#define SH_COMPARE_KEYS(tb, ahash, akey, b) (ahash == SH_GET_HASH(tb, b) && SH_EQUAL(tb, b->SH_KEY, akey))
#else
#define SH_COMPARE_KEYS(tb, ahash, akey, b) (SH_EQUAL(tb, b->SH_KEY, akey))
#endif
/*
* Wrap the following definitions in include guards, to avoid multiple
* definition errors if this header is included more than once. The rest of
* the file deliberately has no include guards, because it can be included
* with different parameters to define functions and types with non-colliding
* names.
*/
#ifndef SIMPLEHASH_H
#define SIMPLEHASH_H
#ifdef FRONTEND
#define sh_error(...) pg_fatal(__VA_ARGS__)
#define sh_log(...) pg_log_info(__VA_ARGS__)
#else
#define sh_error(...) elog(ERROR, __VA_ARGS__)
#define sh_log(...) elog(LOG, __VA_ARGS__)
#endif
#endif
/*
* Compute sizing parameters for hashtable. Called when creating and growing
* the hashtable.
*/
static inline void
SH_COMPUTE_PARAMETERS(SH_TYPE * tb, uint64 newsize)
{
uint64 size;
/* supporting zero sized hashes would complicate matters */
size = Max(newsize, 2);
/* round up size to the next power of 2, that's how bucketing works */
size = pg_nextpower2_64(size);
Assert(size <= SH_MAX_SIZE);
/*
* Verify that allocation of ->data is possible on this platform, without
* overflowing Size.
*/
if (unlikely((((uint64) sizeof(SH_ELEMENT_TYPE)) * size) >= SIZE_MAX / 2))
sh_error("hash table too large");
/* now set size */
tb->size = size;
tb->sizemask = (uint32) (size - 1);
/*
* Compute the next threshold at which we need to grow the hash table
* again.
*/
if (tb->size == SH_MAX_SIZE)
tb->grow_threshold = ((double) tb->size) * SH_MAX_FILLFACTOR;
else
tb->grow_threshold = ((double) tb->size) * SH_FILLFACTOR;
}
/* return the optimal bucket for the hash */
static inline uint32
SH_INITIAL_BUCKET(SH_TYPE * tb, uint32 hash)
{
return hash & tb->sizemask;
}
/* return next bucket after the current, handling wraparound */
static inline uint32
SH_NEXT(SH_TYPE * tb, uint32 curelem, uint32 startelem)
{
curelem = (curelem + 1) & tb->sizemask;
Assert(curelem != startelem);
return curelem;
}
/* return bucket before the current, handling wraparound */
static inline uint32
SH_PREV(SH_TYPE * tb, uint32 curelem, uint32 startelem)
{
curelem = (curelem - 1) & tb->sizemask;
Assert(curelem != startelem);
return curelem;
}
/* return distance between bucket and its optimal position */
static inline uint32
SH_DISTANCE_FROM_OPTIMAL(SH_TYPE * tb, uint32 optimal, uint32 bucket)
{
if (optimal <= bucket)
return bucket - optimal;
else
return (tb->size + bucket) - optimal;
}
static inline uint32
SH_ENTRY_HASH(SH_TYPE * tb, SH_ELEMENT_TYPE * entry)
{
#ifdef SH_STORE_HASH
return SH_GET_HASH(tb, entry);
#else
return SH_HASH_KEY(tb, entry->SH_KEY);
#endif
}
/* default memory allocator function */
static inline void *SH_ALLOCATE(SH_TYPE * type, Size size);
static inline void SH_FREE(SH_TYPE * type, void *pointer);
#ifndef SH_USE_NONDEFAULT_ALLOCATOR
/* default memory allocator function */
static inline void *
SH_ALLOCATE(SH_TYPE * type, Size size)
{
#ifdef SH_RAW_ALLOCATOR
return SH_RAW_ALLOCATOR(size);
#else
return MemoryContextAllocExtended(type->ctx, size,
MCXT_ALLOC_HUGE | MCXT_ALLOC_ZERO);
#endif
}
/* default memory free function */
static inline void
SH_FREE(SH_TYPE * type, void *pointer)
{
pfree(pointer);
}
#endif
/*
* Create a hash table with enough space for `nelements` distinct members.
* Memory for the hash table is allocated from the passed-in context. If
* desired, the array of elements can be allocated using a passed-in allocator;
* this could be useful in order to place the array of elements in a shared
* memory, or in a context that will outlive the rest of the hash table.
* Memory other than for the array of elements will still be allocated from
* the passed-in context.
*/
#ifdef SH_RAW_ALLOCATOR
SH_SCOPE SH_TYPE *
SH_CREATE(uint32 nelements, void *private_data)
#else
SH_SCOPE SH_TYPE *
SH_CREATE(MemoryContext ctx, uint32 nelements, void *private_data)
#endif
{
SH_TYPE *tb;
uint64 size;
#ifdef SH_RAW_ALLOCATOR
tb = (SH_TYPE *) SH_RAW_ALLOCATOR(sizeof(SH_TYPE));
#else
tb = (SH_TYPE *) MemoryContextAllocZero(ctx, sizeof(SH_TYPE));
tb->ctx = ctx;
#endif
tb->private_data = private_data;
/* increase nelements by fillfactor, want to store nelements elements */
size = Min((double) SH_MAX_SIZE, ((double) nelements) / SH_FILLFACTOR);
SH_COMPUTE_PARAMETERS(tb, size);
tb->data = (SH_ELEMENT_TYPE *) SH_ALLOCATE(tb, sizeof(SH_ELEMENT_TYPE) * tb->size);
return tb;
}
/* destroy a previously created hash table */
SH_SCOPE void
SH_DESTROY(SH_TYPE * tb)
{
SH_FREE(tb, tb->data);
pfree(tb);
}
/* reset the contents of a previously created hash table */
SH_SCOPE void
SH_RESET(SH_TYPE * tb)
{
memset(tb->data, 0, sizeof(SH_ELEMENT_TYPE) * tb->size);
tb->members = 0;
}
/*
* Grow a hash table to at least `newsize` buckets.
*
* Usually this will automatically be called by insertions/deletions, when
* necessary. But resizing to the exact input size can be advantageous
* performance-wise, when known at some point.
*/
SH_SCOPE void
SH_GROW(SH_TYPE * tb, uint64 newsize)
{
uint64 oldsize = tb->size;
SH_ELEMENT_TYPE *olddata = tb->data;
SH_ELEMENT_TYPE *newdata;
uint32 i;
uint32 startelem = 0;
uint32 copyelem;
Assert(oldsize == pg_nextpower2_64(oldsize));
Assert(oldsize != SH_MAX_SIZE);
Assert(oldsize < newsize);
/* compute parameters for new table */
SH_COMPUTE_PARAMETERS(tb, newsize);
tb->data = (SH_ELEMENT_TYPE *) SH_ALLOCATE(tb, sizeof(SH_ELEMENT_TYPE) * tb->size);
newdata = tb->data;
/*
* Copy entries from the old data to newdata. We theoretically could use
* SH_INSERT here, to avoid code duplication, but that's more general than
* we need. We neither want tb->members increased, nor do we need to do
* deal with deleted elements, nor do we need to compare keys. So a
* special-cased implementation is lot faster. As resizing can be time
* consuming and frequent, that's worthwhile to optimize.
*
* To be able to simply move entries over, we have to start not at the
* first bucket (i.e olddata[0]), but find the first bucket that's either
* empty, or is occupied by an entry at its optimal position. Such a
* bucket has to exist in any table with a load factor under 1, as not all
* buckets are occupied, i.e. there always has to be an empty bucket. By
* starting at such a bucket we can move the entries to the larger table,
* without having to deal with conflicts.
*/
/* search for the first element in the hash that's not wrapped around */
for (i = 0; i < oldsize; i++)
{
SH_ELEMENT_TYPE *oldentry = &olddata[i];
uint32 hash;
uint32 optimal;
if (oldentry->status != SH_STATUS_IN_USE)
{
startelem = i;
break;
}
hash = SH_ENTRY_HASH(tb, oldentry);
optimal = SH_INITIAL_BUCKET(tb, hash);
if (optimal == i)
{
startelem = i;
break;
}
}
/* and copy all elements in the old table */
copyelem = startelem;
for (i = 0; i < oldsize; i++)
{
SH_ELEMENT_TYPE *oldentry = &olddata[copyelem];
if (oldentry->status == SH_STATUS_IN_USE)
{
uint32 hash;
uint32 startelem2;
uint32 curelem;
SH_ELEMENT_TYPE *newentry;
hash = SH_ENTRY_HASH(tb, oldentry);
startelem2 = SH_INITIAL_BUCKET(tb, hash);
curelem = startelem2;
/* find empty element to put data into */
while (true)
{
newentry = &newdata[curelem];
if (newentry->status == SH_STATUS_EMPTY)
{
break;
}
curelem = SH_NEXT(tb, curelem, startelem2);
}
/* copy entry to new slot */
memcpy(newentry, oldentry, sizeof(SH_ELEMENT_TYPE));
}
/* can't use SH_NEXT here, would use new size */
copyelem++;
if (copyelem >= oldsize)
{
copyelem = 0;
}
}
SH_FREE(tb, olddata);
}
/*
* This is a separate static inline function, so it can be reliably be inlined
* into its wrapper functions even if SH_SCOPE is extern.
*/
static inline SH_ELEMENT_TYPE *
SH_INSERT_HASH_INTERNAL(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash, bool *found)
{
uint32 startelem;
uint32 curelem;
SH_ELEMENT_TYPE *data;
uint32 insertdist;
restart:
insertdist = 0;
/*
* We do the grow check even if the key is actually present, to avoid
* doing the check inside the loop. This also lets us avoid having to
* re-find our position in the hashtable after resizing.
*
* Note that this also reached when resizing the table due to
* SH_GROW_MAX_DIB / SH_GROW_MAX_MOVE.
*/
if (unlikely(tb->members >= tb->grow_threshold))
{
if (unlikely(tb->size == SH_MAX_SIZE))
sh_error("hash table size exceeded");
/*
* When optimizing, it can be very useful to print these out.
*/
/* SH_STAT(tb); */
SH_GROW(tb, tb->size * 2);
/* SH_STAT(tb); */
}
/* perform insert, start bucket search at optimal location */
data = tb->data;
startelem = SH_INITIAL_BUCKET(tb, hash);
curelem = startelem;
while (true)
{
uint32 curdist;
uint32 curhash;
uint32 curoptimal;
SH_ELEMENT_TYPE *entry = &data[curelem];
/* any empty bucket can directly be used */
if (entry->status == SH_STATUS_EMPTY)
{
tb->members++;
entry->SH_KEY = key;
#ifdef SH_STORE_HASH
SH_GET_HASH(tb, entry) = hash;
#endif
entry->status = SH_STATUS_IN_USE;
*found = false;
return entry;
}
/*
* If the bucket is not empty, we either found a match (in which case
* we're done), or we have to decide whether to skip over or move the
* colliding entry. When the colliding element's distance to its
* optimal position is smaller than the to-be-inserted entry's, we
* shift the colliding entry (and its followers) forward by one.
*/
if (SH_COMPARE_KEYS(tb, hash, key, entry))
{
Assert(entry->status == SH_STATUS_IN_USE);
*found = true;
return entry;
}
curhash = SH_ENTRY_HASH(tb, entry);
curoptimal = SH_INITIAL_BUCKET(tb, curhash);
curdist = SH_DISTANCE_FROM_OPTIMAL(tb, curoptimal, curelem);
if (insertdist > curdist)
{
SH_ELEMENT_TYPE *lastentry = entry;
uint32 emptyelem = curelem;
uint32 moveelem;
int32 emptydist = 0;
/* find next empty bucket */
while (true)
{
SH_ELEMENT_TYPE *emptyentry;
emptyelem = SH_NEXT(tb, emptyelem, startelem);
emptyentry = &data[emptyelem];
if (emptyentry->status == SH_STATUS_EMPTY)
{
lastentry = emptyentry;
break;
}
/*
* To avoid negative consequences from overly imbalanced
* hashtables, grow the hashtable if collisions would require
* us to move a lot of entries. The most likely cause of such
* imbalance is filling a (currently) small table, from a
* currently big one, in hash-table order. Don't grow if the
* hashtable would be too empty, to prevent quick space
* explosion for some weird edge cases.
*/
if (unlikely(++emptydist > SH_GROW_MAX_MOVE) &&
((double) tb->members / tb->size) >= SH_GROW_MIN_FILLFACTOR)
{
tb->grow_threshold = 0;
goto restart;
}
}
/* shift forward, starting at last occupied element */
/*
* TODO: This could be optimized to be one memcpy in many cases,
* excepting wrapping around at the end of ->data. Hasn't shown up
* in profiles so far though.
*/
moveelem = emptyelem;
while (moveelem != curelem)
{
SH_ELEMENT_TYPE *moveentry;
moveelem = SH_PREV(tb, moveelem, startelem);
moveentry = &data[moveelem];
memcpy(lastentry, moveentry, sizeof(SH_ELEMENT_TYPE));
lastentry = moveentry;
}
/* and fill the now empty spot */
tb->members++;
entry->SH_KEY = key;
#ifdef SH_STORE_HASH
SH_GET_HASH(tb, entry) = hash;
#endif
entry->status = SH_STATUS_IN_USE;
*found = false;
return entry;
}
curelem = SH_NEXT(tb, curelem, startelem);
insertdist++;
/*
* To avoid negative consequences from overly imbalanced hashtables,
* grow the hashtable if collisions lead to large runs. The most
* likely cause of such imbalance is filling a (currently) small
* table, from a currently big one, in hash-table order. Don't grow
* if the hashtable would be too empty, to prevent quick space
* explosion for some weird edge cases.
*/
if (unlikely(insertdist > SH_GROW_MAX_DIB) &&
((double) tb->members / tb->size) >= SH_GROW_MIN_FILLFACTOR)
{
tb->grow_threshold = 0;
goto restart;
}
}
}
/*
* Insert the key key into the hash-table, set *found to true if the key
* already exists, false otherwise. Returns the hash-table entry in either
* case.
*/
SH_SCOPE SH_ELEMENT_TYPE *
SH_INSERT(SH_TYPE * tb, SH_KEY_TYPE key, bool *found)
{
uint32 hash = SH_HASH_KEY(tb, key);
return SH_INSERT_HASH_INTERNAL(tb, key, hash, found);
}
/*
* Insert the key key into the hash-table using an already-calculated
* hash. Set *found to true if the key already exists, false
* otherwise. Returns the hash-table entry in either case.
*/
SH_SCOPE SH_ELEMENT_TYPE *
SH_INSERT_HASH(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash, bool *found)
{
return SH_INSERT_HASH_INTERNAL(tb, key, hash, found);
}
/*
* This is a separate static inline function, so it can be reliably be inlined
* into its wrapper functions even if SH_SCOPE is extern.
*/
static inline SH_ELEMENT_TYPE *
SH_LOOKUP_HASH_INTERNAL(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash)
{
const uint32 startelem = SH_INITIAL_BUCKET(tb, hash);
uint32 curelem = startelem;
while (true)
{
SH_ELEMENT_TYPE *entry = &tb->data[curelem];
if (entry->status == SH_STATUS_EMPTY)
{
return NULL;
}
Assert(entry->status == SH_STATUS_IN_USE);
if (SH_COMPARE_KEYS(tb, hash, key, entry))
return entry;
/*
* TODO: we could stop search based on distance. If the current
* buckets's distance-from-optimal is smaller than what we've skipped
* already, the entry doesn't exist. Probably only do so if
* SH_STORE_HASH is defined, to avoid re-computing hashes?
*/
curelem = SH_NEXT(tb, curelem, startelem);
}
}
/*
* Lookup entry in hash table. Returns NULL if key not present.
*/
SH_SCOPE SH_ELEMENT_TYPE *
SH_LOOKUP(SH_TYPE * tb, SH_KEY_TYPE key)
{
uint32 hash = SH_HASH_KEY(tb, key);
return SH_LOOKUP_HASH_INTERNAL(tb, key, hash);
}
/*
* Lookup entry in hash table using an already-calculated hash.
*
* Returns NULL if key not present.
*/
SH_SCOPE SH_ELEMENT_TYPE *
SH_LOOKUP_HASH(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash)
{
return SH_LOOKUP_HASH_INTERNAL(tb, key, hash);
}
/*
* Delete entry from hash table by key. Returns whether to-be-deleted key was
* present.
*/
SH_SCOPE bool
SH_DELETE(SH_TYPE * tb, SH_KEY_TYPE key)
{
uint32 hash = SH_HASH_KEY(tb, key);
uint32 startelem = SH_INITIAL_BUCKET(tb, hash);
uint32 curelem = startelem;
while (true)
{
SH_ELEMENT_TYPE *entry = &tb->data[curelem];
if (entry->status == SH_STATUS_EMPTY)
return false;
if (entry->status == SH_STATUS_IN_USE &&
SH_COMPARE_KEYS(tb, hash, key, entry))
{
SH_ELEMENT_TYPE *lastentry = entry;
tb->members--;
/*
* Backward shift following elements till either an empty element
* or an element at its optimal position is encountered.
*
* While that sounds expensive, the average chain length is short,
* and deletions would otherwise require tombstones.
*/
while (true)
{
SH_ELEMENT_TYPE *curentry;
uint32 curhash;
uint32 curoptimal;
curelem = SH_NEXT(tb, curelem, startelem);
curentry = &tb->data[curelem];
if (curentry->status != SH_STATUS_IN_USE)
{
lastentry->status = SH_STATUS_EMPTY;
break;
}
curhash = SH_ENTRY_HASH(tb, curentry);
curoptimal = SH_INITIAL_BUCKET(tb, curhash);
/* current is at optimal position, done */
if (curoptimal == curelem)
{
lastentry->status = SH_STATUS_EMPTY;
break;
}
/* shift */
memcpy(lastentry, curentry, sizeof(SH_ELEMENT_TYPE));
lastentry = curentry;
}
return true;
}
/* TODO: return false; if distance too big */
curelem = SH_NEXT(tb, curelem, startelem);
}
}
/*
* Delete entry from hash table by entry pointer
*/
SH_SCOPE void
SH_DELETE_ITEM(SH_TYPE * tb, SH_ELEMENT_TYPE * entry)
{
SH_ELEMENT_TYPE *lastentry = entry;
uint32 hash = SH_ENTRY_HASH(tb, entry);
uint32 startelem = SH_INITIAL_BUCKET(tb, hash);
uint32 curelem;
/* Calculate the index of 'entry' */
curelem = entry - &tb->data[0];
tb->members--;
/*
* Backward shift following elements till either an empty element or an
* element at its optimal position is encountered.
*
* While that sounds expensive, the average chain length is short, and
* deletions would otherwise require tombstones.
*/
while (true)
{
SH_ELEMENT_TYPE *curentry;
uint32 curhash;
uint32 curoptimal;
curelem = SH_NEXT(tb, curelem, startelem);
curentry = &tb->data[curelem];
if (curentry->status != SH_STATUS_IN_USE)
{
lastentry->status = SH_STATUS_EMPTY;
break;
}
curhash = SH_ENTRY_HASH(tb, curentry);
curoptimal = SH_INITIAL_BUCKET(tb, curhash);
/* current is at optimal position, done */
if (curoptimal == curelem)
{
lastentry->status = SH_STATUS_EMPTY;
break;
}
/* shift */
memcpy(lastentry, curentry, sizeof(SH_ELEMENT_TYPE));
lastentry = curentry;
}
}
/*
* Initialize iterator.
*/
SH_SCOPE void
SH_START_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter)
{
uint64 startelem = PG_UINT64_MAX;
/*
* Search for the first empty element. As deletions during iterations are
* supported, we want to start/end at an element that cannot be affected
* by elements being shifted.
*/
for (uint32 i = 0; i < tb->size; i++)
{
SH_ELEMENT_TYPE *entry = &tb->data[i];
if (entry->status != SH_STATUS_IN_USE)
{
startelem = i;
break;
}
}
/* we should have found an empty element */
Assert(startelem < SH_MAX_SIZE);
/*
* Iterate backwards, that allows the current element to be deleted, even
* if there are backward shifts
*/
iter->cur = startelem;
iter->end = iter->cur;
iter->done = false;
}
/*
* Initialize iterator to a specific bucket. That's really only useful for
* cases where callers are partially iterating over the hashspace, and that
* iteration deletes and inserts elements based on visited entries. Doing that
* repeatedly could lead to an unbalanced keyspace when always starting at the
* same position.
*/
SH_SCOPE void
SH_START_ITERATE_AT(SH_TYPE * tb, SH_ITERATOR * iter, uint32 at)
{
/*
* Iterate backwards, that allows the current element to be deleted, even
* if there are backward shifts.
*/
iter->cur = at & tb->sizemask; /* ensure at is within a valid range */
iter->end = iter->cur;
iter->done = false;
}
/*
* Iterate over all entries in the hash-table. Return the next occupied entry,
* or NULL if done.
*
* During iteration the current entry in the hash table may be deleted,
* without leading to elements being skipped or returned twice. Additionally
* the rest of the table may be modified (i.e. there can be insertions or
* deletions), but if so, there's neither a guarantee that all nodes are
* visited at least once, nor a guarantee that a node is visited at most once.
*/
SH_SCOPE SH_ELEMENT_TYPE *
SH_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter)
{
while (!iter->done)
{
SH_ELEMENT_TYPE *elem;
elem = &tb->data[iter->cur];
/* next element in backward direction */
iter->cur = (iter->cur - 1) & tb->sizemask;
if ((iter->cur & tb->sizemask) == (iter->end & tb->sizemask))
iter->done = true;
if (elem->status == SH_STATUS_IN_USE)
{
return elem;
}
}
return NULL;
}
/*
* Report some statistics about the state of the hashtable. For
* debugging/profiling purposes only.
*/
SH_SCOPE void
SH_STAT(SH_TYPE * tb)
{
uint32 max_chain_length = 0;
uint32 total_chain_length = 0;
double avg_chain_length;
double fillfactor;
uint32 i;
uint32 *collisions = (uint32 *) palloc0(tb->size * sizeof(uint32));
uint32 total_collisions = 0;
uint32 max_collisions = 0;
double avg_collisions;
for (i = 0; i < tb->size; i++)
{
uint32 hash;
uint32 optimal;
uint32 dist;
SH_ELEMENT_TYPE *elem;
elem = &tb->data[i];
if (elem->status != SH_STATUS_IN_USE)
continue;
hash = SH_ENTRY_HASH(tb, elem);
optimal = SH_INITIAL_BUCKET(tb, hash);
dist = SH_DISTANCE_FROM_OPTIMAL(tb, optimal, i);
if (dist > max_chain_length)
max_chain_length = dist;
total_chain_length += dist;
collisions[optimal]++;
}
for (i = 0; i < tb->size; i++)
{
uint32 curcoll = collisions[i];
if (curcoll == 0)
continue;
/* single contained element is not a collision */
curcoll--;
total_collisions += curcoll;
if (curcoll > max_collisions)
max_collisions = curcoll;
}
/* large enough to be worth freeing, even if just used for debugging */
pfree(collisions);
if (tb->members > 0)
{
fillfactor = tb->members / ((double) tb->size);
avg_chain_length = ((double) total_chain_length) / tb->members;
avg_collisions = ((double) total_collisions) / tb->members;
}
else
{
fillfactor = 0;
avg_chain_length = 0;
avg_collisions = 0;
}
sh_log("size: " UINT64_FORMAT ", members: %u, filled: %f, total chain: %u, max chain: %u, avg chain: %f, total_collisions: %u, max_collisions: %u, avg_collisions: %f",
tb->size, tb->members, fillfactor, total_chain_length, max_chain_length, avg_chain_length,
total_collisions, max_collisions, avg_collisions);
}
#endif /* SH_DEFINE */
/* undefine external parameters, so next hash table can be defined */
#undef SH_PREFIX
#undef SH_KEY_TYPE
#undef SH_KEY
#undef SH_ELEMENT_TYPE
#undef SH_HASH_KEY
#undef SH_SCOPE
#undef SH_DECLARE
#undef SH_DEFINE
#undef SH_GET_HASH
#undef SH_STORE_HASH
#undef SH_USE_NONDEFAULT_ALLOCATOR
#undef SH_EQUAL
/* undefine locally declared macros */
#undef SH_MAKE_PREFIX
#undef SH_MAKE_NAME
#undef SH_MAKE_NAME_
#undef SH_FILLFACTOR
#undef SH_MAX_FILLFACTOR
#undef SH_GROW_MAX_DIB
#undef SH_GROW_MAX_MOVE
#undef SH_GROW_MIN_FILLFACTOR
#undef SH_MAX_SIZE
/* types */
#undef SH_TYPE
#undef SH_STATUS
#undef SH_STATUS_EMPTY
#undef SH_STATUS_IN_USE
#undef SH_ITERATOR
/* external function names */
#undef SH_CREATE
#undef SH_DESTROY
#undef SH_RESET
#undef SH_INSERT
#undef SH_INSERT_HASH
#undef SH_DELETE_ITEM
#undef SH_DELETE
#undef SH_LOOKUP
#undef SH_LOOKUP_HASH
#undef SH_GROW
#undef SH_START_ITERATE
#undef SH_START_ITERATE_AT
#undef SH_ITERATE
#undef SH_ALLOCATE
#undef SH_FREE
#undef SH_STAT
/* internal function names */
#undef SH_COMPUTE_PARAMETERS
#undef SH_COMPARE_KEYS
#undef SH_INITIAL_BUCKET
#undef SH_NEXT
#undef SH_PREV
#undef SH_DISTANCE_FROM_OPTIMAL
#undef SH_ENTRY_HASH
#undef SH_INSERT_HASH_INTERNAL
#undef SH_LOOKUP_HASH_INTERNAL
|