summaryrefslogtreecommitdiffstats
path: root/deps/jemalloc/src/jemalloc.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-14 13:40:54 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-14 13:40:54 +0000
commit317c0644ccf108aa23ef3fd8358bd66c2840bfc0 (patch)
treec417b3d25c86b775989cb5ac042f37611b626c8a /deps/jemalloc/src/jemalloc.c
parentInitial commit. (diff)
downloadredis-317c0644ccf108aa23ef3fd8358bd66c2840bfc0.tar.xz
redis-317c0644ccf108aa23ef3fd8358bd66c2840bfc0.zip
Adding upstream version 5:7.2.4.upstream/5%7.2.4
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'deps/jemalloc/src/jemalloc.c')
-rw-r--r--deps/jemalloc/src/jemalloc.c4485
1 files changed, 4485 insertions, 0 deletions
diff --git a/deps/jemalloc/src/jemalloc.c b/deps/jemalloc/src/jemalloc.c
new file mode 100644
index 0000000..8302609
--- /dev/null
+++ b/deps/jemalloc/src/jemalloc.c
@@ -0,0 +1,4485 @@
+#define JEMALLOC_C_
+#include "jemalloc/internal/jemalloc_preamble.h"
+#include "jemalloc/internal/jemalloc_internal_includes.h"
+
+#include "jemalloc/internal/assert.h"
+#include "jemalloc/internal/atomic.h"
+#include "jemalloc/internal/buf_writer.h"
+#include "jemalloc/internal/ctl.h"
+#include "jemalloc/internal/emap.h"
+#include "jemalloc/internal/extent_dss.h"
+#include "jemalloc/internal/extent_mmap.h"
+#include "jemalloc/internal/fxp.h"
+#include "jemalloc/internal/san.h"
+#include "jemalloc/internal/hook.h"
+#include "jemalloc/internal/jemalloc_internal_types.h"
+#include "jemalloc/internal/log.h"
+#include "jemalloc/internal/malloc_io.h"
+#include "jemalloc/internal/mutex.h"
+#include "jemalloc/internal/nstime.h"
+#include "jemalloc/internal/rtree.h"
+#include "jemalloc/internal/safety_check.h"
+#include "jemalloc/internal/sc.h"
+#include "jemalloc/internal/spin.h"
+#include "jemalloc/internal/sz.h"
+#include "jemalloc/internal/ticker.h"
+#include "jemalloc/internal/thread_event.h"
+#include "jemalloc/internal/util.h"
+
+/******************************************************************************/
+/* Data. */
+
+/* Runtime configuration options. */
+const char *je_malloc_conf
+#ifndef _WIN32
+ JEMALLOC_ATTR(weak)
+#endif
+ ;
+/*
+ * The usual rule is that the closer to runtime you are, the higher priority
+ * your configuration settings are (so the jemalloc config options get lower
+ * priority than the per-binary setting, which gets lower priority than the /etc
+ * setting, which gets lower priority than the environment settings).
+ *
+ * But it's a fairly common use case in some testing environments for a user to
+ * be able to control the binary, but nothing else (e.g. a performancy canary
+ * uses the production OS and environment variables, but can run any binary in
+ * those circumstances). For these use cases, it's handy to have an in-binary
+ * mechanism for overriding environment variable settings, with the idea that if
+ * the results are positive they get promoted to the official settings, and
+ * moved from the binary to the environment variable.
+ *
+ * We don't actually want this to be widespread, so we'll give it a silly name
+ * and not mention it in headers or documentation.
+ */
+const char *je_malloc_conf_2_conf_harder
+#ifndef _WIN32
+ JEMALLOC_ATTR(weak)
+#endif
+ ;
+
+bool opt_abort =
+#ifdef JEMALLOC_DEBUG
+ true
+#else
+ false
+#endif
+ ;
+bool opt_abort_conf =
+#ifdef JEMALLOC_DEBUG
+ true
+#else
+ false
+#endif
+ ;
+/* Intentionally default off, even with debug builds. */
+bool opt_confirm_conf = false;
+const char *opt_junk =
+#if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL))
+ "true"
+#else
+ "false"
+#endif
+ ;
+bool opt_junk_alloc =
+#if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL))
+ true
+#else
+ false
+#endif
+ ;
+bool opt_junk_free =
+#if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL))
+ true
+#else
+ false
+#endif
+ ;
+bool opt_trust_madvise =
+#ifdef JEMALLOC_PURGE_MADVISE_DONTNEED_ZEROS
+ false
+#else
+ true
+#endif
+ ;
+
+bool opt_cache_oblivious =
+#ifdef JEMALLOC_CACHE_OBLIVIOUS
+ true
+#else
+ false
+#endif
+ ;
+
+zero_realloc_action_t opt_zero_realloc_action =
+#ifdef JEMALLOC_ZERO_REALLOC_DEFAULT_FREE
+ zero_realloc_action_free
+#else
+ zero_realloc_action_alloc
+#endif
+ ;
+
+atomic_zu_t zero_realloc_count = ATOMIC_INIT(0);
+
+const char *zero_realloc_mode_names[] = {
+ "alloc",
+ "free",
+ "abort",
+};
+
+/*
+ * These are the documented values for junk fill debugging facilities -- see the
+ * man page.
+ */
+static const uint8_t junk_alloc_byte = 0xa5;
+static const uint8_t junk_free_byte = 0x5a;
+
+static void default_junk_alloc(void *ptr, size_t usize) {
+ memset(ptr, junk_alloc_byte, usize);
+}
+
+static void default_junk_free(void *ptr, size_t usize) {
+ memset(ptr, junk_free_byte, usize);
+}
+
+void (*junk_alloc_callback)(void *ptr, size_t size) = &default_junk_alloc;
+void (*junk_free_callback)(void *ptr, size_t size) = &default_junk_free;
+
+bool opt_utrace = false;
+bool opt_xmalloc = false;
+bool opt_experimental_infallible_new = false;
+bool opt_zero = false;
+unsigned opt_narenas = 0;
+fxp_t opt_narenas_ratio = FXP_INIT_INT(4);
+
+unsigned ncpus;
+
+/* Protects arenas initialization. */
+malloc_mutex_t arenas_lock;
+
+/* The global hpa, and whether it's on. */
+bool opt_hpa = false;
+hpa_shard_opts_t opt_hpa_opts = HPA_SHARD_OPTS_DEFAULT;
+sec_opts_t opt_hpa_sec_opts = SEC_OPTS_DEFAULT;
+
+/*
+ * Arenas that are used to service external requests. Not all elements of the
+ * arenas array are necessarily used; arenas are created lazily as needed.
+ *
+ * arenas[0..narenas_auto) are used for automatic multiplexing of threads and
+ * arenas. arenas[narenas_auto..narenas_total) are only used if the application
+ * takes some action to create them and allocate from them.
+ *
+ * Points to an arena_t.
+ */
+JEMALLOC_ALIGNED(CACHELINE)
+atomic_p_t arenas[MALLOCX_ARENA_LIMIT];
+static atomic_u_t narenas_total; /* Use narenas_total_*(). */
+/* Below three are read-only after initialization. */
+static arena_t *a0; /* arenas[0]. */
+unsigned narenas_auto;
+unsigned manual_arena_base;
+
+malloc_init_t malloc_init_state = malloc_init_uninitialized;
+
+/* False should be the common case. Set to true to trigger initialization. */
+bool malloc_slow = true;
+
+/* When malloc_slow is true, set the corresponding bits for sanity check. */
+enum {
+ flag_opt_junk_alloc = (1U),
+ flag_opt_junk_free = (1U << 1),
+ flag_opt_zero = (1U << 2),
+ flag_opt_utrace = (1U << 3),
+ flag_opt_xmalloc = (1U << 4)
+};
+static uint8_t malloc_slow_flags;
+
+#ifdef JEMALLOC_THREADED_INIT
+/* Used to let the initializing thread recursively allocate. */
+# define NO_INITIALIZER ((unsigned long)0)
+# define INITIALIZER pthread_self()
+# define IS_INITIALIZER (malloc_initializer == pthread_self())
+static pthread_t malloc_initializer = NO_INITIALIZER;
+#else
+# define NO_INITIALIZER false
+# define INITIALIZER true
+# define IS_INITIALIZER malloc_initializer
+static bool malloc_initializer = NO_INITIALIZER;
+#endif
+
+/* Used to avoid initialization races. */
+#ifdef _WIN32
+#if _WIN32_WINNT >= 0x0600
+static malloc_mutex_t init_lock = SRWLOCK_INIT;
+#else
+static malloc_mutex_t init_lock;
+static bool init_lock_initialized = false;
+
+JEMALLOC_ATTR(constructor)
+static void WINAPI
+_init_init_lock(void) {
+ /*
+ * If another constructor in the same binary is using mallctl to e.g.
+ * set up extent hooks, it may end up running before this one, and
+ * malloc_init_hard will crash trying to lock the uninitialized lock. So
+ * we force an initialization of the lock in malloc_init_hard as well.
+ * We don't try to care about atomicity of the accessed to the
+ * init_lock_initialized boolean, since it really only matters early in
+ * the process creation, before any separate thread normally starts
+ * doing anything.
+ */
+ if (!init_lock_initialized) {
+ malloc_mutex_init(&init_lock, "init", WITNESS_RANK_INIT,
+ malloc_mutex_rank_exclusive);
+ }
+ init_lock_initialized = true;
+}
+
+#ifdef _MSC_VER
+# pragma section(".CRT$XCU", read)
+JEMALLOC_SECTION(".CRT$XCU") JEMALLOC_ATTR(used)
+static const void (WINAPI *init_init_lock)(void) = _init_init_lock;
+#endif
+#endif
+#else
+static malloc_mutex_t init_lock = MALLOC_MUTEX_INITIALIZER;
+#endif
+
+typedef struct {
+ void *p; /* Input pointer (as in realloc(p, s)). */
+ size_t s; /* Request size. */
+ void *r; /* Result pointer. */
+} malloc_utrace_t;
+
+#ifdef JEMALLOC_UTRACE
+# define UTRACE(a, b, c) do { \
+ if (unlikely(opt_utrace)) { \
+ int utrace_serrno = errno; \
+ malloc_utrace_t ut; \
+ ut.p = (a); \
+ ut.s = (b); \
+ ut.r = (c); \
+ UTRACE_CALL(&ut, sizeof(ut)); \
+ errno = utrace_serrno; \
+ } \
+} while (0)
+#else
+# define UTRACE(a, b, c)
+#endif
+
+/* Whether encountered any invalid config options. */
+static bool had_conf_error = false;
+
+/******************************************************************************/
+/*
+ * Function prototypes for static functions that are referenced prior to
+ * definition.
+ */
+
+static bool malloc_init_hard_a0(void);
+static bool malloc_init_hard(void);
+
+/******************************************************************************/
+/*
+ * Begin miscellaneous support functions.
+ */
+
+JEMALLOC_ALWAYS_INLINE bool
+malloc_init_a0(void) {
+ if (unlikely(malloc_init_state == malloc_init_uninitialized)) {
+ return malloc_init_hard_a0();
+ }
+ return false;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+malloc_init(void) {
+ if (unlikely(!malloc_initialized()) && malloc_init_hard()) {
+ return true;
+ }
+ return false;
+}
+
+/*
+ * The a0*() functions are used instead of i{d,}alloc() in situations that
+ * cannot tolerate TLS variable access.
+ */
+
+static void *
+a0ialloc(size_t size, bool zero, bool is_internal) {
+ if (unlikely(malloc_init_a0())) {
+ return NULL;
+ }
+
+ return iallocztm(TSDN_NULL, size, sz_size2index(size), zero, NULL,
+ is_internal, arena_get(TSDN_NULL, 0, true), true);
+}
+
+static void
+a0idalloc(void *ptr, bool is_internal) {
+ idalloctm(TSDN_NULL, ptr, NULL, NULL, is_internal, true);
+}
+
+void *
+a0malloc(size_t size) {
+ return a0ialloc(size, false, true);
+}
+
+void
+a0dalloc(void *ptr) {
+ a0idalloc(ptr, true);
+}
+
+/*
+ * FreeBSD's libc uses the bootstrap_*() functions in bootstrap-sensitive
+ * situations that cannot tolerate TLS variable access (TLS allocation and very
+ * early internal data structure initialization).
+ */
+
+void *
+bootstrap_malloc(size_t size) {
+ if (unlikely(size == 0)) {
+ size = 1;
+ }
+
+ return a0ialloc(size, false, false);
+}
+
+void *
+bootstrap_calloc(size_t num, size_t size) {
+ size_t num_size;
+
+ num_size = num * size;
+ if (unlikely(num_size == 0)) {
+ assert(num == 0 || size == 0);
+ num_size = 1;
+ }
+
+ return a0ialloc(num_size, true, false);
+}
+
+void
+bootstrap_free(void *ptr) {
+ if (unlikely(ptr == NULL)) {
+ return;
+ }
+
+ a0idalloc(ptr, false);
+}
+
+void
+arena_set(unsigned ind, arena_t *arena) {
+ atomic_store_p(&arenas[ind], arena, ATOMIC_RELEASE);
+}
+
+static void
+narenas_total_set(unsigned narenas) {
+ atomic_store_u(&narenas_total, narenas, ATOMIC_RELEASE);
+}
+
+static void
+narenas_total_inc(void) {
+ atomic_fetch_add_u(&narenas_total, 1, ATOMIC_RELEASE);
+}
+
+unsigned
+narenas_total_get(void) {
+ return atomic_load_u(&narenas_total, ATOMIC_ACQUIRE);
+}
+
+/* Create a new arena and insert it into the arenas array at index ind. */
+static arena_t *
+arena_init_locked(tsdn_t *tsdn, unsigned ind, const arena_config_t *config) {
+ arena_t *arena;
+
+ assert(ind <= narenas_total_get());
+ if (ind >= MALLOCX_ARENA_LIMIT) {
+ return NULL;
+ }
+ if (ind == narenas_total_get()) {
+ narenas_total_inc();
+ }
+
+ /*
+ * Another thread may have already initialized arenas[ind] if it's an
+ * auto arena.
+ */
+ arena = arena_get(tsdn, ind, false);
+ if (arena != NULL) {
+ assert(arena_is_auto(arena));
+ return arena;
+ }
+
+ /* Actually initialize the arena. */
+ arena = arena_new(tsdn, ind, config);
+
+ return arena;
+}
+
+static void
+arena_new_create_background_thread(tsdn_t *tsdn, unsigned ind) {
+ if (ind == 0) {
+ return;
+ }
+ /*
+ * Avoid creating a new background thread just for the huge arena, which
+ * purges eagerly by default.
+ */
+ if (have_background_thread && !arena_is_huge(ind)) {
+ if (background_thread_create(tsdn_tsd(tsdn), ind)) {
+ malloc_printf("<jemalloc>: error in background thread "
+ "creation for arena %u. Abort.\n", ind);
+ abort();
+ }
+ }
+}
+
+arena_t *
+arena_init(tsdn_t *tsdn, unsigned ind, const arena_config_t *config) {
+ arena_t *arena;
+
+ malloc_mutex_lock(tsdn, &arenas_lock);
+ arena = arena_init_locked(tsdn, ind, config);
+ malloc_mutex_unlock(tsdn, &arenas_lock);
+
+ arena_new_create_background_thread(tsdn, ind);
+
+ return arena;
+}
+
+static void
+arena_bind(tsd_t *tsd, unsigned ind, bool internal) {
+ arena_t *arena = arena_get(tsd_tsdn(tsd), ind, false);
+ arena_nthreads_inc(arena, internal);
+
+ if (internal) {
+ tsd_iarena_set(tsd, arena);
+ } else {
+ tsd_arena_set(tsd, arena);
+ unsigned shard = atomic_fetch_add_u(&arena->binshard_next, 1,
+ ATOMIC_RELAXED);
+ tsd_binshards_t *bins = tsd_binshardsp_get(tsd);
+ for (unsigned i = 0; i < SC_NBINS; i++) {
+ assert(bin_infos[i].n_shards > 0 &&
+ bin_infos[i].n_shards <= BIN_SHARDS_MAX);
+ bins->binshard[i] = shard % bin_infos[i].n_shards;
+ }
+ }
+}
+
+void
+arena_migrate(tsd_t *tsd, arena_t *oldarena, arena_t *newarena) {
+ assert(oldarena != NULL);
+ assert(newarena != NULL);
+
+ arena_nthreads_dec(oldarena, false);
+ arena_nthreads_inc(newarena, false);
+ tsd_arena_set(tsd, newarena);
+
+ if (arena_nthreads_get(oldarena, false) == 0) {
+ /* Purge if the old arena has no associated threads anymore. */
+ arena_decay(tsd_tsdn(tsd), oldarena,
+ /* is_background_thread */ false, /* all */ true);
+ }
+}
+
+static void
+arena_unbind(tsd_t *tsd, unsigned ind, bool internal) {
+ arena_t *arena;
+
+ arena = arena_get(tsd_tsdn(tsd), ind, false);
+ arena_nthreads_dec(arena, internal);
+
+ if (internal) {
+ tsd_iarena_set(tsd, NULL);
+ } else {
+ tsd_arena_set(tsd, NULL);
+ }
+}
+
+/* Slow path, called only by arena_choose(). */
+arena_t *
+arena_choose_hard(tsd_t *tsd, bool internal) {
+ arena_t *ret JEMALLOC_CC_SILENCE_INIT(NULL);
+
+ if (have_percpu_arena && PERCPU_ARENA_ENABLED(opt_percpu_arena)) {
+ unsigned choose = percpu_arena_choose();
+ ret = arena_get(tsd_tsdn(tsd), choose, true);
+ assert(ret != NULL);
+ arena_bind(tsd, arena_ind_get(ret), false);
+ arena_bind(tsd, arena_ind_get(ret), true);
+
+ return ret;
+ }
+
+ if (narenas_auto > 1) {
+ unsigned i, j, choose[2], first_null;
+ bool is_new_arena[2];
+
+ /*
+ * Determine binding for both non-internal and internal
+ * allocation.
+ *
+ * choose[0]: For application allocation.
+ * choose[1]: For internal metadata allocation.
+ */
+
+ for (j = 0; j < 2; j++) {
+ choose[j] = 0;
+ is_new_arena[j] = false;
+ }
+
+ first_null = narenas_auto;
+ malloc_mutex_lock(tsd_tsdn(tsd), &arenas_lock);
+ assert(arena_get(tsd_tsdn(tsd), 0, false) != NULL);
+ for (i = 1; i < narenas_auto; i++) {
+ if (arena_get(tsd_tsdn(tsd), i, false) != NULL) {
+ /*
+ * Choose the first arena that has the lowest
+ * number of threads assigned to it.
+ */
+ for (j = 0; j < 2; j++) {
+ if (arena_nthreads_get(arena_get(
+ tsd_tsdn(tsd), i, false), !!j) <
+ arena_nthreads_get(arena_get(
+ tsd_tsdn(tsd), choose[j], false),
+ !!j)) {
+ choose[j] = i;
+ }
+ }
+ } else if (first_null == narenas_auto) {
+ /*
+ * Record the index of the first uninitialized
+ * arena, in case all extant arenas are in use.
+ *
+ * NB: It is possible for there to be
+ * discontinuities in terms of initialized
+ * versus uninitialized arenas, due to the
+ * "thread.arena" mallctl.
+ */
+ first_null = i;
+ }
+ }
+
+ for (j = 0; j < 2; j++) {
+ if (arena_nthreads_get(arena_get(tsd_tsdn(tsd),
+ choose[j], false), !!j) == 0 || first_null ==
+ narenas_auto) {
+ /*
+ * Use an unloaded arena, or the least loaded
+ * arena if all arenas are already initialized.
+ */
+ if (!!j == internal) {
+ ret = arena_get(tsd_tsdn(tsd),
+ choose[j], false);
+ }
+ } else {
+ arena_t *arena;
+
+ /* Initialize a new arena. */
+ choose[j] = first_null;
+ arena = arena_init_locked(tsd_tsdn(tsd),
+ choose[j], &arena_config_default);
+ if (arena == NULL) {
+ malloc_mutex_unlock(tsd_tsdn(tsd),
+ &arenas_lock);
+ return NULL;
+ }
+ is_new_arena[j] = true;
+ if (!!j == internal) {
+ ret = arena;
+ }
+ }
+ arena_bind(tsd, choose[j], !!j);
+ }
+ malloc_mutex_unlock(tsd_tsdn(tsd), &arenas_lock);
+
+ for (j = 0; j < 2; j++) {
+ if (is_new_arena[j]) {
+ assert(choose[j] > 0);
+ arena_new_create_background_thread(
+ tsd_tsdn(tsd), choose[j]);
+ }
+ }
+
+ } else {
+ ret = arena_get(tsd_tsdn(tsd), 0, false);
+ arena_bind(tsd, 0, false);
+ arena_bind(tsd, 0, true);
+ }
+
+ return ret;
+}
+
+void
+iarena_cleanup(tsd_t *tsd) {
+ arena_t *iarena;
+
+ iarena = tsd_iarena_get(tsd);
+ if (iarena != NULL) {
+ arena_unbind(tsd, arena_ind_get(iarena), true);
+ }
+}
+
+void
+arena_cleanup(tsd_t *tsd) {
+ arena_t *arena;
+
+ arena = tsd_arena_get(tsd);
+ if (arena != NULL) {
+ arena_unbind(tsd, arena_ind_get(arena), false);
+ }
+}
+
+static void
+stats_print_atexit(void) {
+ if (config_stats) {
+ tsdn_t *tsdn;
+ unsigned narenas, i;
+
+ tsdn = tsdn_fetch();
+
+ /*
+ * Merge stats from extant threads. This is racy, since
+ * individual threads do not lock when recording tcache stats
+ * events. As a consequence, the final stats may be slightly
+ * out of date by the time they are reported, if other threads
+ * continue to allocate.
+ */
+ for (i = 0, narenas = narenas_total_get(); i < narenas; i++) {
+ arena_t *arena = arena_get(tsdn, i, false);
+ if (arena != NULL) {
+ tcache_slow_t *tcache_slow;
+
+ malloc_mutex_lock(tsdn, &arena->tcache_ql_mtx);
+ ql_foreach(tcache_slow, &arena->tcache_ql,
+ link) {
+ tcache_stats_merge(tsdn,
+ tcache_slow->tcache, arena);
+ }
+ malloc_mutex_unlock(tsdn,
+ &arena->tcache_ql_mtx);
+ }
+ }
+ }
+ je_malloc_stats_print(NULL, NULL, opt_stats_print_opts);
+}
+
+/*
+ * Ensure that we don't hold any locks upon entry to or exit from allocator
+ * code (in a "broad" sense that doesn't count a reentrant allocation as an
+ * entrance or exit).
+ */
+JEMALLOC_ALWAYS_INLINE void
+check_entry_exit_locking(tsdn_t *tsdn) {
+ if (!config_debug) {
+ return;
+ }
+ if (tsdn_null(tsdn)) {
+ return;
+ }
+ tsd_t *tsd = tsdn_tsd(tsdn);
+ /*
+ * It's possible we hold locks at entry/exit if we're in a nested
+ * allocation.
+ */
+ int8_t reentrancy_level = tsd_reentrancy_level_get(tsd);
+ if (reentrancy_level != 0) {
+ return;
+ }
+ witness_assert_lockless(tsdn_witness_tsdp_get(tsdn));
+}
+
+/*
+ * End miscellaneous support functions.
+ */
+/******************************************************************************/
+/*
+ * Begin initialization functions.
+ */
+
+static char *
+jemalloc_secure_getenv(const char *name) {
+#ifdef JEMALLOC_HAVE_SECURE_GETENV
+ return secure_getenv(name);
+#else
+# ifdef JEMALLOC_HAVE_ISSETUGID
+ if (issetugid() != 0) {
+ return NULL;
+ }
+# endif
+ return getenv(name);
+#endif
+}
+
+static unsigned
+malloc_ncpus(void) {
+ long result;
+
+#ifdef _WIN32
+ SYSTEM_INFO si;
+ GetSystemInfo(&si);
+ result = si.dwNumberOfProcessors;
+#elif defined(CPU_COUNT)
+ /*
+ * glibc >= 2.6 has the CPU_COUNT macro.
+ *
+ * glibc's sysconf() uses isspace(). glibc allocates for the first time
+ * *before* setting up the isspace tables. Therefore we need a
+ * different method to get the number of CPUs.
+ *
+ * The getaffinity approach is also preferred when only a subset of CPUs
+ * is available, to avoid using more arenas than necessary.
+ */
+ {
+# if defined(__FreeBSD__) || defined(__DragonFly__)
+ cpuset_t set;
+# else
+ cpu_set_t set;
+# endif
+# if defined(JEMALLOC_HAVE_SCHED_SETAFFINITY)
+ sched_getaffinity(0, sizeof(set), &set);
+# else
+ pthread_getaffinity_np(pthread_self(), sizeof(set), &set);
+# endif
+ result = CPU_COUNT(&set);
+ }
+#else
+ result = sysconf(_SC_NPROCESSORS_ONLN);
+#endif
+ return ((result == -1) ? 1 : (unsigned)result);
+}
+
+/*
+ * Ensure that number of CPUs is determistinc, i.e. it is the same based on:
+ * - sched_getaffinity()
+ * - _SC_NPROCESSORS_ONLN
+ * - _SC_NPROCESSORS_CONF
+ * Since otherwise tricky things is possible with percpu arenas in use.
+ */
+static bool
+malloc_cpu_count_is_deterministic()
+{
+#ifdef _WIN32
+ return true;
+#else
+ long cpu_onln = sysconf(_SC_NPROCESSORS_ONLN);
+ long cpu_conf = sysconf(_SC_NPROCESSORS_CONF);
+ if (cpu_onln != cpu_conf) {
+ return false;
+ }
+# if defined(CPU_COUNT)
+# if defined(__FreeBSD__) || defined(__DragonFly__)
+ cpuset_t set;
+# else
+ cpu_set_t set;
+# endif /* __FreeBSD__ */
+# if defined(JEMALLOC_HAVE_SCHED_SETAFFINITY)
+ sched_getaffinity(0, sizeof(set), &set);
+# else /* !JEMALLOC_HAVE_SCHED_SETAFFINITY */
+ pthread_getaffinity_np(pthread_self(), sizeof(set), &set);
+# endif /* JEMALLOC_HAVE_SCHED_SETAFFINITY */
+ long cpu_affinity = CPU_COUNT(&set);
+ if (cpu_affinity != cpu_conf) {
+ return false;
+ }
+# endif /* CPU_COUNT */
+ return true;
+#endif
+}
+
+static void
+init_opt_stats_opts(const char *v, size_t vlen, char *dest) {
+ size_t opts_len = strlen(dest);
+ assert(opts_len <= stats_print_tot_num_options);
+
+ for (size_t i = 0; i < vlen; i++) {
+ switch (v[i]) {
+#define OPTION(o, v, d, s) case o: break;
+ STATS_PRINT_OPTIONS
+#undef OPTION
+ default: continue;
+ }
+
+ if (strchr(dest, v[i]) != NULL) {
+ /* Ignore repeated. */
+ continue;
+ }
+
+ dest[opts_len++] = v[i];
+ dest[opts_len] = '\0';
+ assert(opts_len <= stats_print_tot_num_options);
+ }
+ assert(opts_len == strlen(dest));
+}
+
+/* Reads the next size pair in a multi-sized option. */
+static bool
+malloc_conf_multi_sizes_next(const char **slab_size_segment_cur,
+ size_t *vlen_left, size_t *slab_start, size_t *slab_end, size_t *new_size) {
+ const char *cur = *slab_size_segment_cur;
+ char *end;
+ uintmax_t um;
+
+ set_errno(0);
+
+ /* First number, then '-' */
+ um = malloc_strtoumax(cur, &end, 0);
+ if (get_errno() != 0 || *end != '-') {
+ return true;
+ }
+ *slab_start = (size_t)um;
+ cur = end + 1;
+
+ /* Second number, then ':' */
+ um = malloc_strtoumax(cur, &end, 0);
+ if (get_errno() != 0 || *end != ':') {
+ return true;
+ }
+ *slab_end = (size_t)um;
+ cur = end + 1;
+
+ /* Last number */
+ um = malloc_strtoumax(cur, &end, 0);
+ if (get_errno() != 0) {
+ return true;
+ }
+ *new_size = (size_t)um;
+
+ /* Consume the separator if there is one. */
+ if (*end == '|') {
+ end++;
+ }
+
+ *vlen_left -= end - *slab_size_segment_cur;
+ *slab_size_segment_cur = end;
+
+ return false;
+}
+
+static bool
+malloc_conf_next(char const **opts_p, char const **k_p, size_t *klen_p,
+ char const **v_p, size_t *vlen_p) {
+ bool accept;
+ const char *opts = *opts_p;
+
+ *k_p = opts;
+
+ for (accept = false; !accept;) {
+ switch (*opts) {
+ case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
+ case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
+ case 'M': case 'N': case 'O': case 'P': case 'Q': case 'R':
+ case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
+ case 'Y': case 'Z':
+ case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
+ case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
+ case 'm': case 'n': case 'o': case 'p': case 'q': case 'r':
+ case 's': case 't': case 'u': case 'v': case 'w': case 'x':
+ case 'y': case 'z':
+ case '0': case '1': case '2': case '3': case '4': case '5':
+ case '6': case '7': case '8': case '9':
+ case '_':
+ opts++;
+ break;
+ case ':':
+ opts++;
+ *klen_p = (uintptr_t)opts - 1 - (uintptr_t)*k_p;
+ *v_p = opts;
+ accept = true;
+ break;
+ case '\0':
+ if (opts != *opts_p) {
+ malloc_write("<jemalloc>: Conf string ends "
+ "with key\n");
+ had_conf_error = true;
+ }
+ return true;
+ default:
+ malloc_write("<jemalloc>: Malformed conf string\n");
+ had_conf_error = true;
+ return true;
+ }
+ }
+
+ for (accept = false; !accept;) {
+ switch (*opts) {
+ case ',':
+ opts++;
+ /*
+ * Look ahead one character here, because the next time
+ * this function is called, it will assume that end of
+ * input has been cleanly reached if no input remains,
+ * but we have optimistically already consumed the
+ * comma if one exists.
+ */
+ if (*opts == '\0') {
+ malloc_write("<jemalloc>: Conf string ends "
+ "with comma\n");
+ had_conf_error = true;
+ }
+ *vlen_p = (uintptr_t)opts - 1 - (uintptr_t)*v_p;
+ accept = true;
+ break;
+ case '\0':
+ *vlen_p = (uintptr_t)opts - (uintptr_t)*v_p;
+ accept = true;
+ break;
+ default:
+ opts++;
+ break;
+ }
+ }
+
+ *opts_p = opts;
+ return false;
+}
+
+static void
+malloc_abort_invalid_conf(void) {
+ assert(opt_abort_conf);
+ malloc_printf("<jemalloc>: Abort (abort_conf:true) on invalid conf "
+ "value (see above).\n");
+ abort();
+}
+
+static void
+malloc_conf_error(const char *msg, const char *k, size_t klen, const char *v,
+ size_t vlen) {
+ malloc_printf("<jemalloc>: %s: %.*s:%.*s\n", msg, (int)klen, k,
+ (int)vlen, v);
+ /* If abort_conf is set, error out after processing all options. */
+ const char *experimental = "experimental_";
+ if (strncmp(k, experimental, strlen(experimental)) == 0) {
+ /* However, tolerate experimental features. */
+ return;
+ }
+ had_conf_error = true;
+}
+
+static void
+malloc_slow_flag_init(void) {
+ /*
+ * Combine the runtime options into malloc_slow for fast path. Called
+ * after processing all the options.
+ */
+ malloc_slow_flags |= (opt_junk_alloc ? flag_opt_junk_alloc : 0)
+ | (opt_junk_free ? flag_opt_junk_free : 0)
+ | (opt_zero ? flag_opt_zero : 0)
+ | (opt_utrace ? flag_opt_utrace : 0)
+ | (opt_xmalloc ? flag_opt_xmalloc : 0);
+
+ malloc_slow = (malloc_slow_flags != 0);
+}
+
+/* Number of sources for initializing malloc_conf */
+#define MALLOC_CONF_NSOURCES 5
+
+static const char *
+obtain_malloc_conf(unsigned which_source, char buf[PATH_MAX + 1]) {
+ if (config_debug) {
+ static unsigned read_source = 0;
+ /*
+ * Each source should only be read once, to minimize # of
+ * syscalls on init.
+ */
+ assert(read_source++ == which_source);
+ }
+ assert(which_source < MALLOC_CONF_NSOURCES);
+
+ const char *ret;
+ switch (which_source) {
+ case 0:
+ ret = config_malloc_conf;
+ break;
+ case 1:
+ if (je_malloc_conf != NULL) {
+ /* Use options that were compiled into the program. */
+ ret = je_malloc_conf;
+ } else {
+ /* No configuration specified. */
+ ret = NULL;
+ }
+ break;
+ case 2: {
+ ssize_t linklen = 0;
+#ifndef _WIN32
+ int saved_errno = errno;
+ const char *linkname =
+# ifdef JEMALLOC_PREFIX
+ "/etc/"JEMALLOC_PREFIX"malloc.conf"
+# else
+ "/etc/malloc.conf"
+# endif
+ ;
+
+ /*
+ * Try to use the contents of the "/etc/malloc.conf" symbolic
+ * link's name.
+ */
+#ifndef JEMALLOC_READLINKAT
+ linklen = readlink(linkname, buf, PATH_MAX);
+#else
+ linklen = readlinkat(AT_FDCWD, linkname, buf, PATH_MAX);
+#endif
+ if (linklen == -1) {
+ /* No configuration specified. */
+ linklen = 0;
+ /* Restore errno. */
+ set_errno(saved_errno);
+ }
+#endif
+ buf[linklen] = '\0';
+ ret = buf;
+ break;
+ } case 3: {
+ const char *envname =
+#ifdef JEMALLOC_PREFIX
+ JEMALLOC_CPREFIX"MALLOC_CONF"
+#else
+ "MALLOC_CONF"
+#endif
+ ;
+
+ if ((ret = jemalloc_secure_getenv(envname)) != NULL) {
+ /*
+ * Do nothing; opts is already initialized to the value
+ * of the MALLOC_CONF environment variable.
+ */
+ } else {
+ /* No configuration specified. */
+ ret = NULL;
+ }
+ break;
+ } case 4: {
+ ret = je_malloc_conf_2_conf_harder;
+ break;
+ } default:
+ not_reached();
+ ret = NULL;
+ }
+ return ret;
+}
+
+static void
+malloc_conf_init_helper(sc_data_t *sc_data, unsigned bin_shard_sizes[SC_NBINS],
+ bool initial_call, const char *opts_cache[MALLOC_CONF_NSOURCES],
+ char buf[PATH_MAX + 1]) {
+ static const char *opts_explain[MALLOC_CONF_NSOURCES] = {
+ "string specified via --with-malloc-conf",
+ "string pointed to by the global variable malloc_conf",
+ ("\"name\" of the file referenced by the symbolic link named "
+ "/etc/malloc.conf"),
+ "value of the environment variable MALLOC_CONF",
+ ("string pointed to by the global variable "
+ "malloc_conf_2_conf_harder"),
+ };
+ unsigned i;
+ const char *opts, *k, *v;
+ size_t klen, vlen;
+
+ for (i = 0; i < MALLOC_CONF_NSOURCES; i++) {
+ /* Get runtime configuration. */
+ if (initial_call) {
+ opts_cache[i] = obtain_malloc_conf(i, buf);
+ }
+ opts = opts_cache[i];
+ if (!initial_call && opt_confirm_conf) {
+ malloc_printf(
+ "<jemalloc>: malloc_conf #%u (%s): \"%s\"\n",
+ i + 1, opts_explain[i], opts != NULL ? opts : "");
+ }
+ if (opts == NULL) {
+ continue;
+ }
+
+ while (*opts != '\0' && !malloc_conf_next(&opts, &k, &klen, &v,
+ &vlen)) {
+
+#define CONF_ERROR(msg, k, klen, v, vlen) \
+ if (!initial_call) { \
+ malloc_conf_error( \
+ msg, k, klen, v, vlen); \
+ cur_opt_valid = false; \
+ }
+#define CONF_CONTINUE { \
+ if (!initial_call && opt_confirm_conf \
+ && cur_opt_valid) { \
+ malloc_printf("<jemalloc>: -- " \
+ "Set conf value: %.*s:%.*s" \
+ "\n", (int)klen, k, \
+ (int)vlen, v); \
+ } \
+ continue; \
+ }
+#define CONF_MATCH(n) \
+ (sizeof(n)-1 == klen && strncmp(n, k, klen) == 0)
+#define CONF_MATCH_VALUE(n) \
+ (sizeof(n)-1 == vlen && strncmp(n, v, vlen) == 0)
+#define CONF_HANDLE_BOOL(o, n) \
+ if (CONF_MATCH(n)) { \
+ if (CONF_MATCH_VALUE("true")) { \
+ o = true; \
+ } else if (CONF_MATCH_VALUE("false")) { \
+ o = false; \
+ } else { \
+ CONF_ERROR("Invalid conf value",\
+ k, klen, v, vlen); \
+ } \
+ CONF_CONTINUE; \
+ }
+ /*
+ * One of the CONF_MIN macros below expands, in one of the use points,
+ * to "unsigned integer < 0", which is always false, triggering the
+ * GCC -Wtype-limits warning, which we disable here and re-enable below.
+ */
+ JEMALLOC_DIAGNOSTIC_PUSH
+ JEMALLOC_DIAGNOSTIC_IGNORE_TYPE_LIMITS
+
+#define CONF_DONT_CHECK_MIN(um, min) false
+#define CONF_CHECK_MIN(um, min) ((um) < (min))
+#define CONF_DONT_CHECK_MAX(um, max) false
+#define CONF_CHECK_MAX(um, max) ((um) > (max))
+
+#define CONF_VALUE_READ(max_t, result) \
+ char *end; \
+ set_errno(0); \
+ result = (max_t)malloc_strtoumax(v, &end, 0);
+#define CONF_VALUE_READ_FAIL() \
+ (get_errno() != 0 || (uintptr_t)end - (uintptr_t)v != vlen)
+
+#define CONF_HANDLE_T(t, max_t, o, n, min, max, check_min, check_max, clip) \
+ if (CONF_MATCH(n)) { \
+ max_t mv; \
+ CONF_VALUE_READ(max_t, mv) \
+ if (CONF_VALUE_READ_FAIL()) { \
+ CONF_ERROR("Invalid conf value",\
+ k, klen, v, vlen); \
+ } else if (clip) { \
+ if (check_min(mv, (t)(min))) { \
+ o = (t)(min); \
+ } else if ( \
+ check_max(mv, (t)(max))) { \
+ o = (t)(max); \
+ } else { \
+ o = (t)mv; \
+ } \
+ } else { \
+ if (check_min(mv, (t)(min)) || \
+ check_max(mv, (t)(max))) { \
+ CONF_ERROR( \
+ "Out-of-range " \
+ "conf value", \
+ k, klen, v, vlen); \
+ } else { \
+ o = (t)mv; \
+ } \
+ } \
+ CONF_CONTINUE; \
+ }
+#define CONF_HANDLE_T_U(t, o, n, min, max, check_min, check_max, clip) \
+ CONF_HANDLE_T(t, uintmax_t, o, n, min, max, check_min, \
+ check_max, clip)
+#define CONF_HANDLE_T_SIGNED(t, o, n, min, max, check_min, check_max, clip)\
+ CONF_HANDLE_T(t, intmax_t, o, n, min, max, check_min, \
+ check_max, clip)
+
+#define CONF_HANDLE_UNSIGNED(o, n, min, max, check_min, check_max, \
+ clip) \
+ CONF_HANDLE_T_U(unsigned, o, n, min, max, \
+ check_min, check_max, clip)
+#define CONF_HANDLE_SIZE_T(o, n, min, max, check_min, check_max, clip) \
+ CONF_HANDLE_T_U(size_t, o, n, min, max, \
+ check_min, check_max, clip)
+#define CONF_HANDLE_INT64_T(o, n, min, max, check_min, check_max, clip) \
+ CONF_HANDLE_T_SIGNED(int64_t, o, n, min, max, \
+ check_min, check_max, clip)
+#define CONF_HANDLE_UINT64_T(o, n, min, max, check_min, check_max, clip)\
+ CONF_HANDLE_T_U(uint64_t, o, n, min, max, \
+ check_min, check_max, clip)
+#define CONF_HANDLE_SSIZE_T(o, n, min, max) \
+ CONF_HANDLE_T_SIGNED(ssize_t, o, n, min, max, \
+ CONF_CHECK_MIN, CONF_CHECK_MAX, false)
+#define CONF_HANDLE_CHAR_P(o, n, d) \
+ if (CONF_MATCH(n)) { \
+ size_t cpylen = (vlen <= \
+ sizeof(o)-1) ? vlen : \
+ sizeof(o)-1; \
+ strncpy(o, v, cpylen); \
+ o[cpylen] = '\0'; \
+ CONF_CONTINUE; \
+ }
+
+ bool cur_opt_valid = true;
+
+ CONF_HANDLE_BOOL(opt_confirm_conf, "confirm_conf")
+ if (initial_call) {
+ continue;
+ }
+
+ CONF_HANDLE_BOOL(opt_abort, "abort")
+ CONF_HANDLE_BOOL(opt_abort_conf, "abort_conf")
+ CONF_HANDLE_BOOL(opt_trust_madvise, "trust_madvise")
+ if (strncmp("metadata_thp", k, klen) == 0) {
+ int m;
+ bool match = false;
+ for (m = 0; m < metadata_thp_mode_limit; m++) {
+ if (strncmp(metadata_thp_mode_names[m],
+ v, vlen) == 0) {
+ opt_metadata_thp = m;
+ match = true;
+ break;
+ }
+ }
+ if (!match) {
+ CONF_ERROR("Invalid conf value",
+ k, klen, v, vlen);
+ }
+ CONF_CONTINUE;
+ }
+ CONF_HANDLE_BOOL(opt_retain, "retain")
+ if (strncmp("dss", k, klen) == 0) {
+ int m;
+ bool match = false;
+ for (m = 0; m < dss_prec_limit; m++) {
+ if (strncmp(dss_prec_names[m], v, vlen)
+ == 0) {
+ if (extent_dss_prec_set(m)) {
+ CONF_ERROR(
+ "Error setting dss",
+ k, klen, v, vlen);
+ } else {
+ opt_dss =
+ dss_prec_names[m];
+ match = true;
+ break;
+ }
+ }
+ }
+ if (!match) {
+ CONF_ERROR("Invalid conf value",
+ k, klen, v, vlen);
+ }
+ CONF_CONTINUE;
+ }
+ if (CONF_MATCH("narenas")) {
+ if (CONF_MATCH_VALUE("default")) {
+ opt_narenas = 0;
+ CONF_CONTINUE;
+ } else {
+ CONF_HANDLE_UNSIGNED(opt_narenas,
+ "narenas", 1, UINT_MAX,
+ CONF_CHECK_MIN, CONF_DONT_CHECK_MAX,
+ /* clip */ false)
+ }
+ }
+ if (CONF_MATCH("narenas_ratio")) {
+ char *end;
+ bool err = fxp_parse(&opt_narenas_ratio, v,
+ &end);
+ if (err || (size_t)(end - v) != vlen) {
+ CONF_ERROR("Invalid conf value",
+ k, klen, v, vlen);
+ }
+ CONF_CONTINUE;
+ }
+ if (CONF_MATCH("bin_shards")) {
+ const char *bin_shards_segment_cur = v;
+ size_t vlen_left = vlen;
+ do {
+ size_t size_start;
+ size_t size_end;
+ size_t nshards;
+ bool err = malloc_conf_multi_sizes_next(
+ &bin_shards_segment_cur, &vlen_left,
+ &size_start, &size_end, &nshards);
+ if (err || bin_update_shard_size(
+ bin_shard_sizes, size_start,
+ size_end, nshards)) {
+ CONF_ERROR(
+ "Invalid settings for "
+ "bin_shards", k, klen, v,
+ vlen);
+ break;
+ }
+ } while (vlen_left > 0);
+ CONF_CONTINUE;
+ }
+ CONF_HANDLE_INT64_T(opt_mutex_max_spin,
+ "mutex_max_spin", -1, INT64_MAX, CONF_CHECK_MIN,
+ CONF_DONT_CHECK_MAX, false);
+ CONF_HANDLE_SSIZE_T(opt_dirty_decay_ms,
+ "dirty_decay_ms", -1, NSTIME_SEC_MAX * KQU(1000) <
+ QU(SSIZE_MAX) ? NSTIME_SEC_MAX * KQU(1000) :
+ SSIZE_MAX);
+ CONF_HANDLE_SSIZE_T(opt_muzzy_decay_ms,
+ "muzzy_decay_ms", -1, NSTIME_SEC_MAX * KQU(1000) <
+ QU(SSIZE_MAX) ? NSTIME_SEC_MAX * KQU(1000) :
+ SSIZE_MAX);
+ CONF_HANDLE_BOOL(opt_stats_print, "stats_print")
+ if (CONF_MATCH("stats_print_opts")) {
+ init_opt_stats_opts(v, vlen,
+ opt_stats_print_opts);
+ CONF_CONTINUE;
+ }
+ CONF_HANDLE_INT64_T(opt_stats_interval,
+ "stats_interval", -1, INT64_MAX,
+ CONF_CHECK_MIN, CONF_DONT_CHECK_MAX, false)
+ if (CONF_MATCH("stats_interval_opts")) {
+ init_opt_stats_opts(v, vlen,
+ opt_stats_interval_opts);
+ CONF_CONTINUE;
+ }
+ if (config_fill) {
+ if (CONF_MATCH("junk")) {
+ if (CONF_MATCH_VALUE("true")) {
+ opt_junk = "true";
+ opt_junk_alloc = opt_junk_free =
+ true;
+ } else if (CONF_MATCH_VALUE("false")) {
+ opt_junk = "false";
+ opt_junk_alloc = opt_junk_free =
+ false;
+ } else if (CONF_MATCH_VALUE("alloc")) {
+ opt_junk = "alloc";
+ opt_junk_alloc = true;
+ opt_junk_free = false;
+ } else if (CONF_MATCH_VALUE("free")) {
+ opt_junk = "free";
+ opt_junk_alloc = false;
+ opt_junk_free = true;
+ } else {
+ CONF_ERROR(
+ "Invalid conf value",
+ k, klen, v, vlen);
+ }
+ CONF_CONTINUE;
+ }
+ CONF_HANDLE_BOOL(opt_zero, "zero")
+ }
+ if (config_utrace) {
+ CONF_HANDLE_BOOL(opt_utrace, "utrace")
+ }
+ if (config_xmalloc) {
+ CONF_HANDLE_BOOL(opt_xmalloc, "xmalloc")
+ }
+ if (config_enable_cxx) {
+ CONF_HANDLE_BOOL(
+ opt_experimental_infallible_new,
+ "experimental_infallible_new")
+ }
+
+ CONF_HANDLE_BOOL(opt_tcache, "tcache")
+ CONF_HANDLE_SIZE_T(opt_tcache_max, "tcache_max",
+ 0, TCACHE_MAXCLASS_LIMIT, CONF_DONT_CHECK_MIN,
+ CONF_CHECK_MAX, /* clip */ true)
+ if (CONF_MATCH("lg_tcache_max")) {
+ size_t m;
+ CONF_VALUE_READ(size_t, m)
+ if (CONF_VALUE_READ_FAIL()) {
+ CONF_ERROR("Invalid conf value",
+ k, klen, v, vlen);
+ } else {
+ /* clip if necessary */
+ if (m > TCACHE_LG_MAXCLASS_LIMIT) {
+ m = TCACHE_LG_MAXCLASS_LIMIT;
+ }
+ opt_tcache_max = (size_t)1 << m;
+ }
+ CONF_CONTINUE;
+ }
+ /*
+ * Anyone trying to set a value outside -16 to 16 is
+ * deeply confused.
+ */
+ CONF_HANDLE_SSIZE_T(opt_lg_tcache_nslots_mul,
+ "lg_tcache_nslots_mul", -16, 16)
+ /* Ditto with values past 2048. */
+ CONF_HANDLE_UNSIGNED(opt_tcache_nslots_small_min,
+ "tcache_nslots_small_min", 1, 2048,
+ CONF_CHECK_MIN, CONF_CHECK_MAX, /* clip */ true)
+ CONF_HANDLE_UNSIGNED(opt_tcache_nslots_small_max,
+ "tcache_nslots_small_max", 1, 2048,
+ CONF_CHECK_MIN, CONF_CHECK_MAX, /* clip */ true)
+ CONF_HANDLE_UNSIGNED(opt_tcache_nslots_large,
+ "tcache_nslots_large", 1, 2048,
+ CONF_CHECK_MIN, CONF_CHECK_MAX, /* clip */ true)
+ CONF_HANDLE_SIZE_T(opt_tcache_gc_incr_bytes,
+ "tcache_gc_incr_bytes", 1024, SIZE_T_MAX,
+ CONF_CHECK_MIN, CONF_DONT_CHECK_MAX,
+ /* clip */ true)
+ CONF_HANDLE_SIZE_T(opt_tcache_gc_delay_bytes,
+ "tcache_gc_delay_bytes", 0, SIZE_T_MAX,
+ CONF_DONT_CHECK_MIN, CONF_DONT_CHECK_MAX,
+ /* clip */ false)
+ CONF_HANDLE_UNSIGNED(opt_lg_tcache_flush_small_div,
+ "lg_tcache_flush_small_div", 1, 16,
+ CONF_CHECK_MIN, CONF_CHECK_MAX, /* clip */ true)
+ CONF_HANDLE_UNSIGNED(opt_lg_tcache_flush_large_div,
+ "lg_tcache_flush_large_div", 1, 16,
+ CONF_CHECK_MIN, CONF_CHECK_MAX, /* clip */ true)
+
+ /*
+ * The runtime option of oversize_threshold remains
+ * undocumented. It may be tweaked in the next major
+ * release (6.0). The default value 8M is rather
+ * conservative / safe. Tuning it further down may
+ * improve fragmentation a bit more, but may also cause
+ * contention on the huge arena.
+ */
+ CONF_HANDLE_SIZE_T(opt_oversize_threshold,
+ "oversize_threshold", 0, SC_LARGE_MAXCLASS,
+ CONF_DONT_CHECK_MIN, CONF_CHECK_MAX, false)
+ CONF_HANDLE_SIZE_T(opt_lg_extent_max_active_fit,
+ "lg_extent_max_active_fit", 0,
+ (sizeof(size_t) << 3), CONF_DONT_CHECK_MIN,
+ CONF_CHECK_MAX, false)
+
+ if (strncmp("percpu_arena", k, klen) == 0) {
+ bool match = false;
+ for (int m = percpu_arena_mode_names_base; m <
+ percpu_arena_mode_names_limit; m++) {
+ if (strncmp(percpu_arena_mode_names[m],
+ v, vlen) == 0) {
+ if (!have_percpu_arena) {
+ CONF_ERROR(
+ "No getcpu support",
+ k, klen, v, vlen);
+ }
+ opt_percpu_arena = m;
+ match = true;
+ break;
+ }
+ }
+ if (!match) {
+ CONF_ERROR("Invalid conf value",
+ k, klen, v, vlen);
+ }
+ CONF_CONTINUE;
+ }
+ CONF_HANDLE_BOOL(opt_background_thread,
+ "background_thread");
+ CONF_HANDLE_SIZE_T(opt_max_background_threads,
+ "max_background_threads", 1,
+ opt_max_background_threads,
+ CONF_CHECK_MIN, CONF_CHECK_MAX,
+ true);
+ CONF_HANDLE_BOOL(opt_hpa, "hpa")
+ CONF_HANDLE_SIZE_T(opt_hpa_opts.slab_max_alloc,
+ "hpa_slab_max_alloc", PAGE, HUGEPAGE,
+ CONF_CHECK_MIN, CONF_CHECK_MAX, true);
+
+ /*
+ * Accept either a ratio-based or an exact hugification
+ * threshold.
+ */
+ CONF_HANDLE_SIZE_T(opt_hpa_opts.hugification_threshold,
+ "hpa_hugification_threshold", PAGE, HUGEPAGE,
+ CONF_CHECK_MIN, CONF_CHECK_MAX, true);
+ if (CONF_MATCH("hpa_hugification_threshold_ratio")) {
+ fxp_t ratio;
+ char *end;
+ bool err = fxp_parse(&ratio, v,
+ &end);
+ if (err || (size_t)(end - v) != vlen
+ || ratio > FXP_INIT_INT(1)) {
+ CONF_ERROR("Invalid conf value",
+ k, klen, v, vlen);
+ } else {
+ opt_hpa_opts.hugification_threshold =
+ fxp_mul_frac(HUGEPAGE, ratio);
+ }
+ CONF_CONTINUE;
+ }
+
+ CONF_HANDLE_UINT64_T(
+ opt_hpa_opts.hugify_delay_ms, "hpa_hugify_delay_ms",
+ 0, 0, CONF_DONT_CHECK_MIN, CONF_DONT_CHECK_MAX,
+ false);
+
+ CONF_HANDLE_UINT64_T(
+ opt_hpa_opts.min_purge_interval_ms,
+ "hpa_min_purge_interval_ms", 0, 0,
+ CONF_DONT_CHECK_MIN, CONF_DONT_CHECK_MAX, false);
+
+ if (CONF_MATCH("hpa_dirty_mult")) {
+ if (CONF_MATCH_VALUE("-1")) {
+ opt_hpa_opts.dirty_mult = (fxp_t)-1;
+ CONF_CONTINUE;
+ }
+ fxp_t ratio;
+ char *end;
+ bool err = fxp_parse(&ratio, v,
+ &end);
+ if (err || (size_t)(end - v) != vlen) {
+ CONF_ERROR("Invalid conf value",
+ k, klen, v, vlen);
+ } else {
+ opt_hpa_opts.dirty_mult = ratio;
+ }
+ CONF_CONTINUE;
+ }
+
+ CONF_HANDLE_SIZE_T(opt_hpa_sec_opts.nshards,
+ "hpa_sec_nshards", 0, 0, CONF_CHECK_MIN,
+ CONF_DONT_CHECK_MAX, true);
+ CONF_HANDLE_SIZE_T(opt_hpa_sec_opts.max_alloc,
+ "hpa_sec_max_alloc", PAGE, 0, CONF_CHECK_MIN,
+ CONF_DONT_CHECK_MAX, true);
+ CONF_HANDLE_SIZE_T(opt_hpa_sec_opts.max_bytes,
+ "hpa_sec_max_bytes", PAGE, 0, CONF_CHECK_MIN,
+ CONF_DONT_CHECK_MAX, true);
+ CONF_HANDLE_SIZE_T(opt_hpa_sec_opts.bytes_after_flush,
+ "hpa_sec_bytes_after_flush", PAGE, 0,
+ CONF_CHECK_MIN, CONF_DONT_CHECK_MAX, true);
+ CONF_HANDLE_SIZE_T(opt_hpa_sec_opts.batch_fill_extra,
+ "hpa_sec_batch_fill_extra", 0, HUGEPAGE_PAGES,
+ CONF_CHECK_MIN, CONF_CHECK_MAX, true);
+
+ if (CONF_MATCH("slab_sizes")) {
+ if (CONF_MATCH_VALUE("default")) {
+ sc_data_init(sc_data);
+ CONF_CONTINUE;
+ }
+ bool err;
+ const char *slab_size_segment_cur = v;
+ size_t vlen_left = vlen;
+ do {
+ size_t slab_start;
+ size_t slab_end;
+ size_t pgs;
+ err = malloc_conf_multi_sizes_next(
+ &slab_size_segment_cur,
+ &vlen_left, &slab_start, &slab_end,
+ &pgs);
+ if (!err) {
+ sc_data_update_slab_size(
+ sc_data, slab_start,
+ slab_end, (int)pgs);
+ } else {
+ CONF_ERROR("Invalid settings "
+ "for slab_sizes",
+ k, klen, v, vlen);
+ }
+ } while (!err && vlen_left > 0);
+ CONF_CONTINUE;
+ }
+ if (config_prof) {
+ CONF_HANDLE_BOOL(opt_prof, "prof")
+ CONF_HANDLE_CHAR_P(opt_prof_prefix,
+ "prof_prefix", "jeprof")
+ CONF_HANDLE_BOOL(opt_prof_active, "prof_active")
+ CONF_HANDLE_BOOL(opt_prof_thread_active_init,
+ "prof_thread_active_init")
+ CONF_HANDLE_SIZE_T(opt_lg_prof_sample,
+ "lg_prof_sample", 0, (sizeof(uint64_t) << 3)
+ - 1, CONF_DONT_CHECK_MIN, CONF_CHECK_MAX,
+ true)
+ CONF_HANDLE_BOOL(opt_prof_accum, "prof_accum")
+ CONF_HANDLE_SSIZE_T(opt_lg_prof_interval,
+ "lg_prof_interval", -1,
+ (sizeof(uint64_t) << 3) - 1)
+ CONF_HANDLE_BOOL(opt_prof_gdump, "prof_gdump")
+ CONF_HANDLE_BOOL(opt_prof_final, "prof_final")
+ CONF_HANDLE_BOOL(opt_prof_leak, "prof_leak")
+ CONF_HANDLE_BOOL(opt_prof_leak_error,
+ "prof_leak_error")
+ CONF_HANDLE_BOOL(opt_prof_log, "prof_log")
+ CONF_HANDLE_SSIZE_T(opt_prof_recent_alloc_max,
+ "prof_recent_alloc_max", -1, SSIZE_MAX)
+ CONF_HANDLE_BOOL(opt_prof_stats, "prof_stats")
+ CONF_HANDLE_BOOL(opt_prof_sys_thread_name,
+ "prof_sys_thread_name")
+ if (CONF_MATCH("prof_time_resolution")) {
+ if (CONF_MATCH_VALUE("default")) {
+ opt_prof_time_res =
+ prof_time_res_default;
+ } else if (CONF_MATCH_VALUE("high")) {
+ if (!config_high_res_timer) {
+ CONF_ERROR(
+ "No high resolution"
+ " timer support",
+ k, klen, v, vlen);
+ } else {
+ opt_prof_time_res =
+ prof_time_res_high;
+ }
+ } else {
+ CONF_ERROR("Invalid conf value",
+ k, klen, v, vlen);
+ }
+ CONF_CONTINUE;
+ }
+ /*
+ * Undocumented. When set to false, don't
+ * correct for an unbiasing bug in jeprof
+ * attribution. This can be handy if you want
+ * to get consistent numbers from your binary
+ * across different jemalloc versions, even if
+ * those numbers are incorrect. The default is
+ * true.
+ */
+ CONF_HANDLE_BOOL(opt_prof_unbias, "prof_unbias")
+ }
+ if (config_log) {
+ if (CONF_MATCH("log")) {
+ size_t cpylen = (
+ vlen <= sizeof(log_var_names) ?
+ vlen : sizeof(log_var_names) - 1);
+ strncpy(log_var_names, v, cpylen);
+ log_var_names[cpylen] = '\0';
+ CONF_CONTINUE;
+ }
+ }
+ if (CONF_MATCH("thp")) {
+ bool match = false;
+ for (int m = 0; m < thp_mode_names_limit; m++) {
+ if (strncmp(thp_mode_names[m],v, vlen)
+ == 0) {
+ if (!have_madvise_huge && !have_memcntl) {
+ CONF_ERROR(
+ "No THP support",
+ k, klen, v, vlen);
+ }
+ opt_thp = m;
+ match = true;
+ break;
+ }
+ }
+ if (!match) {
+ CONF_ERROR("Invalid conf value",
+ k, klen, v, vlen);
+ }
+ CONF_CONTINUE;
+ }
+ if (CONF_MATCH("zero_realloc")) {
+ if (CONF_MATCH_VALUE("alloc")) {
+ opt_zero_realloc_action
+ = zero_realloc_action_alloc;
+ } else if (CONF_MATCH_VALUE("free")) {
+ opt_zero_realloc_action
+ = zero_realloc_action_free;
+ } else if (CONF_MATCH_VALUE("abort")) {
+ opt_zero_realloc_action
+ = zero_realloc_action_abort;
+ } else {
+ CONF_ERROR("Invalid conf value",
+ k, klen, v, vlen);
+ }
+ CONF_CONTINUE;
+ }
+ if (config_uaf_detection &&
+ CONF_MATCH("lg_san_uaf_align")) {
+ ssize_t a;
+ CONF_VALUE_READ(ssize_t, a)
+ if (CONF_VALUE_READ_FAIL() || a < -1) {
+ CONF_ERROR("Invalid conf value",
+ k, klen, v, vlen);
+ }
+ if (a == -1) {
+ opt_lg_san_uaf_align = -1;
+ CONF_CONTINUE;
+ }
+
+ /* clip if necessary */
+ ssize_t max_allowed = (sizeof(size_t) << 3) - 1;
+ ssize_t min_allowed = LG_PAGE;
+ if (a > max_allowed) {
+ a = max_allowed;
+ } else if (a < min_allowed) {
+ a = min_allowed;
+ }
+
+ opt_lg_san_uaf_align = a;
+ CONF_CONTINUE;
+ }
+
+ CONF_HANDLE_SIZE_T(opt_san_guard_small,
+ "san_guard_small", 0, SIZE_T_MAX,
+ CONF_DONT_CHECK_MIN, CONF_DONT_CHECK_MAX, false)
+ CONF_HANDLE_SIZE_T(opt_san_guard_large,
+ "san_guard_large", 0, SIZE_T_MAX,
+ CONF_DONT_CHECK_MIN, CONF_DONT_CHECK_MAX, false)
+
+ CONF_ERROR("Invalid conf pair", k, klen, v, vlen);
+#undef CONF_ERROR
+#undef CONF_CONTINUE
+#undef CONF_MATCH
+#undef CONF_MATCH_VALUE
+#undef CONF_HANDLE_BOOL
+#undef CONF_DONT_CHECK_MIN
+#undef CONF_CHECK_MIN
+#undef CONF_DONT_CHECK_MAX
+#undef CONF_CHECK_MAX
+#undef CONF_HANDLE_T
+#undef CONF_HANDLE_T_U
+#undef CONF_HANDLE_T_SIGNED
+#undef CONF_HANDLE_UNSIGNED
+#undef CONF_HANDLE_SIZE_T
+#undef CONF_HANDLE_SSIZE_T
+#undef CONF_HANDLE_CHAR_P
+ /* Re-enable diagnostic "-Wtype-limits" */
+ JEMALLOC_DIAGNOSTIC_POP
+ }
+ if (opt_abort_conf && had_conf_error) {
+ malloc_abort_invalid_conf();
+ }
+ }
+ atomic_store_b(&log_init_done, true, ATOMIC_RELEASE);
+}
+
+static bool
+malloc_conf_init_check_deps(void) {
+ if (opt_prof_leak_error && !opt_prof_final) {
+ malloc_printf("<jemalloc>: prof_leak_error is set w/o "
+ "prof_final.\n");
+ return true;
+ }
+
+ return false;
+}
+
+static void
+malloc_conf_init(sc_data_t *sc_data, unsigned bin_shard_sizes[SC_NBINS]) {
+ const char *opts_cache[MALLOC_CONF_NSOURCES] = {NULL, NULL, NULL, NULL,
+ NULL};
+ char buf[PATH_MAX + 1];
+
+ /* The first call only set the confirm_conf option and opts_cache */
+ malloc_conf_init_helper(NULL, NULL, true, opts_cache, buf);
+ malloc_conf_init_helper(sc_data, bin_shard_sizes, false, opts_cache,
+ NULL);
+ if (malloc_conf_init_check_deps()) {
+ /* check_deps does warning msg only; abort below if needed. */
+ if (opt_abort_conf) {
+ malloc_abort_invalid_conf();
+ }
+ }
+}
+
+#undef MALLOC_CONF_NSOURCES
+
+static bool
+malloc_init_hard_needed(void) {
+ if (malloc_initialized() || (IS_INITIALIZER && malloc_init_state ==
+ malloc_init_recursible)) {
+ /*
+ * Another thread initialized the allocator before this one
+ * acquired init_lock, or this thread is the initializing
+ * thread, and it is recursively allocating.
+ */
+ return false;
+ }
+#ifdef JEMALLOC_THREADED_INIT
+ if (malloc_initializer != NO_INITIALIZER && !IS_INITIALIZER) {
+ /* Busy-wait until the initializing thread completes. */
+ spin_t spinner = SPIN_INITIALIZER;
+ do {
+ malloc_mutex_unlock(TSDN_NULL, &init_lock);
+ spin_adaptive(&spinner);
+ malloc_mutex_lock(TSDN_NULL, &init_lock);
+ } while (!malloc_initialized());
+ return false;
+ }
+#endif
+ return true;
+}
+
+static bool
+malloc_init_hard_a0_locked() {
+ malloc_initializer = INITIALIZER;
+
+ JEMALLOC_DIAGNOSTIC_PUSH
+ JEMALLOC_DIAGNOSTIC_IGNORE_MISSING_STRUCT_FIELD_INITIALIZERS
+ sc_data_t sc_data = {0};
+ JEMALLOC_DIAGNOSTIC_POP
+
+ /*
+ * Ordering here is somewhat tricky; we need sc_boot() first, since that
+ * determines what the size classes will be, and then
+ * malloc_conf_init(), since any slab size tweaking will need to be done
+ * before sz_boot and bin_info_boot, which assume that the values they
+ * read out of sc_data_global are final.
+ */
+ sc_boot(&sc_data);
+ unsigned bin_shard_sizes[SC_NBINS];
+ bin_shard_sizes_boot(bin_shard_sizes);
+ /*
+ * prof_boot0 only initializes opt_prof_prefix. We need to do it before
+ * we parse malloc_conf options, in case malloc_conf parsing overwrites
+ * it.
+ */
+ if (config_prof) {
+ prof_boot0();
+ }
+ malloc_conf_init(&sc_data, bin_shard_sizes);
+ san_init(opt_lg_san_uaf_align);
+ sz_boot(&sc_data, opt_cache_oblivious);
+ bin_info_boot(&sc_data, bin_shard_sizes);
+
+ if (opt_stats_print) {
+ /* Print statistics at exit. */
+ if (atexit(stats_print_atexit) != 0) {
+ malloc_write("<jemalloc>: Error in atexit()\n");
+ if (opt_abort) {
+ abort();
+ }
+ }
+ }
+
+ if (stats_boot()) {
+ return true;
+ }
+ if (pages_boot()) {
+ return true;
+ }
+ if (base_boot(TSDN_NULL)) {
+ return true;
+ }
+ /* emap_global is static, hence zeroed. */
+ if (emap_init(&arena_emap_global, b0get(), /* zeroed */ true)) {
+ return true;
+ }
+ if (extent_boot()) {
+ return true;
+ }
+ if (ctl_boot()) {
+ return true;
+ }
+ if (config_prof) {
+ prof_boot1();
+ }
+ if (opt_hpa && !hpa_supported()) {
+ malloc_printf("<jemalloc>: HPA not supported in the current "
+ "configuration; %s.",
+ opt_abort_conf ? "aborting" : "disabling");
+ if (opt_abort_conf) {
+ malloc_abort_invalid_conf();
+ } else {
+ opt_hpa = false;
+ }
+ }
+ if (arena_boot(&sc_data, b0get(), opt_hpa)) {
+ return true;
+ }
+ if (tcache_boot(TSDN_NULL, b0get())) {
+ return true;
+ }
+ if (malloc_mutex_init(&arenas_lock, "arenas", WITNESS_RANK_ARENAS,
+ malloc_mutex_rank_exclusive)) {
+ return true;
+ }
+ hook_boot();
+ /*
+ * Create enough scaffolding to allow recursive allocation in
+ * malloc_ncpus().
+ */
+ narenas_auto = 1;
+ manual_arena_base = narenas_auto + 1;
+ memset(arenas, 0, sizeof(arena_t *) * narenas_auto);
+ /*
+ * Initialize one arena here. The rest are lazily created in
+ * arena_choose_hard().
+ */
+ if (arena_init(TSDN_NULL, 0, &arena_config_default) == NULL) {
+ return true;
+ }
+ a0 = arena_get(TSDN_NULL, 0, false);
+
+ if (opt_hpa && !hpa_supported()) {
+ malloc_printf("<jemalloc>: HPA not supported in the current "
+ "configuration; %s.",
+ opt_abort_conf ? "aborting" : "disabling");
+ if (opt_abort_conf) {
+ malloc_abort_invalid_conf();
+ } else {
+ opt_hpa = false;
+ }
+ } else if (opt_hpa) {
+ hpa_shard_opts_t hpa_shard_opts = opt_hpa_opts;
+ hpa_shard_opts.deferral_allowed = background_thread_enabled();
+ if (pa_shard_enable_hpa(TSDN_NULL, &a0->pa_shard,
+ &hpa_shard_opts, &opt_hpa_sec_opts)) {
+ return true;
+ }
+ }
+
+ malloc_init_state = malloc_init_a0_initialized;
+
+ return false;
+}
+
+static bool
+malloc_init_hard_a0(void) {
+ bool ret;
+
+ malloc_mutex_lock(TSDN_NULL, &init_lock);
+ ret = malloc_init_hard_a0_locked();
+ malloc_mutex_unlock(TSDN_NULL, &init_lock);
+ return ret;
+}
+
+/* Initialize data structures which may trigger recursive allocation. */
+static bool
+malloc_init_hard_recursible(void) {
+ malloc_init_state = malloc_init_recursible;
+
+ ncpus = malloc_ncpus();
+ if (opt_percpu_arena != percpu_arena_disabled) {
+ bool cpu_count_is_deterministic =
+ malloc_cpu_count_is_deterministic();
+ if (!cpu_count_is_deterministic) {
+ /*
+ * If # of CPU is not deterministic, and narenas not
+ * specified, disables per cpu arena since it may not
+ * detect CPU IDs properly.
+ */
+ if (opt_narenas == 0) {
+ opt_percpu_arena = percpu_arena_disabled;
+ malloc_write("<jemalloc>: Number of CPUs "
+ "detected is not deterministic. Per-CPU "
+ "arena disabled.\n");
+ if (opt_abort_conf) {
+ malloc_abort_invalid_conf();
+ }
+ if (opt_abort) {
+ abort();
+ }
+ }
+ }
+ }
+
+#if (defined(JEMALLOC_HAVE_PTHREAD_ATFORK) && !defined(JEMALLOC_MUTEX_INIT_CB) \
+ && !defined(JEMALLOC_ZONE) && !defined(_WIN32) && \
+ !defined(__native_client__))
+ /* LinuxThreads' pthread_atfork() allocates. */
+ if (pthread_atfork(jemalloc_prefork, jemalloc_postfork_parent,
+ jemalloc_postfork_child) != 0) {
+ malloc_write("<jemalloc>: Error in pthread_atfork()\n");
+ if (opt_abort) {
+ abort();
+ }
+ return true;
+ }
+#endif
+
+ if (background_thread_boot0()) {
+ return true;
+ }
+
+ return false;
+}
+
+static unsigned
+malloc_narenas_default(void) {
+ assert(ncpus > 0);
+ /*
+ * For SMP systems, create more than one arena per CPU by
+ * default.
+ */
+ if (ncpus > 1) {
+ fxp_t fxp_ncpus = FXP_INIT_INT(ncpus);
+ fxp_t goal = fxp_mul(fxp_ncpus, opt_narenas_ratio);
+ uint32_t int_goal = fxp_round_nearest(goal);
+ if (int_goal == 0) {
+ return 1;
+ }
+ return int_goal;
+ } else {
+ return 1;
+ }
+}
+
+static percpu_arena_mode_t
+percpu_arena_as_initialized(percpu_arena_mode_t mode) {
+ assert(!malloc_initialized());
+ assert(mode <= percpu_arena_disabled);
+
+ if (mode != percpu_arena_disabled) {
+ mode += percpu_arena_mode_enabled_base;
+ }
+
+ return mode;
+}
+
+static bool
+malloc_init_narenas(void) {
+ assert(ncpus > 0);
+
+ if (opt_percpu_arena != percpu_arena_disabled) {
+ if (!have_percpu_arena || malloc_getcpu() < 0) {
+ opt_percpu_arena = percpu_arena_disabled;
+ malloc_printf("<jemalloc>: perCPU arena getcpu() not "
+ "available. Setting narenas to %u.\n", opt_narenas ?
+ opt_narenas : malloc_narenas_default());
+ if (opt_abort) {
+ abort();
+ }
+ } else {
+ if (ncpus >= MALLOCX_ARENA_LIMIT) {
+ malloc_printf("<jemalloc>: narenas w/ percpu"
+ "arena beyond limit (%d)\n", ncpus);
+ if (opt_abort) {
+ abort();
+ }
+ return true;
+ }
+ /* NB: opt_percpu_arena isn't fully initialized yet. */
+ if (percpu_arena_as_initialized(opt_percpu_arena) ==
+ per_phycpu_arena && ncpus % 2 != 0) {
+ malloc_printf("<jemalloc>: invalid "
+ "configuration -- per physical CPU arena "
+ "with odd number (%u) of CPUs (no hyper "
+ "threading?).\n", ncpus);
+ if (opt_abort)
+ abort();
+ }
+ unsigned n = percpu_arena_ind_limit(
+ percpu_arena_as_initialized(opt_percpu_arena));
+ if (opt_narenas < n) {
+ /*
+ * If narenas is specified with percpu_arena
+ * enabled, actual narenas is set as the greater
+ * of the two. percpu_arena_choose will be free
+ * to use any of the arenas based on CPU
+ * id. This is conservative (at a small cost)
+ * but ensures correctness.
+ *
+ * If for some reason the ncpus determined at
+ * boot is not the actual number (e.g. because
+ * of affinity setting from numactl), reserving
+ * narenas this way provides a workaround for
+ * percpu_arena.
+ */
+ opt_narenas = n;
+ }
+ }
+ }
+ if (opt_narenas == 0) {
+ opt_narenas = malloc_narenas_default();
+ }
+ assert(opt_narenas > 0);
+
+ narenas_auto = opt_narenas;
+ /*
+ * Limit the number of arenas to the indexing range of MALLOCX_ARENA().
+ */
+ if (narenas_auto >= MALLOCX_ARENA_LIMIT) {
+ narenas_auto = MALLOCX_ARENA_LIMIT - 1;
+ malloc_printf("<jemalloc>: Reducing narenas to limit (%d)\n",
+ narenas_auto);
+ }
+ narenas_total_set(narenas_auto);
+ if (arena_init_huge()) {
+ narenas_total_inc();
+ }
+ manual_arena_base = narenas_total_get();
+
+ return false;
+}
+
+static void
+malloc_init_percpu(void) {
+ opt_percpu_arena = percpu_arena_as_initialized(opt_percpu_arena);
+}
+
+static bool
+malloc_init_hard_finish(void) {
+ if (malloc_mutex_boot()) {
+ return true;
+ }
+
+ malloc_init_state = malloc_init_initialized;
+ malloc_slow_flag_init();
+
+ return false;
+}
+
+static void
+malloc_init_hard_cleanup(tsdn_t *tsdn, bool reentrancy_set) {
+ malloc_mutex_assert_owner(tsdn, &init_lock);
+ malloc_mutex_unlock(tsdn, &init_lock);
+ if (reentrancy_set) {
+ assert(!tsdn_null(tsdn));
+ tsd_t *tsd = tsdn_tsd(tsdn);
+ assert(tsd_reentrancy_level_get(tsd) > 0);
+ post_reentrancy(tsd);
+ }
+}
+
+static bool
+malloc_init_hard(void) {
+ tsd_t *tsd;
+
+#if defined(_WIN32) && _WIN32_WINNT < 0x0600
+ _init_init_lock();
+#endif
+ malloc_mutex_lock(TSDN_NULL, &init_lock);
+
+#define UNLOCK_RETURN(tsdn, ret, reentrancy) \
+ malloc_init_hard_cleanup(tsdn, reentrancy); \
+ return ret;
+
+ if (!malloc_init_hard_needed()) {
+ UNLOCK_RETURN(TSDN_NULL, false, false)
+ }
+
+ if (malloc_init_state != malloc_init_a0_initialized &&
+ malloc_init_hard_a0_locked()) {
+ UNLOCK_RETURN(TSDN_NULL, true, false)
+ }
+
+ malloc_mutex_unlock(TSDN_NULL, &init_lock);
+ /* Recursive allocation relies on functional tsd. */
+ tsd = malloc_tsd_boot0();
+ if (tsd == NULL) {
+ return true;
+ }
+ if (malloc_init_hard_recursible()) {
+ return true;
+ }
+
+ malloc_mutex_lock(tsd_tsdn(tsd), &init_lock);
+ /* Set reentrancy level to 1 during init. */
+ pre_reentrancy(tsd, NULL);
+ /* Initialize narenas before prof_boot2 (for allocation). */
+ if (malloc_init_narenas()
+ || background_thread_boot1(tsd_tsdn(tsd), b0get())) {
+ UNLOCK_RETURN(tsd_tsdn(tsd), true, true)
+ }
+ if (config_prof && prof_boot2(tsd, b0get())) {
+ UNLOCK_RETURN(tsd_tsdn(tsd), true, true)
+ }
+
+ malloc_init_percpu();
+
+ if (malloc_init_hard_finish()) {
+ UNLOCK_RETURN(tsd_tsdn(tsd), true, true)
+ }
+ post_reentrancy(tsd);
+ malloc_mutex_unlock(tsd_tsdn(tsd), &init_lock);
+
+ witness_assert_lockless(witness_tsd_tsdn(
+ tsd_witness_tsdp_get_unsafe(tsd)));
+ malloc_tsd_boot1();
+ /* Update TSD after tsd_boot1. */
+ tsd = tsd_fetch();
+ if (opt_background_thread) {
+ assert(have_background_thread);
+ /*
+ * Need to finish init & unlock first before creating background
+ * threads (pthread_create depends on malloc). ctl_init (which
+ * sets isthreaded) needs to be called without holding any lock.
+ */
+ background_thread_ctl_init(tsd_tsdn(tsd));
+ if (background_thread_create(tsd, 0)) {
+ return true;
+ }
+ }
+#undef UNLOCK_RETURN
+ return false;
+}
+
+/*
+ * End initialization functions.
+ */
+/******************************************************************************/
+/*
+ * Begin allocation-path internal functions and data structures.
+ */
+
+/*
+ * Settings determined by the documented behavior of the allocation functions.
+ */
+typedef struct static_opts_s static_opts_t;
+struct static_opts_s {
+ /* Whether or not allocation size may overflow. */
+ bool may_overflow;
+
+ /*
+ * Whether or not allocations (with alignment) of size 0 should be
+ * treated as size 1.
+ */
+ bool bump_empty_aligned_alloc;
+ /*
+ * Whether to assert that allocations are not of size 0 (after any
+ * bumping).
+ */
+ bool assert_nonempty_alloc;
+
+ /*
+ * Whether or not to modify the 'result' argument to malloc in case of
+ * error.
+ */
+ bool null_out_result_on_error;
+ /* Whether to set errno when we encounter an error condition. */
+ bool set_errno_on_error;
+
+ /*
+ * The minimum valid alignment for functions requesting aligned storage.
+ */
+ size_t min_alignment;
+
+ /* The error string to use if we oom. */
+ const char *oom_string;
+ /* The error string to use if the passed-in alignment is invalid. */
+ const char *invalid_alignment_string;
+
+ /*
+ * False if we're configured to skip some time-consuming operations.
+ *
+ * This isn't really a malloc "behavior", but it acts as a useful
+ * summary of several other static (or at least, static after program
+ * initialization) options.
+ */
+ bool slow;
+ /*
+ * Return size.
+ */
+ bool usize;
+};
+
+JEMALLOC_ALWAYS_INLINE void
+static_opts_init(static_opts_t *static_opts) {
+ static_opts->may_overflow = false;
+ static_opts->bump_empty_aligned_alloc = false;
+ static_opts->assert_nonempty_alloc = false;
+ static_opts->null_out_result_on_error = false;
+ static_opts->set_errno_on_error = false;
+ static_opts->min_alignment = 0;
+ static_opts->oom_string = "";
+ static_opts->invalid_alignment_string = "";
+ static_opts->slow = false;
+ static_opts->usize = false;
+}
+
+/*
+ * These correspond to the macros in jemalloc/jemalloc_macros.h. Broadly, we
+ * should have one constant here per magic value there. Note however that the
+ * representations need not be related.
+ */
+#define TCACHE_IND_NONE ((unsigned)-1)
+#define TCACHE_IND_AUTOMATIC ((unsigned)-2)
+#define ARENA_IND_AUTOMATIC ((unsigned)-1)
+
+typedef struct dynamic_opts_s dynamic_opts_t;
+struct dynamic_opts_s {
+ void **result;
+ size_t usize;
+ size_t num_items;
+ size_t item_size;
+ size_t alignment;
+ bool zero;
+ unsigned tcache_ind;
+ unsigned arena_ind;
+};
+
+JEMALLOC_ALWAYS_INLINE void
+dynamic_opts_init(dynamic_opts_t *dynamic_opts) {
+ dynamic_opts->result = NULL;
+ dynamic_opts->usize = 0;
+ dynamic_opts->num_items = 0;
+ dynamic_opts->item_size = 0;
+ dynamic_opts->alignment = 0;
+ dynamic_opts->zero = false;
+ dynamic_opts->tcache_ind = TCACHE_IND_AUTOMATIC;
+ dynamic_opts->arena_ind = ARENA_IND_AUTOMATIC;
+}
+
+/*
+ * ind parameter is optional and is only checked and filled if alignment == 0;
+ * return true if result is out of range.
+ */
+JEMALLOC_ALWAYS_INLINE bool
+aligned_usize_get(size_t size, size_t alignment, size_t *usize, szind_t *ind,
+ bool bump_empty_aligned_alloc) {
+ assert(usize != NULL);
+ if (alignment == 0) {
+ if (ind != NULL) {
+ *ind = sz_size2index(size);
+ if (unlikely(*ind >= SC_NSIZES)) {
+ return true;
+ }
+ *usize = sz_index2size(*ind);
+ assert(*usize > 0 && *usize <= SC_LARGE_MAXCLASS);
+ return false;
+ }
+ *usize = sz_s2u(size);
+ } else {
+ if (bump_empty_aligned_alloc && unlikely(size == 0)) {
+ size = 1;
+ }
+ *usize = sz_sa2u(size, alignment);
+ }
+ if (unlikely(*usize == 0 || *usize > SC_LARGE_MAXCLASS)) {
+ return true;
+ }
+ return false;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+zero_get(bool guarantee, bool slow) {
+ if (config_fill && slow && unlikely(opt_zero)) {
+ return true;
+ } else {
+ return guarantee;
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE tcache_t *
+tcache_get_from_ind(tsd_t *tsd, unsigned tcache_ind, bool slow, bool is_alloc) {
+ tcache_t *tcache;
+ if (tcache_ind == TCACHE_IND_AUTOMATIC) {
+ if (likely(!slow)) {
+ /* Getting tcache ptr unconditionally. */
+ tcache = tsd_tcachep_get(tsd);
+ assert(tcache == tcache_get(tsd));
+ } else if (is_alloc ||
+ likely(tsd_reentrancy_level_get(tsd) == 0)) {
+ tcache = tcache_get(tsd);
+ } else {
+ tcache = NULL;
+ }
+ } else {
+ /*
+ * Should not specify tcache on deallocation path when being
+ * reentrant.
+ */
+ assert(is_alloc || tsd_reentrancy_level_get(tsd) == 0 ||
+ tsd_state_nocleanup(tsd));
+ if (tcache_ind == TCACHE_IND_NONE) {
+ tcache = NULL;
+ } else {
+ tcache = tcaches_get(tsd, tcache_ind);
+ }
+ }
+ return tcache;
+}
+
+/* Return true if a manual arena is specified and arena_get() OOMs. */
+JEMALLOC_ALWAYS_INLINE bool
+arena_get_from_ind(tsd_t *tsd, unsigned arena_ind, arena_t **arena_p) {
+ if (arena_ind == ARENA_IND_AUTOMATIC) {
+ /*
+ * In case of automatic arena management, we defer arena
+ * computation until as late as we can, hoping to fill the
+ * allocation out of the tcache.
+ */
+ *arena_p = NULL;
+ } else {
+ *arena_p = arena_get(tsd_tsdn(tsd), arena_ind, true);
+ if (unlikely(*arena_p == NULL) && arena_ind >= narenas_auto) {
+ return true;
+ }
+ }
+ return false;
+}
+
+/* ind is ignored if dopts->alignment > 0. */
+JEMALLOC_ALWAYS_INLINE void *
+imalloc_no_sample(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd,
+ size_t size, size_t usize, szind_t ind) {
+ /* Fill in the tcache. */
+ tcache_t *tcache = tcache_get_from_ind(tsd, dopts->tcache_ind,
+ sopts->slow, /* is_alloc */ true);
+
+ /* Fill in the arena. */
+ arena_t *arena;
+ if (arena_get_from_ind(tsd, dopts->arena_ind, &arena)) {
+ return NULL;
+ }
+
+ if (unlikely(dopts->alignment != 0)) {
+ return ipalloct(tsd_tsdn(tsd), usize, dopts->alignment,
+ dopts->zero, tcache, arena);
+ }
+
+ return iallocztm(tsd_tsdn(tsd), size, ind, dopts->zero, tcache, false,
+ arena, sopts->slow);
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+imalloc_sample(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd,
+ size_t usize, szind_t ind) {
+ void *ret;
+
+ /*
+ * For small allocations, sampling bumps the usize. If so, we allocate
+ * from the ind_large bucket.
+ */
+ szind_t ind_large;
+ size_t bumped_usize = usize;
+
+ dopts->alignment = prof_sample_align(dopts->alignment);
+ if (usize <= SC_SMALL_MAXCLASS) {
+ assert(((dopts->alignment == 0) ?
+ sz_s2u(SC_LARGE_MINCLASS) :
+ sz_sa2u(SC_LARGE_MINCLASS, dopts->alignment))
+ == SC_LARGE_MINCLASS);
+ ind_large = sz_size2index(SC_LARGE_MINCLASS);
+ bumped_usize = sz_s2u(SC_LARGE_MINCLASS);
+ ret = imalloc_no_sample(sopts, dopts, tsd, bumped_usize,
+ bumped_usize, ind_large);
+ if (unlikely(ret == NULL)) {
+ return NULL;
+ }
+ arena_prof_promote(tsd_tsdn(tsd), ret, usize);
+ } else {
+ ret = imalloc_no_sample(sopts, dopts, tsd, usize, usize, ind);
+ }
+ assert(prof_sample_aligned(ret));
+
+ return ret;
+}
+
+/*
+ * Returns true if the allocation will overflow, and false otherwise. Sets
+ * *size to the product either way.
+ */
+JEMALLOC_ALWAYS_INLINE bool
+compute_size_with_overflow(bool may_overflow, dynamic_opts_t *dopts,
+ size_t *size) {
+ /*
+ * This function is just num_items * item_size, except that we may have
+ * to check for overflow.
+ */
+
+ if (!may_overflow) {
+ assert(dopts->num_items == 1);
+ *size = dopts->item_size;
+ return false;
+ }
+
+ /* A size_t with its high-half bits all set to 1. */
+ static const size_t high_bits = SIZE_T_MAX << (sizeof(size_t) * 8 / 2);
+
+ *size = dopts->item_size * dopts->num_items;
+
+ if (unlikely(*size == 0)) {
+ return (dopts->num_items != 0 && dopts->item_size != 0);
+ }
+
+ /*
+ * We got a non-zero size, but we don't know if we overflowed to get
+ * there. To avoid having to do a divide, we'll be clever and note that
+ * if both A and B can be represented in N/2 bits, then their product
+ * can be represented in N bits (without the possibility of overflow).
+ */
+ if (likely((high_bits & (dopts->num_items | dopts->item_size)) == 0)) {
+ return false;
+ }
+ if (likely(*size / dopts->item_size == dopts->num_items)) {
+ return false;
+ }
+ return true;
+}
+
+JEMALLOC_ALWAYS_INLINE int
+imalloc_body(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd) {
+ /* Where the actual allocated memory will live. */
+ void *allocation = NULL;
+ /* Filled in by compute_size_with_overflow below. */
+ size_t size = 0;
+ /*
+ * The zero initialization for ind is actually dead store, in that its
+ * value is reset before any branch on its value is taken. Sometimes
+ * though, it's convenient to pass it as arguments before this point.
+ * To avoid undefined behavior then, we initialize it with dummy stores.
+ */
+ szind_t ind = 0;
+ /* usize will always be properly initialized. */
+ size_t usize;
+
+ /* Reentrancy is only checked on slow path. */
+ int8_t reentrancy_level;
+
+ /* Compute the amount of memory the user wants. */
+ if (unlikely(compute_size_with_overflow(sopts->may_overflow, dopts,
+ &size))) {
+ goto label_oom;
+ }
+
+ if (unlikely(dopts->alignment < sopts->min_alignment
+ || (dopts->alignment & (dopts->alignment - 1)) != 0)) {
+ goto label_invalid_alignment;
+ }
+
+ /* This is the beginning of the "core" algorithm. */
+ dopts->zero = zero_get(dopts->zero, sopts->slow);
+ if (aligned_usize_get(size, dopts->alignment, &usize, &ind,
+ sopts->bump_empty_aligned_alloc)) {
+ goto label_oom;
+ }
+ dopts->usize = usize;
+ /* Validate the user input. */
+ if (sopts->assert_nonempty_alloc) {
+ assert (size != 0);
+ }
+
+ check_entry_exit_locking(tsd_tsdn(tsd));
+
+ /*
+ * If we need to handle reentrancy, we can do it out of a
+ * known-initialized arena (i.e. arena 0).
+ */
+ reentrancy_level = tsd_reentrancy_level_get(tsd);
+ if (sopts->slow && unlikely(reentrancy_level > 0)) {
+ /*
+ * We should never specify particular arenas or tcaches from
+ * within our internal allocations.
+ */
+ assert(dopts->tcache_ind == TCACHE_IND_AUTOMATIC ||
+ dopts->tcache_ind == TCACHE_IND_NONE);
+ assert(dopts->arena_ind == ARENA_IND_AUTOMATIC);
+ dopts->tcache_ind = TCACHE_IND_NONE;
+ /* We know that arena 0 has already been initialized. */
+ dopts->arena_ind = 0;
+ }
+
+ /*
+ * If dopts->alignment > 0, then ind is still 0, but usize was computed
+ * in the previous if statement. Down the positive alignment path,
+ * imalloc_no_sample and imalloc_sample will ignore ind.
+ */
+
+ /* If profiling is on, get our profiling context. */
+ if (config_prof && opt_prof) {
+ bool prof_active = prof_active_get_unlocked();
+ bool sample_event = te_prof_sample_event_lookahead(tsd, usize);
+ prof_tctx_t *tctx = prof_alloc_prep(tsd, prof_active,
+ sample_event);
+
+ emap_alloc_ctx_t alloc_ctx;
+ if (likely((uintptr_t)tctx == (uintptr_t)1U)) {
+ alloc_ctx.slab = (usize <= SC_SMALL_MAXCLASS);
+ allocation = imalloc_no_sample(
+ sopts, dopts, tsd, usize, usize, ind);
+ } else if ((uintptr_t)tctx > (uintptr_t)1U) {
+ allocation = imalloc_sample(
+ sopts, dopts, tsd, usize, ind);
+ alloc_ctx.slab = false;
+ } else {
+ allocation = NULL;
+ }
+
+ if (unlikely(allocation == NULL)) {
+ prof_alloc_rollback(tsd, tctx);
+ goto label_oom;
+ }
+ prof_malloc(tsd, allocation, size, usize, &alloc_ctx, tctx);
+ } else {
+ assert(!opt_prof);
+ allocation = imalloc_no_sample(sopts, dopts, tsd, size, usize,
+ ind);
+ if (unlikely(allocation == NULL)) {
+ goto label_oom;
+ }
+ }
+
+ /*
+ * Allocation has been done at this point. We still have some
+ * post-allocation work to do though.
+ */
+
+ thread_alloc_event(tsd, usize);
+
+ assert(dopts->alignment == 0
+ || ((uintptr_t)allocation & (dopts->alignment - 1)) == ZU(0));
+
+ assert(usize == isalloc(tsd_tsdn(tsd), allocation));
+
+ if (config_fill && sopts->slow && !dopts->zero
+ && unlikely(opt_junk_alloc)) {
+ junk_alloc_callback(allocation, usize);
+ }
+
+ if (sopts->slow) {
+ UTRACE(0, size, allocation);
+ }
+
+ /* Success! */
+ check_entry_exit_locking(tsd_tsdn(tsd));
+ *dopts->result = allocation;
+ return 0;
+
+label_oom:
+ if (unlikely(sopts->slow) && config_xmalloc && unlikely(opt_xmalloc)) {
+ malloc_write(sopts->oom_string);
+ abort();
+ }
+
+ if (sopts->slow) {
+ UTRACE(NULL, size, NULL);
+ }
+
+ check_entry_exit_locking(tsd_tsdn(tsd));
+
+ if (sopts->set_errno_on_error) {
+ set_errno(ENOMEM);
+ }
+
+ if (sopts->null_out_result_on_error) {
+ *dopts->result = NULL;
+ }
+
+ return ENOMEM;
+
+ /*
+ * This label is only jumped to by one goto; we move it out of line
+ * anyways to avoid obscuring the non-error paths, and for symmetry with
+ * the oom case.
+ */
+label_invalid_alignment:
+ if (config_xmalloc && unlikely(opt_xmalloc)) {
+ malloc_write(sopts->invalid_alignment_string);
+ abort();
+ }
+
+ if (sopts->set_errno_on_error) {
+ set_errno(EINVAL);
+ }
+
+ if (sopts->slow) {
+ UTRACE(NULL, size, NULL);
+ }
+
+ check_entry_exit_locking(tsd_tsdn(tsd));
+
+ if (sopts->null_out_result_on_error) {
+ *dopts->result = NULL;
+ }
+
+ return EINVAL;
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+imalloc_init_check(static_opts_t *sopts, dynamic_opts_t *dopts) {
+ if (unlikely(!malloc_initialized()) && unlikely(malloc_init())) {
+ if (config_xmalloc && unlikely(opt_xmalloc)) {
+ malloc_write(sopts->oom_string);
+ abort();
+ }
+ UTRACE(NULL, dopts->num_items * dopts->item_size, NULL);
+ set_errno(ENOMEM);
+ *dopts->result = NULL;
+
+ return false;
+ }
+
+ return true;
+}
+
+/* Returns the errno-style error code of the allocation. */
+JEMALLOC_ALWAYS_INLINE int
+imalloc(static_opts_t *sopts, dynamic_opts_t *dopts) {
+ if (tsd_get_allocates() && !imalloc_init_check(sopts, dopts)) {
+ return ENOMEM;
+ }
+
+ /* We always need the tsd. Let's grab it right away. */
+ tsd_t *tsd = tsd_fetch();
+ assert(tsd);
+ if (likely(tsd_fast(tsd))) {
+ /* Fast and common path. */
+ tsd_assert_fast(tsd);
+ sopts->slow = false;
+ return imalloc_body(sopts, dopts, tsd);
+ } else {
+ if (!tsd_get_allocates() && !imalloc_init_check(sopts, dopts)) {
+ return ENOMEM;
+ }
+
+ sopts->slow = true;
+ return imalloc_body(sopts, dopts, tsd);
+ }
+}
+
+JEMALLOC_NOINLINE
+void *
+malloc_default(size_t size) {
+ void *ret;
+ static_opts_t sopts;
+ dynamic_opts_t dopts;
+
+ /*
+ * This variant has logging hook on exit but not on entry. It's callled
+ * only by je_malloc, below, which emits the entry one for us (and, if
+ * it calls us, does so only via tail call).
+ */
+
+ static_opts_init(&sopts);
+ dynamic_opts_init(&dopts);
+
+ sopts.null_out_result_on_error = true;
+ sopts.set_errno_on_error = true;
+ sopts.oom_string = "<jemalloc>: Error in malloc(): out of memory\n";
+
+ dopts.result = &ret;
+ dopts.num_items = 1;
+ dopts.item_size = size;
+
+ imalloc(&sopts, &dopts);
+ /*
+ * Note that this branch gets optimized away -- it immediately follows
+ * the check on tsd_fast that sets sopts.slow.
+ */
+ if (sopts.slow) {
+ uintptr_t args[3] = {size};
+ hook_invoke_alloc(hook_alloc_malloc, ret, (uintptr_t)ret, args);
+ }
+
+ LOG("core.malloc.exit", "result: %p", ret);
+
+ return ret;
+}
+
+/******************************************************************************/
+/*
+ * Begin malloc(3)-compatible functions.
+ */
+
+JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
+void JEMALLOC_NOTHROW *
+JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(1)
+je_malloc(size_t size) {
+ return imalloc_fastpath(size, &malloc_default);
+}
+
+JEMALLOC_EXPORT int JEMALLOC_NOTHROW
+JEMALLOC_ATTR(nonnull(1))
+je_posix_memalign(void **memptr, size_t alignment, size_t size) {
+ int ret;
+ static_opts_t sopts;
+ dynamic_opts_t dopts;
+
+ LOG("core.posix_memalign.entry", "mem ptr: %p, alignment: %zu, "
+ "size: %zu", memptr, alignment, size);
+
+ static_opts_init(&sopts);
+ dynamic_opts_init(&dopts);
+
+ sopts.bump_empty_aligned_alloc = true;
+ sopts.min_alignment = sizeof(void *);
+ sopts.oom_string =
+ "<jemalloc>: Error allocating aligned memory: out of memory\n";
+ sopts.invalid_alignment_string =
+ "<jemalloc>: Error allocating aligned memory: invalid alignment\n";
+
+ dopts.result = memptr;
+ dopts.num_items = 1;
+ dopts.item_size = size;
+ dopts.alignment = alignment;
+
+ ret = imalloc(&sopts, &dopts);
+ if (sopts.slow) {
+ uintptr_t args[3] = {(uintptr_t)memptr, (uintptr_t)alignment,
+ (uintptr_t)size};
+ hook_invoke_alloc(hook_alloc_posix_memalign, *memptr,
+ (uintptr_t)ret, args);
+ }
+
+ LOG("core.posix_memalign.exit", "result: %d, alloc ptr: %p", ret,
+ *memptr);
+
+ return ret;
+}
+
+JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
+void JEMALLOC_NOTHROW *
+JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(2)
+je_aligned_alloc(size_t alignment, size_t size) {
+ void *ret;
+
+ static_opts_t sopts;
+ dynamic_opts_t dopts;
+
+ LOG("core.aligned_alloc.entry", "alignment: %zu, size: %zu\n",
+ alignment, size);
+
+ static_opts_init(&sopts);
+ dynamic_opts_init(&dopts);
+
+ sopts.bump_empty_aligned_alloc = true;
+ sopts.null_out_result_on_error = true;
+ sopts.set_errno_on_error = true;
+ sopts.min_alignment = 1;
+ sopts.oom_string =
+ "<jemalloc>: Error allocating aligned memory: out of memory\n";
+ sopts.invalid_alignment_string =
+ "<jemalloc>: Error allocating aligned memory: invalid alignment\n";
+
+ dopts.result = &ret;
+ dopts.num_items = 1;
+ dopts.item_size = size;
+ dopts.alignment = alignment;
+
+ imalloc(&sopts, &dopts);
+ if (sopts.slow) {
+ uintptr_t args[3] = {(uintptr_t)alignment, (uintptr_t)size};
+ hook_invoke_alloc(hook_alloc_aligned_alloc, ret,
+ (uintptr_t)ret, args);
+ }
+
+ LOG("core.aligned_alloc.exit", "result: %p", ret);
+
+ return ret;
+}
+
+JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
+void JEMALLOC_NOTHROW *
+JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE2(1, 2)
+je_calloc(size_t num, size_t size) {
+ void *ret;
+ static_opts_t sopts;
+ dynamic_opts_t dopts;
+
+ LOG("core.calloc.entry", "num: %zu, size: %zu\n", num, size);
+
+ static_opts_init(&sopts);
+ dynamic_opts_init(&dopts);
+
+ sopts.may_overflow = true;
+ sopts.null_out_result_on_error = true;
+ sopts.set_errno_on_error = true;
+ sopts.oom_string = "<jemalloc>: Error in calloc(): out of memory\n";
+
+ dopts.result = &ret;
+ dopts.num_items = num;
+ dopts.item_size = size;
+ dopts.zero = true;
+
+ imalloc(&sopts, &dopts);
+ if (sopts.slow) {
+ uintptr_t args[3] = {(uintptr_t)num, (uintptr_t)size};
+ hook_invoke_alloc(hook_alloc_calloc, ret, (uintptr_t)ret, args);
+ }
+
+ LOG("core.calloc.exit", "result: %p", ret);
+
+ return ret;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+ifree(tsd_t *tsd, void *ptr, tcache_t *tcache, bool slow_path) {
+ if (!slow_path) {
+ tsd_assert_fast(tsd);
+ }
+ check_entry_exit_locking(tsd_tsdn(tsd));
+ if (tsd_reentrancy_level_get(tsd) != 0) {
+ assert(slow_path);
+ }
+
+ assert(ptr != NULL);
+ assert(malloc_initialized() || IS_INITIALIZER);
+
+ emap_alloc_ctx_t alloc_ctx;
+ emap_alloc_ctx_lookup(tsd_tsdn(tsd), &arena_emap_global, ptr,
+ &alloc_ctx);
+ assert(alloc_ctx.szind != SC_NSIZES);
+
+ size_t usize = sz_index2size(alloc_ctx.szind);
+ if (config_prof && opt_prof) {
+ prof_free(tsd, ptr, usize, &alloc_ctx);
+ }
+
+ if (likely(!slow_path)) {
+ idalloctm(tsd_tsdn(tsd), ptr, tcache, &alloc_ctx, false,
+ false);
+ } else {
+ if (config_fill && slow_path && opt_junk_free) {
+ junk_free_callback(ptr, usize);
+ }
+ idalloctm(tsd_tsdn(tsd), ptr, tcache, &alloc_ctx, false,
+ true);
+ }
+ thread_dalloc_event(tsd, usize);
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+maybe_check_alloc_ctx(tsd_t *tsd, void *ptr, emap_alloc_ctx_t *alloc_ctx) {
+ if (config_opt_size_checks) {
+ emap_alloc_ctx_t dbg_ctx;
+ emap_alloc_ctx_lookup(tsd_tsdn(tsd), &arena_emap_global, ptr,
+ &dbg_ctx);
+ if (alloc_ctx->szind != dbg_ctx.szind) {
+ safety_check_fail_sized_dealloc(
+ /* current_dealloc */ true, ptr,
+ /* true_size */ sz_size2index(dbg_ctx.szind),
+ /* input_size */ sz_size2index(alloc_ctx->szind));
+ return true;
+ }
+ if (alloc_ctx->slab != dbg_ctx.slab) {
+ safety_check_fail(
+ "Internal heap corruption detected: "
+ "mismatch in slab bit");
+ return true;
+ }
+ }
+ return false;
+}
+
+JEMALLOC_ALWAYS_INLINE void
+isfree(tsd_t *tsd, void *ptr, size_t usize, tcache_t *tcache, bool slow_path) {
+ if (!slow_path) {
+ tsd_assert_fast(tsd);
+ }
+ check_entry_exit_locking(tsd_tsdn(tsd));
+ if (tsd_reentrancy_level_get(tsd) != 0) {
+ assert(slow_path);
+ }
+
+ assert(ptr != NULL);
+ assert(malloc_initialized() || IS_INITIALIZER);
+
+ emap_alloc_ctx_t alloc_ctx;
+ if (!config_prof) {
+ alloc_ctx.szind = sz_size2index(usize);
+ alloc_ctx.slab = (alloc_ctx.szind < SC_NBINS);
+ } else {
+ if (likely(!prof_sample_aligned(ptr))) {
+ /*
+ * When the ptr is not page aligned, it was not sampled.
+ * usize can be trusted to determine szind and slab.
+ */
+ alloc_ctx.szind = sz_size2index(usize);
+ alloc_ctx.slab = (alloc_ctx.szind < SC_NBINS);
+ } else if (opt_prof) {
+ emap_alloc_ctx_lookup(tsd_tsdn(tsd), &arena_emap_global,
+ ptr, &alloc_ctx);
+
+ if (config_opt_safety_checks) {
+ /* Small alloc may have !slab (sampled). */
+ if (unlikely(alloc_ctx.szind !=
+ sz_size2index(usize))) {
+ safety_check_fail_sized_dealloc(
+ /* current_dealloc */ true, ptr,
+ /* true_size */ sz_index2size(
+ alloc_ctx.szind),
+ /* input_size */ usize);
+ }
+ }
+ } else {
+ alloc_ctx.szind = sz_size2index(usize);
+ alloc_ctx.slab = (alloc_ctx.szind < SC_NBINS);
+ }
+ }
+ bool fail = maybe_check_alloc_ctx(tsd, ptr, &alloc_ctx);
+ if (fail) {
+ /*
+ * This is a heap corruption bug. In real life we'll crash; for
+ * the unit test we just want to avoid breaking anything too
+ * badly to get a test result out. Let's leak instead of trying
+ * to free.
+ */
+ return;
+ }
+
+ if (config_prof && opt_prof) {
+ prof_free(tsd, ptr, usize, &alloc_ctx);
+ }
+ if (likely(!slow_path)) {
+ isdalloct(tsd_tsdn(tsd), ptr, usize, tcache, &alloc_ctx,
+ false);
+ } else {
+ if (config_fill && slow_path && opt_junk_free) {
+ junk_free_callback(ptr, usize);
+ }
+ isdalloct(tsd_tsdn(tsd), ptr, usize, tcache, &alloc_ctx,
+ true);
+ }
+ thread_dalloc_event(tsd, usize);
+}
+
+JEMALLOC_NOINLINE
+void
+free_default(void *ptr) {
+ UTRACE(ptr, 0, 0);
+ if (likely(ptr != NULL)) {
+ /*
+ * We avoid setting up tsd fully (e.g. tcache, arena binding)
+ * based on only free() calls -- other activities trigger the
+ * minimal to full transition. This is because free() may
+ * happen during thread shutdown after tls deallocation: if a
+ * thread never had any malloc activities until then, a
+ * fully-setup tsd won't be destructed properly.
+ */
+ tsd_t *tsd = tsd_fetch_min();
+ check_entry_exit_locking(tsd_tsdn(tsd));
+
+ if (likely(tsd_fast(tsd))) {
+ tcache_t *tcache = tcache_get_from_ind(tsd,
+ TCACHE_IND_AUTOMATIC, /* slow */ false,
+ /* is_alloc */ false);
+ ifree(tsd, ptr, tcache, /* slow */ false);
+ } else {
+ tcache_t *tcache = tcache_get_from_ind(tsd,
+ TCACHE_IND_AUTOMATIC, /* slow */ true,
+ /* is_alloc */ false);
+ uintptr_t args_raw[3] = {(uintptr_t)ptr};
+ hook_invoke_dalloc(hook_dalloc_free, ptr, args_raw);
+ ifree(tsd, ptr, tcache, /* slow */ true);
+ }
+
+ check_entry_exit_locking(tsd_tsdn(tsd));
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE bool
+free_fastpath_nonfast_aligned(void *ptr, bool check_prof) {
+ /*
+ * free_fastpath do not handle two uncommon cases: 1) sampled profiled
+ * objects and 2) sampled junk & stash for use-after-free detection.
+ * Both have special alignments which are used to escape the fastpath.
+ *
+ * prof_sample is page-aligned, which covers the UAF check when both
+ * are enabled (the assertion below). Avoiding redundant checks since
+ * this is on the fastpath -- at most one runtime branch from this.
+ */
+ if (config_debug && cache_bin_nonfast_aligned(ptr)) {
+ assert(prof_sample_aligned(ptr));
+ }
+
+ if (config_prof && check_prof) {
+ /* When prof is enabled, the prof_sample alignment is enough. */
+ if (prof_sample_aligned(ptr)) {
+ return true;
+ } else {
+ return false;
+ }
+ }
+
+ if (config_uaf_detection) {
+ if (cache_bin_nonfast_aligned(ptr)) {
+ return true;
+ } else {
+ return false;
+ }
+ }
+
+ return false;
+}
+
+/* Returns whether or not the free attempt was successful. */
+JEMALLOC_ALWAYS_INLINE
+bool free_fastpath(void *ptr, size_t size, bool size_hint) {
+ tsd_t *tsd = tsd_get(false);
+ /* The branch gets optimized away unless tsd_get_allocates(). */
+ if (unlikely(tsd == NULL)) {
+ return false;
+ }
+ /*
+ * The tsd_fast() / initialized checks are folded into the branch
+ * testing (deallocated_after >= threshold) later in this function.
+ * The threshold will be set to 0 when !tsd_fast.
+ */
+ assert(tsd_fast(tsd) ||
+ *tsd_thread_deallocated_next_event_fastp_get_unsafe(tsd) == 0);
+
+ emap_alloc_ctx_t alloc_ctx;
+ if (!size_hint) {
+ bool err = emap_alloc_ctx_try_lookup_fast(tsd,
+ &arena_emap_global, ptr, &alloc_ctx);
+
+ /* Note: profiled objects will have alloc_ctx.slab set */
+ if (unlikely(err || !alloc_ctx.slab ||
+ free_fastpath_nonfast_aligned(ptr,
+ /* check_prof */ false))) {
+ return false;
+ }
+ assert(alloc_ctx.szind != SC_NSIZES);
+ } else {
+ /*
+ * Check for both sizes that are too large, and for sampled /
+ * special aligned objects. The alignment check will also check
+ * for null ptr.
+ */
+ if (unlikely(size > SC_LOOKUP_MAXCLASS ||
+ free_fastpath_nonfast_aligned(ptr,
+ /* check_prof */ true))) {
+ return false;
+ }
+ alloc_ctx.szind = sz_size2index_lookup(size);
+ /* Max lookup class must be small. */
+ assert(alloc_ctx.szind < SC_NBINS);
+ /* This is a dead store, except when opt size checking is on. */
+ alloc_ctx.slab = true;
+ }
+ /*
+ * Currently the fastpath only handles small sizes. The branch on
+ * SC_LOOKUP_MAXCLASS makes sure of it. This lets us avoid checking
+ * tcache szind upper limit (i.e. tcache_maxclass) as well.
+ */
+ assert(alloc_ctx.slab);
+
+ uint64_t deallocated, threshold;
+ te_free_fastpath_ctx(tsd, &deallocated, &threshold);
+
+ size_t usize = sz_index2size(alloc_ctx.szind);
+ uint64_t deallocated_after = deallocated + usize;
+ /*
+ * Check for events and tsd non-nominal (fast_threshold will be set to
+ * 0) in a single branch. Note that this handles the uninitialized case
+ * as well (TSD init will be triggered on the non-fastpath). Therefore
+ * anything depends on a functional TSD (e.g. the alloc_ctx sanity check
+ * below) needs to be after this branch.
+ */
+ if (unlikely(deallocated_after >= threshold)) {
+ return false;
+ }
+ assert(tsd_fast(tsd));
+ bool fail = maybe_check_alloc_ctx(tsd, ptr, &alloc_ctx);
+ if (fail) {
+ /* See the comment in isfree. */
+ return true;
+ }
+
+ tcache_t *tcache = tcache_get_from_ind(tsd, TCACHE_IND_AUTOMATIC,
+ /* slow */ false, /* is_alloc */ false);
+ cache_bin_t *bin = &tcache->bins[alloc_ctx.szind];
+
+ /*
+ * If junking were enabled, this is where we would do it. It's not
+ * though, since we ensured above that we're on the fast path. Assert
+ * that to double-check.
+ */
+ assert(!opt_junk_free);
+
+ if (!cache_bin_dalloc_easy(bin, ptr)) {
+ return false;
+ }
+
+ *tsd_thread_deallocatedp_get(tsd) = deallocated_after;
+
+ return true;
+}
+
+JEMALLOC_EXPORT void JEMALLOC_NOTHROW
+je_free(void *ptr) {
+ LOG("core.free.entry", "ptr: %p", ptr);
+
+ if (!free_fastpath(ptr, 0, false)) {
+ free_default(ptr);
+ }
+
+ LOG("core.free.exit", "");
+}
+
+/*
+ * End malloc(3)-compatible functions.
+ */
+/******************************************************************************/
+/*
+ * Begin non-standard override functions.
+ */
+
+#ifdef JEMALLOC_OVERRIDE_MEMALIGN
+JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
+void JEMALLOC_NOTHROW *
+JEMALLOC_ATTR(malloc)
+je_memalign(size_t alignment, size_t size) {
+ void *ret;
+ static_opts_t sopts;
+ dynamic_opts_t dopts;
+
+ LOG("core.memalign.entry", "alignment: %zu, size: %zu\n", alignment,
+ size);
+
+ static_opts_init(&sopts);
+ dynamic_opts_init(&dopts);
+
+ sopts.min_alignment = 1;
+ sopts.oom_string =
+ "<jemalloc>: Error allocating aligned memory: out of memory\n";
+ sopts.invalid_alignment_string =
+ "<jemalloc>: Error allocating aligned memory: invalid alignment\n";
+ sopts.null_out_result_on_error = true;
+
+ dopts.result = &ret;
+ dopts.num_items = 1;
+ dopts.item_size = size;
+ dopts.alignment = alignment;
+
+ imalloc(&sopts, &dopts);
+ if (sopts.slow) {
+ uintptr_t args[3] = {alignment, size};
+ hook_invoke_alloc(hook_alloc_memalign, ret, (uintptr_t)ret,
+ args);
+ }
+
+ LOG("core.memalign.exit", "result: %p", ret);
+ return ret;
+}
+#endif
+
+#ifdef JEMALLOC_OVERRIDE_VALLOC
+JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
+void JEMALLOC_NOTHROW *
+JEMALLOC_ATTR(malloc)
+je_valloc(size_t size) {
+ void *ret;
+
+ static_opts_t sopts;
+ dynamic_opts_t dopts;
+
+ LOG("core.valloc.entry", "size: %zu\n", size);
+
+ static_opts_init(&sopts);
+ dynamic_opts_init(&dopts);
+
+ sopts.null_out_result_on_error = true;
+ sopts.min_alignment = PAGE;
+ sopts.oom_string =
+ "<jemalloc>: Error allocating aligned memory: out of memory\n";
+ sopts.invalid_alignment_string =
+ "<jemalloc>: Error allocating aligned memory: invalid alignment\n";
+
+ dopts.result = &ret;
+ dopts.num_items = 1;
+ dopts.item_size = size;
+ dopts.alignment = PAGE;
+
+ imalloc(&sopts, &dopts);
+ if (sopts.slow) {
+ uintptr_t args[3] = {size};
+ hook_invoke_alloc(hook_alloc_valloc, ret, (uintptr_t)ret, args);
+ }
+
+ LOG("core.valloc.exit", "result: %p\n", ret);
+ return ret;
+}
+#endif
+
+#if defined(JEMALLOC_IS_MALLOC) && defined(JEMALLOC_GLIBC_MALLOC_HOOK)
+/*
+ * glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible
+ * to inconsistently reference libc's malloc(3)-compatible functions
+ * (https://bugzilla.mozilla.org/show_bug.cgi?id=493541).
+ *
+ * These definitions interpose hooks in glibc. The functions are actually
+ * passed an extra argument for the caller return address, which will be
+ * ignored.
+ */
+#include <features.h> // defines __GLIBC__ if we are compiling against glibc
+
+JEMALLOC_EXPORT void (*__free_hook)(void *ptr) = je_free;
+JEMALLOC_EXPORT void *(*__malloc_hook)(size_t size) = je_malloc;
+JEMALLOC_EXPORT void *(*__realloc_hook)(void *ptr, size_t size) = je_realloc;
+# ifdef JEMALLOC_GLIBC_MEMALIGN_HOOK
+JEMALLOC_EXPORT void *(*__memalign_hook)(size_t alignment, size_t size) =
+ je_memalign;
+# endif
+
+# ifdef __GLIBC__
+/*
+ * To enable static linking with glibc, the libc specific malloc interface must
+ * be implemented also, so none of glibc's malloc.o functions are added to the
+ * link.
+ */
+# define ALIAS(je_fn) __attribute__((alias (#je_fn), used))
+/* To force macro expansion of je_ prefix before stringification. */
+# define PREALIAS(je_fn) ALIAS(je_fn)
+# ifdef JEMALLOC_OVERRIDE___LIBC_CALLOC
+void *__libc_calloc(size_t n, size_t size) PREALIAS(je_calloc);
+# endif
+# ifdef JEMALLOC_OVERRIDE___LIBC_FREE
+void __libc_free(void* ptr) PREALIAS(je_free);
+# endif
+# ifdef JEMALLOC_OVERRIDE___LIBC_MALLOC
+void *__libc_malloc(size_t size) PREALIAS(je_malloc);
+# endif
+# ifdef JEMALLOC_OVERRIDE___LIBC_MEMALIGN
+void *__libc_memalign(size_t align, size_t s) PREALIAS(je_memalign);
+# endif
+# ifdef JEMALLOC_OVERRIDE___LIBC_REALLOC
+void *__libc_realloc(void* ptr, size_t size) PREALIAS(je_realloc);
+# endif
+# ifdef JEMALLOC_OVERRIDE___LIBC_VALLOC
+void *__libc_valloc(size_t size) PREALIAS(je_valloc);
+# endif
+# ifdef JEMALLOC_OVERRIDE___POSIX_MEMALIGN
+int __posix_memalign(void** r, size_t a, size_t s) PREALIAS(je_posix_memalign);
+# endif
+# undef PREALIAS
+# undef ALIAS
+# endif
+#endif
+
+/*
+ * End non-standard override functions.
+ */
+/******************************************************************************/
+/*
+ * Begin non-standard functions.
+ */
+
+JEMALLOC_ALWAYS_INLINE unsigned
+mallocx_tcache_get(int flags) {
+ if (likely((flags & MALLOCX_TCACHE_MASK) == 0)) {
+ return TCACHE_IND_AUTOMATIC;
+ } else if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) {
+ return TCACHE_IND_NONE;
+ } else {
+ return MALLOCX_TCACHE_GET(flags);
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE unsigned
+mallocx_arena_get(int flags) {
+ if (unlikely((flags & MALLOCX_ARENA_MASK) != 0)) {
+ return MALLOCX_ARENA_GET(flags);
+ } else {
+ return ARENA_IND_AUTOMATIC;
+ }
+}
+
+#ifdef JEMALLOC_EXPERIMENTAL_SMALLOCX_API
+
+#define JEMALLOC_SMALLOCX_CONCAT_HELPER(x, y) x ## y
+#define JEMALLOC_SMALLOCX_CONCAT_HELPER2(x, y) \
+ JEMALLOC_SMALLOCX_CONCAT_HELPER(x, y)
+
+typedef struct {
+ void *ptr;
+ size_t size;
+} smallocx_return_t;
+
+JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
+smallocx_return_t JEMALLOC_NOTHROW
+/*
+ * The attribute JEMALLOC_ATTR(malloc) cannot be used due to:
+ * - https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86488
+ */
+JEMALLOC_SMALLOCX_CONCAT_HELPER2(je_smallocx_, JEMALLOC_VERSION_GID_IDENT)
+ (size_t size, int flags) {
+ /*
+ * Note: the attribute JEMALLOC_ALLOC_SIZE(1) cannot be
+ * used here because it makes writing beyond the `size`
+ * of the `ptr` undefined behavior, but the objective
+ * of this function is to allow writing beyond `size`
+ * up to `smallocx_return_t::size`.
+ */
+ smallocx_return_t ret;
+ static_opts_t sopts;
+ dynamic_opts_t dopts;
+
+ LOG("core.smallocx.entry", "size: %zu, flags: %d", size, flags);
+
+ static_opts_init(&sopts);
+ dynamic_opts_init(&dopts);
+
+ sopts.assert_nonempty_alloc = true;
+ sopts.null_out_result_on_error = true;
+ sopts.oom_string = "<jemalloc>: Error in mallocx(): out of memory\n";
+ sopts.usize = true;
+
+ dopts.result = &ret.ptr;
+ dopts.num_items = 1;
+ dopts.item_size = size;
+ if (unlikely(flags != 0)) {
+ dopts.alignment = MALLOCX_ALIGN_GET(flags);
+ dopts.zero = MALLOCX_ZERO_GET(flags);
+ dopts.tcache_ind = mallocx_tcache_get(flags);
+ dopts.arena_ind = mallocx_arena_get(flags);
+ }
+
+ imalloc(&sopts, &dopts);
+ assert(dopts.usize == je_nallocx(size, flags));
+ ret.size = dopts.usize;
+
+ LOG("core.smallocx.exit", "result: %p, size: %zu", ret.ptr, ret.size);
+ return ret;
+}
+#undef JEMALLOC_SMALLOCX_CONCAT_HELPER
+#undef JEMALLOC_SMALLOCX_CONCAT_HELPER2
+#endif
+
+JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
+void JEMALLOC_NOTHROW *
+JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(1)
+je_mallocx(size_t size, int flags) {
+ void *ret;
+ static_opts_t sopts;
+ dynamic_opts_t dopts;
+
+ LOG("core.mallocx.entry", "size: %zu, flags: %d", size, flags);
+
+ static_opts_init(&sopts);
+ dynamic_opts_init(&dopts);
+
+ sopts.assert_nonempty_alloc = true;
+ sopts.null_out_result_on_error = true;
+ sopts.oom_string = "<jemalloc>: Error in mallocx(): out of memory\n";
+
+ dopts.result = &ret;
+ dopts.num_items = 1;
+ dopts.item_size = size;
+ if (unlikely(flags != 0)) {
+ dopts.alignment = MALLOCX_ALIGN_GET(flags);
+ dopts.zero = MALLOCX_ZERO_GET(flags);
+ dopts.tcache_ind = mallocx_tcache_get(flags);
+ dopts.arena_ind = mallocx_arena_get(flags);
+ }
+
+ imalloc(&sopts, &dopts);
+ if (sopts.slow) {
+ uintptr_t args[3] = {size, flags};
+ hook_invoke_alloc(hook_alloc_mallocx, ret, (uintptr_t)ret,
+ args);
+ }
+
+ LOG("core.mallocx.exit", "result: %p", ret);
+ return ret;
+}
+
+static void *
+irallocx_prof_sample(tsdn_t *tsdn, void *old_ptr, size_t old_usize,
+ size_t usize, size_t alignment, bool zero, tcache_t *tcache, arena_t *arena,
+ prof_tctx_t *tctx, hook_ralloc_args_t *hook_args) {
+ void *p;
+
+ if (tctx == NULL) {
+ return NULL;
+ }
+
+ alignment = prof_sample_align(alignment);
+ if (usize <= SC_SMALL_MAXCLASS) {
+ p = iralloct(tsdn, old_ptr, old_usize,
+ SC_LARGE_MINCLASS, alignment, zero, tcache,
+ arena, hook_args);
+ if (p == NULL) {
+ return NULL;
+ }
+ arena_prof_promote(tsdn, p, usize);
+ } else {
+ p = iralloct(tsdn, old_ptr, old_usize, usize, alignment, zero,
+ tcache, arena, hook_args);
+ }
+ assert(prof_sample_aligned(p));
+
+ return p;
+}
+
+JEMALLOC_ALWAYS_INLINE void *
+irallocx_prof(tsd_t *tsd, void *old_ptr, size_t old_usize, size_t size,
+ size_t alignment, size_t usize, bool zero, tcache_t *tcache,
+ arena_t *arena, emap_alloc_ctx_t *alloc_ctx,
+ hook_ralloc_args_t *hook_args) {
+ prof_info_t old_prof_info;
+ prof_info_get_and_reset_recent(tsd, old_ptr, alloc_ctx, &old_prof_info);
+ bool prof_active = prof_active_get_unlocked();
+ bool sample_event = te_prof_sample_event_lookahead(tsd, usize);
+ prof_tctx_t *tctx = prof_alloc_prep(tsd, prof_active, sample_event);
+ void *p;
+ if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) {
+ p = irallocx_prof_sample(tsd_tsdn(tsd), old_ptr, old_usize,
+ usize, alignment, zero, tcache, arena, tctx, hook_args);
+ } else {
+ p = iralloct(tsd_tsdn(tsd), old_ptr, old_usize, size, alignment,
+ zero, tcache, arena, hook_args);
+ }
+ if (unlikely(p == NULL)) {
+ prof_alloc_rollback(tsd, tctx);
+ return NULL;
+ }
+ assert(usize == isalloc(tsd_tsdn(tsd), p));
+ prof_realloc(tsd, p, size, usize, tctx, prof_active, old_ptr,
+ old_usize, &old_prof_info, sample_event);
+
+ return p;
+}
+
+static void *
+do_rallocx(void *ptr, size_t size, int flags, bool is_realloc) {
+ void *p;
+ tsd_t *tsd;
+ size_t usize;
+ size_t old_usize;
+ size_t alignment = MALLOCX_ALIGN_GET(flags);
+ arena_t *arena;
+
+ assert(ptr != NULL);
+ assert(size != 0);
+ assert(malloc_initialized() || IS_INITIALIZER);
+ tsd = tsd_fetch();
+ check_entry_exit_locking(tsd_tsdn(tsd));
+
+ bool zero = zero_get(MALLOCX_ZERO_GET(flags), /* slow */ true);
+
+ unsigned arena_ind = mallocx_arena_get(flags);
+ if (arena_get_from_ind(tsd, arena_ind, &arena)) {
+ goto label_oom;
+ }
+
+ unsigned tcache_ind = mallocx_tcache_get(flags);
+ tcache_t *tcache = tcache_get_from_ind(tsd, tcache_ind,
+ /* slow */ true, /* is_alloc */ true);
+
+ emap_alloc_ctx_t alloc_ctx;
+ emap_alloc_ctx_lookup(tsd_tsdn(tsd), &arena_emap_global, ptr,
+ &alloc_ctx);
+ assert(alloc_ctx.szind != SC_NSIZES);
+ old_usize = sz_index2size(alloc_ctx.szind);
+ assert(old_usize == isalloc(tsd_tsdn(tsd), ptr));
+ if (aligned_usize_get(size, alignment, &usize, NULL, false)) {
+ goto label_oom;
+ }
+
+ hook_ralloc_args_t hook_args = {is_realloc, {(uintptr_t)ptr, size,
+ flags, 0}};
+ if (config_prof && opt_prof) {
+ p = irallocx_prof(tsd, ptr, old_usize, size, alignment, usize,
+ zero, tcache, arena, &alloc_ctx, &hook_args);
+ if (unlikely(p == NULL)) {
+ goto label_oom;
+ }
+ } else {
+ p = iralloct(tsd_tsdn(tsd), ptr, old_usize, size, alignment,
+ zero, tcache, arena, &hook_args);
+ if (unlikely(p == NULL)) {
+ goto label_oom;
+ }
+ assert(usize == isalloc(tsd_tsdn(tsd), p));
+ }
+ assert(alignment == 0 || ((uintptr_t)p & (alignment - 1)) == ZU(0));
+ thread_alloc_event(tsd, usize);
+ thread_dalloc_event(tsd, old_usize);
+
+ UTRACE(ptr, size, p);
+ check_entry_exit_locking(tsd_tsdn(tsd));
+
+ if (config_fill && unlikely(opt_junk_alloc) && usize > old_usize
+ && !zero) {
+ size_t excess_len = usize - old_usize;
+ void *excess_start = (void *)((uintptr_t)p + old_usize);
+ junk_alloc_callback(excess_start, excess_len);
+ }
+
+ return p;
+label_oom:
+ if (config_xmalloc && unlikely(opt_xmalloc)) {
+ malloc_write("<jemalloc>: Error in rallocx(): out of memory\n");
+ abort();
+ }
+ UTRACE(ptr, size, 0);
+ check_entry_exit_locking(tsd_tsdn(tsd));
+
+ return NULL;
+}
+
+JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
+void JEMALLOC_NOTHROW *
+JEMALLOC_ALLOC_SIZE(2)
+je_rallocx(void *ptr, size_t size, int flags) {
+ LOG("core.rallocx.entry", "ptr: %p, size: %zu, flags: %d", ptr,
+ size, flags);
+ void *ret = do_rallocx(ptr, size, flags, false);
+ LOG("core.rallocx.exit", "result: %p", ret);
+ return ret;
+}
+
+static void *
+do_realloc_nonnull_zero(void *ptr) {
+ if (config_stats) {
+ atomic_fetch_add_zu(&zero_realloc_count, 1, ATOMIC_RELAXED);
+ }
+ if (opt_zero_realloc_action == zero_realloc_action_alloc) {
+ /*
+ * The user might have gotten an alloc setting while expecting a
+ * free setting. If that's the case, we at least try to
+ * reduce the harm, and turn off the tcache while allocating, so
+ * that we'll get a true first fit.
+ */
+ return do_rallocx(ptr, 1, MALLOCX_TCACHE_NONE, true);
+ } else if (opt_zero_realloc_action == zero_realloc_action_free) {
+ UTRACE(ptr, 0, 0);
+ tsd_t *tsd = tsd_fetch();
+ check_entry_exit_locking(tsd_tsdn(tsd));
+
+ tcache_t *tcache = tcache_get_from_ind(tsd,
+ TCACHE_IND_AUTOMATIC, /* slow */ true,
+ /* is_alloc */ false);
+ uintptr_t args[3] = {(uintptr_t)ptr, 0};
+ hook_invoke_dalloc(hook_dalloc_realloc, ptr, args);
+ ifree(tsd, ptr, tcache, true);
+
+ check_entry_exit_locking(tsd_tsdn(tsd));
+ return NULL;
+ } else {
+ safety_check_fail("Called realloc(non-null-ptr, 0) with "
+ "zero_realloc:abort set\n");
+ /* In real code, this will never run; the safety check failure
+ * will call abort. In the unit test, we just want to bail out
+ * without corrupting internal state that the test needs to
+ * finish.
+ */
+ return NULL;
+ }
+}
+
+JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
+void JEMALLOC_NOTHROW *
+JEMALLOC_ALLOC_SIZE(2)
+je_realloc(void *ptr, size_t size) {
+ LOG("core.realloc.entry", "ptr: %p, size: %zu\n", ptr, size);
+
+ if (likely(ptr != NULL && size != 0)) {
+ void *ret = do_rallocx(ptr, size, 0, true);
+ LOG("core.realloc.exit", "result: %p", ret);
+ return ret;
+ } else if (ptr != NULL && size == 0) {
+ void *ret = do_realloc_nonnull_zero(ptr);
+ LOG("core.realloc.exit", "result: %p", ret);
+ return ret;
+ } else {
+ /* realloc(NULL, size) is equivalent to malloc(size). */
+ void *ret;
+
+ static_opts_t sopts;
+ dynamic_opts_t dopts;
+
+ static_opts_init(&sopts);
+ dynamic_opts_init(&dopts);
+
+ sopts.null_out_result_on_error = true;
+ sopts.set_errno_on_error = true;
+ sopts.oom_string =
+ "<jemalloc>: Error in realloc(): out of memory\n";
+
+ dopts.result = &ret;
+ dopts.num_items = 1;
+ dopts.item_size = size;
+
+ imalloc(&sopts, &dopts);
+ if (sopts.slow) {
+ uintptr_t args[3] = {(uintptr_t)ptr, size};
+ hook_invoke_alloc(hook_alloc_realloc, ret,
+ (uintptr_t)ret, args);
+ }
+ LOG("core.realloc.exit", "result: %p", ret);
+ return ret;
+ }
+}
+
+JEMALLOC_ALWAYS_INLINE size_t
+ixallocx_helper(tsdn_t *tsdn, void *ptr, size_t old_usize, size_t size,
+ size_t extra, size_t alignment, bool zero) {
+ size_t newsize;
+
+ if (ixalloc(tsdn, ptr, old_usize, size, extra, alignment, zero,
+ &newsize)) {
+ return old_usize;
+ }
+
+ return newsize;
+}
+
+static size_t
+ixallocx_prof_sample(tsdn_t *tsdn, void *ptr, size_t old_usize, size_t size,
+ size_t extra, size_t alignment, bool zero, prof_tctx_t *tctx) {
+ /* Sampled allocation needs to be page aligned. */
+ if (tctx == NULL || !prof_sample_aligned(ptr)) {
+ return old_usize;
+ }
+
+ return ixallocx_helper(tsdn, ptr, old_usize, size, extra, alignment,
+ zero);
+}
+
+JEMALLOC_ALWAYS_INLINE size_t
+ixallocx_prof(tsd_t *tsd, void *ptr, size_t old_usize, size_t size,
+ size_t extra, size_t alignment, bool zero, emap_alloc_ctx_t *alloc_ctx) {
+ /*
+ * old_prof_info is only used for asserting that the profiling info
+ * isn't changed by the ixalloc() call.
+ */
+ prof_info_t old_prof_info;
+ prof_info_get(tsd, ptr, alloc_ctx, &old_prof_info);
+
+ /*
+ * usize isn't knowable before ixalloc() returns when extra is non-zero.
+ * Therefore, compute its maximum possible value and use that in
+ * prof_alloc_prep() to decide whether to capture a backtrace.
+ * prof_realloc() will use the actual usize to decide whether to sample.
+ */
+ size_t usize_max;
+ if (aligned_usize_get(size + extra, alignment, &usize_max, NULL,
+ false)) {
+ /*
+ * usize_max is out of range, and chances are that allocation
+ * will fail, but use the maximum possible value and carry on
+ * with prof_alloc_prep(), just in case allocation succeeds.
+ */
+ usize_max = SC_LARGE_MAXCLASS;
+ }
+ bool prof_active = prof_active_get_unlocked();
+ bool sample_event = te_prof_sample_event_lookahead(tsd, usize_max);
+ prof_tctx_t *tctx = prof_alloc_prep(tsd, prof_active, sample_event);
+
+ size_t usize;
+ if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) {
+ usize = ixallocx_prof_sample(tsd_tsdn(tsd), ptr, old_usize,
+ size, extra, alignment, zero, tctx);
+ } else {
+ usize = ixallocx_helper(tsd_tsdn(tsd), ptr, old_usize, size,
+ extra, alignment, zero);
+ }
+
+ /*
+ * At this point we can still safely get the original profiling
+ * information associated with the ptr, because (a) the edata_t object
+ * associated with the ptr still lives and (b) the profiling info
+ * fields are not touched. "(a)" is asserted in the outer je_xallocx()
+ * function, and "(b)" is indirectly verified below by checking that
+ * the alloc_tctx field is unchanged.
+ */
+ prof_info_t prof_info;
+ if (usize == old_usize) {
+ prof_info_get(tsd, ptr, alloc_ctx, &prof_info);
+ prof_alloc_rollback(tsd, tctx);
+ } else {
+ prof_info_get_and_reset_recent(tsd, ptr, alloc_ctx, &prof_info);
+ assert(usize <= usize_max);
+ sample_event = te_prof_sample_event_lookahead(tsd, usize);
+ prof_realloc(tsd, ptr, size, usize, tctx, prof_active, ptr,
+ old_usize, &prof_info, sample_event);
+ }
+
+ assert(old_prof_info.alloc_tctx == prof_info.alloc_tctx);
+ return usize;
+}
+
+JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
+je_xallocx(void *ptr, size_t size, size_t extra, int flags) {
+ tsd_t *tsd;
+ size_t usize, old_usize;
+ size_t alignment = MALLOCX_ALIGN_GET(flags);
+ bool zero = zero_get(MALLOCX_ZERO_GET(flags), /* slow */ true);
+
+ LOG("core.xallocx.entry", "ptr: %p, size: %zu, extra: %zu, "
+ "flags: %d", ptr, size, extra, flags);
+
+ assert(ptr != NULL);
+ assert(size != 0);
+ assert(SIZE_T_MAX - size >= extra);
+ assert(malloc_initialized() || IS_INITIALIZER);
+ tsd = tsd_fetch();
+ check_entry_exit_locking(tsd_tsdn(tsd));
+
+ /*
+ * old_edata is only for verifying that xallocx() keeps the edata_t
+ * object associated with the ptr (though the content of the edata_t
+ * object can be changed).
+ */
+ edata_t *old_edata = emap_edata_lookup(tsd_tsdn(tsd),
+ &arena_emap_global, ptr);
+
+ emap_alloc_ctx_t alloc_ctx;
+ emap_alloc_ctx_lookup(tsd_tsdn(tsd), &arena_emap_global, ptr,
+ &alloc_ctx);
+ assert(alloc_ctx.szind != SC_NSIZES);
+ old_usize = sz_index2size(alloc_ctx.szind);
+ assert(old_usize == isalloc(tsd_tsdn(tsd), ptr));
+ /*
+ * The API explicitly absolves itself of protecting against (size +
+ * extra) numerical overflow, but we may need to clamp extra to avoid
+ * exceeding SC_LARGE_MAXCLASS.
+ *
+ * Ordinarily, size limit checking is handled deeper down, but here we
+ * have to check as part of (size + extra) clamping, since we need the
+ * clamped value in the above helper functions.
+ */
+ if (unlikely(size > SC_LARGE_MAXCLASS)) {
+ usize = old_usize;
+ goto label_not_resized;
+ }
+ if (unlikely(SC_LARGE_MAXCLASS - size < extra)) {
+ extra = SC_LARGE_MAXCLASS - size;
+ }
+
+ if (config_prof && opt_prof) {
+ usize = ixallocx_prof(tsd, ptr, old_usize, size, extra,
+ alignment, zero, &alloc_ctx);
+ } else {
+ usize = ixallocx_helper(tsd_tsdn(tsd), ptr, old_usize, size,
+ extra, alignment, zero);
+ }
+
+ /*
+ * xallocx() should keep using the same edata_t object (though its
+ * content can be changed).
+ */
+ assert(emap_edata_lookup(tsd_tsdn(tsd), &arena_emap_global, ptr)
+ == old_edata);
+
+ if (unlikely(usize == old_usize)) {
+ goto label_not_resized;
+ }
+ thread_alloc_event(tsd, usize);
+ thread_dalloc_event(tsd, old_usize);
+
+ if (config_fill && unlikely(opt_junk_alloc) && usize > old_usize &&
+ !zero) {
+ size_t excess_len = usize - old_usize;
+ void *excess_start = (void *)((uintptr_t)ptr + old_usize);
+ junk_alloc_callback(excess_start, excess_len);
+ }
+label_not_resized:
+ if (unlikely(!tsd_fast(tsd))) {
+ uintptr_t args[4] = {(uintptr_t)ptr, size, extra, flags};
+ hook_invoke_expand(hook_expand_xallocx, ptr, old_usize,
+ usize, (uintptr_t)usize, args);
+ }
+
+ UTRACE(ptr, size, ptr);
+ check_entry_exit_locking(tsd_tsdn(tsd));
+
+ LOG("core.xallocx.exit", "result: %zu", usize);
+ return usize;
+}
+
+JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
+JEMALLOC_ATTR(pure)
+je_sallocx(const void *ptr, int flags) {
+ size_t usize;
+ tsdn_t *tsdn;
+
+ LOG("core.sallocx.entry", "ptr: %p, flags: %d", ptr, flags);
+
+ assert(malloc_initialized() || IS_INITIALIZER);
+ assert(ptr != NULL);
+
+ tsdn = tsdn_fetch();
+ check_entry_exit_locking(tsdn);
+
+ if (config_debug || force_ivsalloc) {
+ usize = ivsalloc(tsdn, ptr);
+ assert(force_ivsalloc || usize != 0);
+ } else {
+ usize = isalloc(tsdn, ptr);
+ }
+
+ check_entry_exit_locking(tsdn);
+
+ LOG("core.sallocx.exit", "result: %zu", usize);
+ return usize;
+}
+
+JEMALLOC_EXPORT void JEMALLOC_NOTHROW
+je_dallocx(void *ptr, int flags) {
+ LOG("core.dallocx.entry", "ptr: %p, flags: %d", ptr, flags);
+
+ assert(ptr != NULL);
+ assert(malloc_initialized() || IS_INITIALIZER);
+
+ tsd_t *tsd = tsd_fetch_min();
+ bool fast = tsd_fast(tsd);
+ check_entry_exit_locking(tsd_tsdn(tsd));
+
+ unsigned tcache_ind = mallocx_tcache_get(flags);
+ tcache_t *tcache = tcache_get_from_ind(tsd, tcache_ind, !fast,
+ /* is_alloc */ false);
+
+ UTRACE(ptr, 0, 0);
+ if (likely(fast)) {
+ tsd_assert_fast(tsd);
+ ifree(tsd, ptr, tcache, false);
+ } else {
+ uintptr_t args_raw[3] = {(uintptr_t)ptr, flags};
+ hook_invoke_dalloc(hook_dalloc_dallocx, ptr, args_raw);
+ ifree(tsd, ptr, tcache, true);
+ }
+ check_entry_exit_locking(tsd_tsdn(tsd));
+
+ LOG("core.dallocx.exit", "");
+}
+
+JEMALLOC_ALWAYS_INLINE size_t
+inallocx(tsdn_t *tsdn, size_t size, int flags) {
+ check_entry_exit_locking(tsdn);
+ size_t usize;
+ /* In case of out of range, let the user see it rather than fail. */
+ aligned_usize_get(size, MALLOCX_ALIGN_GET(flags), &usize, NULL, false);
+ check_entry_exit_locking(tsdn);
+ return usize;
+}
+
+JEMALLOC_NOINLINE void
+sdallocx_default(void *ptr, size_t size, int flags) {
+ assert(ptr != NULL);
+ assert(malloc_initialized() || IS_INITIALIZER);
+
+ tsd_t *tsd = tsd_fetch_min();
+ bool fast = tsd_fast(tsd);
+ size_t usize = inallocx(tsd_tsdn(tsd), size, flags);
+ check_entry_exit_locking(tsd_tsdn(tsd));
+
+ unsigned tcache_ind = mallocx_tcache_get(flags);
+ tcache_t *tcache = tcache_get_from_ind(tsd, tcache_ind, !fast,
+ /* is_alloc */ false);
+
+ UTRACE(ptr, 0, 0);
+ if (likely(fast)) {
+ tsd_assert_fast(tsd);
+ isfree(tsd, ptr, usize, tcache, false);
+ } else {
+ uintptr_t args_raw[3] = {(uintptr_t)ptr, size, flags};
+ hook_invoke_dalloc(hook_dalloc_sdallocx, ptr, args_raw);
+ isfree(tsd, ptr, usize, tcache, true);
+ }
+ check_entry_exit_locking(tsd_tsdn(tsd));
+}
+
+JEMALLOC_EXPORT void JEMALLOC_NOTHROW
+je_sdallocx(void *ptr, size_t size, int flags) {
+ LOG("core.sdallocx.entry", "ptr: %p, size: %zu, flags: %d", ptr,
+ size, flags);
+
+ if (flags != 0 || !free_fastpath(ptr, size, true)) {
+ sdallocx_default(ptr, size, flags);
+ }
+
+ LOG("core.sdallocx.exit", "");
+}
+
+void JEMALLOC_NOTHROW
+je_sdallocx_noflags(void *ptr, size_t size) {
+ LOG("core.sdallocx.entry", "ptr: %p, size: %zu, flags: 0", ptr,
+ size);
+
+ if (!free_fastpath(ptr, size, true)) {
+ sdallocx_default(ptr, size, 0);
+ }
+
+ LOG("core.sdallocx.exit", "");
+}
+
+JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
+JEMALLOC_ATTR(pure)
+je_nallocx(size_t size, int flags) {
+ size_t usize;
+ tsdn_t *tsdn;
+
+ assert(size != 0);
+
+ if (unlikely(malloc_init())) {
+ LOG("core.nallocx.exit", "result: %zu", ZU(0));
+ return 0;
+ }
+
+ tsdn = tsdn_fetch();
+ check_entry_exit_locking(tsdn);
+
+ usize = inallocx(tsdn, size, flags);
+ if (unlikely(usize > SC_LARGE_MAXCLASS)) {
+ LOG("core.nallocx.exit", "result: %zu", ZU(0));
+ return 0;
+ }
+
+ check_entry_exit_locking(tsdn);
+ LOG("core.nallocx.exit", "result: %zu", usize);
+ return usize;
+}
+
+JEMALLOC_EXPORT int JEMALLOC_NOTHROW
+je_mallctl(const char *name, void *oldp, size_t *oldlenp, void *newp,
+ size_t newlen) {
+ int ret;
+ tsd_t *tsd;
+
+ LOG("core.mallctl.entry", "name: %s", name);
+
+ if (unlikely(malloc_init())) {
+ LOG("core.mallctl.exit", "result: %d", EAGAIN);
+ return EAGAIN;
+ }
+
+ tsd = tsd_fetch();
+ check_entry_exit_locking(tsd_tsdn(tsd));
+ ret = ctl_byname(tsd, name, oldp, oldlenp, newp, newlen);
+ check_entry_exit_locking(tsd_tsdn(tsd));
+
+ LOG("core.mallctl.exit", "result: %d", ret);
+ return ret;
+}
+
+JEMALLOC_EXPORT int JEMALLOC_NOTHROW
+je_mallctlnametomib(const char *name, size_t *mibp, size_t *miblenp) {
+ int ret;
+
+ LOG("core.mallctlnametomib.entry", "name: %s", name);
+
+ if (unlikely(malloc_init())) {
+ LOG("core.mallctlnametomib.exit", "result: %d", EAGAIN);
+ return EAGAIN;
+ }
+
+ tsd_t *tsd = tsd_fetch();
+ check_entry_exit_locking(tsd_tsdn(tsd));
+ ret = ctl_nametomib(tsd, name, mibp, miblenp);
+ check_entry_exit_locking(tsd_tsdn(tsd));
+
+ LOG("core.mallctlnametomib.exit", "result: %d", ret);
+ return ret;
+}
+
+JEMALLOC_EXPORT int JEMALLOC_NOTHROW
+je_mallctlbymib(const size_t *mib, size_t miblen, void *oldp, size_t *oldlenp,
+ void *newp, size_t newlen) {
+ int ret;
+ tsd_t *tsd;
+
+ LOG("core.mallctlbymib.entry", "");
+
+ if (unlikely(malloc_init())) {
+ LOG("core.mallctlbymib.exit", "result: %d", EAGAIN);
+ return EAGAIN;
+ }
+
+ tsd = tsd_fetch();
+ check_entry_exit_locking(tsd_tsdn(tsd));
+ ret = ctl_bymib(tsd, mib, miblen, oldp, oldlenp, newp, newlen);
+ check_entry_exit_locking(tsd_tsdn(tsd));
+ LOG("core.mallctlbymib.exit", "result: %d", ret);
+ return ret;
+}
+
+#define STATS_PRINT_BUFSIZE 65536
+JEMALLOC_EXPORT void JEMALLOC_NOTHROW
+je_malloc_stats_print(void (*write_cb)(void *, const char *), void *cbopaque,
+ const char *opts) {
+ tsdn_t *tsdn;
+
+ LOG("core.malloc_stats_print.entry", "");
+
+ tsdn = tsdn_fetch();
+ check_entry_exit_locking(tsdn);
+
+ if (config_debug) {
+ stats_print(write_cb, cbopaque, opts);
+ } else {
+ buf_writer_t buf_writer;
+ buf_writer_init(tsdn, &buf_writer, write_cb, cbopaque, NULL,
+ STATS_PRINT_BUFSIZE);
+ stats_print(buf_writer_cb, &buf_writer, opts);
+ buf_writer_terminate(tsdn, &buf_writer);
+ }
+
+ check_entry_exit_locking(tsdn);
+ LOG("core.malloc_stats_print.exit", "");
+}
+#undef STATS_PRINT_BUFSIZE
+
+JEMALLOC_ALWAYS_INLINE size_t
+je_malloc_usable_size_impl(JEMALLOC_USABLE_SIZE_CONST void *ptr) {
+ assert(malloc_initialized() || IS_INITIALIZER);
+
+ tsdn_t *tsdn = tsdn_fetch();
+ check_entry_exit_locking(tsdn);
+
+ size_t ret;
+ if (unlikely(ptr == NULL)) {
+ ret = 0;
+ } else {
+ if (config_debug || force_ivsalloc) {
+ ret = ivsalloc(tsdn, ptr);
+ assert(force_ivsalloc || ret != 0);
+ } else {
+ ret = isalloc(tsdn, ptr);
+ }
+ }
+ check_entry_exit_locking(tsdn);
+
+ return ret;
+}
+
+JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
+je_malloc_usable_size(JEMALLOC_USABLE_SIZE_CONST void *ptr) {
+ LOG("core.malloc_usable_size.entry", "ptr: %p", ptr);
+
+ size_t ret = je_malloc_usable_size_impl(ptr);
+
+ LOG("core.malloc_usable_size.exit", "result: %zu", ret);
+ return ret;
+}
+
+#ifdef JEMALLOC_HAVE_MALLOC_SIZE
+JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
+je_malloc_size(const void *ptr) {
+ LOG("core.malloc_size.entry", "ptr: %p", ptr);
+
+ size_t ret = je_malloc_usable_size_impl(ptr);
+
+ LOG("core.malloc_size.exit", "result: %zu", ret);
+ return ret;
+}
+#endif
+
+static void
+batch_alloc_prof_sample_assert(tsd_t *tsd, size_t batch, size_t usize) {
+ assert(config_prof && opt_prof);
+ bool prof_sample_event = te_prof_sample_event_lookahead(tsd,
+ batch * usize);
+ assert(!prof_sample_event);
+ size_t surplus;
+ prof_sample_event = te_prof_sample_event_lookahead_surplus(tsd,
+ (batch + 1) * usize, &surplus);
+ assert(prof_sample_event);
+ assert(surplus < usize);
+}
+
+size_t
+batch_alloc(void **ptrs, size_t num, size_t size, int flags) {
+ LOG("core.batch_alloc.entry",
+ "ptrs: %p, num: %zu, size: %zu, flags: %d", ptrs, num, size, flags);
+
+ tsd_t *tsd = tsd_fetch();
+ check_entry_exit_locking(tsd_tsdn(tsd));
+
+ size_t filled = 0;
+
+ if (unlikely(tsd == NULL || tsd_reentrancy_level_get(tsd) > 0)) {
+ goto label_done;
+ }
+
+ size_t alignment = MALLOCX_ALIGN_GET(flags);
+ size_t usize;
+ if (aligned_usize_get(size, alignment, &usize, NULL, false)) {
+ goto label_done;
+ }
+ szind_t ind = sz_size2index(usize);
+ bool zero = zero_get(MALLOCX_ZERO_GET(flags), /* slow */ true);
+
+ /*
+ * The cache bin and arena will be lazily initialized; it's hard to
+ * know in advance whether each of them needs to be initialized.
+ */
+ cache_bin_t *bin = NULL;
+ arena_t *arena = NULL;
+
+ size_t nregs = 0;
+ if (likely(ind < SC_NBINS)) {
+ nregs = bin_infos[ind].nregs;
+ assert(nregs > 0);
+ }
+
+ while (filled < num) {
+ size_t batch = num - filled;
+ size_t surplus = SIZE_MAX; /* Dead store. */
+ bool prof_sample_event = config_prof && opt_prof
+ && prof_active_get_unlocked()
+ && te_prof_sample_event_lookahead_surplus(tsd,
+ batch * usize, &surplus);
+
+ if (prof_sample_event) {
+ /*
+ * Adjust so that the batch does not trigger prof
+ * sampling.
+ */
+ batch -= surplus / usize + 1;
+ batch_alloc_prof_sample_assert(tsd, batch, usize);
+ }
+
+ size_t progress = 0;
+
+ if (likely(ind < SC_NBINS) && batch >= nregs) {
+ if (arena == NULL) {
+ unsigned arena_ind = mallocx_arena_get(flags);
+ if (arena_get_from_ind(tsd, arena_ind,
+ &arena)) {
+ goto label_done;
+ }
+ if (arena == NULL) {
+ arena = arena_choose(tsd, NULL);
+ }
+ if (unlikely(arena == NULL)) {
+ goto label_done;
+ }
+ }
+ size_t arena_batch = batch - batch % nregs;
+ size_t n = arena_fill_small_fresh(tsd_tsdn(tsd), arena,
+ ind, ptrs + filled, arena_batch, zero);
+ progress += n;
+ filled += n;
+ }
+
+ if (likely(ind < nhbins) && progress < batch) {
+ if (bin == NULL) {
+ unsigned tcache_ind = mallocx_tcache_get(flags);
+ tcache_t *tcache = tcache_get_from_ind(tsd,
+ tcache_ind, /* slow */ true,
+ /* is_alloc */ true);
+ if (tcache != NULL) {
+ bin = &tcache->bins[ind];
+ }
+ }
+ /*
+ * If we don't have a tcache bin, we don't want to
+ * immediately give up, because there's the possibility
+ * that the user explicitly requested to bypass the
+ * tcache, or that the user explicitly turned off the
+ * tcache; in such cases, we go through the slow path,
+ * i.e. the mallocx() call at the end of the while loop.
+ */
+ if (bin != NULL) {
+ size_t bin_batch = batch - progress;
+ /*
+ * n can be less than bin_batch, meaning that
+ * the cache bin does not have enough memory.
+ * In such cases, we rely on the slow path,
+ * i.e. the mallocx() call at the end of the
+ * while loop, to fill in the cache, and in the
+ * next iteration of the while loop, the tcache
+ * will contain a lot of memory, and we can
+ * harvest them here. Compared to the
+ * alternative approach where we directly go to
+ * the arena bins here, the overhead of our
+ * current approach should usually be minimal,
+ * since we never try to fetch more memory than
+ * what a slab contains via the tcache. An
+ * additional benefit is that the tcache will
+ * not be empty for the next allocation request.
+ */
+ size_t n = cache_bin_alloc_batch(bin, bin_batch,
+ ptrs + filled);
+ if (config_stats) {
+ bin->tstats.nrequests += n;
+ }
+ if (zero) {
+ for (size_t i = 0; i < n; ++i) {
+ memset(ptrs[filled + i], 0,
+ usize);
+ }
+ }
+ if (config_prof && opt_prof
+ && unlikely(ind >= SC_NBINS)) {
+ for (size_t i = 0; i < n; ++i) {
+ prof_tctx_reset_sampled(tsd,
+ ptrs[filled + i]);
+ }
+ }
+ progress += n;
+ filled += n;
+ }
+ }
+
+ /*
+ * For thread events other than prof sampling, trigger them as
+ * if there's a single allocation of size (n * usize). This is
+ * fine because:
+ * (a) these events do not alter the allocation itself, and
+ * (b) it's possible that some event would have been triggered
+ * multiple times, instead of only once, if the allocations
+ * were handled individually, but it would do no harm (or
+ * even be beneficial) to coalesce the triggerings.
+ */
+ thread_alloc_event(tsd, progress * usize);
+
+ if (progress < batch || prof_sample_event) {
+ void *p = je_mallocx(size, flags);
+ if (p == NULL) { /* OOM */
+ break;
+ }
+ if (progress == batch) {
+ assert(prof_sampled(tsd, p));
+ }
+ ptrs[filled++] = p;
+ }
+ }
+
+label_done:
+ check_entry_exit_locking(tsd_tsdn(tsd));
+ LOG("core.batch_alloc.exit", "result: %zu", filled);
+ return filled;
+}
+
+/*
+ * End non-standard functions.
+ */
+/******************************************************************************/
+/*
+ * The following functions are used by threading libraries for protection of
+ * malloc during fork().
+ */
+
+/*
+ * If an application creates a thread before doing any allocation in the main
+ * thread, then calls fork(2) in the main thread followed by memory allocation
+ * in the child process, a race can occur that results in deadlock within the
+ * child: the main thread may have forked while the created thread had
+ * partially initialized the allocator. Ordinarily jemalloc prevents
+ * fork/malloc races via the following functions it registers during
+ * initialization using pthread_atfork(), but of course that does no good if
+ * the allocator isn't fully initialized at fork time. The following library
+ * constructor is a partial solution to this problem. It may still be possible
+ * to trigger the deadlock described above, but doing so would involve forking
+ * via a library constructor that runs before jemalloc's runs.
+ */
+#ifndef JEMALLOC_JET
+JEMALLOC_ATTR(constructor)
+static void
+jemalloc_constructor(void) {
+ malloc_init();
+}
+#endif
+
+#ifndef JEMALLOC_MUTEX_INIT_CB
+void
+jemalloc_prefork(void)
+#else
+JEMALLOC_EXPORT void
+_malloc_prefork(void)
+#endif
+{
+ tsd_t *tsd;
+ unsigned i, j, narenas;
+ arena_t *arena;
+
+#ifdef JEMALLOC_MUTEX_INIT_CB
+ if (!malloc_initialized()) {
+ return;
+ }
+#endif
+ assert(malloc_initialized());
+
+ tsd = tsd_fetch();
+
+ narenas = narenas_total_get();
+
+ witness_prefork(tsd_witness_tsdp_get(tsd));
+ /* Acquire all mutexes in a safe order. */
+ ctl_prefork(tsd_tsdn(tsd));
+ tcache_prefork(tsd_tsdn(tsd));
+ malloc_mutex_prefork(tsd_tsdn(tsd), &arenas_lock);
+ if (have_background_thread) {
+ background_thread_prefork0(tsd_tsdn(tsd));
+ }
+ prof_prefork0(tsd_tsdn(tsd));
+ if (have_background_thread) {
+ background_thread_prefork1(tsd_tsdn(tsd));
+ }
+ /* Break arena prefork into stages to preserve lock order. */
+ for (i = 0; i < 9; i++) {
+ for (j = 0; j < narenas; j++) {
+ if ((arena = arena_get(tsd_tsdn(tsd), j, false)) !=
+ NULL) {
+ switch (i) {
+ case 0:
+ arena_prefork0(tsd_tsdn(tsd), arena);
+ break;
+ case 1:
+ arena_prefork1(tsd_tsdn(tsd), arena);
+ break;
+ case 2:
+ arena_prefork2(tsd_tsdn(tsd), arena);
+ break;
+ case 3:
+ arena_prefork3(tsd_tsdn(tsd), arena);
+ break;
+ case 4:
+ arena_prefork4(tsd_tsdn(tsd), arena);
+ break;
+ case 5:
+ arena_prefork5(tsd_tsdn(tsd), arena);
+ break;
+ case 6:
+ arena_prefork6(tsd_tsdn(tsd), arena);
+ break;
+ case 7:
+ arena_prefork7(tsd_tsdn(tsd), arena);
+ break;
+ case 8:
+ arena_prefork8(tsd_tsdn(tsd), arena);
+ break;
+ default: not_reached();
+ }
+ }
+ }
+
+ }
+ prof_prefork1(tsd_tsdn(tsd));
+ stats_prefork(tsd_tsdn(tsd));
+ tsd_prefork(tsd);
+}
+
+#ifndef JEMALLOC_MUTEX_INIT_CB
+void
+jemalloc_postfork_parent(void)
+#else
+JEMALLOC_EXPORT void
+_malloc_postfork(void)
+#endif
+{
+ tsd_t *tsd;
+ unsigned i, narenas;
+
+#ifdef JEMALLOC_MUTEX_INIT_CB
+ if (!malloc_initialized()) {
+ return;
+ }
+#endif
+ assert(malloc_initialized());
+
+ tsd = tsd_fetch();
+
+ tsd_postfork_parent(tsd);
+
+ witness_postfork_parent(tsd_witness_tsdp_get(tsd));
+ /* Release all mutexes, now that fork() has completed. */
+ stats_postfork_parent(tsd_tsdn(tsd));
+ for (i = 0, narenas = narenas_total_get(); i < narenas; i++) {
+ arena_t *arena;
+
+ if ((arena = arena_get(tsd_tsdn(tsd), i, false)) != NULL) {
+ arena_postfork_parent(tsd_tsdn(tsd), arena);
+ }
+ }
+ prof_postfork_parent(tsd_tsdn(tsd));
+ if (have_background_thread) {
+ background_thread_postfork_parent(tsd_tsdn(tsd));
+ }
+ malloc_mutex_postfork_parent(tsd_tsdn(tsd), &arenas_lock);
+ tcache_postfork_parent(tsd_tsdn(tsd));
+ ctl_postfork_parent(tsd_tsdn(tsd));
+}
+
+void
+jemalloc_postfork_child(void) {
+ tsd_t *tsd;
+ unsigned i, narenas;
+
+ assert(malloc_initialized());
+
+ tsd = tsd_fetch();
+
+ tsd_postfork_child(tsd);
+
+ witness_postfork_child(tsd_witness_tsdp_get(tsd));
+ /* Release all mutexes, now that fork() has completed. */
+ stats_postfork_child(tsd_tsdn(tsd));
+ for (i = 0, narenas = narenas_total_get(); i < narenas; i++) {
+ arena_t *arena;
+
+ if ((arena = arena_get(tsd_tsdn(tsd), i, false)) != NULL) {
+ arena_postfork_child(tsd_tsdn(tsd), arena);
+ }
+ }
+ prof_postfork_child(tsd_tsdn(tsd));
+ if (have_background_thread) {
+ background_thread_postfork_child(tsd_tsdn(tsd));
+ }
+ malloc_mutex_postfork_child(tsd_tsdn(tsd), &arenas_lock);
+ tcache_postfork_child(tsd_tsdn(tsd));
+ ctl_postfork_child(tsd_tsdn(tsd));
+}
+
+/******************************************************************************/
+
+/* Helps the application decide if a pointer is worth re-allocating in order to reduce fragmentation.
+ * returns 1 if the allocation should be moved, and 0 if the allocation be kept.
+ * If the application decides to re-allocate it should use MALLOCX_TCACHE_NONE when doing so. */
+JEMALLOC_EXPORT int JEMALLOC_NOTHROW
+get_defrag_hint(void* ptr) {
+ assert(ptr != NULL);
+ return iget_defrag_hint(TSDN_NULL, ptr);
+}