summaryrefslogtreecommitdiffstats
path: root/deps/jemalloc/include/jemalloc/internal/sec.h
diff options
context:
space:
mode:
Diffstat (limited to 'deps/jemalloc/include/jemalloc/internal/sec.h')
-rw-r--r--deps/jemalloc/include/jemalloc/internal/sec.h120
1 files changed, 120 insertions, 0 deletions
diff --git a/deps/jemalloc/include/jemalloc/internal/sec.h b/deps/jemalloc/include/jemalloc/internal/sec.h
new file mode 100644
index 0000000..fa86338
--- /dev/null
+++ b/deps/jemalloc/include/jemalloc/internal/sec.h
@@ -0,0 +1,120 @@
+#ifndef JEMALLOC_INTERNAL_SEC_H
+#define JEMALLOC_INTERNAL_SEC_H
+
+#include "jemalloc/internal/atomic.h"
+#include "jemalloc/internal/pai.h"
+
+/*
+ * Small extent cache.
+ *
+ * This includes some utilities to cache small extents. We have a per-pszind
+ * bin with its own list of extents of that size. We don't try to do any
+ * coalescing of extents (since it would in general require cross-shard locks or
+ * knowledge of the underlying PAI implementation).
+ */
+
+/*
+ * For now, this is just one field; eventually, we'll probably want to get more
+ * fine-grained data out (like per-size class statistics).
+ */
+typedef struct sec_stats_s sec_stats_t;
+struct sec_stats_s {
+ /* Sum of bytes_cur across all shards. */
+ size_t bytes;
+};
+
+static inline void
+sec_stats_accum(sec_stats_t *dst, sec_stats_t *src) {
+ dst->bytes += src->bytes;
+}
+
+/* A collections of free extents, all of the same size. */
+typedef struct sec_bin_s sec_bin_t;
+struct sec_bin_s {
+ /*
+ * When we fail to fulfill an allocation, we do a batch-alloc on the
+ * underlying allocator to fill extra items, as well. We drop the SEC
+ * lock while doing so, to allow operations on other bins to succeed.
+ * That introduces the possibility of other threads also trying to
+ * allocate out of this bin, failing, and also going to the backing
+ * allocator. To avoid a thundering herd problem in which lots of
+ * threads do batch allocs and overfill this bin as a result, we only
+ * allow one batch allocation at a time for a bin. This bool tracks
+ * whether or not some thread is already batch allocating.
+ *
+ * Eventually, the right answer may be a smarter sharding policy for the
+ * bins (e.g. a mutex per bin, which would also be more scalable
+ * generally; the batch-allocating thread could hold it while
+ * batch-allocating).
+ */
+ bool being_batch_filled;
+
+ /*
+ * Number of bytes in this particular bin (as opposed to the
+ * sec_shard_t's bytes_cur. This isn't user visible or reported in
+ * stats; rather, it allows us to quickly determine the change in the
+ * centralized counter when flushing.
+ */
+ size_t bytes_cur;
+ edata_list_active_t freelist;
+};
+
+typedef struct sec_shard_s sec_shard_t;
+struct sec_shard_s {
+ /*
+ * We don't keep per-bin mutexes, even though that would allow more
+ * sharding; this allows global cache-eviction, which in turn allows for
+ * better balancing across free lists.
+ */
+ malloc_mutex_t mtx;
+ /*
+ * A SEC may need to be shut down (i.e. flushed of its contents and
+ * prevented from further caching). To avoid tricky synchronization
+ * issues, we just track enabled-status in each shard, guarded by a
+ * mutex. In practice, this is only ever checked during brief races,
+ * since the arena-level atomic boolean tracking HPA enabled-ness means
+ * that we won't go down these pathways very often after custom extent
+ * hooks are installed.
+ */
+ bool enabled;
+ sec_bin_t *bins;
+ /* Number of bytes in all bins in the shard. */
+ size_t bytes_cur;
+ /* The next pszind to flush in the flush-some pathways. */
+ pszind_t to_flush_next;
+};
+
+typedef struct sec_s sec_t;
+struct sec_s {
+ pai_t pai;
+ pai_t *fallback;
+
+ sec_opts_t opts;
+ sec_shard_t *shards;
+ pszind_t npsizes;
+};
+
+bool sec_init(tsdn_t *tsdn, sec_t *sec, base_t *base, pai_t *fallback,
+ const sec_opts_t *opts);
+void sec_flush(tsdn_t *tsdn, sec_t *sec);
+void sec_disable(tsdn_t *tsdn, sec_t *sec);
+
+/*
+ * Morally, these two stats methods probably ought to be a single one (and the
+ * mutex_prof_data ought to live in the sec_stats_t. But splitting them apart
+ * lets them fit easily into the pa_shard stats framework (which also has this
+ * split), which simplifies the stats management.
+ */
+void sec_stats_merge(tsdn_t *tsdn, sec_t *sec, sec_stats_t *stats);
+void sec_mutex_stats_read(tsdn_t *tsdn, sec_t *sec,
+ mutex_prof_data_t *mutex_prof_data);
+
+/*
+ * We use the arena lock ordering; these are acquired in phase 2 of forking, but
+ * should be acquired before the underlying allocator mutexes.
+ */
+void sec_prefork2(tsdn_t *tsdn, sec_t *sec);
+void sec_postfork_parent(tsdn_t *tsdn, sec_t *sec);
+void sec_postfork_child(tsdn_t *tsdn, sec_t *sec);
+
+#endif /* JEMALLOC_INTERNAL_SEC_H */