From 317c0644ccf108aa23ef3fd8358bd66c2840bfc0 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 14 Apr 2024 15:40:54 +0200 Subject: Adding upstream version 5:7.2.4. Signed-off-by: Daniel Baumann --- tests/unit/bitops.tcl | 593 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 593 insertions(+) create mode 100644 tests/unit/bitops.tcl (limited to 'tests/unit/bitops.tcl') diff --git a/tests/unit/bitops.tcl b/tests/unit/bitops.tcl new file mode 100644 index 0000000..1b7db40 --- /dev/null +++ b/tests/unit/bitops.tcl @@ -0,0 +1,593 @@ +# Compare Redis commands against Tcl implementations of the same commands. +proc count_bits s { + binary scan $s b* bits + string length [regsub -all {0} $bits {}] +} + +# start end are bit index +proc count_bits_start_end {s start end} { + binary scan $s B* bits + string length [regsub -all {0} [string range $bits $start $end] {}] +} + +proc simulate_bit_op {op args} { + set maxlen 0 + set j 0 + set count [llength $args] + foreach a $args { + binary scan $a b* bits + set b($j) $bits + if {[string length $bits] > $maxlen} { + set maxlen [string length $bits] + } + incr j + } + for {set j 0} {$j < $count} {incr j} { + if {[string length $b($j)] < $maxlen} { + append b($j) [string repeat 0 [expr $maxlen-[string length $b($j)]]] + } + } + set out {} + for {set x 0} {$x < $maxlen} {incr x} { + set bit [string range $b(0) $x $x] + if {$op eq {not}} {set bit [expr {!$bit}]} + for {set j 1} {$j < $count} {incr j} { + set bit2 [string range $b($j) $x $x] + switch $op { + and {set bit [expr {$bit & $bit2}]} + or {set bit [expr {$bit | $bit2}]} + xor {set bit [expr {$bit ^ $bit2}]} + } + } + append out $bit + } + binary format b* $out +} + +start_server {tags {"bitops"}} { + test {BITCOUNT returns 0 against non existing key} { + assert {[r bitcount no-key] == 0} + assert {[r bitcount no-key 0 1000 bit] == 0} + } + + test {BITCOUNT returns 0 with out of range indexes} { + r set str "xxxx" + assert {[r bitcount str 4 10] == 0} + assert {[r bitcount str 32 87 bit] == 0} + } + + test {BITCOUNT returns 0 with negative indexes where start > end} { + r set str "xxxx" + assert {[r bitcount str -6 -7] == 0} + assert {[r bitcount str -6 -15 bit] == 0} + } + + catch {unset num} + foreach vec [list "" "\xaa" "\x00\x00\xff" "foobar" "123"] { + incr num + test "BITCOUNT against test vector #$num" { + r set str $vec + set count [count_bits $vec] + assert {[r bitcount str] == $count} + assert {[r bitcount str 0 -1 bit] == $count} + } + } + + test {BITCOUNT fuzzing without start/end} { + for {set j 0} {$j < 100} {incr j} { + set str [randstring 0 3000] + r set str $str + set count [count_bits $str] + assert {[r bitcount str] == $count} + assert {[r bitcount str 0 -1 bit] == $count} + } + } + + test {BITCOUNT fuzzing with start/end} { + for {set j 0} {$j < 100} {incr j} { + set str [randstring 0 3000] + r set str $str + set l [string length $str] + set start [randomInt $l] + set end [randomInt $l] + if {$start > $end} { + # Swap start and end + lassign [list $end $start] start end + } + assert {[r bitcount str $start $end] == [count_bits [string range $str $start $end]]} + } + + for {set j 0} {$j < 100} {incr j} { + set str [randstring 0 3000] + r set str $str + set l [expr [string length $str] * 8] + set start [randomInt $l] + set end [randomInt $l] + if {$start > $end} { + # Swap start and end + lassign [list $end $start] start end + } + assert {[r bitcount str $start $end bit] == [count_bits_start_end $str $start $end]} + } + } + + test {BITCOUNT with start, end} { + set s "foobar" + r set s $s + assert_equal [r bitcount s 0 -1] [count_bits "foobar"] + assert_equal [r bitcount s 1 -2] [count_bits "ooba"] + assert_equal [r bitcount s -2 1] [count_bits ""] + assert_equal [r bitcount s 0 1000] [count_bits "foobar"] + + assert_equal [r bitcount s 0 -1 bit] [count_bits $s] + assert_equal [r bitcount s 10 14 bit] [count_bits_start_end $s 10 14] + assert_equal [r bitcount s 3 14 bit] [count_bits_start_end $s 3 14] + assert_equal [r bitcount s 3 29 bit] [count_bits_start_end $s 3 29] + assert_equal [r bitcount s 10 -34 bit] [count_bits_start_end $s 10 14] + assert_equal [r bitcount s 3 -34 bit] [count_bits_start_end $s 3 14] + assert_equal [r bitcount s 3 -19 bit] [count_bits_start_end $s 3 29] + assert_equal [r bitcount s -2 1 bit] 0 + assert_equal [r bitcount s 0 1000 bit] [count_bits $s] + } + + test {BITCOUNT syntax error #1} { + catch {r bitcount s 0} e + set e + } {ERR *syntax*} + + test {BITCOUNT syntax error #2} { + catch {r bitcount s 0 1 hello} e + set e + } {ERR *syntax*} + + test {BITCOUNT regression test for github issue #582} { + r del foo + r setbit foo 0 1 + if {[catch {r bitcount foo 0 4294967296} e]} { + assert_match {*ERR*out of range*} $e + set _ 1 + } else { + set e + } + } {1} + + test {BITCOUNT misaligned prefix} { + r del str + r set str ab + r bitcount str 1 -1 + } {3} + + test {BITCOUNT misaligned prefix + full words + remainder} { + r del str + r set str __PPxxxxxxxxxxxxxxxxRR__ + r bitcount str 2 -3 + } {74} + + test {BITOP NOT (empty string)} { + r set s{t} "" + r bitop not dest{t} s{t} + r get dest{t} + } {} + + test {BITOP NOT (known string)} { + r set s{t} "\xaa\x00\xff\x55" + r bitop not dest{t} s{t} + r get dest{t} + } "\x55\xff\x00\xaa" + + test {BITOP where dest and target are the same key} { + r set s "\xaa\x00\xff\x55" + r bitop not s s + r get s + } "\x55\xff\x00\xaa" + + test {BITOP AND|OR|XOR don't change the string with single input key} { + r set a{t} "\x01\x02\xff" + r bitop and res1{t} a{t} + r bitop or res2{t} a{t} + r bitop xor res3{t} a{t} + list [r get res1{t}] [r get res2{t}] [r get res3{t}] + } [list "\x01\x02\xff" "\x01\x02\xff" "\x01\x02\xff"] + + test {BITOP missing key is considered a stream of zero} { + r set a{t} "\x01\x02\xff" + r bitop and res1{t} no-suck-key{t} a{t} + r bitop or res2{t} no-suck-key{t} a{t} no-such-key{t} + r bitop xor res3{t} no-such-key{t} a{t} + list [r get res1{t}] [r get res2{t}] [r get res3{t}] + } [list "\x00\x00\x00" "\x01\x02\xff" "\x01\x02\xff"] + + test {BITOP shorter keys are zero-padded to the key with max length} { + r set a{t} "\x01\x02\xff\xff" + r set b{t} "\x01\x02\xff" + r bitop and res1{t} a{t} b{t} + r bitop or res2{t} a{t} b{t} + r bitop xor res3{t} a{t} b{t} + list [r get res1{t}] [r get res2{t}] [r get res3{t}] + } [list "\x01\x02\xff\x00" "\x01\x02\xff\xff" "\x00\x00\x00\xff"] + + foreach op {and or xor} { + test "BITOP $op fuzzing" { + for {set i 0} {$i < 10} {incr i} { + r flushall + set vec {} + set veckeys {} + set numvec [expr {[randomInt 10]+1}] + for {set j 0} {$j < $numvec} {incr j} { + set str [randstring 0 1000] + lappend vec $str + lappend veckeys vector_$j{t} + r set vector_$j{t} $str + } + r bitop $op target{t} {*}$veckeys + assert_equal [r get target{t}] [simulate_bit_op $op {*}$vec] + } + } + } + + test {BITOP NOT fuzzing} { + for {set i 0} {$i < 10} {incr i} { + r flushall + set str [randstring 0 1000] + r set str{t} $str + r bitop not target{t} str{t} + assert_equal [r get target{t}] [simulate_bit_op not $str] + } + } + + test {BITOP with integer encoded source objects} { + r set a{t} 1 + r set b{t} 2 + r bitop xor dest{t} a{t} b{t} a{t} + r get dest{t} + } {2} + + test {BITOP with non string source key} { + r del c{t} + r set a{t} 1 + r set b{t} 2 + r lpush c{t} foo + catch {r bitop xor dest{t} a{t} b{t} c{t} d{t}} e + set e + } {WRONGTYPE*} + + test {BITOP with empty string after non empty string (issue #529)} { + r flushdb + r set a{t} "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" + r bitop or x{t} a{t} b{t} + } {32} + + test {BITPOS bit=0 with empty key returns 0} { + r del str + assert {[r bitpos str 0] == 0} + assert {[r bitpos str 0 0 -1 bit] == 0} + } + + test {BITPOS bit=1 with empty key returns -1} { + r del str + assert {[r bitpos str 1] == -1} + assert {[r bitpos str 1 0 -1] == -1} + } + + test {BITPOS bit=0 with string less than 1 word works} { + r set str "\xff\xf0\x00" + assert {[r bitpos str 0] == 12} + assert {[r bitpos str 0 0 -1 bit] == 12} + } + + test {BITPOS bit=1 with string less than 1 word works} { + r set str "\x00\x0f\x00" + assert {[r bitpos str 1] == 12} + assert {[r bitpos str 1 0 -1 bit] == 12} + } + + test {BITPOS bit=0 starting at unaligned address} { + r set str "\xff\xf0\x00" + assert {[r bitpos str 0 1] == 12} + assert {[r bitpos str 0 1 -1 bit] == 12} + } + + test {BITPOS bit=1 starting at unaligned address} { + r set str "\x00\x0f\xff" + assert {[r bitpos str 1 1] == 12} + assert {[r bitpos str 1 1 -1 bit] == 12} + } + + test {BITPOS bit=0 unaligned+full word+reminder} { + r del str + r set str "\xff\xff\xff" ; # Prefix + # Followed by two (or four in 32 bit systems) full words + r append str "\xff\xff\xff\xff\xff\xff\xff\xff" + r append str "\xff\xff\xff\xff\xff\xff\xff\xff" + r append str "\xff\xff\xff\xff\xff\xff\xff\xff" + # First zero bit. + r append str "\x0f" + assert {[r bitpos str 0] == 216} + assert {[r bitpos str 0 1] == 216} + assert {[r bitpos str 0 2] == 216} + assert {[r bitpos str 0 3] == 216} + assert {[r bitpos str 0 4] == 216} + assert {[r bitpos str 0 5] == 216} + assert {[r bitpos str 0 6] == 216} + assert {[r bitpos str 0 7] == 216} + assert {[r bitpos str 0 8] == 216} + + assert {[r bitpos str 0 1 -1 bit] == 216} + assert {[r bitpos str 0 9 -1 bit] == 216} + assert {[r bitpos str 0 17 -1 bit] == 216} + assert {[r bitpos str 0 25 -1 bit] == 216} + assert {[r bitpos str 0 33 -1 bit] == 216} + assert {[r bitpos str 0 41 -1 bit] == 216} + assert {[r bitpos str 0 49 -1 bit] == 216} + assert {[r bitpos str 0 57 -1 bit] == 216} + assert {[r bitpos str 0 65 -1 bit] == 216} + } + + test {BITPOS bit=1 unaligned+full word+reminder} { + r del str + r set str "\x00\x00\x00" ; # Prefix + # Followed by two (or four in 32 bit systems) full words + r append str "\x00\x00\x00\x00\x00\x00\x00\x00" + r append str "\x00\x00\x00\x00\x00\x00\x00\x00" + r append str "\x00\x00\x00\x00\x00\x00\x00\x00" + # First zero bit. + r append str "\xf0" + assert {[r bitpos str 1] == 216} + assert {[r bitpos str 1 1] == 216} + assert {[r bitpos str 1 2] == 216} + assert {[r bitpos str 1 3] == 216} + assert {[r bitpos str 1 4] == 216} + assert {[r bitpos str 1 5] == 216} + assert {[r bitpos str 1 6] == 216} + assert {[r bitpos str 1 7] == 216} + assert {[r bitpos str 1 8] == 216} + + assert {[r bitpos str 1 1 -1 bit] == 216} + assert {[r bitpos str 1 9 -1 bit] == 216} + assert {[r bitpos str 1 17 -1 bit] == 216} + assert {[r bitpos str 1 25 -1 bit] == 216} + assert {[r bitpos str 1 33 -1 bit] == 216} + assert {[r bitpos str 1 41 -1 bit] == 216} + assert {[r bitpos str 1 49 -1 bit] == 216} + assert {[r bitpos str 1 57 -1 bit] == 216} + assert {[r bitpos str 1 65 -1 bit] == 216} + } + + test {BITPOS bit=1 returns -1 if string is all 0 bits} { + r set str "" + for {set j 0} {$j < 20} {incr j} { + assert {[r bitpos str 1] == -1} + assert {[r bitpos str 1 0 -1 bit] == -1} + r append str "\x00" + } + } + + test {BITPOS bit=0 works with intervals} { + r set str "\x00\xff\x00" + assert {[r bitpos str 0 0 -1] == 0} + assert {[r bitpos str 0 1 -1] == 16} + assert {[r bitpos str 0 2 -1] == 16} + assert {[r bitpos str 0 2 200] == 16} + assert {[r bitpos str 0 1 1] == -1} + + assert {[r bitpos str 0 0 -1 bit] == 0} + assert {[r bitpos str 0 8 -1 bit] == 16} + assert {[r bitpos str 0 16 -1 bit] == 16} + assert {[r bitpos str 0 16 200 bit] == 16} + assert {[r bitpos str 0 8 8 bit] == -1} + } + + test {BITPOS bit=1 works with intervals} { + r set str "\x00\xff\x00" + assert {[r bitpos str 1 0 -1] == 8} + assert {[r bitpos str 1 1 -1] == 8} + assert {[r bitpos str 1 2 -1] == -1} + assert {[r bitpos str 1 2 200] == -1} + assert {[r bitpos str 1 1 1] == 8} + + assert {[r bitpos str 1 0 -1 bit] == 8} + assert {[r bitpos str 1 8 -1 bit] == 8} + assert {[r bitpos str 1 16 -1 bit] == -1} + assert {[r bitpos str 1 16 200 bit] == -1} + assert {[r bitpos str 1 8 8 bit] == 8} + } + + test {BITPOS bit=0 changes behavior if end is given} { + r set str "\xff\xff\xff" + assert {[r bitpos str 0] == 24} + assert {[r bitpos str 0 0] == 24} + assert {[r bitpos str 0 0 -1] == -1} + assert {[r bitpos str 0 0 -1 bit] == -1} + } + + test {SETBIT/BITFIELD only increase dirty when the value changed} { + r del foo{t} foo2{t} foo3{t} + set dirty [s rdb_changes_since_last_save] + + # Create a new key, always increase the dirty. + r setbit foo{t} 0 0 + r bitfield foo2{t} set i5 0 0 + set dirty2 [s rdb_changes_since_last_save] + assert {$dirty2 == $dirty + 2} + + # No change. + r setbit foo{t} 0 0 + r bitfield foo2{t} set i5 0 0 + set dirty3 [s rdb_changes_since_last_save] + assert {$dirty3 == $dirty2} + + # Do a change and a no change. + r setbit foo{t} 0 1 + r setbit foo{t} 0 1 + r setbit foo{t} 0 0 + r setbit foo{t} 0 0 + r bitfield foo2{t} set i5 0 1 + r bitfield foo2{t} set i5 0 1 + r bitfield foo2{t} set i5 0 0 + r bitfield foo2{t} set i5 0 0 + set dirty4 [s rdb_changes_since_last_save] + assert {$dirty4 == $dirty3 + 4} + + # BITFIELD INCRBY always increase dirty. + r bitfield foo3{t} incrby i5 0 1 + r bitfield foo3{t} incrby i5 0 1 + set dirty5 [s rdb_changes_since_last_save] + assert {$dirty5 == $dirty4 + 2} + + # Change length only + r setbit foo{t} 90 0 + r bitfield foo2{t} set i5 90 0 + set dirty6 [s rdb_changes_since_last_save] + assert {$dirty6 == $dirty5 + 2} + } + + test {BITPOS bit=1 fuzzy testing using SETBIT} { + r del str + set max 524288; # 64k + set first_one_pos -1 + for {set j 0} {$j < 1000} {incr j} { + assert {[r bitpos str 1] == $first_one_pos} + assert {[r bitpos str 1 0 -1 bit] == $first_one_pos} + set pos [randomInt $max] + r setbit str $pos 1 + if {$first_one_pos == -1 || $first_one_pos > $pos} { + # Update the position of the first 1 bit in the array + # if the bit we set is on the left of the previous one. + set first_one_pos $pos + } + } + } + + test {BITPOS bit=0 fuzzy testing using SETBIT} { + set max 524288; # 64k + set first_zero_pos $max + r set str [string repeat "\xff" [expr $max/8]] + for {set j 0} {$j < 1000} {incr j} { + assert {[r bitpos str 0] == $first_zero_pos} + if {$first_zero_pos == $max} { + assert {[r bitpos str 0 0 -1 bit] == -1} + } else { + assert {[r bitpos str 0 0 -1 bit] == $first_zero_pos} + } + set pos [randomInt $max] + r setbit str $pos 0 + if {$first_zero_pos > $pos} { + # Update the position of the first 0 bit in the array + # if the bit we clear is on the left of the previous one. + set first_zero_pos $pos + } + } + } + + # This test creates a string of 10 bytes. It has two iterations. One clears + # all the bits and sets just one bit and another set all the bits and clears + # just one bit. Each iteration loops from bit offset 0 to 79 and uses SETBIT + # to set the bit to 0 or 1, and then use BITPOS and BITCOUNT on a few mutations. + test {BITPOS/BITCOUNT fuzzy testing using SETBIT} { + # We have two start and end ranges, each range used to select a random + # position, one for start position and one for end position. + proc test_one {start1 end1 start2 end2 pos bit pos_type} { + set start [randomRange $start1 $end1] + set end [randomRange $start2 $end2] + if {$start > $end} { + # Swap start and end + lassign [list $end $start] start end + } + set startbit $start + set endbit $end + # For byte index, we need to generate the real bit index + if {[string equal $pos_type byte]} { + set startbit [expr $start << 3] + set endbit [expr ($end << 3) + 7] + } + # This means whether the test bit index is in the range. + set inrange [expr ($pos >= $startbit && $pos <= $endbit) ? 1: 0] + # For bitcount, there are four different results. + # $inrange == 0 && $bit == 0, all bits in the range are set, so $endbit - $startbit + 1 + # $inrange == 0 && $bit == 1, all bits in the range are clear, so 0 + # $inrange == 1 && $bit == 0, all bits in the range are set but one, so $endbit - $startbit + # $inrange == 1 && $bit == 1, all bits in the range are clear but one, so 1 + set res_count [expr ($endbit - $startbit + 1) * (1 - $bit) + $inrange * [expr $bit ? 1 : -1]] + assert {[r bitpos str $bit $start $end $pos_type] == [expr $inrange ? $pos : -1]} + assert {[r bitcount str $start $end $pos_type] == $res_count} + } + + r del str + set max 80; + r setbit str [expr $max - 1] 0 + set bytes [expr $max >> 3] + # First iteration sets all bits to 1, then set bit to 0 from 0 to max - 1 + # Second iteration sets all bits to 0, then set bit to 1 from 0 to max - 1 + for {set bit 0} {$bit < 2} {incr bit} { + r bitop not str str + for {set j 0} {$j < $max} {incr j} { + r setbit str $j $bit + + # First iteration tests byte index and second iteration tests bit index. + foreach {curr end pos_type} [list [expr $j >> 3] $bytes byte $j $max bit] { + # start==end set to bit position + test_one $curr $curr $curr $curr $j $bit $pos_type + # Both start and end are before bit position + if {$curr > 0} { + test_one 0 $curr 0 $curr $j $bit $pos_type + } + # Both start and end are after bit position + if {$curr < [expr $end - 1]} { + test_one [expr $curr + 1] $end [expr $curr + 1] $end $j $bit $pos_type + } + # start is before and end is after bit position + if {$curr > 0 && $curr < [expr $end - 1]} { + test_one 0 $curr [expr $curr +1] $end $j $bit $pos_type + } + } + + # restore bit + r setbit str $j [expr 1 - $bit] + } + } + } +} + +run_solo {bitops-large-memory} { +start_server {tags {"bitops"}} { + test "BIT pos larger than UINT_MAX" { + set bytes [expr (1 << 29) + 1] + set bitpos [expr (1 << 32)] + set oldval [lindex [r config get proto-max-bulk-len] 1] + r config set proto-max-bulk-len $bytes + r setbit mykey $bitpos 1 + assert_equal $bytes [r strlen mykey] + assert_equal 1 [r getbit mykey $bitpos] + assert_equal [list 128 128 -1] [r bitfield mykey get u8 $bitpos set u8 $bitpos 255 get i8 $bitpos] + assert_equal $bitpos [r bitpos mykey 1] + assert_equal $bitpos [r bitpos mykey 1 [expr $bytes - 1]] + if {$::accurate} { + # set all bits to 1 + set mega [expr (1 << 23)] + set part [string repeat "\xFF" $mega] + for {set i 0} {$i < 64} {incr i} { + r setrange mykey [expr $i * $mega] $part + } + r setrange mykey [expr $bytes - 1] "\xFF" + assert_equal [expr $bitpos + 8] [r bitcount mykey] + assert_equal -1 [r bitpos mykey 0 0 [expr $bytes - 1]] + } + r config set proto-max-bulk-len $oldval + r del mykey + } {1} {large-memory} + + test "SETBIT values larger than UINT32_MAX and lzf_compress/lzf_decompress correctly" { + set bytes [expr (1 << 32) + 1] + set bitpos [expr (1 << 35)] + set oldval [lindex [r config get proto-max-bulk-len] 1] + r config set proto-max-bulk-len $bytes + r setbit mykey $bitpos 1 + assert_equal $bytes [r strlen mykey] + assert_equal 1 [r getbit mykey $bitpos] + r debug reload ;# lzf_compress/lzf_decompress when RDB saving/loading. + assert_equal 1 [r getbit mykey $bitpos] + r config set proto-max-bulk-len $oldval + r del mykey + } {1} {large-memory needs:debug} +} +} ;#run_solo -- cgit v1.2.3