#ifndef JEMALLOC_INTERNAL_THREAD_EVENT_H #define JEMALLOC_INTERNAL_THREAD_EVENT_H #include "jemalloc/internal/tsd.h" /* "te" is short for "thread_event" */ /* * TE_MIN_START_WAIT should not exceed the minimal allocation usize. */ #define TE_MIN_START_WAIT ((uint64_t)1U) #define TE_MAX_START_WAIT UINT64_MAX /* * Maximum threshold on thread_(de)allocated_next_event_fast, so that there is * no need to check overflow in malloc fast path. (The allocation size in malloc * fast path never exceeds SC_LOOKUP_MAXCLASS.) */ #define TE_NEXT_EVENT_FAST_MAX (UINT64_MAX - SC_LOOKUP_MAXCLASS + 1U) /* * The max interval helps make sure that malloc stays on the fast path in the * common case, i.e. thread_allocated < thread_allocated_next_event_fast. When * thread_allocated is within an event's distance to TE_NEXT_EVENT_FAST_MAX * above, thread_allocated_next_event_fast is wrapped around and we fall back to * the medium-fast path. The max interval makes sure that we're not staying on * the fallback case for too long, even if there's no active event or if all * active events have long wait times. */ #define TE_MAX_INTERVAL ((uint64_t)(4U << 20)) /* * Invalid elapsed time, for situations where elapsed time is not needed. See * comments in thread_event.c for more info. */ #define TE_INVALID_ELAPSED UINT64_MAX typedef struct te_ctx_s { bool is_alloc; uint64_t *current; uint64_t *last_event; uint64_t *next_event; uint64_t *next_event_fast; } te_ctx_t; void te_assert_invariants_debug(tsd_t *tsd); void te_event_trigger(tsd_t *tsd, te_ctx_t *ctx); void te_recompute_fast_threshold(tsd_t *tsd); void tsd_te_init(tsd_t *tsd); /* * List of all events, in the following format: * E(event, (condition), is_alloc_event) */ #define ITERATE_OVER_ALL_EVENTS \ E(tcache_gc, (opt_tcache_gc_incr_bytes > 0), true) \ E(prof_sample, (config_prof && opt_prof), true) \ E(stats_interval, (opt_stats_interval >= 0), true) \ E(tcache_gc_dalloc, (opt_tcache_gc_incr_bytes > 0), false) \ E(peak_alloc, config_stats, true) \ E(peak_dalloc, config_stats, false) #define E(event, condition_unused, is_alloc_event_unused) \ C(event##_event_wait) /* List of all thread event counters. */ #define ITERATE_OVER_ALL_COUNTERS \ C(thread_allocated) \ C(thread_allocated_last_event) \ ITERATE_OVER_ALL_EVENTS \ C(prof_sample_last_event) \ C(stats_interval_last_event) /* Getters directly wrap TSD getters. */ #define C(counter) \ JEMALLOC_ALWAYS_INLINE uint64_t \ counter##_get(tsd_t *tsd) { \ return tsd_##counter##_get(tsd); \ } ITERATE_OVER_ALL_COUNTERS #undef C /* * Setters call the TSD pointer getters rather than the TSD setters, so that * the counters can be modified even when TSD state is reincarnated or * minimal_initialized: if an event is triggered in such cases, we will * temporarily delay the event and let it be immediately triggered at the next * allocation call. */ #define C(counter) \ JEMALLOC_ALWAYS_INLINE void \ counter##_set(tsd_t *tsd, uint64_t v) { \ *tsd_##counter##p_get(tsd) = v; \ } ITERATE_OVER_ALL_COUNTERS #undef C /* * For generating _event_wait getter / setter functions for each individual * event. */ #undef E /* * The malloc and free fastpath getters -- use the unsafe getters since tsd may * be non-nominal, in which case the fast_threshold will be set to 0. This * allows checking for events and tsd non-nominal in a single branch. * * Note that these can only be used on the fastpath. */ JEMALLOC_ALWAYS_INLINE void te_malloc_fastpath_ctx(tsd_t *tsd, uint64_t *allocated, uint64_t *threshold) { *allocated = *tsd_thread_allocatedp_get_unsafe(tsd); *threshold = *tsd_thread_allocated_next_event_fastp_get_unsafe(tsd); assert(*threshold <= TE_NEXT_EVENT_FAST_MAX); } JEMALLOC_ALWAYS_INLINE void te_free_fastpath_ctx(tsd_t *tsd, uint64_t *deallocated, uint64_t *threshold) { /* Unsafe getters since this may happen before tsd_init. */ *deallocated = *tsd_thread_deallocatedp_get_unsafe(tsd); *threshold = *tsd_thread_deallocated_next_event_fastp_get_unsafe(tsd); assert(*threshold <= TE_NEXT_EVENT_FAST_MAX); } JEMALLOC_ALWAYS_INLINE bool te_ctx_is_alloc(te_ctx_t *ctx) { return ctx->is_alloc; } JEMALLOC_ALWAYS_INLINE uint64_t te_ctx_current_bytes_get(te_ctx_t *ctx) { return *ctx->current; } JEMALLOC_ALWAYS_INLINE void te_ctx_current_bytes_set(te_ctx_t *ctx, uint64_t v) { *ctx->current = v; } JEMALLOC_ALWAYS_INLINE uint64_t te_ctx_last_event_get(te_ctx_t *ctx) { return *ctx->last_event; } JEMALLOC_ALWAYS_INLINE void te_ctx_last_event_set(te_ctx_t *ctx, uint64_t v) { *ctx->last_event = v; } /* Below 3 for next_event_fast. */ JEMALLOC_ALWAYS_INLINE uint64_t te_ctx_next_event_fast_get(te_ctx_t *ctx) { uint64_t v = *ctx->next_event_fast; assert(v <= TE_NEXT_EVENT_FAST_MAX); return v; } JEMALLOC_ALWAYS_INLINE void te_ctx_next_event_fast_set(te_ctx_t *ctx, uint64_t v) { assert(v <= TE_NEXT_EVENT_FAST_MAX); *ctx->next_event_fast = v; } JEMALLOC_ALWAYS_INLINE void te_next_event_fast_set_non_nominal(tsd_t *tsd) { /* * Set the fast thresholds to zero when tsd is non-nominal. Use the * unsafe getter as this may get called during tsd init and clean up. */ *tsd_thread_allocated_next_event_fastp_get_unsafe(tsd) = 0; *tsd_thread_deallocated_next_event_fastp_get_unsafe(tsd) = 0; } /* For next_event. Setter also updates the fast threshold. */ JEMALLOC_ALWAYS_INLINE uint64_t te_ctx_next_event_get(te_ctx_t *ctx) { return *ctx->next_event; } JEMALLOC_ALWAYS_INLINE void te_ctx_next_event_set(tsd_t *tsd, te_ctx_t *ctx, uint64_t v) { *ctx->next_event = v; te_recompute_fast_threshold(tsd); } /* * The function checks in debug mode whether the thread event counters are in * a consistent state, which forms the invariants before and after each round * of thread event handling that we can rely on and need to promise. * The invariants are only temporarily violated in the middle of * te_event_advance() if an event is triggered (the te_event_trigger() call at * the end will restore the invariants). */ JEMALLOC_ALWAYS_INLINE void te_assert_invariants(tsd_t *tsd) { if (config_debug) { te_assert_invariants_debug(tsd); } } JEMALLOC_ALWAYS_INLINE void te_ctx_get(tsd_t *tsd, te_ctx_t *ctx, bool is_alloc) { ctx->is_alloc = is_alloc; if (is_alloc) { ctx->current = tsd_thread_allocatedp_get(tsd); ctx->last_event = tsd_thread_allocated_last_eventp_get(tsd); ctx->next_event = tsd_thread_allocated_next_eventp_get(tsd); ctx->next_event_fast = tsd_thread_allocated_next_event_fastp_get(tsd); } else { ctx->current = tsd_thread_deallocatedp_get(tsd); ctx->last_event = tsd_thread_deallocated_last_eventp_get(tsd); ctx->next_event = tsd_thread_deallocated_next_eventp_get(tsd); ctx->next_event_fast = tsd_thread_deallocated_next_event_fastp_get(tsd); } } /* * The lookahead functionality facilitates events to be able to lookahead, i.e. * without touching the event counters, to determine whether an event would be * triggered. The event counters are not advanced until the end of the * allocation / deallocation calls, so the lookahead can be useful if some * preparation work for some event must be done early in the allocation / * deallocation calls. * * Currently only the profiling sampling event needs the lookahead * functionality, so we don't yet define general purpose lookahead functions. * * Surplus is a terminology referring to the amount of bytes beyond what's * needed for triggering an event, which can be a useful quantity to have in * general when lookahead is being called. */ JEMALLOC_ALWAYS_INLINE bool te_prof_sample_event_lookahead_surplus(tsd_t *tsd, size_t usize, size_t *surplus) { if (surplus != NULL) { /* * This is a dead store: the surplus will be overwritten before * any read. The initialization suppresses compiler warnings. * Meanwhile, using SIZE_MAX to initialize is good for * debugging purpose, because a valid surplus value is strictly * less than usize, which is at most SIZE_MAX. */ *surplus = SIZE_MAX; } if (unlikely(!tsd_nominal(tsd) || tsd_reentrancy_level_get(tsd) > 0)) { return false; } /* The subtraction is intentionally susceptible to underflow. */ uint64_t accumbytes = tsd_thread_allocated_get(tsd) + usize - tsd_thread_allocated_last_event_get(tsd); uint64_t sample_wait = tsd_prof_sample_event_wait_get(tsd); if (accumbytes < sample_wait) { return false; } assert(accumbytes - sample_wait < (uint64_t)usize); if (surplus != NULL) { *surplus = (size_t)(accumbytes - sample_wait); } return true; } JEMALLOC_ALWAYS_INLINE bool te_prof_sample_event_lookahead(tsd_t *tsd, size_t usize) { return te_prof_sample_event_lookahead_surplus(tsd, usize, NULL); } JEMALLOC_ALWAYS_INLINE void te_event_advance(tsd_t *tsd, size_t usize, bool is_alloc) { te_assert_invariants(tsd); te_ctx_t ctx; te_ctx_get(tsd, &ctx, is_alloc); uint64_t bytes_before = te_ctx_current_bytes_get(&ctx); te_ctx_current_bytes_set(&ctx, bytes_before + usize); /* The subtraction is intentionally susceptible to underflow. */ if (likely(usize < te_ctx_next_event_get(&ctx) - bytes_before)) { te_assert_invariants(tsd); } else { te_event_trigger(tsd, &ctx); } } JEMALLOC_ALWAYS_INLINE void thread_dalloc_event(tsd_t *tsd, size_t usize) { te_event_advance(tsd, usize, false); } JEMALLOC_ALWAYS_INLINE void thread_alloc_event(tsd_t *tsd, size_t usize) { te_event_advance(tsd, usize, true); } #endif /* JEMALLOC_INTERNAL_THREAD_EVENT_H */