#define JEMALLOC_C_ #include "jemalloc/internal/jemalloc_preamble.h" #include "jemalloc/internal/jemalloc_internal_includes.h" #include "jemalloc/internal/assert.h" #include "jemalloc/internal/atomic.h" #include "jemalloc/internal/buf_writer.h" #include "jemalloc/internal/ctl.h" #include "jemalloc/internal/emap.h" #include "jemalloc/internal/extent_dss.h" #include "jemalloc/internal/extent_mmap.h" #include "jemalloc/internal/fxp.h" #include "jemalloc/internal/san.h" #include "jemalloc/internal/hook.h" #include "jemalloc/internal/jemalloc_internal_types.h" #include "jemalloc/internal/log.h" #include "jemalloc/internal/malloc_io.h" #include "jemalloc/internal/mutex.h" #include "jemalloc/internal/nstime.h" #include "jemalloc/internal/rtree.h" #include "jemalloc/internal/safety_check.h" #include "jemalloc/internal/sc.h" #include "jemalloc/internal/spin.h" #include "jemalloc/internal/sz.h" #include "jemalloc/internal/ticker.h" #include "jemalloc/internal/thread_event.h" #include "jemalloc/internal/util.h" /******************************************************************************/ /* Data. */ /* Runtime configuration options. */ const char *je_malloc_conf #ifndef _WIN32 JEMALLOC_ATTR(weak) #endif ; /* * The usual rule is that the closer to runtime you are, the higher priority * your configuration settings are (so the jemalloc config options get lower * priority than the per-binary setting, which gets lower priority than the /etc * setting, which gets lower priority than the environment settings). * * But it's a fairly common use case in some testing environments for a user to * be able to control the binary, but nothing else (e.g. a performancy canary * uses the production OS and environment variables, but can run any binary in * those circumstances). For these use cases, it's handy to have an in-binary * mechanism for overriding environment variable settings, with the idea that if * the results are positive they get promoted to the official settings, and * moved from the binary to the environment variable. * * We don't actually want this to be widespread, so we'll give it a silly name * and not mention it in headers or documentation. */ const char *je_malloc_conf_2_conf_harder #ifndef _WIN32 JEMALLOC_ATTR(weak) #endif ; bool opt_abort = #ifdef JEMALLOC_DEBUG true #else false #endif ; bool opt_abort_conf = #ifdef JEMALLOC_DEBUG true #else false #endif ; /* Intentionally default off, even with debug builds. */ bool opt_confirm_conf = false; const char *opt_junk = #if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL)) "true" #else "false" #endif ; bool opt_junk_alloc = #if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL)) true #else false #endif ; bool opt_junk_free = #if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL)) true #else false #endif ; bool opt_trust_madvise = #ifdef JEMALLOC_PURGE_MADVISE_DONTNEED_ZEROS false #else true #endif ; bool opt_cache_oblivious = #ifdef JEMALLOC_CACHE_OBLIVIOUS true #else false #endif ; zero_realloc_action_t opt_zero_realloc_action = #ifdef JEMALLOC_ZERO_REALLOC_DEFAULT_FREE zero_realloc_action_free #else zero_realloc_action_alloc #endif ; atomic_zu_t zero_realloc_count = ATOMIC_INIT(0); const char *zero_realloc_mode_names[] = { "alloc", "free", "abort", }; /* * These are the documented values for junk fill debugging facilities -- see the * man page. */ static const uint8_t junk_alloc_byte = 0xa5; static const uint8_t junk_free_byte = 0x5a; static void default_junk_alloc(void *ptr, size_t usize) { memset(ptr, junk_alloc_byte, usize); } static void default_junk_free(void *ptr, size_t usize) { memset(ptr, junk_free_byte, usize); } void (*junk_alloc_callback)(void *ptr, size_t size) = &default_junk_alloc; void (*junk_free_callback)(void *ptr, size_t size) = &default_junk_free; bool opt_utrace = false; bool opt_xmalloc = false; bool opt_experimental_infallible_new = false; bool opt_zero = false; unsigned opt_narenas = 0; fxp_t opt_narenas_ratio = FXP_INIT_INT(4); unsigned ncpus; /* Protects arenas initialization. */ malloc_mutex_t arenas_lock; /* The global hpa, and whether it's on. */ bool opt_hpa = false; hpa_shard_opts_t opt_hpa_opts = HPA_SHARD_OPTS_DEFAULT; sec_opts_t opt_hpa_sec_opts = SEC_OPTS_DEFAULT; /* * Arenas that are used to service external requests. Not all elements of the * arenas array are necessarily used; arenas are created lazily as needed. * * arenas[0..narenas_auto) are used for automatic multiplexing of threads and * arenas. arenas[narenas_auto..narenas_total) are only used if the application * takes some action to create them and allocate from them. * * Points to an arena_t. */ JEMALLOC_ALIGNED(CACHELINE) atomic_p_t arenas[MALLOCX_ARENA_LIMIT]; static atomic_u_t narenas_total; /* Use narenas_total_*(). */ /* Below three are read-only after initialization. */ static arena_t *a0; /* arenas[0]. */ unsigned narenas_auto; unsigned manual_arena_base; malloc_init_t malloc_init_state = malloc_init_uninitialized; /* False should be the common case. Set to true to trigger initialization. */ bool malloc_slow = true; /* When malloc_slow is true, set the corresponding bits for sanity check. */ enum { flag_opt_junk_alloc = (1U), flag_opt_junk_free = (1U << 1), flag_opt_zero = (1U << 2), flag_opt_utrace = (1U << 3), flag_opt_xmalloc = (1U << 4) }; static uint8_t malloc_slow_flags; #ifdef JEMALLOC_THREADED_INIT /* Used to let the initializing thread recursively allocate. */ # define NO_INITIALIZER ((unsigned long)0) # define INITIALIZER pthread_self() # define IS_INITIALIZER (malloc_initializer == pthread_self()) static pthread_t malloc_initializer = NO_INITIALIZER; #else # define NO_INITIALIZER false # define INITIALIZER true # define IS_INITIALIZER malloc_initializer static bool malloc_initializer = NO_INITIALIZER; #endif /* Used to avoid initialization races. */ #ifdef _WIN32 #if _WIN32_WINNT >= 0x0600 static malloc_mutex_t init_lock = SRWLOCK_INIT; #else static malloc_mutex_t init_lock; static bool init_lock_initialized = false; JEMALLOC_ATTR(constructor) static void WINAPI _init_init_lock(void) { /* * If another constructor in the same binary is using mallctl to e.g. * set up extent hooks, it may end up running before this one, and * malloc_init_hard will crash trying to lock the uninitialized lock. So * we force an initialization of the lock in malloc_init_hard as well. * We don't try to care about atomicity of the accessed to the * init_lock_initialized boolean, since it really only matters early in * the process creation, before any separate thread normally starts * doing anything. */ if (!init_lock_initialized) { malloc_mutex_init(&init_lock, "init", WITNESS_RANK_INIT, malloc_mutex_rank_exclusive); } init_lock_initialized = true; } #ifdef _MSC_VER # pragma section(".CRT$XCU", read) JEMALLOC_SECTION(".CRT$XCU") JEMALLOC_ATTR(used) static const void (WINAPI *init_init_lock)(void) = _init_init_lock; #endif #endif #else static malloc_mutex_t init_lock = MALLOC_MUTEX_INITIALIZER; #endif typedef struct { void *p; /* Input pointer (as in realloc(p, s)). */ size_t s; /* Request size. */ void *r; /* Result pointer. */ } malloc_utrace_t; #ifdef JEMALLOC_UTRACE # define UTRACE(a, b, c) do { \ if (unlikely(opt_utrace)) { \ int utrace_serrno = errno; \ malloc_utrace_t ut; \ ut.p = (a); \ ut.s = (b); \ ut.r = (c); \ UTRACE_CALL(&ut, sizeof(ut)); \ errno = utrace_serrno; \ } \ } while (0) #else # define UTRACE(a, b, c) #endif /* Whether encountered any invalid config options. */ static bool had_conf_error = false; /******************************************************************************/ /* * Function prototypes for static functions that are referenced prior to * definition. */ static bool malloc_init_hard_a0(void); static bool malloc_init_hard(void); /******************************************************************************/ /* * Begin miscellaneous support functions. */ JEMALLOC_ALWAYS_INLINE bool malloc_init_a0(void) { if (unlikely(malloc_init_state == malloc_init_uninitialized)) { return malloc_init_hard_a0(); } return false; } JEMALLOC_ALWAYS_INLINE bool malloc_init(void) { if (unlikely(!malloc_initialized()) && malloc_init_hard()) { return true; } return false; } /* * The a0*() functions are used instead of i{d,}alloc() in situations that * cannot tolerate TLS variable access. */ static void * a0ialloc(size_t size, bool zero, bool is_internal) { if (unlikely(malloc_init_a0())) { return NULL; } return iallocztm(TSDN_NULL, size, sz_size2index(size), zero, NULL, is_internal, arena_get(TSDN_NULL, 0, true), true); } static void a0idalloc(void *ptr, bool is_internal) { idalloctm(TSDN_NULL, ptr, NULL, NULL, is_internal, true); } void * a0malloc(size_t size) { return a0ialloc(size, false, true); } void a0dalloc(void *ptr) { a0idalloc(ptr, true); } /* * FreeBSD's libc uses the bootstrap_*() functions in bootstrap-sensitive * situations that cannot tolerate TLS variable access (TLS allocation and very * early internal data structure initialization). */ void * bootstrap_malloc(size_t size) { if (unlikely(size == 0)) { size = 1; } return a0ialloc(size, false, false); } void * bootstrap_calloc(size_t num, size_t size) { size_t num_size; num_size = num * size; if (unlikely(num_size == 0)) { assert(num == 0 || size == 0); num_size = 1; } return a0ialloc(num_size, true, false); } void bootstrap_free(void *ptr) { if (unlikely(ptr == NULL)) { return; } a0idalloc(ptr, false); } void arena_set(unsigned ind, arena_t *arena) { atomic_store_p(&arenas[ind], arena, ATOMIC_RELEASE); } static void narenas_total_set(unsigned narenas) { atomic_store_u(&narenas_total, narenas, ATOMIC_RELEASE); } static void narenas_total_inc(void) { atomic_fetch_add_u(&narenas_total, 1, ATOMIC_RELEASE); } unsigned narenas_total_get(void) { return atomic_load_u(&narenas_total, ATOMIC_ACQUIRE); } /* Create a new arena and insert it into the arenas array at index ind. */ static arena_t * arena_init_locked(tsdn_t *tsdn, unsigned ind, const arena_config_t *config) { arena_t *arena; assert(ind <= narenas_total_get()); if (ind >= MALLOCX_ARENA_LIMIT) { return NULL; } if (ind == narenas_total_get()) { narenas_total_inc(); } /* * Another thread may have already initialized arenas[ind] if it's an * auto arena. */ arena = arena_get(tsdn, ind, false); if (arena != NULL) { assert(arena_is_auto(arena)); return arena; } /* Actually initialize the arena. */ arena = arena_new(tsdn, ind, config); return arena; } static void arena_new_create_background_thread(tsdn_t *tsdn, unsigned ind) { if (ind == 0) { return; } /* * Avoid creating a new background thread just for the huge arena, which * purges eagerly by default. */ if (have_background_thread && !arena_is_huge(ind)) { if (background_thread_create(tsdn_tsd(tsdn), ind)) { malloc_printf(": error in background thread " "creation for arena %u. Abort.\n", ind); abort(); } } } arena_t * arena_init(tsdn_t *tsdn, unsigned ind, const arena_config_t *config) { arena_t *arena; malloc_mutex_lock(tsdn, &arenas_lock); arena = arena_init_locked(tsdn, ind, config); malloc_mutex_unlock(tsdn, &arenas_lock); arena_new_create_background_thread(tsdn, ind); return arena; } static void arena_bind(tsd_t *tsd, unsigned ind, bool internal) { arena_t *arena = arena_get(tsd_tsdn(tsd), ind, false); arena_nthreads_inc(arena, internal); if (internal) { tsd_iarena_set(tsd, arena); } else { tsd_arena_set(tsd, arena); unsigned shard = atomic_fetch_add_u(&arena->binshard_next, 1, ATOMIC_RELAXED); tsd_binshards_t *bins = tsd_binshardsp_get(tsd); for (unsigned i = 0; i < SC_NBINS; i++) { assert(bin_infos[i].n_shards > 0 && bin_infos[i].n_shards <= BIN_SHARDS_MAX); bins->binshard[i] = shard % bin_infos[i].n_shards; } } } void arena_migrate(tsd_t *tsd, arena_t *oldarena, arena_t *newarena) { assert(oldarena != NULL); assert(newarena != NULL); arena_nthreads_dec(oldarena, false); arena_nthreads_inc(newarena, false); tsd_arena_set(tsd, newarena); if (arena_nthreads_get(oldarena, false) == 0) { /* Purge if the old arena has no associated threads anymore. */ arena_decay(tsd_tsdn(tsd), oldarena, /* is_background_thread */ false, /* all */ true); } } static void arena_unbind(tsd_t *tsd, unsigned ind, bool internal) { arena_t *arena; arena = arena_get(tsd_tsdn(tsd), ind, false); arena_nthreads_dec(arena, internal); if (internal) { tsd_iarena_set(tsd, NULL); } else { tsd_arena_set(tsd, NULL); } } /* Slow path, called only by arena_choose(). */ arena_t * arena_choose_hard(tsd_t *tsd, bool internal) { arena_t *ret JEMALLOC_CC_SILENCE_INIT(NULL); if (have_percpu_arena && PERCPU_ARENA_ENABLED(opt_percpu_arena)) { unsigned choose = percpu_arena_choose(); ret = arena_get(tsd_tsdn(tsd), choose, true); assert(ret != NULL); arena_bind(tsd, arena_ind_get(ret), false); arena_bind(tsd, arena_ind_get(ret), true); return ret; } if (narenas_auto > 1) { unsigned i, j, choose[2], first_null; bool is_new_arena[2]; /* * Determine binding for both non-internal and internal * allocation. * * choose[0]: For application allocation. * choose[1]: For internal metadata allocation. */ for (j = 0; j < 2; j++) { choose[j] = 0; is_new_arena[j] = false; } first_null = narenas_auto; malloc_mutex_lock(tsd_tsdn(tsd), &arenas_lock); assert(arena_get(tsd_tsdn(tsd), 0, false) != NULL); for (i = 1; i < narenas_auto; i++) { if (arena_get(tsd_tsdn(tsd), i, false) != NULL) { /* * Choose the first arena that has the lowest * number of threads assigned to it. */ for (j = 0; j < 2; j++) { if (arena_nthreads_get(arena_get( tsd_tsdn(tsd), i, false), !!j) < arena_nthreads_get(arena_get( tsd_tsdn(tsd), choose[j], false), !!j)) { choose[j] = i; } } } else if (first_null == narenas_auto) { /* * Record the index of the first uninitialized * arena, in case all extant arenas are in use. * * NB: It is possible for there to be * discontinuities in terms of initialized * versus uninitialized arenas, due to the * "thread.arena" mallctl. */ first_null = i; } } for (j = 0; j < 2; j++) { if (arena_nthreads_get(arena_get(tsd_tsdn(tsd), choose[j], false), !!j) == 0 || first_null == narenas_auto) { /* * Use an unloaded arena, or the least loaded * arena if all arenas are already initialized. */ if (!!j == internal) { ret = arena_get(tsd_tsdn(tsd), choose[j], false); } } else { arena_t *arena; /* Initialize a new arena. */ choose[j] = first_null; arena = arena_init_locked(tsd_tsdn(tsd), choose[j], &arena_config_default); if (arena == NULL) { malloc_mutex_unlock(tsd_tsdn(tsd), &arenas_lock); return NULL; } is_new_arena[j] = true; if (!!j == internal) { ret = arena; } } arena_bind(tsd, choose[j], !!j); } malloc_mutex_unlock(tsd_tsdn(tsd), &arenas_lock); for (j = 0; j < 2; j++) { if (is_new_arena[j]) { assert(choose[j] > 0); arena_new_create_background_thread( tsd_tsdn(tsd), choose[j]); } } } else { ret = arena_get(tsd_tsdn(tsd), 0, false); arena_bind(tsd, 0, false); arena_bind(tsd, 0, true); } return ret; } void iarena_cleanup(tsd_t *tsd) { arena_t *iarena; iarena = tsd_iarena_get(tsd); if (iarena != NULL) { arena_unbind(tsd, arena_ind_get(iarena), true); } } void arena_cleanup(tsd_t *tsd) { arena_t *arena; arena = tsd_arena_get(tsd); if (arena != NULL) { arena_unbind(tsd, arena_ind_get(arena), false); } } static void stats_print_atexit(void) { if (config_stats) { tsdn_t *tsdn; unsigned narenas, i; tsdn = tsdn_fetch(); /* * Merge stats from extant threads. This is racy, since * individual threads do not lock when recording tcache stats * events. As a consequence, the final stats may be slightly * out of date by the time they are reported, if other threads * continue to allocate. */ for (i = 0, narenas = narenas_total_get(); i < narenas; i++) { arena_t *arena = arena_get(tsdn, i, false); if (arena != NULL) { tcache_slow_t *tcache_slow; malloc_mutex_lock(tsdn, &arena->tcache_ql_mtx); ql_foreach(tcache_slow, &arena->tcache_ql, link) { tcache_stats_merge(tsdn, tcache_slow->tcache, arena); } malloc_mutex_unlock(tsdn, &arena->tcache_ql_mtx); } } } je_malloc_stats_print(NULL, NULL, opt_stats_print_opts); } /* * Ensure that we don't hold any locks upon entry to or exit from allocator * code (in a "broad" sense that doesn't count a reentrant allocation as an * entrance or exit). */ JEMALLOC_ALWAYS_INLINE void check_entry_exit_locking(tsdn_t *tsdn) { if (!config_debug) { return; } if (tsdn_null(tsdn)) { return; } tsd_t *tsd = tsdn_tsd(tsdn); /* * It's possible we hold locks at entry/exit if we're in a nested * allocation. */ int8_t reentrancy_level = tsd_reentrancy_level_get(tsd); if (reentrancy_level != 0) { return; } witness_assert_lockless(tsdn_witness_tsdp_get(tsdn)); } /* * End miscellaneous support functions. */ /******************************************************************************/ /* * Begin initialization functions. */ static char * jemalloc_secure_getenv(const char *name) { #ifdef JEMALLOC_HAVE_SECURE_GETENV return secure_getenv(name); #else # ifdef JEMALLOC_HAVE_ISSETUGID if (issetugid() != 0) { return NULL; } # endif return getenv(name); #endif } static unsigned malloc_ncpus(void) { long result; #ifdef _WIN32 SYSTEM_INFO si; GetSystemInfo(&si); result = si.dwNumberOfProcessors; #elif defined(CPU_COUNT) /* * glibc >= 2.6 has the CPU_COUNT macro. * * glibc's sysconf() uses isspace(). glibc allocates for the first time * *before* setting up the isspace tables. Therefore we need a * different method to get the number of CPUs. * * The getaffinity approach is also preferred when only a subset of CPUs * is available, to avoid using more arenas than necessary. */ { # if defined(__FreeBSD__) || defined(__DragonFly__) cpuset_t set; # else cpu_set_t set; # endif # if defined(JEMALLOC_HAVE_SCHED_SETAFFINITY) sched_getaffinity(0, sizeof(set), &set); # else pthread_getaffinity_np(pthread_self(), sizeof(set), &set); # endif result = CPU_COUNT(&set); } #else result = sysconf(_SC_NPROCESSORS_ONLN); #endif return ((result == -1) ? 1 : (unsigned)result); } /* * Ensure that number of CPUs is determistinc, i.e. it is the same based on: * - sched_getaffinity() * - _SC_NPROCESSORS_ONLN * - _SC_NPROCESSORS_CONF * Since otherwise tricky things is possible with percpu arenas in use. */ static bool malloc_cpu_count_is_deterministic() { #ifdef _WIN32 return true; #else long cpu_onln = sysconf(_SC_NPROCESSORS_ONLN); long cpu_conf = sysconf(_SC_NPROCESSORS_CONF); if (cpu_onln != cpu_conf) { return false; } # if defined(CPU_COUNT) # if defined(__FreeBSD__) || defined(__DragonFly__) cpuset_t set; # else cpu_set_t set; # endif /* __FreeBSD__ */ # if defined(JEMALLOC_HAVE_SCHED_SETAFFINITY) sched_getaffinity(0, sizeof(set), &set); # else /* !JEMALLOC_HAVE_SCHED_SETAFFINITY */ pthread_getaffinity_np(pthread_self(), sizeof(set), &set); # endif /* JEMALLOC_HAVE_SCHED_SETAFFINITY */ long cpu_affinity = CPU_COUNT(&set); if (cpu_affinity != cpu_conf) { return false; } # endif /* CPU_COUNT */ return true; #endif } static void init_opt_stats_opts(const char *v, size_t vlen, char *dest) { size_t opts_len = strlen(dest); assert(opts_len <= stats_print_tot_num_options); for (size_t i = 0; i < vlen; i++) { switch (v[i]) { #define OPTION(o, v, d, s) case o: break; STATS_PRINT_OPTIONS #undef OPTION default: continue; } if (strchr(dest, v[i]) != NULL) { /* Ignore repeated. */ continue; } dest[opts_len++] = v[i]; dest[opts_len] = '\0'; assert(opts_len <= stats_print_tot_num_options); } assert(opts_len == strlen(dest)); } /* Reads the next size pair in a multi-sized option. */ static bool malloc_conf_multi_sizes_next(const char **slab_size_segment_cur, size_t *vlen_left, size_t *slab_start, size_t *slab_end, size_t *new_size) { const char *cur = *slab_size_segment_cur; char *end; uintmax_t um; set_errno(0); /* First number, then '-' */ um = malloc_strtoumax(cur, &end, 0); if (get_errno() != 0 || *end != '-') { return true; } *slab_start = (size_t)um; cur = end + 1; /* Second number, then ':' */ um = malloc_strtoumax(cur, &end, 0); if (get_errno() != 0 || *end != ':') { return true; } *slab_end = (size_t)um; cur = end + 1; /* Last number */ um = malloc_strtoumax(cur, &end, 0); if (get_errno() != 0) { return true; } *new_size = (size_t)um; /* Consume the separator if there is one. */ if (*end == '|') { end++; } *vlen_left -= end - *slab_size_segment_cur; *slab_size_segment_cur = end; return false; } static bool malloc_conf_next(char const **opts_p, char const **k_p, size_t *klen_p, char const **v_p, size_t *vlen_p) { bool accept; const char *opts = *opts_p; *k_p = opts; for (accept = false; !accept;) { switch (*opts) { case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G': case 'H': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': case 'Q': case 'R': case 'S': case 'T': case 'U': case 'V': case 'W': case 'X': case 'Y': case 'Z': case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g': case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n': case 'o': case 'p': case 'q': case 'r': case 's': case 't': case 'u': case 'v': case 'w': case 'x': case 'y': case 'z': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case '_': opts++; break; case ':': opts++; *klen_p = (uintptr_t)opts - 1 - (uintptr_t)*k_p; *v_p = opts; accept = true; break; case '\0': if (opts != *opts_p) { malloc_write(": Conf string ends " "with key\n"); had_conf_error = true; } return true; default: malloc_write(": Malformed conf string\n"); had_conf_error = true; return true; } } for (accept = false; !accept;) { switch (*opts) { case ',': opts++; /* * Look ahead one character here, because the next time * this function is called, it will assume that end of * input has been cleanly reached if no input remains, * but we have optimistically already consumed the * comma if one exists. */ if (*opts == '\0') { malloc_write(": Conf string ends " "with comma\n"); had_conf_error = true; } *vlen_p = (uintptr_t)opts - 1 - (uintptr_t)*v_p; accept = true; break; case '\0': *vlen_p = (uintptr_t)opts - (uintptr_t)*v_p; accept = true; break; default: opts++; break; } } *opts_p = opts; return false; } static void malloc_abort_invalid_conf(void) { assert(opt_abort_conf); malloc_printf(": Abort (abort_conf:true) on invalid conf " "value (see above).\n"); abort(); } static void malloc_conf_error(const char *msg, const char *k, size_t klen, const char *v, size_t vlen) { malloc_printf(": %s: %.*s:%.*s\n", msg, (int)klen, k, (int)vlen, v); /* If abort_conf is set, error out after processing all options. */ const char *experimental = "experimental_"; if (strncmp(k, experimental, strlen(experimental)) == 0) { /* However, tolerate experimental features. */ return; } had_conf_error = true; } static void malloc_slow_flag_init(void) { /* * Combine the runtime options into malloc_slow for fast path. Called * after processing all the options. */ malloc_slow_flags |= (opt_junk_alloc ? flag_opt_junk_alloc : 0) | (opt_junk_free ? flag_opt_junk_free : 0) | (opt_zero ? flag_opt_zero : 0) | (opt_utrace ? flag_opt_utrace : 0) | (opt_xmalloc ? flag_opt_xmalloc : 0); malloc_slow = (malloc_slow_flags != 0); } /* Number of sources for initializing malloc_conf */ #define MALLOC_CONF_NSOURCES 5 static const char * obtain_malloc_conf(unsigned which_source, char buf[PATH_MAX + 1]) { if (config_debug) { static unsigned read_source = 0; /* * Each source should only be read once, to minimize # of * syscalls on init. */ assert(read_source++ == which_source); } assert(which_source < MALLOC_CONF_NSOURCES); const char *ret; switch (which_source) { case 0: ret = config_malloc_conf; break; case 1: if (je_malloc_conf != NULL) { /* Use options that were compiled into the program. */ ret = je_malloc_conf; } else { /* No configuration specified. */ ret = NULL; } break; case 2: { ssize_t linklen = 0; #ifndef _WIN32 int saved_errno = errno; const char *linkname = # ifdef JEMALLOC_PREFIX "/etc/"JEMALLOC_PREFIX"malloc.conf" # else "/etc/malloc.conf" # endif ; /* * Try to use the contents of the "/etc/malloc.conf" symbolic * link's name. */ #ifndef JEMALLOC_READLINKAT linklen = readlink(linkname, buf, PATH_MAX); #else linklen = readlinkat(AT_FDCWD, linkname, buf, PATH_MAX); #endif if (linklen == -1) { /* No configuration specified. */ linklen = 0; /* Restore errno. */ set_errno(saved_errno); } #endif buf[linklen] = '\0'; ret = buf; break; } case 3: { const char *envname = #ifdef JEMALLOC_PREFIX JEMALLOC_CPREFIX"MALLOC_CONF" #else "MALLOC_CONF" #endif ; if ((ret = jemalloc_secure_getenv(envname)) != NULL) { /* * Do nothing; opts is already initialized to the value * of the MALLOC_CONF environment variable. */ } else { /* No configuration specified. */ ret = NULL; } break; } case 4: { ret = je_malloc_conf_2_conf_harder; break; } default: not_reached(); ret = NULL; } return ret; } static void malloc_conf_init_helper(sc_data_t *sc_data, unsigned bin_shard_sizes[SC_NBINS], bool initial_call, const char *opts_cache[MALLOC_CONF_NSOURCES], char buf[PATH_MAX + 1]) { static const char *opts_explain[MALLOC_CONF_NSOURCES] = { "string specified via --with-malloc-conf", "string pointed to by the global variable malloc_conf", ("\"name\" of the file referenced by the symbolic link named " "/etc/malloc.conf"), "value of the environment variable MALLOC_CONF", ("string pointed to by the global variable " "malloc_conf_2_conf_harder"), }; unsigned i; const char *opts, *k, *v; size_t klen, vlen; for (i = 0; i < MALLOC_CONF_NSOURCES; i++) { /* Get runtime configuration. */ if (initial_call) { opts_cache[i] = obtain_malloc_conf(i, buf); } opts = opts_cache[i]; if (!initial_call && opt_confirm_conf) { malloc_printf( ": malloc_conf #%u (%s): \"%s\"\n", i + 1, opts_explain[i], opts != NULL ? opts : ""); } if (opts == NULL) { continue; } while (*opts != '\0' && !malloc_conf_next(&opts, &k, &klen, &v, &vlen)) { #define CONF_ERROR(msg, k, klen, v, vlen) \ if (!initial_call) { \ malloc_conf_error( \ msg, k, klen, v, vlen); \ cur_opt_valid = false; \ } #define CONF_CONTINUE { \ if (!initial_call && opt_confirm_conf \ && cur_opt_valid) { \ malloc_printf(": -- " \ "Set conf value: %.*s:%.*s" \ "\n", (int)klen, k, \ (int)vlen, v); \ } \ continue; \ } #define CONF_MATCH(n) \ (sizeof(n)-1 == klen && strncmp(n, k, klen) == 0) #define CONF_MATCH_VALUE(n) \ (sizeof(n)-1 == vlen && strncmp(n, v, vlen) == 0) #define CONF_HANDLE_BOOL(o, n) \ if (CONF_MATCH(n)) { \ if (CONF_MATCH_VALUE("true")) { \ o = true; \ } else if (CONF_MATCH_VALUE("false")) { \ o = false; \ } else { \ CONF_ERROR("Invalid conf value",\ k, klen, v, vlen); \ } \ CONF_CONTINUE; \ } /* * One of the CONF_MIN macros below expands, in one of the use points, * to "unsigned integer < 0", which is always false, triggering the * GCC -Wtype-limits warning, which we disable here and re-enable below. */ JEMALLOC_DIAGNOSTIC_PUSH JEMALLOC_DIAGNOSTIC_IGNORE_TYPE_LIMITS #define CONF_DONT_CHECK_MIN(um, min) false #define CONF_CHECK_MIN(um, min) ((um) < (min)) #define CONF_DONT_CHECK_MAX(um, max) false #define CONF_CHECK_MAX(um, max) ((um) > (max)) #define CONF_VALUE_READ(max_t, result) \ char *end; \ set_errno(0); \ result = (max_t)malloc_strtoumax(v, &end, 0); #define CONF_VALUE_READ_FAIL() \ (get_errno() != 0 || (uintptr_t)end - (uintptr_t)v != vlen) #define CONF_HANDLE_T(t, max_t, o, n, min, max, check_min, check_max, clip) \ if (CONF_MATCH(n)) { \ max_t mv; \ CONF_VALUE_READ(max_t, mv) \ if (CONF_VALUE_READ_FAIL()) { \ CONF_ERROR("Invalid conf value",\ k, klen, v, vlen); \ } else if (clip) { \ if (check_min(mv, (t)(min))) { \ o = (t)(min); \ } else if ( \ check_max(mv, (t)(max))) { \ o = (t)(max); \ } else { \ o = (t)mv; \ } \ } else { \ if (check_min(mv, (t)(min)) || \ check_max(mv, (t)(max))) { \ CONF_ERROR( \ "Out-of-range " \ "conf value", \ k, klen, v, vlen); \ } else { \ o = (t)mv; \ } \ } \ CONF_CONTINUE; \ } #define CONF_HANDLE_T_U(t, o, n, min, max, check_min, check_max, clip) \ CONF_HANDLE_T(t, uintmax_t, o, n, min, max, check_min, \ check_max, clip) #define CONF_HANDLE_T_SIGNED(t, o, n, min, max, check_min, check_max, clip)\ CONF_HANDLE_T(t, intmax_t, o, n, min, max, check_min, \ check_max, clip) #define CONF_HANDLE_UNSIGNED(o, n, min, max, check_min, check_max, \ clip) \ CONF_HANDLE_T_U(unsigned, o, n, min, max, \ check_min, check_max, clip) #define CONF_HANDLE_SIZE_T(o, n, min, max, check_min, check_max, clip) \ CONF_HANDLE_T_U(size_t, o, n, min, max, \ check_min, check_max, clip) #define CONF_HANDLE_INT64_T(o, n, min, max, check_min, check_max, clip) \ CONF_HANDLE_T_SIGNED(int64_t, o, n, min, max, \ check_min, check_max, clip) #define CONF_HANDLE_UINT64_T(o, n, min, max, check_min, check_max, clip)\ CONF_HANDLE_T_U(uint64_t, o, n, min, max, \ check_min, check_max, clip) #define CONF_HANDLE_SSIZE_T(o, n, min, max) \ CONF_HANDLE_T_SIGNED(ssize_t, o, n, min, max, \ CONF_CHECK_MIN, CONF_CHECK_MAX, false) #define CONF_HANDLE_CHAR_P(o, n, d) \ if (CONF_MATCH(n)) { \ size_t cpylen = (vlen <= \ sizeof(o)-1) ? vlen : \ sizeof(o)-1; \ strncpy(o, v, cpylen); \ o[cpylen] = '\0'; \ CONF_CONTINUE; \ } bool cur_opt_valid = true; CONF_HANDLE_BOOL(opt_confirm_conf, "confirm_conf") if (initial_call) { continue; } CONF_HANDLE_BOOL(opt_abort, "abort") CONF_HANDLE_BOOL(opt_abort_conf, "abort_conf") CONF_HANDLE_BOOL(opt_trust_madvise, "trust_madvise") if (strncmp("metadata_thp", k, klen) == 0) { int m; bool match = false; for (m = 0; m < metadata_thp_mode_limit; m++) { if (strncmp(metadata_thp_mode_names[m], v, vlen) == 0) { opt_metadata_thp = m; match = true; break; } } if (!match) { CONF_ERROR("Invalid conf value", k, klen, v, vlen); } CONF_CONTINUE; } CONF_HANDLE_BOOL(opt_retain, "retain") if (strncmp("dss", k, klen) == 0) { int m; bool match = false; for (m = 0; m < dss_prec_limit; m++) { if (strncmp(dss_prec_names[m], v, vlen) == 0) { if (extent_dss_prec_set(m)) { CONF_ERROR( "Error setting dss", k, klen, v, vlen); } else { opt_dss = dss_prec_names[m]; match = true; break; } } } if (!match) { CONF_ERROR("Invalid conf value", k, klen, v, vlen); } CONF_CONTINUE; } if (CONF_MATCH("narenas")) { if (CONF_MATCH_VALUE("default")) { opt_narenas = 0; CONF_CONTINUE; } else { CONF_HANDLE_UNSIGNED(opt_narenas, "narenas", 1, UINT_MAX, CONF_CHECK_MIN, CONF_DONT_CHECK_MAX, /* clip */ false) } } if (CONF_MATCH("narenas_ratio")) { char *end; bool err = fxp_parse(&opt_narenas_ratio, v, &end); if (err || (size_t)(end - v) != vlen) { CONF_ERROR("Invalid conf value", k, klen, v, vlen); } CONF_CONTINUE; } if (CONF_MATCH("bin_shards")) { const char *bin_shards_segment_cur = v; size_t vlen_left = vlen; do { size_t size_start; size_t size_end; size_t nshards; bool err = malloc_conf_multi_sizes_next( &bin_shards_segment_cur, &vlen_left, &size_start, &size_end, &nshards); if (err || bin_update_shard_size( bin_shard_sizes, size_start, size_end, nshards)) { CONF_ERROR( "Invalid settings for " "bin_shards", k, klen, v, vlen); break; } } while (vlen_left > 0); CONF_CONTINUE; } CONF_HANDLE_INT64_T(opt_mutex_max_spin, "mutex_max_spin", -1, INT64_MAX, CONF_CHECK_MIN, CONF_DONT_CHECK_MAX, false); CONF_HANDLE_SSIZE_T(opt_dirty_decay_ms, "dirty_decay_ms", -1, NSTIME_SEC_MAX * KQU(1000) < QU(SSIZE_MAX) ? NSTIME_SEC_MAX * KQU(1000) : SSIZE_MAX); CONF_HANDLE_SSIZE_T(opt_muzzy_decay_ms, "muzzy_decay_ms", -1, NSTIME_SEC_MAX * KQU(1000) < QU(SSIZE_MAX) ? NSTIME_SEC_MAX * KQU(1000) : SSIZE_MAX); CONF_HANDLE_BOOL(opt_stats_print, "stats_print") if (CONF_MATCH("stats_print_opts")) { init_opt_stats_opts(v, vlen, opt_stats_print_opts); CONF_CONTINUE; } CONF_HANDLE_INT64_T(opt_stats_interval, "stats_interval", -1, INT64_MAX, CONF_CHECK_MIN, CONF_DONT_CHECK_MAX, false) if (CONF_MATCH("stats_interval_opts")) { init_opt_stats_opts(v, vlen, opt_stats_interval_opts); CONF_CONTINUE; } if (config_fill) { if (CONF_MATCH("junk")) { if (CONF_MATCH_VALUE("true")) { opt_junk = "true"; opt_junk_alloc = opt_junk_free = true; } else if (CONF_MATCH_VALUE("false")) { opt_junk = "false"; opt_junk_alloc = opt_junk_free = false; } else if (CONF_MATCH_VALUE("alloc")) { opt_junk = "alloc"; opt_junk_alloc = true; opt_junk_free = false; } else if (CONF_MATCH_VALUE("free")) { opt_junk = "free"; opt_junk_alloc = false; opt_junk_free = true; } else { CONF_ERROR( "Invalid conf value", k, klen, v, vlen); } CONF_CONTINUE; } CONF_HANDLE_BOOL(opt_zero, "zero") } if (config_utrace) { CONF_HANDLE_BOOL(opt_utrace, "utrace") } if (config_xmalloc) { CONF_HANDLE_BOOL(opt_xmalloc, "xmalloc") } if (config_enable_cxx) { CONF_HANDLE_BOOL( opt_experimental_infallible_new, "experimental_infallible_new") } CONF_HANDLE_BOOL(opt_tcache, "tcache") CONF_HANDLE_SIZE_T(opt_tcache_max, "tcache_max", 0, TCACHE_MAXCLASS_LIMIT, CONF_DONT_CHECK_MIN, CONF_CHECK_MAX, /* clip */ true) if (CONF_MATCH("lg_tcache_max")) { size_t m; CONF_VALUE_READ(size_t, m) if (CONF_VALUE_READ_FAIL()) { CONF_ERROR("Invalid conf value", k, klen, v, vlen); } else { /* clip if necessary */ if (m > TCACHE_LG_MAXCLASS_LIMIT) { m = TCACHE_LG_MAXCLASS_LIMIT; } opt_tcache_max = (size_t)1 << m; } CONF_CONTINUE; } /* * Anyone trying to set a value outside -16 to 16 is * deeply confused. */ CONF_HANDLE_SSIZE_T(opt_lg_tcache_nslots_mul, "lg_tcache_nslots_mul", -16, 16) /* Ditto with values past 2048. */ CONF_HANDLE_UNSIGNED(opt_tcache_nslots_small_min, "tcache_nslots_small_min", 1, 2048, CONF_CHECK_MIN, CONF_CHECK_MAX, /* clip */ true) CONF_HANDLE_UNSIGNED(opt_tcache_nslots_small_max, "tcache_nslots_small_max", 1, 2048, CONF_CHECK_MIN, CONF_CHECK_MAX, /* clip */ true) CONF_HANDLE_UNSIGNED(opt_tcache_nslots_large, "tcache_nslots_large", 1, 2048, CONF_CHECK_MIN, CONF_CHECK_MAX, /* clip */ true) CONF_HANDLE_SIZE_T(opt_tcache_gc_incr_bytes, "tcache_gc_incr_bytes", 1024, SIZE_T_MAX, CONF_CHECK_MIN, CONF_DONT_CHECK_MAX, /* clip */ true) CONF_HANDLE_SIZE_T(opt_tcache_gc_delay_bytes, "tcache_gc_delay_bytes", 0, SIZE_T_MAX, CONF_DONT_CHECK_MIN, CONF_DONT_CHECK_MAX, /* clip */ false) CONF_HANDLE_UNSIGNED(opt_lg_tcache_flush_small_div, "lg_tcache_flush_small_div", 1, 16, CONF_CHECK_MIN, CONF_CHECK_MAX, /* clip */ true) CONF_HANDLE_UNSIGNED(opt_lg_tcache_flush_large_div, "lg_tcache_flush_large_div", 1, 16, CONF_CHECK_MIN, CONF_CHECK_MAX, /* clip */ true) /* * The runtime option of oversize_threshold remains * undocumented. It may be tweaked in the next major * release (6.0). The default value 8M is rather * conservative / safe. Tuning it further down may * improve fragmentation a bit more, but may also cause * contention on the huge arena. */ CONF_HANDLE_SIZE_T(opt_oversize_threshold, "oversize_threshold", 0, SC_LARGE_MAXCLASS, CONF_DONT_CHECK_MIN, CONF_CHECK_MAX, false) CONF_HANDLE_SIZE_T(opt_lg_extent_max_active_fit, "lg_extent_max_active_fit", 0, (sizeof(size_t) << 3), CONF_DONT_CHECK_MIN, CONF_CHECK_MAX, false) if (strncmp("percpu_arena", k, klen) == 0) { bool match = false; for (int m = percpu_arena_mode_names_base; m < percpu_arena_mode_names_limit; m++) { if (strncmp(percpu_arena_mode_names[m], v, vlen) == 0) { if (!have_percpu_arena) { CONF_ERROR( "No getcpu support", k, klen, v, vlen); } opt_percpu_arena = m; match = true; break; } } if (!match) { CONF_ERROR("Invalid conf value", k, klen, v, vlen); } CONF_CONTINUE; } CONF_HANDLE_BOOL(opt_background_thread, "background_thread"); CONF_HANDLE_SIZE_T(opt_max_background_threads, "max_background_threads", 1, opt_max_background_threads, CONF_CHECK_MIN, CONF_CHECK_MAX, true); CONF_HANDLE_BOOL(opt_hpa, "hpa") CONF_HANDLE_SIZE_T(opt_hpa_opts.slab_max_alloc, "hpa_slab_max_alloc", PAGE, HUGEPAGE, CONF_CHECK_MIN, CONF_CHECK_MAX, true); /* * Accept either a ratio-based or an exact hugification * threshold. */ CONF_HANDLE_SIZE_T(opt_hpa_opts.hugification_threshold, "hpa_hugification_threshold", PAGE, HUGEPAGE, CONF_CHECK_MIN, CONF_CHECK_MAX, true); if (CONF_MATCH("hpa_hugification_threshold_ratio")) { fxp_t ratio; char *end; bool err = fxp_parse(&ratio, v, &end); if (err || (size_t)(end - v) != vlen || ratio > FXP_INIT_INT(1)) { CONF_ERROR("Invalid conf value", k, klen, v, vlen); } else { opt_hpa_opts.hugification_threshold = fxp_mul_frac(HUGEPAGE, ratio); } CONF_CONTINUE; } CONF_HANDLE_UINT64_T( opt_hpa_opts.hugify_delay_ms, "hpa_hugify_delay_ms", 0, 0, CONF_DONT_CHECK_MIN, CONF_DONT_CHECK_MAX, false); CONF_HANDLE_UINT64_T( opt_hpa_opts.min_purge_interval_ms, "hpa_min_purge_interval_ms", 0, 0, CONF_DONT_CHECK_MIN, CONF_DONT_CHECK_MAX, false); if (CONF_MATCH("hpa_dirty_mult")) { if (CONF_MATCH_VALUE("-1")) { opt_hpa_opts.dirty_mult = (fxp_t)-1; CONF_CONTINUE; } fxp_t ratio; char *end; bool err = fxp_parse(&ratio, v, &end); if (err || (size_t)(end - v) != vlen) { CONF_ERROR("Invalid conf value", k, klen, v, vlen); } else { opt_hpa_opts.dirty_mult = ratio; } CONF_CONTINUE; } CONF_HANDLE_SIZE_T(opt_hpa_sec_opts.nshards, "hpa_sec_nshards", 0, 0, CONF_CHECK_MIN, CONF_DONT_CHECK_MAX, true); CONF_HANDLE_SIZE_T(opt_hpa_sec_opts.max_alloc, "hpa_sec_max_alloc", PAGE, 0, CONF_CHECK_MIN, CONF_DONT_CHECK_MAX, true); CONF_HANDLE_SIZE_T(opt_hpa_sec_opts.max_bytes, "hpa_sec_max_bytes", PAGE, 0, CONF_CHECK_MIN, CONF_DONT_CHECK_MAX, true); CONF_HANDLE_SIZE_T(opt_hpa_sec_opts.bytes_after_flush, "hpa_sec_bytes_after_flush", PAGE, 0, CONF_CHECK_MIN, CONF_DONT_CHECK_MAX, true); CONF_HANDLE_SIZE_T(opt_hpa_sec_opts.batch_fill_extra, "hpa_sec_batch_fill_extra", 0, HUGEPAGE_PAGES, CONF_CHECK_MIN, CONF_CHECK_MAX, true); if (CONF_MATCH("slab_sizes")) { if (CONF_MATCH_VALUE("default")) { sc_data_init(sc_data); CONF_CONTINUE; } bool err; const char *slab_size_segment_cur = v; size_t vlen_left = vlen; do { size_t slab_start; size_t slab_end; size_t pgs; err = malloc_conf_multi_sizes_next( &slab_size_segment_cur, &vlen_left, &slab_start, &slab_end, &pgs); if (!err) { sc_data_update_slab_size( sc_data, slab_start, slab_end, (int)pgs); } else { CONF_ERROR("Invalid settings " "for slab_sizes", k, klen, v, vlen); } } while (!err && vlen_left > 0); CONF_CONTINUE; } if (config_prof) { CONF_HANDLE_BOOL(opt_prof, "prof") CONF_HANDLE_CHAR_P(opt_prof_prefix, "prof_prefix", "jeprof") CONF_HANDLE_BOOL(opt_prof_active, "prof_active") CONF_HANDLE_BOOL(opt_prof_thread_active_init, "prof_thread_active_init") CONF_HANDLE_SIZE_T(opt_lg_prof_sample, "lg_prof_sample", 0, (sizeof(uint64_t) << 3) - 1, CONF_DONT_CHECK_MIN, CONF_CHECK_MAX, true) CONF_HANDLE_BOOL(opt_prof_accum, "prof_accum") CONF_HANDLE_SSIZE_T(opt_lg_prof_interval, "lg_prof_interval", -1, (sizeof(uint64_t) << 3) - 1) CONF_HANDLE_BOOL(opt_prof_gdump, "prof_gdump") CONF_HANDLE_BOOL(opt_prof_final, "prof_final") CONF_HANDLE_BOOL(opt_prof_leak, "prof_leak") CONF_HANDLE_BOOL(opt_prof_leak_error, "prof_leak_error") CONF_HANDLE_BOOL(opt_prof_log, "prof_log") CONF_HANDLE_SSIZE_T(opt_prof_recent_alloc_max, "prof_recent_alloc_max", -1, SSIZE_MAX) CONF_HANDLE_BOOL(opt_prof_stats, "prof_stats") CONF_HANDLE_BOOL(opt_prof_sys_thread_name, "prof_sys_thread_name") if (CONF_MATCH("prof_time_resolution")) { if (CONF_MATCH_VALUE("default")) { opt_prof_time_res = prof_time_res_default; } else if (CONF_MATCH_VALUE("high")) { if (!config_high_res_timer) { CONF_ERROR( "No high resolution" " timer support", k, klen, v, vlen); } else { opt_prof_time_res = prof_time_res_high; } } else { CONF_ERROR("Invalid conf value", k, klen, v, vlen); } CONF_CONTINUE; } /* * Undocumented. When set to false, don't * correct for an unbiasing bug in jeprof * attribution. This can be handy if you want * to get consistent numbers from your binary * across different jemalloc versions, even if * those numbers are incorrect. The default is * true. */ CONF_HANDLE_BOOL(opt_prof_unbias, "prof_unbias") } if (config_log) { if (CONF_MATCH("log")) { size_t cpylen = ( vlen <= sizeof(log_var_names) ? vlen : sizeof(log_var_names) - 1); strncpy(log_var_names, v, cpylen); log_var_names[cpylen] = '\0'; CONF_CONTINUE; } } if (CONF_MATCH("thp")) { bool match = false; for (int m = 0; m < thp_mode_names_limit; m++) { if (strncmp(thp_mode_names[m],v, vlen) == 0) { if (!have_madvise_huge && !have_memcntl) { CONF_ERROR( "No THP support", k, klen, v, vlen); } opt_thp = m; match = true; break; } } if (!match) { CONF_ERROR("Invalid conf value", k, klen, v, vlen); } CONF_CONTINUE; } if (CONF_MATCH("zero_realloc")) { if (CONF_MATCH_VALUE("alloc")) { opt_zero_realloc_action = zero_realloc_action_alloc; } else if (CONF_MATCH_VALUE("free")) { opt_zero_realloc_action = zero_realloc_action_free; } else if (CONF_MATCH_VALUE("abort")) { opt_zero_realloc_action = zero_realloc_action_abort; } else { CONF_ERROR("Invalid conf value", k, klen, v, vlen); } CONF_CONTINUE; } if (config_uaf_detection && CONF_MATCH("lg_san_uaf_align")) { ssize_t a; CONF_VALUE_READ(ssize_t, a) if (CONF_VALUE_READ_FAIL() || a < -1) { CONF_ERROR("Invalid conf value", k, klen, v, vlen); } if (a == -1) { opt_lg_san_uaf_align = -1; CONF_CONTINUE; } /* clip if necessary */ ssize_t max_allowed = (sizeof(size_t) << 3) - 1; ssize_t min_allowed = LG_PAGE; if (a > max_allowed) { a = max_allowed; } else if (a < min_allowed) { a = min_allowed; } opt_lg_san_uaf_align = a; CONF_CONTINUE; } CONF_HANDLE_SIZE_T(opt_san_guard_small, "san_guard_small", 0, SIZE_T_MAX, CONF_DONT_CHECK_MIN, CONF_DONT_CHECK_MAX, false) CONF_HANDLE_SIZE_T(opt_san_guard_large, "san_guard_large", 0, SIZE_T_MAX, CONF_DONT_CHECK_MIN, CONF_DONT_CHECK_MAX, false) CONF_ERROR("Invalid conf pair", k, klen, v, vlen); #undef CONF_ERROR #undef CONF_CONTINUE #undef CONF_MATCH #undef CONF_MATCH_VALUE #undef CONF_HANDLE_BOOL #undef CONF_DONT_CHECK_MIN #undef CONF_CHECK_MIN #undef CONF_DONT_CHECK_MAX #undef CONF_CHECK_MAX #undef CONF_HANDLE_T #undef CONF_HANDLE_T_U #undef CONF_HANDLE_T_SIGNED #undef CONF_HANDLE_UNSIGNED #undef CONF_HANDLE_SIZE_T #undef CONF_HANDLE_SSIZE_T #undef CONF_HANDLE_CHAR_P /* Re-enable diagnostic "-Wtype-limits" */ JEMALLOC_DIAGNOSTIC_POP } if (opt_abort_conf && had_conf_error) { malloc_abort_invalid_conf(); } } atomic_store_b(&log_init_done, true, ATOMIC_RELEASE); } static bool malloc_conf_init_check_deps(void) { if (opt_prof_leak_error && !opt_prof_final) { malloc_printf(": prof_leak_error is set w/o " "prof_final.\n"); return true; } return false; } static void malloc_conf_init(sc_data_t *sc_data, unsigned bin_shard_sizes[SC_NBINS]) { const char *opts_cache[MALLOC_CONF_NSOURCES] = {NULL, NULL, NULL, NULL, NULL}; char buf[PATH_MAX + 1]; /* The first call only set the confirm_conf option and opts_cache */ malloc_conf_init_helper(NULL, NULL, true, opts_cache, buf); malloc_conf_init_helper(sc_data, bin_shard_sizes, false, opts_cache, NULL); if (malloc_conf_init_check_deps()) { /* check_deps does warning msg only; abort below if needed. */ if (opt_abort_conf) { malloc_abort_invalid_conf(); } } } #undef MALLOC_CONF_NSOURCES static bool malloc_init_hard_needed(void) { if (malloc_initialized() || (IS_INITIALIZER && malloc_init_state == malloc_init_recursible)) { /* * Another thread initialized the allocator before this one * acquired init_lock, or this thread is the initializing * thread, and it is recursively allocating. */ return false; } #ifdef JEMALLOC_THREADED_INIT if (malloc_initializer != NO_INITIALIZER && !IS_INITIALIZER) { /* Busy-wait until the initializing thread completes. */ spin_t spinner = SPIN_INITIALIZER; do { malloc_mutex_unlock(TSDN_NULL, &init_lock); spin_adaptive(&spinner); malloc_mutex_lock(TSDN_NULL, &init_lock); } while (!malloc_initialized()); return false; } #endif return true; } static bool malloc_init_hard_a0_locked() { malloc_initializer = INITIALIZER; JEMALLOC_DIAGNOSTIC_PUSH JEMALLOC_DIAGNOSTIC_IGNORE_MISSING_STRUCT_FIELD_INITIALIZERS sc_data_t sc_data = {0}; JEMALLOC_DIAGNOSTIC_POP /* * Ordering here is somewhat tricky; we need sc_boot() first, since that * determines what the size classes will be, and then * malloc_conf_init(), since any slab size tweaking will need to be done * before sz_boot and bin_info_boot, which assume that the values they * read out of sc_data_global are final. */ sc_boot(&sc_data); unsigned bin_shard_sizes[SC_NBINS]; bin_shard_sizes_boot(bin_shard_sizes); /* * prof_boot0 only initializes opt_prof_prefix. We need to do it before * we parse malloc_conf options, in case malloc_conf parsing overwrites * it. */ if (config_prof) { prof_boot0(); } malloc_conf_init(&sc_data, bin_shard_sizes); san_init(opt_lg_san_uaf_align); sz_boot(&sc_data, opt_cache_oblivious); bin_info_boot(&sc_data, bin_shard_sizes); if (opt_stats_print) { /* Print statistics at exit. */ if (atexit(stats_print_atexit) != 0) { malloc_write(": Error in atexit()\n"); if (opt_abort) { abort(); } } } if (stats_boot()) { return true; } if (pages_boot()) { return true; } if (base_boot(TSDN_NULL)) { return true; } /* emap_global is static, hence zeroed. */ if (emap_init(&arena_emap_global, b0get(), /* zeroed */ true)) { return true; } if (extent_boot()) { return true; } if (ctl_boot()) { return true; } if (config_prof) { prof_boot1(); } if (opt_hpa && !hpa_supported()) { malloc_printf(": HPA not supported in the current " "configuration; %s.", opt_abort_conf ? "aborting" : "disabling"); if (opt_abort_conf) { malloc_abort_invalid_conf(); } else { opt_hpa = false; } } if (arena_boot(&sc_data, b0get(), opt_hpa)) { return true; } if (tcache_boot(TSDN_NULL, b0get())) { return true; } if (malloc_mutex_init(&arenas_lock, "arenas", WITNESS_RANK_ARENAS, malloc_mutex_rank_exclusive)) { return true; } hook_boot(); /* * Create enough scaffolding to allow recursive allocation in * malloc_ncpus(). */ narenas_auto = 1; manual_arena_base = narenas_auto + 1; memset(arenas, 0, sizeof(arena_t *) * narenas_auto); /* * Initialize one arena here. The rest are lazily created in * arena_choose_hard(). */ if (arena_init(TSDN_NULL, 0, &arena_config_default) == NULL) { return true; } a0 = arena_get(TSDN_NULL, 0, false); if (opt_hpa && !hpa_supported()) { malloc_printf(": HPA not supported in the current " "configuration; %s.", opt_abort_conf ? "aborting" : "disabling"); if (opt_abort_conf) { malloc_abort_invalid_conf(); } else { opt_hpa = false; } } else if (opt_hpa) { hpa_shard_opts_t hpa_shard_opts = opt_hpa_opts; hpa_shard_opts.deferral_allowed = background_thread_enabled(); if (pa_shard_enable_hpa(TSDN_NULL, &a0->pa_shard, &hpa_shard_opts, &opt_hpa_sec_opts)) { return true; } } malloc_init_state = malloc_init_a0_initialized; return false; } static bool malloc_init_hard_a0(void) { bool ret; malloc_mutex_lock(TSDN_NULL, &init_lock); ret = malloc_init_hard_a0_locked(); malloc_mutex_unlock(TSDN_NULL, &init_lock); return ret; } /* Initialize data structures which may trigger recursive allocation. */ static bool malloc_init_hard_recursible(void) { malloc_init_state = malloc_init_recursible; ncpus = malloc_ncpus(); if (opt_percpu_arena != percpu_arena_disabled) { bool cpu_count_is_deterministic = malloc_cpu_count_is_deterministic(); if (!cpu_count_is_deterministic) { /* * If # of CPU is not deterministic, and narenas not * specified, disables per cpu arena since it may not * detect CPU IDs properly. */ if (opt_narenas == 0) { opt_percpu_arena = percpu_arena_disabled; malloc_write(": Number of CPUs " "detected is not deterministic. Per-CPU " "arena disabled.\n"); if (opt_abort_conf) { malloc_abort_invalid_conf(); } if (opt_abort) { abort(); } } } } #if (defined(JEMALLOC_HAVE_PTHREAD_ATFORK) && !defined(JEMALLOC_MUTEX_INIT_CB) \ && !defined(JEMALLOC_ZONE) && !defined(_WIN32) && \ !defined(__native_client__)) /* LinuxThreads' pthread_atfork() allocates. */ if (pthread_atfork(jemalloc_prefork, jemalloc_postfork_parent, jemalloc_postfork_child) != 0) { malloc_write(": Error in pthread_atfork()\n"); if (opt_abort) { abort(); } return true; } #endif if (background_thread_boot0()) { return true; } return false; } static unsigned malloc_narenas_default(void) { assert(ncpus > 0); /* * For SMP systems, create more than one arena per CPU by * default. */ if (ncpus > 1) { fxp_t fxp_ncpus = FXP_INIT_INT(ncpus); fxp_t goal = fxp_mul(fxp_ncpus, opt_narenas_ratio); uint32_t int_goal = fxp_round_nearest(goal); if (int_goal == 0) { return 1; } return int_goal; } else { return 1; } } static percpu_arena_mode_t percpu_arena_as_initialized(percpu_arena_mode_t mode) { assert(!malloc_initialized()); assert(mode <= percpu_arena_disabled); if (mode != percpu_arena_disabled) { mode += percpu_arena_mode_enabled_base; } return mode; } static bool malloc_init_narenas(void) { assert(ncpus > 0); if (opt_percpu_arena != percpu_arena_disabled) { if (!have_percpu_arena || malloc_getcpu() < 0) { opt_percpu_arena = percpu_arena_disabled; malloc_printf(": perCPU arena getcpu() not " "available. Setting narenas to %u.\n", opt_narenas ? opt_narenas : malloc_narenas_default()); if (opt_abort) { abort(); } } else { if (ncpus >= MALLOCX_ARENA_LIMIT) { malloc_printf(": narenas w/ percpu" "arena beyond limit (%d)\n", ncpus); if (opt_abort) { abort(); } return true; } /* NB: opt_percpu_arena isn't fully initialized yet. */ if (percpu_arena_as_initialized(opt_percpu_arena) == per_phycpu_arena && ncpus % 2 != 0) { malloc_printf(": invalid " "configuration -- per physical CPU arena " "with odd number (%u) of CPUs (no hyper " "threading?).\n", ncpus); if (opt_abort) abort(); } unsigned n = percpu_arena_ind_limit( percpu_arena_as_initialized(opt_percpu_arena)); if (opt_narenas < n) { /* * If narenas is specified with percpu_arena * enabled, actual narenas is set as the greater * of the two. percpu_arena_choose will be free * to use any of the arenas based on CPU * id. This is conservative (at a small cost) * but ensures correctness. * * If for some reason the ncpus determined at * boot is not the actual number (e.g. because * of affinity setting from numactl), reserving * narenas this way provides a workaround for * percpu_arena. */ opt_narenas = n; } } } if (opt_narenas == 0) { opt_narenas = malloc_narenas_default(); } assert(opt_narenas > 0); narenas_auto = opt_narenas; /* * Limit the number of arenas to the indexing range of MALLOCX_ARENA(). */ if (narenas_auto >= MALLOCX_ARENA_LIMIT) { narenas_auto = MALLOCX_ARENA_LIMIT - 1; malloc_printf(": Reducing narenas to limit (%d)\n", narenas_auto); } narenas_total_set(narenas_auto); if (arena_init_huge()) { narenas_total_inc(); } manual_arena_base = narenas_total_get(); return false; } static void malloc_init_percpu(void) { opt_percpu_arena = percpu_arena_as_initialized(opt_percpu_arena); } static bool malloc_init_hard_finish(void) { if (malloc_mutex_boot()) { return true; } malloc_init_state = malloc_init_initialized; malloc_slow_flag_init(); return false; } static void malloc_init_hard_cleanup(tsdn_t *tsdn, bool reentrancy_set) { malloc_mutex_assert_owner(tsdn, &init_lock); malloc_mutex_unlock(tsdn, &init_lock); if (reentrancy_set) { assert(!tsdn_null(tsdn)); tsd_t *tsd = tsdn_tsd(tsdn); assert(tsd_reentrancy_level_get(tsd) > 0); post_reentrancy(tsd); } } static bool malloc_init_hard(void) { tsd_t *tsd; #if defined(_WIN32) && _WIN32_WINNT < 0x0600 _init_init_lock(); #endif malloc_mutex_lock(TSDN_NULL, &init_lock); #define UNLOCK_RETURN(tsdn, ret, reentrancy) \ malloc_init_hard_cleanup(tsdn, reentrancy); \ return ret; if (!malloc_init_hard_needed()) { UNLOCK_RETURN(TSDN_NULL, false, false) } if (malloc_init_state != malloc_init_a0_initialized && malloc_init_hard_a0_locked()) { UNLOCK_RETURN(TSDN_NULL, true, false) } malloc_mutex_unlock(TSDN_NULL, &init_lock); /* Recursive allocation relies on functional tsd. */ tsd = malloc_tsd_boot0(); if (tsd == NULL) { return true; } if (malloc_init_hard_recursible()) { return true; } malloc_mutex_lock(tsd_tsdn(tsd), &init_lock); /* Set reentrancy level to 1 during init. */ pre_reentrancy(tsd, NULL); /* Initialize narenas before prof_boot2 (for allocation). */ if (malloc_init_narenas() || background_thread_boot1(tsd_tsdn(tsd), b0get())) { UNLOCK_RETURN(tsd_tsdn(tsd), true, true) } if (config_prof && prof_boot2(tsd, b0get())) { UNLOCK_RETURN(tsd_tsdn(tsd), true, true) } malloc_init_percpu(); if (malloc_init_hard_finish()) { UNLOCK_RETURN(tsd_tsdn(tsd), true, true) } post_reentrancy(tsd); malloc_mutex_unlock(tsd_tsdn(tsd), &init_lock); witness_assert_lockless(witness_tsd_tsdn( tsd_witness_tsdp_get_unsafe(tsd))); malloc_tsd_boot1(); /* Update TSD after tsd_boot1. */ tsd = tsd_fetch(); if (opt_background_thread) { assert(have_background_thread); /* * Need to finish init & unlock first before creating background * threads (pthread_create depends on malloc). ctl_init (which * sets isthreaded) needs to be called without holding any lock. */ background_thread_ctl_init(tsd_tsdn(tsd)); if (background_thread_create(tsd, 0)) { return true; } } #undef UNLOCK_RETURN return false; } /* * End initialization functions. */ /******************************************************************************/ /* * Begin allocation-path internal functions and data structures. */ /* * Settings determined by the documented behavior of the allocation functions. */ typedef struct static_opts_s static_opts_t; struct static_opts_s { /* Whether or not allocation size may overflow. */ bool may_overflow; /* * Whether or not allocations (with alignment) of size 0 should be * treated as size 1. */ bool bump_empty_aligned_alloc; /* * Whether to assert that allocations are not of size 0 (after any * bumping). */ bool assert_nonempty_alloc; /* * Whether or not to modify the 'result' argument to malloc in case of * error. */ bool null_out_result_on_error; /* Whether to set errno when we encounter an error condition. */ bool set_errno_on_error; /* * The minimum valid alignment for functions requesting aligned storage. */ size_t min_alignment; /* The error string to use if we oom. */ const char *oom_string; /* The error string to use if the passed-in alignment is invalid. */ const char *invalid_alignment_string; /* * False if we're configured to skip some time-consuming operations. * * This isn't really a malloc "behavior", but it acts as a useful * summary of several other static (or at least, static after program * initialization) options. */ bool slow; /* * Return size. */ bool usize; }; JEMALLOC_ALWAYS_INLINE void static_opts_init(static_opts_t *static_opts) { static_opts->may_overflow = false; static_opts->bump_empty_aligned_alloc = false; static_opts->assert_nonempty_alloc = false; static_opts->null_out_result_on_error = false; static_opts->set_errno_on_error = false; static_opts->min_alignment = 0; static_opts->oom_string = ""; static_opts->invalid_alignment_string = ""; static_opts->slow = false; static_opts->usize = false; } /* * These correspond to the macros in jemalloc/jemalloc_macros.h. Broadly, we * should have one constant here per magic value there. Note however that the * representations need not be related. */ #define TCACHE_IND_NONE ((unsigned)-1) #define TCACHE_IND_AUTOMATIC ((unsigned)-2) #define ARENA_IND_AUTOMATIC ((unsigned)-1) typedef struct dynamic_opts_s dynamic_opts_t; struct dynamic_opts_s { void **result; size_t usize; size_t num_items; size_t item_size; size_t alignment; bool zero; unsigned tcache_ind; unsigned arena_ind; }; JEMALLOC_ALWAYS_INLINE void dynamic_opts_init(dynamic_opts_t *dynamic_opts) { dynamic_opts->result = NULL; dynamic_opts->usize = 0; dynamic_opts->num_items = 0; dynamic_opts->item_size = 0; dynamic_opts->alignment = 0; dynamic_opts->zero = false; dynamic_opts->tcache_ind = TCACHE_IND_AUTOMATIC; dynamic_opts->arena_ind = ARENA_IND_AUTOMATIC; } /* * ind parameter is optional and is only checked and filled if alignment == 0; * return true if result is out of range. */ JEMALLOC_ALWAYS_INLINE bool aligned_usize_get(size_t size, size_t alignment, size_t *usize, szind_t *ind, bool bump_empty_aligned_alloc) { assert(usize != NULL); if (alignment == 0) { if (ind != NULL) { *ind = sz_size2index(size); if (unlikely(*ind >= SC_NSIZES)) { return true; } *usize = sz_index2size(*ind); assert(*usize > 0 && *usize <= SC_LARGE_MAXCLASS); return false; } *usize = sz_s2u(size); } else { if (bump_empty_aligned_alloc && unlikely(size == 0)) { size = 1; } *usize = sz_sa2u(size, alignment); } if (unlikely(*usize == 0 || *usize > SC_LARGE_MAXCLASS)) { return true; } return false; } JEMALLOC_ALWAYS_INLINE bool zero_get(bool guarantee, bool slow) { if (config_fill && slow && unlikely(opt_zero)) { return true; } else { return guarantee; } } JEMALLOC_ALWAYS_INLINE tcache_t * tcache_get_from_ind(tsd_t *tsd, unsigned tcache_ind, bool slow, bool is_alloc) { tcache_t *tcache; if (tcache_ind == TCACHE_IND_AUTOMATIC) { if (likely(!slow)) { /* Getting tcache ptr unconditionally. */ tcache = tsd_tcachep_get(tsd); assert(tcache == tcache_get(tsd)); } else if (is_alloc || likely(tsd_reentrancy_level_get(tsd) == 0)) { tcache = tcache_get(tsd); } else { tcache = NULL; } } else { /* * Should not specify tcache on deallocation path when being * reentrant. */ assert(is_alloc || tsd_reentrancy_level_get(tsd) == 0 || tsd_state_nocleanup(tsd)); if (tcache_ind == TCACHE_IND_NONE) { tcache = NULL; } else { tcache = tcaches_get(tsd, tcache_ind); } } return tcache; } /* Return true if a manual arena is specified and arena_get() OOMs. */ JEMALLOC_ALWAYS_INLINE bool arena_get_from_ind(tsd_t *tsd, unsigned arena_ind, arena_t **arena_p) { if (arena_ind == ARENA_IND_AUTOMATIC) { /* * In case of automatic arena management, we defer arena * computation until as late as we can, hoping to fill the * allocation out of the tcache. */ *arena_p = NULL; } else { *arena_p = arena_get(tsd_tsdn(tsd), arena_ind, true); if (unlikely(*arena_p == NULL) && arena_ind >= narenas_auto) { return true; } } return false; } /* ind is ignored if dopts->alignment > 0. */ JEMALLOC_ALWAYS_INLINE void * imalloc_no_sample(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd, size_t size, size_t usize, szind_t ind) { /* Fill in the tcache. */ tcache_t *tcache = tcache_get_from_ind(tsd, dopts->tcache_ind, sopts->slow, /* is_alloc */ true); /* Fill in the arena. */ arena_t *arena; if (arena_get_from_ind(tsd, dopts->arena_ind, &arena)) { return NULL; } if (unlikely(dopts->alignment != 0)) { return ipalloct(tsd_tsdn(tsd), usize, dopts->alignment, dopts->zero, tcache, arena); } return iallocztm(tsd_tsdn(tsd), size, ind, dopts->zero, tcache, false, arena, sopts->slow); } JEMALLOC_ALWAYS_INLINE void * imalloc_sample(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd, size_t usize, szind_t ind) { void *ret; /* * For small allocations, sampling bumps the usize. If so, we allocate * from the ind_large bucket. */ szind_t ind_large; size_t bumped_usize = usize; dopts->alignment = prof_sample_align(dopts->alignment); if (usize <= SC_SMALL_MAXCLASS) { assert(((dopts->alignment == 0) ? sz_s2u(SC_LARGE_MINCLASS) : sz_sa2u(SC_LARGE_MINCLASS, dopts->alignment)) == SC_LARGE_MINCLASS); ind_large = sz_size2index(SC_LARGE_MINCLASS); bumped_usize = sz_s2u(SC_LARGE_MINCLASS); ret = imalloc_no_sample(sopts, dopts, tsd, bumped_usize, bumped_usize, ind_large); if (unlikely(ret == NULL)) { return NULL; } arena_prof_promote(tsd_tsdn(tsd), ret, usize); } else { ret = imalloc_no_sample(sopts, dopts, tsd, usize, usize, ind); } assert(prof_sample_aligned(ret)); return ret; } /* * Returns true if the allocation will overflow, and false otherwise. Sets * *size to the product either way. */ JEMALLOC_ALWAYS_INLINE bool compute_size_with_overflow(bool may_overflow, dynamic_opts_t *dopts, size_t *size) { /* * This function is just num_items * item_size, except that we may have * to check for overflow. */ if (!may_overflow) { assert(dopts->num_items == 1); *size = dopts->item_size; return false; } /* A size_t with its high-half bits all set to 1. */ static const size_t high_bits = SIZE_T_MAX << (sizeof(size_t) * 8 / 2); *size = dopts->item_size * dopts->num_items; if (unlikely(*size == 0)) { return (dopts->num_items != 0 && dopts->item_size != 0); } /* * We got a non-zero size, but we don't know if we overflowed to get * there. To avoid having to do a divide, we'll be clever and note that * if both A and B can be represented in N/2 bits, then their product * can be represented in N bits (without the possibility of overflow). */ if (likely((high_bits & (dopts->num_items | dopts->item_size)) == 0)) { return false; } if (likely(*size / dopts->item_size == dopts->num_items)) { return false; } return true; } JEMALLOC_ALWAYS_INLINE int imalloc_body(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd) { /* Where the actual allocated memory will live. */ void *allocation = NULL; /* Filled in by compute_size_with_overflow below. */ size_t size = 0; /* * The zero initialization for ind is actually dead store, in that its * value is reset before any branch on its value is taken. Sometimes * though, it's convenient to pass it as arguments before this point. * To avoid undefined behavior then, we initialize it with dummy stores. */ szind_t ind = 0; /* usize will always be properly initialized. */ size_t usize; /* Reentrancy is only checked on slow path. */ int8_t reentrancy_level; /* Compute the amount of memory the user wants. */ if (unlikely(compute_size_with_overflow(sopts->may_overflow, dopts, &size))) { goto label_oom; } if (unlikely(dopts->alignment < sopts->min_alignment || (dopts->alignment & (dopts->alignment - 1)) != 0)) { goto label_invalid_alignment; } /* This is the beginning of the "core" algorithm. */ dopts->zero = zero_get(dopts->zero, sopts->slow); if (aligned_usize_get(size, dopts->alignment, &usize, &ind, sopts->bump_empty_aligned_alloc)) { goto label_oom; } dopts->usize = usize; /* Validate the user input. */ if (sopts->assert_nonempty_alloc) { assert (size != 0); } check_entry_exit_locking(tsd_tsdn(tsd)); /* * If we need to handle reentrancy, we can do it out of a * known-initialized arena (i.e. arena 0). */ reentrancy_level = tsd_reentrancy_level_get(tsd); if (sopts->slow && unlikely(reentrancy_level > 0)) { /* * We should never specify particular arenas or tcaches from * within our internal allocations. */ assert(dopts->tcache_ind == TCACHE_IND_AUTOMATIC || dopts->tcache_ind == TCACHE_IND_NONE); assert(dopts->arena_ind == ARENA_IND_AUTOMATIC); dopts->tcache_ind = TCACHE_IND_NONE; /* We know that arena 0 has already been initialized. */ dopts->arena_ind = 0; } /* * If dopts->alignment > 0, then ind is still 0, but usize was computed * in the previous if statement. Down the positive alignment path, * imalloc_no_sample and imalloc_sample will ignore ind. */ /* If profiling is on, get our profiling context. */ if (config_prof && opt_prof) { bool prof_active = prof_active_get_unlocked(); bool sample_event = te_prof_sample_event_lookahead(tsd, usize); prof_tctx_t *tctx = prof_alloc_prep(tsd, prof_active, sample_event); emap_alloc_ctx_t alloc_ctx; if (likely((uintptr_t)tctx == (uintptr_t)1U)) { alloc_ctx.slab = (usize <= SC_SMALL_MAXCLASS); allocation = imalloc_no_sample( sopts, dopts, tsd, usize, usize, ind); } else if ((uintptr_t)tctx > (uintptr_t)1U) { allocation = imalloc_sample( sopts, dopts, tsd, usize, ind); alloc_ctx.slab = false; } else { allocation = NULL; } if (unlikely(allocation == NULL)) { prof_alloc_rollback(tsd, tctx); goto label_oom; } prof_malloc(tsd, allocation, size, usize, &alloc_ctx, tctx); } else { assert(!opt_prof); allocation = imalloc_no_sample(sopts, dopts, tsd, size, usize, ind); if (unlikely(allocation == NULL)) { goto label_oom; } } /* * Allocation has been done at this point. We still have some * post-allocation work to do though. */ thread_alloc_event(tsd, usize); assert(dopts->alignment == 0 || ((uintptr_t)allocation & (dopts->alignment - 1)) == ZU(0)); assert(usize == isalloc(tsd_tsdn(tsd), allocation)); if (config_fill && sopts->slow && !dopts->zero && unlikely(opt_junk_alloc)) { junk_alloc_callback(allocation, usize); } if (sopts->slow) { UTRACE(0, size, allocation); } /* Success! */ check_entry_exit_locking(tsd_tsdn(tsd)); *dopts->result = allocation; return 0; label_oom: if (unlikely(sopts->slow) && config_xmalloc && unlikely(opt_xmalloc)) { malloc_write(sopts->oom_string); abort(); } if (sopts->slow) { UTRACE(NULL, size, NULL); } check_entry_exit_locking(tsd_tsdn(tsd)); if (sopts->set_errno_on_error) { set_errno(ENOMEM); } if (sopts->null_out_result_on_error) { *dopts->result = NULL; } return ENOMEM; /* * This label is only jumped to by one goto; we move it out of line * anyways to avoid obscuring the non-error paths, and for symmetry with * the oom case. */ label_invalid_alignment: if (config_xmalloc && unlikely(opt_xmalloc)) { malloc_write(sopts->invalid_alignment_string); abort(); } if (sopts->set_errno_on_error) { set_errno(EINVAL); } if (sopts->slow) { UTRACE(NULL, size, NULL); } check_entry_exit_locking(tsd_tsdn(tsd)); if (sopts->null_out_result_on_error) { *dopts->result = NULL; } return EINVAL; } JEMALLOC_ALWAYS_INLINE bool imalloc_init_check(static_opts_t *sopts, dynamic_opts_t *dopts) { if (unlikely(!malloc_initialized()) && unlikely(malloc_init())) { if (config_xmalloc && unlikely(opt_xmalloc)) { malloc_write(sopts->oom_string); abort(); } UTRACE(NULL, dopts->num_items * dopts->item_size, NULL); set_errno(ENOMEM); *dopts->result = NULL; return false; } return true; } /* Returns the errno-style error code of the allocation. */ JEMALLOC_ALWAYS_INLINE int imalloc(static_opts_t *sopts, dynamic_opts_t *dopts) { if (tsd_get_allocates() && !imalloc_init_check(sopts, dopts)) { return ENOMEM; } /* We always need the tsd. Let's grab it right away. */ tsd_t *tsd = tsd_fetch(); assert(tsd); if (likely(tsd_fast(tsd))) { /* Fast and common path. */ tsd_assert_fast(tsd); sopts->slow = false; return imalloc_body(sopts, dopts, tsd); } else { if (!tsd_get_allocates() && !imalloc_init_check(sopts, dopts)) { return ENOMEM; } sopts->slow = true; return imalloc_body(sopts, dopts, tsd); } } JEMALLOC_NOINLINE void * malloc_default(size_t size) { void *ret; static_opts_t sopts; dynamic_opts_t dopts; /* * This variant has logging hook on exit but not on entry. It's callled * only by je_malloc, below, which emits the entry one for us (and, if * it calls us, does so only via tail call). */ static_opts_init(&sopts); dynamic_opts_init(&dopts); sopts.null_out_result_on_error = true; sopts.set_errno_on_error = true; sopts.oom_string = ": Error in malloc(): out of memory\n"; dopts.result = &ret; dopts.num_items = 1; dopts.item_size = size; imalloc(&sopts, &dopts); /* * Note that this branch gets optimized away -- it immediately follows * the check on tsd_fast that sets sopts.slow. */ if (sopts.slow) { uintptr_t args[3] = {size}; hook_invoke_alloc(hook_alloc_malloc, ret, (uintptr_t)ret, args); } LOG("core.malloc.exit", "result: %p", ret); return ret; } /******************************************************************************/ /* * Begin malloc(3)-compatible functions. */ JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN void JEMALLOC_NOTHROW * JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(1) je_malloc(size_t size) { return imalloc_fastpath(size, &malloc_default); } JEMALLOC_EXPORT int JEMALLOC_NOTHROW JEMALLOC_ATTR(nonnull(1)) je_posix_memalign(void **memptr, size_t alignment, size_t size) { int ret; static_opts_t sopts; dynamic_opts_t dopts; LOG("core.posix_memalign.entry", "mem ptr: %p, alignment: %zu, " "size: %zu", memptr, alignment, size); static_opts_init(&sopts); dynamic_opts_init(&dopts); sopts.bump_empty_aligned_alloc = true; sopts.min_alignment = sizeof(void *); sopts.oom_string = ": Error allocating aligned memory: out of memory\n"; sopts.invalid_alignment_string = ": Error allocating aligned memory: invalid alignment\n"; dopts.result = memptr; dopts.num_items = 1; dopts.item_size = size; dopts.alignment = alignment; ret = imalloc(&sopts, &dopts); if (sopts.slow) { uintptr_t args[3] = {(uintptr_t)memptr, (uintptr_t)alignment, (uintptr_t)size}; hook_invoke_alloc(hook_alloc_posix_memalign, *memptr, (uintptr_t)ret, args); } LOG("core.posix_memalign.exit", "result: %d, alloc ptr: %p", ret, *memptr); return ret; } JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN void JEMALLOC_NOTHROW * JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(2) je_aligned_alloc(size_t alignment, size_t size) { void *ret; static_opts_t sopts; dynamic_opts_t dopts; LOG("core.aligned_alloc.entry", "alignment: %zu, size: %zu\n", alignment, size); static_opts_init(&sopts); dynamic_opts_init(&dopts); sopts.bump_empty_aligned_alloc = true; sopts.null_out_result_on_error = true; sopts.set_errno_on_error = true; sopts.min_alignment = 1; sopts.oom_string = ": Error allocating aligned memory: out of memory\n"; sopts.invalid_alignment_string = ": Error allocating aligned memory: invalid alignment\n"; dopts.result = &ret; dopts.num_items = 1; dopts.item_size = size; dopts.alignment = alignment; imalloc(&sopts, &dopts); if (sopts.slow) { uintptr_t args[3] = {(uintptr_t)alignment, (uintptr_t)size}; hook_invoke_alloc(hook_alloc_aligned_alloc, ret, (uintptr_t)ret, args); } LOG("core.aligned_alloc.exit", "result: %p", ret); return ret; } JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN void JEMALLOC_NOTHROW * JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE2(1, 2) je_calloc(size_t num, size_t size) { void *ret; static_opts_t sopts; dynamic_opts_t dopts; LOG("core.calloc.entry", "num: %zu, size: %zu\n", num, size); static_opts_init(&sopts); dynamic_opts_init(&dopts); sopts.may_overflow = true; sopts.null_out_result_on_error = true; sopts.set_errno_on_error = true; sopts.oom_string = ": Error in calloc(): out of memory\n"; dopts.result = &ret; dopts.num_items = num; dopts.item_size = size; dopts.zero = true; imalloc(&sopts, &dopts); if (sopts.slow) { uintptr_t args[3] = {(uintptr_t)num, (uintptr_t)size}; hook_invoke_alloc(hook_alloc_calloc, ret, (uintptr_t)ret, args); } LOG("core.calloc.exit", "result: %p", ret); return ret; } JEMALLOC_ALWAYS_INLINE void ifree(tsd_t *tsd, void *ptr, tcache_t *tcache, bool slow_path) { if (!slow_path) { tsd_assert_fast(tsd); } check_entry_exit_locking(tsd_tsdn(tsd)); if (tsd_reentrancy_level_get(tsd) != 0) { assert(slow_path); } assert(ptr != NULL); assert(malloc_initialized() || IS_INITIALIZER); emap_alloc_ctx_t alloc_ctx; emap_alloc_ctx_lookup(tsd_tsdn(tsd), &arena_emap_global, ptr, &alloc_ctx); assert(alloc_ctx.szind != SC_NSIZES); size_t usize = sz_index2size(alloc_ctx.szind); if (config_prof && opt_prof) { prof_free(tsd, ptr, usize, &alloc_ctx); } if (likely(!slow_path)) { idalloctm(tsd_tsdn(tsd), ptr, tcache, &alloc_ctx, false, false); } else { if (config_fill && slow_path && opt_junk_free) { junk_free_callback(ptr, usize); } idalloctm(tsd_tsdn(tsd), ptr, tcache, &alloc_ctx, false, true); } thread_dalloc_event(tsd, usize); } JEMALLOC_ALWAYS_INLINE bool maybe_check_alloc_ctx(tsd_t *tsd, void *ptr, emap_alloc_ctx_t *alloc_ctx) { if (config_opt_size_checks) { emap_alloc_ctx_t dbg_ctx; emap_alloc_ctx_lookup(tsd_tsdn(tsd), &arena_emap_global, ptr, &dbg_ctx); if (alloc_ctx->szind != dbg_ctx.szind) { safety_check_fail_sized_dealloc( /* current_dealloc */ true, ptr, /* true_size */ sz_size2index(dbg_ctx.szind), /* input_size */ sz_size2index(alloc_ctx->szind)); return true; } if (alloc_ctx->slab != dbg_ctx.slab) { safety_check_fail( "Internal heap corruption detected: " "mismatch in slab bit"); return true; } } return false; } JEMALLOC_ALWAYS_INLINE void isfree(tsd_t *tsd, void *ptr, size_t usize, tcache_t *tcache, bool slow_path) { if (!slow_path) { tsd_assert_fast(tsd); } check_entry_exit_locking(tsd_tsdn(tsd)); if (tsd_reentrancy_level_get(tsd) != 0) { assert(slow_path); } assert(ptr != NULL); assert(malloc_initialized() || IS_INITIALIZER); emap_alloc_ctx_t alloc_ctx; if (!config_prof) { alloc_ctx.szind = sz_size2index(usize); alloc_ctx.slab = (alloc_ctx.szind < SC_NBINS); } else { if (likely(!prof_sample_aligned(ptr))) { /* * When the ptr is not page aligned, it was not sampled. * usize can be trusted to determine szind and slab. */ alloc_ctx.szind = sz_size2index(usize); alloc_ctx.slab = (alloc_ctx.szind < SC_NBINS); } else if (opt_prof) { emap_alloc_ctx_lookup(tsd_tsdn(tsd), &arena_emap_global, ptr, &alloc_ctx); if (config_opt_safety_checks) { /* Small alloc may have !slab (sampled). */ if (unlikely(alloc_ctx.szind != sz_size2index(usize))) { safety_check_fail_sized_dealloc( /* current_dealloc */ true, ptr, /* true_size */ sz_index2size( alloc_ctx.szind), /* input_size */ usize); } } } else { alloc_ctx.szind = sz_size2index(usize); alloc_ctx.slab = (alloc_ctx.szind < SC_NBINS); } } bool fail = maybe_check_alloc_ctx(tsd, ptr, &alloc_ctx); if (fail) { /* * This is a heap corruption bug. In real life we'll crash; for * the unit test we just want to avoid breaking anything too * badly to get a test result out. Let's leak instead of trying * to free. */ return; } if (config_prof && opt_prof) { prof_free(tsd, ptr, usize, &alloc_ctx); } if (likely(!slow_path)) { isdalloct(tsd_tsdn(tsd), ptr, usize, tcache, &alloc_ctx, false); } else { if (config_fill && slow_path && opt_junk_free) { junk_free_callback(ptr, usize); } isdalloct(tsd_tsdn(tsd), ptr, usize, tcache, &alloc_ctx, true); } thread_dalloc_event(tsd, usize); } JEMALLOC_NOINLINE void free_default(void *ptr) { UTRACE(ptr, 0, 0); if (likely(ptr != NULL)) { /* * We avoid setting up tsd fully (e.g. tcache, arena binding) * based on only free() calls -- other activities trigger the * minimal to full transition. This is because free() may * happen during thread shutdown after tls deallocation: if a * thread never had any malloc activities until then, a * fully-setup tsd won't be destructed properly. */ tsd_t *tsd = tsd_fetch_min(); check_entry_exit_locking(tsd_tsdn(tsd)); if (likely(tsd_fast(tsd))) { tcache_t *tcache = tcache_get_from_ind(tsd, TCACHE_IND_AUTOMATIC, /* slow */ false, /* is_alloc */ false); ifree(tsd, ptr, tcache, /* slow */ false); } else { tcache_t *tcache = tcache_get_from_ind(tsd, TCACHE_IND_AUTOMATIC, /* slow */ true, /* is_alloc */ false); uintptr_t args_raw[3] = {(uintptr_t)ptr}; hook_invoke_dalloc(hook_dalloc_free, ptr, args_raw); ifree(tsd, ptr, tcache, /* slow */ true); } check_entry_exit_locking(tsd_tsdn(tsd)); } } JEMALLOC_ALWAYS_INLINE bool free_fastpath_nonfast_aligned(void *ptr, bool check_prof) { /* * free_fastpath do not handle two uncommon cases: 1) sampled profiled * objects and 2) sampled junk & stash for use-after-free detection. * Both have special alignments which are used to escape the fastpath. * * prof_sample is page-aligned, which covers the UAF check when both * are enabled (the assertion below). Avoiding redundant checks since * this is on the fastpath -- at most one runtime branch from this. */ if (config_debug && cache_bin_nonfast_aligned(ptr)) { assert(prof_sample_aligned(ptr)); } if (config_prof && check_prof) { /* When prof is enabled, the prof_sample alignment is enough. */ if (prof_sample_aligned(ptr)) { return true; } else { return false; } } if (config_uaf_detection) { if (cache_bin_nonfast_aligned(ptr)) { return true; } else { return false; } } return false; } /* Returns whether or not the free attempt was successful. */ JEMALLOC_ALWAYS_INLINE bool free_fastpath(void *ptr, size_t size, bool size_hint) { tsd_t *tsd = tsd_get(false); /* The branch gets optimized away unless tsd_get_allocates(). */ if (unlikely(tsd == NULL)) { return false; } /* * The tsd_fast() / initialized checks are folded into the branch * testing (deallocated_after >= threshold) later in this function. * The threshold will be set to 0 when !tsd_fast. */ assert(tsd_fast(tsd) || *tsd_thread_deallocated_next_event_fastp_get_unsafe(tsd) == 0); emap_alloc_ctx_t alloc_ctx; if (!size_hint) { bool err = emap_alloc_ctx_try_lookup_fast(tsd, &arena_emap_global, ptr, &alloc_ctx); /* Note: profiled objects will have alloc_ctx.slab set */ if (unlikely(err || !alloc_ctx.slab || free_fastpath_nonfast_aligned(ptr, /* check_prof */ false))) { return false; } assert(alloc_ctx.szind != SC_NSIZES); } else { /* * Check for both sizes that are too large, and for sampled / * special aligned objects. The alignment check will also check * for null ptr. */ if (unlikely(size > SC_LOOKUP_MAXCLASS || free_fastpath_nonfast_aligned(ptr, /* check_prof */ true))) { return false; } alloc_ctx.szind = sz_size2index_lookup(size); /* Max lookup class must be small. */ assert(alloc_ctx.szind < SC_NBINS); /* This is a dead store, except when opt size checking is on. */ alloc_ctx.slab = true; } /* * Currently the fastpath only handles small sizes. The branch on * SC_LOOKUP_MAXCLASS makes sure of it. This lets us avoid checking * tcache szind upper limit (i.e. tcache_maxclass) as well. */ assert(alloc_ctx.slab); uint64_t deallocated, threshold; te_free_fastpath_ctx(tsd, &deallocated, &threshold); size_t usize = sz_index2size(alloc_ctx.szind); uint64_t deallocated_after = deallocated + usize; /* * Check for events and tsd non-nominal (fast_threshold will be set to * 0) in a single branch. Note that this handles the uninitialized case * as well (TSD init will be triggered on the non-fastpath). Therefore * anything depends on a functional TSD (e.g. the alloc_ctx sanity check * below) needs to be after this branch. */ if (unlikely(deallocated_after >= threshold)) { return false; } assert(tsd_fast(tsd)); bool fail = maybe_check_alloc_ctx(tsd, ptr, &alloc_ctx); if (fail) { /* See the comment in isfree. */ return true; } tcache_t *tcache = tcache_get_from_ind(tsd, TCACHE_IND_AUTOMATIC, /* slow */ false, /* is_alloc */ false); cache_bin_t *bin = &tcache->bins[alloc_ctx.szind]; /* * If junking were enabled, this is where we would do it. It's not * though, since we ensured above that we're on the fast path. Assert * that to double-check. */ assert(!opt_junk_free); if (!cache_bin_dalloc_easy(bin, ptr)) { return false; } *tsd_thread_deallocatedp_get(tsd) = deallocated_after; return true; } JEMALLOC_EXPORT void JEMALLOC_NOTHROW je_free(void *ptr) { LOG("core.free.entry", "ptr: %p", ptr); if (!free_fastpath(ptr, 0, false)) { free_default(ptr); } LOG("core.free.exit", ""); } /* * End malloc(3)-compatible functions. */ /******************************************************************************/ /* * Begin non-standard override functions. */ #ifdef JEMALLOC_OVERRIDE_MEMALIGN JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN void JEMALLOC_NOTHROW * JEMALLOC_ATTR(malloc) je_memalign(size_t alignment, size_t size) { void *ret; static_opts_t sopts; dynamic_opts_t dopts; LOG("core.memalign.entry", "alignment: %zu, size: %zu\n", alignment, size); static_opts_init(&sopts); dynamic_opts_init(&dopts); sopts.min_alignment = 1; sopts.oom_string = ": Error allocating aligned memory: out of memory\n"; sopts.invalid_alignment_string = ": Error allocating aligned memory: invalid alignment\n"; sopts.null_out_result_on_error = true; dopts.result = &ret; dopts.num_items = 1; dopts.item_size = size; dopts.alignment = alignment; imalloc(&sopts, &dopts); if (sopts.slow) { uintptr_t args[3] = {alignment, size}; hook_invoke_alloc(hook_alloc_memalign, ret, (uintptr_t)ret, args); } LOG("core.memalign.exit", "result: %p", ret); return ret; } #endif #ifdef JEMALLOC_OVERRIDE_VALLOC JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN void JEMALLOC_NOTHROW * JEMALLOC_ATTR(malloc) je_valloc(size_t size) { void *ret; static_opts_t sopts; dynamic_opts_t dopts; LOG("core.valloc.entry", "size: %zu\n", size); static_opts_init(&sopts); dynamic_opts_init(&dopts); sopts.null_out_result_on_error = true; sopts.min_alignment = PAGE; sopts.oom_string = ": Error allocating aligned memory: out of memory\n"; sopts.invalid_alignment_string = ": Error allocating aligned memory: invalid alignment\n"; dopts.result = &ret; dopts.num_items = 1; dopts.item_size = size; dopts.alignment = PAGE; imalloc(&sopts, &dopts); if (sopts.slow) { uintptr_t args[3] = {size}; hook_invoke_alloc(hook_alloc_valloc, ret, (uintptr_t)ret, args); } LOG("core.valloc.exit", "result: %p\n", ret); return ret; } #endif #if defined(JEMALLOC_IS_MALLOC) && defined(JEMALLOC_GLIBC_MALLOC_HOOK) /* * glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible * to inconsistently reference libc's malloc(3)-compatible functions * (https://bugzilla.mozilla.org/show_bug.cgi?id=493541). * * These definitions interpose hooks in glibc. The functions are actually * passed an extra argument for the caller return address, which will be * ignored. */ #include // defines __GLIBC__ if we are compiling against glibc JEMALLOC_EXPORT void (*__free_hook)(void *ptr) = je_free; JEMALLOC_EXPORT void *(*__malloc_hook)(size_t size) = je_malloc; JEMALLOC_EXPORT void *(*__realloc_hook)(void *ptr, size_t size) = je_realloc; # ifdef JEMALLOC_GLIBC_MEMALIGN_HOOK JEMALLOC_EXPORT void *(*__memalign_hook)(size_t alignment, size_t size) = je_memalign; # endif # ifdef __GLIBC__ /* * To enable static linking with glibc, the libc specific malloc interface must * be implemented also, so none of glibc's malloc.o functions are added to the * link. */ # define ALIAS(je_fn) __attribute__((alias (#je_fn), used)) /* To force macro expansion of je_ prefix before stringification. */ # define PREALIAS(je_fn) ALIAS(je_fn) # ifdef JEMALLOC_OVERRIDE___LIBC_CALLOC void *__libc_calloc(size_t n, size_t size) PREALIAS(je_calloc); # endif # ifdef JEMALLOC_OVERRIDE___LIBC_FREE void __libc_free(void* ptr) PREALIAS(je_free); # endif # ifdef JEMALLOC_OVERRIDE___LIBC_MALLOC void *__libc_malloc(size_t size) PREALIAS(je_malloc); # endif # ifdef JEMALLOC_OVERRIDE___LIBC_MEMALIGN void *__libc_memalign(size_t align, size_t s) PREALIAS(je_memalign); # endif # ifdef JEMALLOC_OVERRIDE___LIBC_REALLOC void *__libc_realloc(void* ptr, size_t size) PREALIAS(je_realloc); # endif # ifdef JEMALLOC_OVERRIDE___LIBC_VALLOC void *__libc_valloc(size_t size) PREALIAS(je_valloc); # endif # ifdef JEMALLOC_OVERRIDE___POSIX_MEMALIGN int __posix_memalign(void** r, size_t a, size_t s) PREALIAS(je_posix_memalign); # endif # undef PREALIAS # undef ALIAS # endif #endif /* * End non-standard override functions. */ /******************************************************************************/ /* * Begin non-standard functions. */ JEMALLOC_ALWAYS_INLINE unsigned mallocx_tcache_get(int flags) { if (likely((flags & MALLOCX_TCACHE_MASK) == 0)) { return TCACHE_IND_AUTOMATIC; } else if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) { return TCACHE_IND_NONE; } else { return MALLOCX_TCACHE_GET(flags); } } JEMALLOC_ALWAYS_INLINE unsigned mallocx_arena_get(int flags) { if (unlikely((flags & MALLOCX_ARENA_MASK) != 0)) { return MALLOCX_ARENA_GET(flags); } else { return ARENA_IND_AUTOMATIC; } } #ifdef JEMALLOC_EXPERIMENTAL_SMALLOCX_API #define JEMALLOC_SMALLOCX_CONCAT_HELPER(x, y) x ## y #define JEMALLOC_SMALLOCX_CONCAT_HELPER2(x, y) \ JEMALLOC_SMALLOCX_CONCAT_HELPER(x, y) typedef struct { void *ptr; size_t size; } smallocx_return_t; JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN smallocx_return_t JEMALLOC_NOTHROW /* * The attribute JEMALLOC_ATTR(malloc) cannot be used due to: * - https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86488 */ JEMALLOC_SMALLOCX_CONCAT_HELPER2(je_smallocx_, JEMALLOC_VERSION_GID_IDENT) (size_t size, int flags) { /* * Note: the attribute JEMALLOC_ALLOC_SIZE(1) cannot be * used here because it makes writing beyond the `size` * of the `ptr` undefined behavior, but the objective * of this function is to allow writing beyond `size` * up to `smallocx_return_t::size`. */ smallocx_return_t ret; static_opts_t sopts; dynamic_opts_t dopts; LOG("core.smallocx.entry", "size: %zu, flags: %d", size, flags); static_opts_init(&sopts); dynamic_opts_init(&dopts); sopts.assert_nonempty_alloc = true; sopts.null_out_result_on_error = true; sopts.oom_string = ": Error in mallocx(): out of memory\n"; sopts.usize = true; dopts.result = &ret.ptr; dopts.num_items = 1; dopts.item_size = size; if (unlikely(flags != 0)) { dopts.alignment = MALLOCX_ALIGN_GET(flags); dopts.zero = MALLOCX_ZERO_GET(flags); dopts.tcache_ind = mallocx_tcache_get(flags); dopts.arena_ind = mallocx_arena_get(flags); } imalloc(&sopts, &dopts); assert(dopts.usize == je_nallocx(size, flags)); ret.size = dopts.usize; LOG("core.smallocx.exit", "result: %p, size: %zu", ret.ptr, ret.size); return ret; } #undef JEMALLOC_SMALLOCX_CONCAT_HELPER #undef JEMALLOC_SMALLOCX_CONCAT_HELPER2 #endif JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN void JEMALLOC_NOTHROW * JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(1) je_mallocx(size_t size, int flags) { void *ret; static_opts_t sopts; dynamic_opts_t dopts; LOG("core.mallocx.entry", "size: %zu, flags: %d", size, flags); static_opts_init(&sopts); dynamic_opts_init(&dopts); sopts.assert_nonempty_alloc = true; sopts.null_out_result_on_error = true; sopts.oom_string = ": Error in mallocx(): out of memory\n"; dopts.result = &ret; dopts.num_items = 1; dopts.item_size = size; if (unlikely(flags != 0)) { dopts.alignment = MALLOCX_ALIGN_GET(flags); dopts.zero = MALLOCX_ZERO_GET(flags); dopts.tcache_ind = mallocx_tcache_get(flags); dopts.arena_ind = mallocx_arena_get(flags); } imalloc(&sopts, &dopts); if (sopts.slow) { uintptr_t args[3] = {size, flags}; hook_invoke_alloc(hook_alloc_mallocx, ret, (uintptr_t)ret, args); } LOG("core.mallocx.exit", "result: %p", ret); return ret; } static void * irallocx_prof_sample(tsdn_t *tsdn, void *old_ptr, size_t old_usize, size_t usize, size_t alignment, bool zero, tcache_t *tcache, arena_t *arena, prof_tctx_t *tctx, hook_ralloc_args_t *hook_args) { void *p; if (tctx == NULL) { return NULL; } alignment = prof_sample_align(alignment); if (usize <= SC_SMALL_MAXCLASS) { p = iralloct(tsdn, old_ptr, old_usize, SC_LARGE_MINCLASS, alignment, zero, tcache, arena, hook_args); if (p == NULL) { return NULL; } arena_prof_promote(tsdn, p, usize); } else { p = iralloct(tsdn, old_ptr, old_usize, usize, alignment, zero, tcache, arena, hook_args); } assert(prof_sample_aligned(p)); return p; } JEMALLOC_ALWAYS_INLINE void * irallocx_prof(tsd_t *tsd, void *old_ptr, size_t old_usize, size_t size, size_t alignment, size_t usize, bool zero, tcache_t *tcache, arena_t *arena, emap_alloc_ctx_t *alloc_ctx, hook_ralloc_args_t *hook_args) { prof_info_t old_prof_info; prof_info_get_and_reset_recent(tsd, old_ptr, alloc_ctx, &old_prof_info); bool prof_active = prof_active_get_unlocked(); bool sample_event = te_prof_sample_event_lookahead(tsd, usize); prof_tctx_t *tctx = prof_alloc_prep(tsd, prof_active, sample_event); void *p; if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) { p = irallocx_prof_sample(tsd_tsdn(tsd), old_ptr, old_usize, usize, alignment, zero, tcache, arena, tctx, hook_args); } else { p = iralloct(tsd_tsdn(tsd), old_ptr, old_usize, size, alignment, zero, tcache, arena, hook_args); } if (unlikely(p == NULL)) { prof_alloc_rollback(tsd, tctx); return NULL; } assert(usize == isalloc(tsd_tsdn(tsd), p)); prof_realloc(tsd, p, size, usize, tctx, prof_active, old_ptr, old_usize, &old_prof_info, sample_event); return p; } static void * do_rallocx(void *ptr, size_t size, int flags, bool is_realloc) { void *p; tsd_t *tsd; size_t usize; size_t old_usize; size_t alignment = MALLOCX_ALIGN_GET(flags); arena_t *arena; assert(ptr != NULL); assert(size != 0); assert(malloc_initialized() || IS_INITIALIZER); tsd = tsd_fetch(); check_entry_exit_locking(tsd_tsdn(tsd)); bool zero = zero_get(MALLOCX_ZERO_GET(flags), /* slow */ true); unsigned arena_ind = mallocx_arena_get(flags); if (arena_get_from_ind(tsd, arena_ind, &arena)) { goto label_oom; } unsigned tcache_ind = mallocx_tcache_get(flags); tcache_t *tcache = tcache_get_from_ind(tsd, tcache_ind, /* slow */ true, /* is_alloc */ true); emap_alloc_ctx_t alloc_ctx; emap_alloc_ctx_lookup(tsd_tsdn(tsd), &arena_emap_global, ptr, &alloc_ctx); assert(alloc_ctx.szind != SC_NSIZES); old_usize = sz_index2size(alloc_ctx.szind); assert(old_usize == isalloc(tsd_tsdn(tsd), ptr)); if (aligned_usize_get(size, alignment, &usize, NULL, false)) { goto label_oom; } hook_ralloc_args_t hook_args = {is_realloc, {(uintptr_t)ptr, size, flags, 0}}; if (config_prof && opt_prof) { p = irallocx_prof(tsd, ptr, old_usize, size, alignment, usize, zero, tcache, arena, &alloc_ctx, &hook_args); if (unlikely(p == NULL)) { goto label_oom; } } else { p = iralloct(tsd_tsdn(tsd), ptr, old_usize, size, alignment, zero, tcache, arena, &hook_args); if (unlikely(p == NULL)) { goto label_oom; } assert(usize == isalloc(tsd_tsdn(tsd), p)); } assert(alignment == 0 || ((uintptr_t)p & (alignment - 1)) == ZU(0)); thread_alloc_event(tsd, usize); thread_dalloc_event(tsd, old_usize); UTRACE(ptr, size, p); check_entry_exit_locking(tsd_tsdn(tsd)); if (config_fill && unlikely(opt_junk_alloc) && usize > old_usize && !zero) { size_t excess_len = usize - old_usize; void *excess_start = (void *)((uintptr_t)p + old_usize); junk_alloc_callback(excess_start, excess_len); } return p; label_oom: if (config_xmalloc && unlikely(opt_xmalloc)) { malloc_write(": Error in rallocx(): out of memory\n"); abort(); } UTRACE(ptr, size, 0); check_entry_exit_locking(tsd_tsdn(tsd)); return NULL; } JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN void JEMALLOC_NOTHROW * JEMALLOC_ALLOC_SIZE(2) je_rallocx(void *ptr, size_t size, int flags) { LOG("core.rallocx.entry", "ptr: %p, size: %zu, flags: %d", ptr, size, flags); void *ret = do_rallocx(ptr, size, flags, false); LOG("core.rallocx.exit", "result: %p", ret); return ret; } static void * do_realloc_nonnull_zero(void *ptr) { if (config_stats) { atomic_fetch_add_zu(&zero_realloc_count, 1, ATOMIC_RELAXED); } if (opt_zero_realloc_action == zero_realloc_action_alloc) { /* * The user might have gotten an alloc setting while expecting a * free setting. If that's the case, we at least try to * reduce the harm, and turn off the tcache while allocating, so * that we'll get a true first fit. */ return do_rallocx(ptr, 1, MALLOCX_TCACHE_NONE, true); } else if (opt_zero_realloc_action == zero_realloc_action_free) { UTRACE(ptr, 0, 0); tsd_t *tsd = tsd_fetch(); check_entry_exit_locking(tsd_tsdn(tsd)); tcache_t *tcache = tcache_get_from_ind(tsd, TCACHE_IND_AUTOMATIC, /* slow */ true, /* is_alloc */ false); uintptr_t args[3] = {(uintptr_t)ptr, 0}; hook_invoke_dalloc(hook_dalloc_realloc, ptr, args); ifree(tsd, ptr, tcache, true); check_entry_exit_locking(tsd_tsdn(tsd)); return NULL; } else { safety_check_fail("Called realloc(non-null-ptr, 0) with " "zero_realloc:abort set\n"); /* In real code, this will never run; the safety check failure * will call abort. In the unit test, we just want to bail out * without corrupting internal state that the test needs to * finish. */ return NULL; } } JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN void JEMALLOC_NOTHROW * JEMALLOC_ALLOC_SIZE(2) je_realloc(void *ptr, size_t size) { LOG("core.realloc.entry", "ptr: %p, size: %zu\n", ptr, size); if (likely(ptr != NULL && size != 0)) { void *ret = do_rallocx(ptr, size, 0, true); LOG("core.realloc.exit", "result: %p", ret); return ret; } else if (ptr != NULL && size == 0) { void *ret = do_realloc_nonnull_zero(ptr); LOG("core.realloc.exit", "result: %p", ret); return ret; } else { /* realloc(NULL, size) is equivalent to malloc(size). */ void *ret; static_opts_t sopts; dynamic_opts_t dopts; static_opts_init(&sopts); dynamic_opts_init(&dopts); sopts.null_out_result_on_error = true; sopts.set_errno_on_error = true; sopts.oom_string = ": Error in realloc(): out of memory\n"; dopts.result = &ret; dopts.num_items = 1; dopts.item_size = size; imalloc(&sopts, &dopts); if (sopts.slow) { uintptr_t args[3] = {(uintptr_t)ptr, size}; hook_invoke_alloc(hook_alloc_realloc, ret, (uintptr_t)ret, args); } LOG("core.realloc.exit", "result: %p", ret); return ret; } } JEMALLOC_ALWAYS_INLINE size_t ixallocx_helper(tsdn_t *tsdn, void *ptr, size_t old_usize, size_t size, size_t extra, size_t alignment, bool zero) { size_t newsize; if (ixalloc(tsdn, ptr, old_usize, size, extra, alignment, zero, &newsize)) { return old_usize; } return newsize; } static size_t ixallocx_prof_sample(tsdn_t *tsdn, void *ptr, size_t old_usize, size_t size, size_t extra, size_t alignment, bool zero, prof_tctx_t *tctx) { /* Sampled allocation needs to be page aligned. */ if (tctx == NULL || !prof_sample_aligned(ptr)) { return old_usize; } return ixallocx_helper(tsdn, ptr, old_usize, size, extra, alignment, zero); } JEMALLOC_ALWAYS_INLINE size_t ixallocx_prof(tsd_t *tsd, void *ptr, size_t old_usize, size_t size, size_t extra, size_t alignment, bool zero, emap_alloc_ctx_t *alloc_ctx) { /* * old_prof_info is only used for asserting that the profiling info * isn't changed by the ixalloc() call. */ prof_info_t old_prof_info; prof_info_get(tsd, ptr, alloc_ctx, &old_prof_info); /* * usize isn't knowable before ixalloc() returns when extra is non-zero. * Therefore, compute its maximum possible value and use that in * prof_alloc_prep() to decide whether to capture a backtrace. * prof_realloc() will use the actual usize to decide whether to sample. */ size_t usize_max; if (aligned_usize_get(size + extra, alignment, &usize_max, NULL, false)) { /* * usize_max is out of range, and chances are that allocation * will fail, but use the maximum possible value and carry on * with prof_alloc_prep(), just in case allocation succeeds. */ usize_max = SC_LARGE_MAXCLASS; } bool prof_active = prof_active_get_unlocked(); bool sample_event = te_prof_sample_event_lookahead(tsd, usize_max); prof_tctx_t *tctx = prof_alloc_prep(tsd, prof_active, sample_event); size_t usize; if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) { usize = ixallocx_prof_sample(tsd_tsdn(tsd), ptr, old_usize, size, extra, alignment, zero, tctx); } else { usize = ixallocx_helper(tsd_tsdn(tsd), ptr, old_usize, size, extra, alignment, zero); } /* * At this point we can still safely get the original profiling * information associated with the ptr, because (a) the edata_t object * associated with the ptr still lives and (b) the profiling info * fields are not touched. "(a)" is asserted in the outer je_xallocx() * function, and "(b)" is indirectly verified below by checking that * the alloc_tctx field is unchanged. */ prof_info_t prof_info; if (usize == old_usize) { prof_info_get(tsd, ptr, alloc_ctx, &prof_info); prof_alloc_rollback(tsd, tctx); } else { prof_info_get_and_reset_recent(tsd, ptr, alloc_ctx, &prof_info); assert(usize <= usize_max); sample_event = te_prof_sample_event_lookahead(tsd, usize); prof_realloc(tsd, ptr, size, usize, tctx, prof_active, ptr, old_usize, &prof_info, sample_event); } assert(old_prof_info.alloc_tctx == prof_info.alloc_tctx); return usize; } JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW je_xallocx(void *ptr, size_t size, size_t extra, int flags) { tsd_t *tsd; size_t usize, old_usize; size_t alignment = MALLOCX_ALIGN_GET(flags); bool zero = zero_get(MALLOCX_ZERO_GET(flags), /* slow */ true); LOG("core.xallocx.entry", "ptr: %p, size: %zu, extra: %zu, " "flags: %d", ptr, size, extra, flags); assert(ptr != NULL); assert(size != 0); assert(SIZE_T_MAX - size >= extra); assert(malloc_initialized() || IS_INITIALIZER); tsd = tsd_fetch(); check_entry_exit_locking(tsd_tsdn(tsd)); /* * old_edata is only for verifying that xallocx() keeps the edata_t * object associated with the ptr (though the content of the edata_t * object can be changed). */ edata_t *old_edata = emap_edata_lookup(tsd_tsdn(tsd), &arena_emap_global, ptr); emap_alloc_ctx_t alloc_ctx; emap_alloc_ctx_lookup(tsd_tsdn(tsd), &arena_emap_global, ptr, &alloc_ctx); assert(alloc_ctx.szind != SC_NSIZES); old_usize = sz_index2size(alloc_ctx.szind); assert(old_usize == isalloc(tsd_tsdn(tsd), ptr)); /* * The API explicitly absolves itself of protecting against (size + * extra) numerical overflow, but we may need to clamp extra to avoid * exceeding SC_LARGE_MAXCLASS. * * Ordinarily, size limit checking is handled deeper down, but here we * have to check as part of (size + extra) clamping, since we need the * clamped value in the above helper functions. */ if (unlikely(size > SC_LARGE_MAXCLASS)) { usize = old_usize; goto label_not_resized; } if (unlikely(SC_LARGE_MAXCLASS - size < extra)) { extra = SC_LARGE_MAXCLASS - size; } if (config_prof && opt_prof) { usize = ixallocx_prof(tsd, ptr, old_usize, size, extra, alignment, zero, &alloc_ctx); } else { usize = ixallocx_helper(tsd_tsdn(tsd), ptr, old_usize, size, extra, alignment, zero); } /* * xallocx() should keep using the same edata_t object (though its * content can be changed). */ assert(emap_edata_lookup(tsd_tsdn(tsd), &arena_emap_global, ptr) == old_edata); if (unlikely(usize == old_usize)) { goto label_not_resized; } thread_alloc_event(tsd, usize); thread_dalloc_event(tsd, old_usize); if (config_fill && unlikely(opt_junk_alloc) && usize > old_usize && !zero) { size_t excess_len = usize - old_usize; void *excess_start = (void *)((uintptr_t)ptr + old_usize); junk_alloc_callback(excess_start, excess_len); } label_not_resized: if (unlikely(!tsd_fast(tsd))) { uintptr_t args[4] = {(uintptr_t)ptr, size, extra, flags}; hook_invoke_expand(hook_expand_xallocx, ptr, old_usize, usize, (uintptr_t)usize, args); } UTRACE(ptr, size, ptr); check_entry_exit_locking(tsd_tsdn(tsd)); LOG("core.xallocx.exit", "result: %zu", usize); return usize; } JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW JEMALLOC_ATTR(pure) je_sallocx(const void *ptr, int flags) { size_t usize; tsdn_t *tsdn; LOG("core.sallocx.entry", "ptr: %p, flags: %d", ptr, flags); assert(malloc_initialized() || IS_INITIALIZER); assert(ptr != NULL); tsdn = tsdn_fetch(); check_entry_exit_locking(tsdn); if (config_debug || force_ivsalloc) { usize = ivsalloc(tsdn, ptr); assert(force_ivsalloc || usize != 0); } else { usize = isalloc(tsdn, ptr); } check_entry_exit_locking(tsdn); LOG("core.sallocx.exit", "result: %zu", usize); return usize; } JEMALLOC_EXPORT void JEMALLOC_NOTHROW je_dallocx(void *ptr, int flags) { LOG("core.dallocx.entry", "ptr: %p, flags: %d", ptr, flags); assert(ptr != NULL); assert(malloc_initialized() || IS_INITIALIZER); tsd_t *tsd = tsd_fetch_min(); bool fast = tsd_fast(tsd); check_entry_exit_locking(tsd_tsdn(tsd)); unsigned tcache_ind = mallocx_tcache_get(flags); tcache_t *tcache = tcache_get_from_ind(tsd, tcache_ind, !fast, /* is_alloc */ false); UTRACE(ptr, 0, 0); if (likely(fast)) { tsd_assert_fast(tsd); ifree(tsd, ptr, tcache, false); } else { uintptr_t args_raw[3] = {(uintptr_t)ptr, flags}; hook_invoke_dalloc(hook_dalloc_dallocx, ptr, args_raw); ifree(tsd, ptr, tcache, true); } check_entry_exit_locking(tsd_tsdn(tsd)); LOG("core.dallocx.exit", ""); } JEMALLOC_ALWAYS_INLINE size_t inallocx(tsdn_t *tsdn, size_t size, int flags) { check_entry_exit_locking(tsdn); size_t usize; /* In case of out of range, let the user see it rather than fail. */ aligned_usize_get(size, MALLOCX_ALIGN_GET(flags), &usize, NULL, false); check_entry_exit_locking(tsdn); return usize; } JEMALLOC_NOINLINE void sdallocx_default(void *ptr, size_t size, int flags) { assert(ptr != NULL); assert(malloc_initialized() || IS_INITIALIZER); tsd_t *tsd = tsd_fetch_min(); bool fast = tsd_fast(tsd); size_t usize = inallocx(tsd_tsdn(tsd), size, flags); check_entry_exit_locking(tsd_tsdn(tsd)); unsigned tcache_ind = mallocx_tcache_get(flags); tcache_t *tcache = tcache_get_from_ind(tsd, tcache_ind, !fast, /* is_alloc */ false); UTRACE(ptr, 0, 0); if (likely(fast)) { tsd_assert_fast(tsd); isfree(tsd, ptr, usize, tcache, false); } else { uintptr_t args_raw[3] = {(uintptr_t)ptr, size, flags}; hook_invoke_dalloc(hook_dalloc_sdallocx, ptr, args_raw); isfree(tsd, ptr, usize, tcache, true); } check_entry_exit_locking(tsd_tsdn(tsd)); } JEMALLOC_EXPORT void JEMALLOC_NOTHROW je_sdallocx(void *ptr, size_t size, int flags) { LOG("core.sdallocx.entry", "ptr: %p, size: %zu, flags: %d", ptr, size, flags); if (flags != 0 || !free_fastpath(ptr, size, true)) { sdallocx_default(ptr, size, flags); } LOG("core.sdallocx.exit", ""); } void JEMALLOC_NOTHROW je_sdallocx_noflags(void *ptr, size_t size) { LOG("core.sdallocx.entry", "ptr: %p, size: %zu, flags: 0", ptr, size); if (!free_fastpath(ptr, size, true)) { sdallocx_default(ptr, size, 0); } LOG("core.sdallocx.exit", ""); } JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW JEMALLOC_ATTR(pure) je_nallocx(size_t size, int flags) { size_t usize; tsdn_t *tsdn; assert(size != 0); if (unlikely(malloc_init())) { LOG("core.nallocx.exit", "result: %zu", ZU(0)); return 0; } tsdn = tsdn_fetch(); check_entry_exit_locking(tsdn); usize = inallocx(tsdn, size, flags); if (unlikely(usize > SC_LARGE_MAXCLASS)) { LOG("core.nallocx.exit", "result: %zu", ZU(0)); return 0; } check_entry_exit_locking(tsdn); LOG("core.nallocx.exit", "result: %zu", usize); return usize; } JEMALLOC_EXPORT int JEMALLOC_NOTHROW je_mallctl(const char *name, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { int ret; tsd_t *tsd; LOG("core.mallctl.entry", "name: %s", name); if (unlikely(malloc_init())) { LOG("core.mallctl.exit", "result: %d", EAGAIN); return EAGAIN; } tsd = tsd_fetch(); check_entry_exit_locking(tsd_tsdn(tsd)); ret = ctl_byname(tsd, name, oldp, oldlenp, newp, newlen); check_entry_exit_locking(tsd_tsdn(tsd)); LOG("core.mallctl.exit", "result: %d", ret); return ret; } JEMALLOC_EXPORT int JEMALLOC_NOTHROW je_mallctlnametomib(const char *name, size_t *mibp, size_t *miblenp) { int ret; LOG("core.mallctlnametomib.entry", "name: %s", name); if (unlikely(malloc_init())) { LOG("core.mallctlnametomib.exit", "result: %d", EAGAIN); return EAGAIN; } tsd_t *tsd = tsd_fetch(); check_entry_exit_locking(tsd_tsdn(tsd)); ret = ctl_nametomib(tsd, name, mibp, miblenp); check_entry_exit_locking(tsd_tsdn(tsd)); LOG("core.mallctlnametomib.exit", "result: %d", ret); return ret; } JEMALLOC_EXPORT int JEMALLOC_NOTHROW je_mallctlbymib(const size_t *mib, size_t miblen, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { int ret; tsd_t *tsd; LOG("core.mallctlbymib.entry", ""); if (unlikely(malloc_init())) { LOG("core.mallctlbymib.exit", "result: %d", EAGAIN); return EAGAIN; } tsd = tsd_fetch(); check_entry_exit_locking(tsd_tsdn(tsd)); ret = ctl_bymib(tsd, mib, miblen, oldp, oldlenp, newp, newlen); check_entry_exit_locking(tsd_tsdn(tsd)); LOG("core.mallctlbymib.exit", "result: %d", ret); return ret; } #define STATS_PRINT_BUFSIZE 65536 JEMALLOC_EXPORT void JEMALLOC_NOTHROW je_malloc_stats_print(void (*write_cb)(void *, const char *), void *cbopaque, const char *opts) { tsdn_t *tsdn; LOG("core.malloc_stats_print.entry", ""); tsdn = tsdn_fetch(); check_entry_exit_locking(tsdn); if (config_debug) { stats_print(write_cb, cbopaque, opts); } else { buf_writer_t buf_writer; buf_writer_init(tsdn, &buf_writer, write_cb, cbopaque, NULL, STATS_PRINT_BUFSIZE); stats_print(buf_writer_cb, &buf_writer, opts); buf_writer_terminate(tsdn, &buf_writer); } check_entry_exit_locking(tsdn); LOG("core.malloc_stats_print.exit", ""); } #undef STATS_PRINT_BUFSIZE JEMALLOC_ALWAYS_INLINE size_t je_malloc_usable_size_impl(JEMALLOC_USABLE_SIZE_CONST void *ptr) { assert(malloc_initialized() || IS_INITIALIZER); tsdn_t *tsdn = tsdn_fetch(); check_entry_exit_locking(tsdn); size_t ret; if (unlikely(ptr == NULL)) { ret = 0; } else { if (config_debug || force_ivsalloc) { ret = ivsalloc(tsdn, ptr); assert(force_ivsalloc || ret != 0); } else { ret = isalloc(tsdn, ptr); } } check_entry_exit_locking(tsdn); return ret; } JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW je_malloc_usable_size(JEMALLOC_USABLE_SIZE_CONST void *ptr) { LOG("core.malloc_usable_size.entry", "ptr: %p", ptr); size_t ret = je_malloc_usable_size_impl(ptr); LOG("core.malloc_usable_size.exit", "result: %zu", ret); return ret; } #ifdef JEMALLOC_HAVE_MALLOC_SIZE JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW je_malloc_size(const void *ptr) { LOG("core.malloc_size.entry", "ptr: %p", ptr); size_t ret = je_malloc_usable_size_impl(ptr); LOG("core.malloc_size.exit", "result: %zu", ret); return ret; } #endif static void batch_alloc_prof_sample_assert(tsd_t *tsd, size_t batch, size_t usize) { assert(config_prof && opt_prof); bool prof_sample_event = te_prof_sample_event_lookahead(tsd, batch * usize); assert(!prof_sample_event); size_t surplus; prof_sample_event = te_prof_sample_event_lookahead_surplus(tsd, (batch + 1) * usize, &surplus); assert(prof_sample_event); assert(surplus < usize); } size_t batch_alloc(void **ptrs, size_t num, size_t size, int flags) { LOG("core.batch_alloc.entry", "ptrs: %p, num: %zu, size: %zu, flags: %d", ptrs, num, size, flags); tsd_t *tsd = tsd_fetch(); check_entry_exit_locking(tsd_tsdn(tsd)); size_t filled = 0; if (unlikely(tsd == NULL || tsd_reentrancy_level_get(tsd) > 0)) { goto label_done; } size_t alignment = MALLOCX_ALIGN_GET(flags); size_t usize; if (aligned_usize_get(size, alignment, &usize, NULL, false)) { goto label_done; } szind_t ind = sz_size2index(usize); bool zero = zero_get(MALLOCX_ZERO_GET(flags), /* slow */ true); /* * The cache bin and arena will be lazily initialized; it's hard to * know in advance whether each of them needs to be initialized. */ cache_bin_t *bin = NULL; arena_t *arena = NULL; size_t nregs = 0; if (likely(ind < SC_NBINS)) { nregs = bin_infos[ind].nregs; assert(nregs > 0); } while (filled < num) { size_t batch = num - filled; size_t surplus = SIZE_MAX; /* Dead store. */ bool prof_sample_event = config_prof && opt_prof && prof_active_get_unlocked() && te_prof_sample_event_lookahead_surplus(tsd, batch * usize, &surplus); if (prof_sample_event) { /* * Adjust so that the batch does not trigger prof * sampling. */ batch -= surplus / usize + 1; batch_alloc_prof_sample_assert(tsd, batch, usize); } size_t progress = 0; if (likely(ind < SC_NBINS) && batch >= nregs) { if (arena == NULL) { unsigned arena_ind = mallocx_arena_get(flags); if (arena_get_from_ind(tsd, arena_ind, &arena)) { goto label_done; } if (arena == NULL) { arena = arena_choose(tsd, NULL); } if (unlikely(arena == NULL)) { goto label_done; } } size_t arena_batch = batch - batch % nregs; size_t n = arena_fill_small_fresh(tsd_tsdn(tsd), arena, ind, ptrs + filled, arena_batch, zero); progress += n; filled += n; } if (likely(ind < nhbins) && progress < batch) { if (bin == NULL) { unsigned tcache_ind = mallocx_tcache_get(flags); tcache_t *tcache = tcache_get_from_ind(tsd, tcache_ind, /* slow */ true, /* is_alloc */ true); if (tcache != NULL) { bin = &tcache->bins[ind]; } } /* * If we don't have a tcache bin, we don't want to * immediately give up, because there's the possibility * that the user explicitly requested to bypass the * tcache, or that the user explicitly turned off the * tcache; in such cases, we go through the slow path, * i.e. the mallocx() call at the end of the while loop. */ if (bin != NULL) { size_t bin_batch = batch - progress; /* * n can be less than bin_batch, meaning that * the cache bin does not have enough memory. * In such cases, we rely on the slow path, * i.e. the mallocx() call at the end of the * while loop, to fill in the cache, and in the * next iteration of the while loop, the tcache * will contain a lot of memory, and we can * harvest them here. Compared to the * alternative approach where we directly go to * the arena bins here, the overhead of our * current approach should usually be minimal, * since we never try to fetch more memory than * what a slab contains via the tcache. An * additional benefit is that the tcache will * not be empty for the next allocation request. */ size_t n = cache_bin_alloc_batch(bin, bin_batch, ptrs + filled); if (config_stats) { bin->tstats.nrequests += n; } if (zero) { for (size_t i = 0; i < n; ++i) { memset(ptrs[filled + i], 0, usize); } } if (config_prof && opt_prof && unlikely(ind >= SC_NBINS)) { for (size_t i = 0; i < n; ++i) { prof_tctx_reset_sampled(tsd, ptrs[filled + i]); } } progress += n; filled += n; } } /* * For thread events other than prof sampling, trigger them as * if there's a single allocation of size (n * usize). This is * fine because: * (a) these events do not alter the allocation itself, and * (b) it's possible that some event would have been triggered * multiple times, instead of only once, if the allocations * were handled individually, but it would do no harm (or * even be beneficial) to coalesce the triggerings. */ thread_alloc_event(tsd, progress * usize); if (progress < batch || prof_sample_event) { void *p = je_mallocx(size, flags); if (p == NULL) { /* OOM */ break; } if (progress == batch) { assert(prof_sampled(tsd, p)); } ptrs[filled++] = p; } } label_done: check_entry_exit_locking(tsd_tsdn(tsd)); LOG("core.batch_alloc.exit", "result: %zu", filled); return filled; } /* * End non-standard functions. */ /******************************************************************************/ /* * The following functions are used by threading libraries for protection of * malloc during fork(). */ /* * If an application creates a thread before doing any allocation in the main * thread, then calls fork(2) in the main thread followed by memory allocation * in the child process, a race can occur that results in deadlock within the * child: the main thread may have forked while the created thread had * partially initialized the allocator. Ordinarily jemalloc prevents * fork/malloc races via the following functions it registers during * initialization using pthread_atfork(), but of course that does no good if * the allocator isn't fully initialized at fork time. The following library * constructor is a partial solution to this problem. It may still be possible * to trigger the deadlock described above, but doing so would involve forking * via a library constructor that runs before jemalloc's runs. */ #ifndef JEMALLOC_JET JEMALLOC_ATTR(constructor) static void jemalloc_constructor(void) { malloc_init(); } #endif #ifndef JEMALLOC_MUTEX_INIT_CB void jemalloc_prefork(void) #else JEMALLOC_EXPORT void _malloc_prefork(void) #endif { tsd_t *tsd; unsigned i, j, narenas; arena_t *arena; #ifdef JEMALLOC_MUTEX_INIT_CB if (!malloc_initialized()) { return; } #endif assert(malloc_initialized()); tsd = tsd_fetch(); narenas = narenas_total_get(); witness_prefork(tsd_witness_tsdp_get(tsd)); /* Acquire all mutexes in a safe order. */ ctl_prefork(tsd_tsdn(tsd)); tcache_prefork(tsd_tsdn(tsd)); malloc_mutex_prefork(tsd_tsdn(tsd), &arenas_lock); if (have_background_thread) { background_thread_prefork0(tsd_tsdn(tsd)); } prof_prefork0(tsd_tsdn(tsd)); if (have_background_thread) { background_thread_prefork1(tsd_tsdn(tsd)); } /* Break arena prefork into stages to preserve lock order. */ for (i = 0; i < 9; i++) { for (j = 0; j < narenas; j++) { if ((arena = arena_get(tsd_tsdn(tsd), j, false)) != NULL) { switch (i) { case 0: arena_prefork0(tsd_tsdn(tsd), arena); break; case 1: arena_prefork1(tsd_tsdn(tsd), arena); break; case 2: arena_prefork2(tsd_tsdn(tsd), arena); break; case 3: arena_prefork3(tsd_tsdn(tsd), arena); break; case 4: arena_prefork4(tsd_tsdn(tsd), arena); break; case 5: arena_prefork5(tsd_tsdn(tsd), arena); break; case 6: arena_prefork6(tsd_tsdn(tsd), arena); break; case 7: arena_prefork7(tsd_tsdn(tsd), arena); break; case 8: arena_prefork8(tsd_tsdn(tsd), arena); break; default: not_reached(); } } } } prof_prefork1(tsd_tsdn(tsd)); stats_prefork(tsd_tsdn(tsd)); tsd_prefork(tsd); } #ifndef JEMALLOC_MUTEX_INIT_CB void jemalloc_postfork_parent(void) #else JEMALLOC_EXPORT void _malloc_postfork(void) #endif { tsd_t *tsd; unsigned i, narenas; #ifdef JEMALLOC_MUTEX_INIT_CB if (!malloc_initialized()) { return; } #endif assert(malloc_initialized()); tsd = tsd_fetch(); tsd_postfork_parent(tsd); witness_postfork_parent(tsd_witness_tsdp_get(tsd)); /* Release all mutexes, now that fork() has completed. */ stats_postfork_parent(tsd_tsdn(tsd)); for (i = 0, narenas = narenas_total_get(); i < narenas; i++) { arena_t *arena; if ((arena = arena_get(tsd_tsdn(tsd), i, false)) != NULL) { arena_postfork_parent(tsd_tsdn(tsd), arena); } } prof_postfork_parent(tsd_tsdn(tsd)); if (have_background_thread) { background_thread_postfork_parent(tsd_tsdn(tsd)); } malloc_mutex_postfork_parent(tsd_tsdn(tsd), &arenas_lock); tcache_postfork_parent(tsd_tsdn(tsd)); ctl_postfork_parent(tsd_tsdn(tsd)); } void jemalloc_postfork_child(void) { tsd_t *tsd; unsigned i, narenas; assert(malloc_initialized()); tsd = tsd_fetch(); tsd_postfork_child(tsd); witness_postfork_child(tsd_witness_tsdp_get(tsd)); /* Release all mutexes, now that fork() has completed. */ stats_postfork_child(tsd_tsdn(tsd)); for (i = 0, narenas = narenas_total_get(); i < narenas; i++) { arena_t *arena; if ((arena = arena_get(tsd_tsdn(tsd), i, false)) != NULL) { arena_postfork_child(tsd_tsdn(tsd), arena); } } prof_postfork_child(tsd_tsdn(tsd)); if (have_background_thread) { background_thread_postfork_child(tsd_tsdn(tsd)); } malloc_mutex_postfork_child(tsd_tsdn(tsd), &arenas_lock); tcache_postfork_child(tsd_tsdn(tsd)); ctl_postfork_child(tsd_tsdn(tsd)); } /******************************************************************************/ /* Helps the application decide if a pointer is worth re-allocating in order to reduce fragmentation. * returns 1 if the allocation should be moved, and 0 if the allocation be kept. * If the application decides to re-allocate it should use MALLOCX_TCACHE_NONE when doing so. */ JEMALLOC_EXPORT int JEMALLOC_NOTHROW get_defrag_hint(void* ptr) { assert(ptr != NULL); return iget_defrag_hint(TSDN_NULL, ptr); }